Tag Archives: ISO

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

A new standard (in Canada) for occupational exposure to engineered nanomaterials

The Oct. 31, 2012 announcement from the CSA (Canadian Standards Association?) Group (H/T to the Canadian Safety Reporter) is a bit skimpy on details but here goes,

CSA Group, a leading standards development, testing and certification organization officially announces Canada’s first adopted International Organization for Standardization (ISO) standard on nanotechnologies. CSA Z12885, Nanotechnologies – Exposure control program for engineered nanomaterials in occupational settings provides guidance for the safe use of nanomaterials in the workplace.

“The development of standards is crucial for effective and responsible commercialization of nanotechnologies,” said Brian Haydon, Senior Project Manager, Standards, CSA Group. “CSA Z12885 is the first in a series of standards on nanotechnologies being adopted in Canada, resulting from international and Canadian contributions to the continued activity of ISO/TC 229, the ISO Technical Committee on nanotechnologies.”

CSA Z12885, Nanotechnologies – Exposure control program for engineered nanomaterials in occupational settings provides guidance to establish and implement a comprehensive managed program to control exposure to nanomaterials in the workplace. This follows recognized approaches to risk management with a focus on information and issues specific to nanotechnologies including hazard identification, risk assessment procedures, training requirements and worker engagement. CSA Z12885 contains revisions to ISO/TR 12885 and additional guidance to reflect Canadian practices and safety considerations.

It’s interesting to note which agencies offered financial support to develop this CSA Z12885 standard,

This standard was announced to industry and research stakeholders at the recent Nano Ontario 2012 Conference in Waterloo, Ontario, Canada. The development of this Standard was made possible, in part, by the financial support of Alberta Innovates Technology Futures – nanoAlberta, Health Canada, MDEIE (Developpement economique, Innovation et Exportation – Gouvernement du Quebec) and the National Research Council Canada – Industrial Research Assistance Program.

I first mentioned this standard in my June 12, 2012 posting about the OECD (Organization for Economic Cooperation and Development) and Canada’s report regarding its nanotechnology initiatives,

4. Information on any Developments Related to Good Practice Documents.

A. The Canadian Standards Association (CSA) Technical Committee on Nanotechnologies – Occupational Health and Safety has completed a draft national standard (CSA Z12885) to provide guidance for workers, entitled “Nanotechnologies — Exposure control program for engineered nanomaterials in occupational settings” This document is largely based on the published international ISO Technical Report, ISO/TR 12885:2008 entitled “Health & Safety Practices in Occupational Settings relevant to Nanotechnologies”. The CSA Z12885 standard has completed the public review process and is proceeding to ballot, with completion anticipated in mid-2012.

B. Government, industry, research, user, and consumer interests are participating as designated experts from Canada on international standards development through the Canadian Advisory Committee to International Organization for Standardization/Technical Committee 229 (ISO/TC229) Nanotechnologies, facilitated by CSA Standards. This includes active participation on terminology, nomenclature, measurement, characterization, material specification and health, safety, environmental aspects of nanotechnologies standards under development.

They’ve been working on this standard for at least two years as I first mentioned it in a Sept. 24, 2012 posting about earlier OECD report on Canada’s nanotechnology initiatives.

New ISO report: characterizing nanomaterials before studying possible toxicological effects

It makes sense to characterize materials before testing them for possible toxicological effects since you want to ensure scientists around the world know they can compare their results with some confidence.  According to the International Standardization Organization (ISO) website, May 8, 2012 is the publication date for a technical report, which establishes standards for nanomaterials (specifically, nano-objects) testing: ISO/TR 13014:2012; Nanotechnologies – Guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment.

The May 30, 2012 news item on Nanowerk provides more details about this new report,

ISO TR 13014:2012, Nanotechnologies – Guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment, is intended to assist health scientists and experts to understand, plan, identify, and address relevant physicochemical characteristics of nano-objects before conducting toxicological tests on them.

ISO TR 13014:2012 was prepared by ISO TC 229, Nanotechnologies, Working Group (WG) 3, Health, Safety and Environment, under the project leadership of Dr. Richard Pleus of the United States. This group is U.S.-led, operating under the leadership of Dr. Laurie Locascio of the National Institute of Standards and Technology (NIST). Dr. Vladimir Murashov of the National Institutes of Occupational Safety and Health (NIOSH) serves as the WG 3 chair for the U.S. Technical Advisory Group (TAG) to ISO TC 229, which is accredited and administered by the American National Standards Institute (ANSI).

“By understanding the chemical and physical characteristics of nano-objects, we are working to decrease toxicity of materials and promote the development of safer alternatives,” said Dr. Pleus. “The work done in this document has a fundamental importance in toxicology, as it tells scientists the material being tested needs to be understood: What does it look like? What is it made of? How does it interact with the surrounding environment?”

You can find out more about ANSI and its nanotechnology efforts here.  From ANSI’s Technology Advisory Group webpage for nanotechnologies,

Specific tasks include developing standards for: terminology and nomenclature; metrology and instrumentation, including specifications for reference materials; test methodologies; modelling and simulations; and science-based health, safety, and environmental practices.

ANSI administers the U.S. Technical Advisory Group (TAG) for ISO/TC 229 Nanotechnologies. The Scope of the U.S. TAG mirrors the above scope of ISO/TC 229.

Membership on the ANSI-Accredited U.S. TAG is open to all materially affected U.S. parties interested in the coordination and development of International Standards related to nanotechnology

New nanotechnology standards: ISO/TS 80004-4:2011 and ISO/TS 80004-5:2011

The International Organization for Standardization (ISO) has released two new standards for terms and definitions. From the Nov. 23, 2011 news item on Nanowerk,

ISO/TS 80004-4:2011 gives terms and definitions for materials in the field of nanotechnologies where one or more components are nanoscale regions and the materials exhibit properties attributable to the presence of those nanoscale regions. It is intended to facilitate communications between organizations and individuals in industry and those who interact with them.

ISO/TS 80004-5:2011 lists terms and definitions related to the interface between nanomaterials and biology. It is intended to facilitate communications between scientists, engineers, technologists, designers, manufacturers, regulators, NGOs, consumer organizations, members of the public and others …

ISO/TS 80004-4:2011 can be purchased for 58 Swiss Francs while ISO/TS 80004-5:2011 can be purchased for 50 Swiss Francs.

Nano regulatory frameworks are everywhere!

The scene around nanotechnology regulatory frameworks has been frantic (by comparison with any other time period during the 3 years I’ve been blogging about nano) in the last month or so. This is my second attempt this month at pulling together information about nanotechnology regulatory frameworks (my June 9, 2011 posting).

I’ll start off slow and easy with this roundup of sorts with a brief look at the international scene, move on to US initiatives, offer a brief comment on the Canadian situation, and wrap up with Europe.


Dr. Andrew Maynard at the University of Michigan Risk Science Center (UMRSC) blog has written a commentary about the ISO’s (*International Organization for Standardization) latest set of nanotechnology guidelines in his May 27, 2011 posting.  From the posting,

ISO/TR 31321:2011: Nanotechnologies – Nanomaterial risk evaluation is unashamedly based on the Environmental Defense Fund/DuPont Nano Risk Framework. Much of the structure and content reflects that of the original – a testament to the thought and effort that went into the first document. …The ISO report is written in a much tighter style than that of the original document, and loses some of the occasionally long-winded expositions on what should be done and why. And the ISO document is more compact – 66 pages as opposed to 104. But from a comparative reading, surprisingly little has been changed from the 2007 document.

It’s build around a framework of six steps:

  1. describe materials and applications
  2. material profiles
  3. evaluate risks
  4. assess risk management options
  5. decide, document, and act
  6. review and adapt

From the posting,

Inherent to this framework is the need to make situation-specific decisions that are guided by the Technical Report but not necessarily prescribed by it, and the need to constantly review and revise procedures and decisions. This built-in flexibility and adaptability makes ISO/TR 31321 a powerful tool for developing tailored nanomaterial management strategies that are responsive to new information as it becomes available. It also presents an integrative approach to using materials safely, that deals with the need to make decisions under considerable uncertainty by blurring the line between risk assessment and risk management.

Andrew’s view of these guidelines is largely positive and you can get more details and history by viewing his original commentary. (I first mentioned these new ISO guidelines in my May 18, 2011 posting.)

Sticking with the international scene (in this case, ISO), there was a June 13, 2011 news item on Nanowerk about a new ISO general liability classification for nanotechnology and alternative energy (from the news item),

The new classifications to address the growing use of nanotechnology are Nanomaterial Distributors and Nanomaterial Manufacturing. The once-limited use of nanotechnology in electronics and information technology industries is now swiftly permeating the consumer marketplace, from cosmetics to clothing and more. The Nanomaterial Distributors classification applies to risks that sell nanomaterials to others, and the Nanomaterial Manufacturing classification applies to risks that manufacture or engineer nanomaterials for others.

“With heightened interest to reduce the carbon footprint, establish energy independence, and increase the use of renewable resources, alternative power is a priority for many,” said Beth Fitzgerald, vice president of commercial lines and modeling at ISO. “In response to the growing demand for alternative energy, ISO introduced classifications for risks in three main areas: biofuels, solar energy, and wind energy. The new classifications will allow for future evaluation of the loss experience of those emerging markets.”

The biofuels classifications consist of Biofuels Manufacturing and Biofuels Distributors. Since ethanol already has a widespread and accepted use, a further distinction is made between “ethanol” and “biofuels other than ethanol.”

The solar energy classifications include Solar Energy Farms, Solar Energy Equipment Dealers or Distributors, and Solar Energy Equipment Manufacturing. The wind energy classifications include Wind Turbine Contractors – Installation, Service, or Repair and onshore and offshore Wind Farms.

* I have for many years understood that ISO is the International Standards Organization and I see from a note on the UMRSC blog that these days it is the International Organization for Standardization.


On the US front, three different agencies have made announcements that in one way or another will have an impact on the nanotechnology regulatory frameworks in that country.

The White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) recently released a set of principles for the regulation and oversight of nanotechnology applications and guidance for the development and implementation of policies at the agency level. From the June 9, 2011 news item on Nanowerk,

The realization of nanotechnology’s full potential will require continued research and flexible, science-based approaches to regulation that protect public health and the environment while promoting economic growth, innovation, competitiveness, exports, and job creation.

In furtherance of those goals, the White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) has developed a set of principles (pdf) specific to the regulation and oversight of applications of nanotechnology, to guide the development and implementation of policies at the agency level.

These principles reinforce a set of overarching principles (pdf) for the regulation and oversight of emerging technologies released on March 11, 2011. They also reflect recommendations from a report on nanotechnology (pdf) by the President’s Council of Advisors on Science and Technology. The report encourages Federal support for the commercialization of nanotech products and calls for the development of rational, science- and risk-based regulatory approaches that would be based on the full array of a material’s properties and their plausible risks and not simply on the basis of size alone.

You can read more about the guidelines at Nanowerk or on the Environemental Expert website here.

Back over on the UMRSC blog, Dr. Andrew Maynard had these comments in his June 13, 2011 posting,

In a joint memorandum, the Office of Science and Technology Policy, the Office of Management and Budget and the Office of the United States Trade Representative laid out Policy Principles for the U.S. Decision Making Concerning Regulations and Oversight of Applications of Nanotechnology and Nanomaterials.

Reading through it, a number of themes emerge, including:

  • Existing regulatory frameworks provide a firm foundation for the oversight of nanomaterials, but there is a need to respond to new scientific evidence on potential risks, and to consider administrative and legal modifications to the regulatory landscape should the need arise.
  • Regulatory action on nanomaterials should be based on scientific evidence of risk, and not on definitions of materials that do not necessarily reflect the evidence-based likelihood of a material causing harm.
  • There should be no prior judgement on whether nanomaterials are intrinsically benign or harmful, in the absence of supporting scientific evidence.
  • Transparency and communication are important to ensuring effective evidence-based regulation.

Overall, this is a strong set of policy principles that lays the groundwork for developing regulation that is grounded in science and not swayed by speculative whims, and yet is responsive and adaptive to emerging challenges. Gratifyingly, the memorandum begins to touch on some of the concerns I have expressed previously about approaches to nanomaterial regulation that seem not to be evidence-based. There is a reasonable chance that they will help move away from the dogma that engineered nanomaterials should be regulated separately because they are new, to a more nuanced and evidence-based approach to ensuring the safe use of increasingly sophisticated materials. Where it perhaps lacks is in recognizing the importance of other factors in addition to science in crafting effective regulation, and in handling uncertainty in decision making.

June 9, 2011 was quite the day as in addition to the White House documents, the US Environmental Protection Agency (EPA) and the US Food and Drug Administration (FDA) both announced public consultations on nanotechnology regulation.

From the June 9, 2011 news item on Nanowerk about the US EPA public consultation,

The U.S. Environmental Protection Agency announced today it plans to obtain information on nanoscale materials in pesticide products. Under the requirements of the law, EPA will gather information on what nanoscale materials are present in pesticide products to determine whether the registration of a pesticide may cause unreasonable adverse effects on the environment and human health. The proposed policy will be open for public comment.

“We want to obtain timely and accurate information on what nanoscale materials may be in pesticide products, “said Steve Owens assistant administrator for EPA’s Office of Chemical Safety and Pollution Prevention. “This information is needed for EPA to meet its requirement under the law to protect public health and the environment.”

Comments on the Federal Register notice will be accepted until 30 days after publication. The notice will be available at www.regulations.gov in docket number EPA–HQ–OPP–2010-0197. More information or to read the proposed notice: http://www.epa.gov/pesticides/regulating/nanotechnology.html [Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public Comment]

The US FDA has taken a more complicated approach to its public consultation with two notices being issued about the same consultation. The June 9, 2011 news item on Nanowerk had this to say,

The U.S. Food and Drug Administration today released draft guidance to provide regulated industries with greater certainty about the use of nanotechnology, which generally involves materials made up of particles that are at least one billionth of a meter in size. The guidance outlines the agency’s view on whether regulated products contain nanomaterials or involve the application of nanotechnology.

The draft guidance, “Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology”, is available online and open for public comment. It represents the first step toward providing regulatory clarity on the FDA’s approach to nanotechnology.

Specifically, the agency named certain characteristics – such as the size of nanomaterials used and the exhibited properties of those materials – that may be considered when attempting to identify applications of nanotechnology in regulated products.

“With this guidance, we are not announcing a regulatory definition of nanotechnology,” said Margaret A. Hamburg, MD, Commissioner of Food and Drugs. “However, as a first step, we want to narrow the discussion to these points and work with industry to determine if this focus is an appropriate starting place.”

Then there was a June 15, 2011 news item on Nanowerk offering more details about the draft guidance announcement of June 9, 2011,

The guidelines list things that might be considered when deciding if nanotechnology was used on a product regulated by FDA—including the size of the nanomaterials that were used, and what their properties are.

And FDA wants industry leaders and the public to weigh-in.

Nanotechnology—the science of manipulating materials on a scale so small that it can’t be seen with a regular microscope—could have a broad range of applications, such as increasing the effectiveness of a particular drug or improving the packaging of food or cosmetics. “Nanotechnology is an emerging technology that has the potential to be used in a broad array of FDA-regulated medical products, foods, and cosmetics,” says Carlos Peña, director of FDA’s emerging technology programs. “But because materials in the nanoscale dimension may have different chemical, physical, or biological properties from their larger counterparts, FDA is monitoring the technology to assure such use is beneficial.”

In other words, using nanotechnology can change the way a product looks or operates, Peña says.

Although the technology is still evolving, it’s already in use as display technology for laptop computers, cell phones, and digital cameras. In the medical community, a number of manufacturers have used nanotechnology in:

  • Drugs
  • Medical imaging
  • Antimicrobial materials
  • Medical devices
  • Sunscreens

Andrew Maynard in his previously noted June 13, 2011 posting on on the UMRSC blog had this to say  about the EPA’s draft document,

This is a long and somewhat convoluted document, that spends some time outlining what the agency considers is an engineered nanomaterial, and reviewing nanomaterial hazard data.

Reading the document, EPA still seems somewhat tangled up with definitions of engineered nanomaterials. After outlining conventional attributes associated with engineered nanomaterials, including structures between ~1 – 100 nm and unique or novel properties, the document states,

“These elements do not readily work in a regulatory context because of the high degree of subjectivity involved with interpreting such phrases as “unique or novel properties” or “manufactured or engineered to take advantage of these properties” Moreover the contribution of these subjective elements to risk has not been established.”

This aligns with where my own thinking has been moving in recent years. Yet following this statement, the document reverts back to considering nanoparticles between 1 – 100 nm as the archetypal nanomaterial, and intimates “novel” properties such as “larger surface area per unit volume and/or quantum effects” as raising new risk concerns.

Canadian segue

I’ll point out here that Health Canada’s Interim Policy definition also adheres to the 1 to 100 nm definition for a nanomaterial, a concern I expressed in my submission to the public consultation held last year. Interestingly, since 29 submissions does seem particularly daunting to read there has yet to be any public response to these submissions. Not even a list of which agencies and individuals made submissions.

Back to US

Andrew also comments on the FDA document,

The FDA Guidance for Industry: Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology is a very different kettle of fish to the EPA document. It is overtly responsive to the White House memo; it demonstrates a deep understanding of the issues surrounding nanotechnology and regulation; and it is mercifully concise.

To be fair, the scope of the draft guidance is limited to helping manufacturers understand how the agency is approaching nanotechnology-enabled products under their purview. But this is something it does well.

One of the more significant aspects of the guidance is the discussion on regulatory definitions of nanomaterials. Following a line of reasoning established some years ago, the agency focuses on material properties rather than rigid definitions:

“FDA has not to date established regulatory definitions of “nanotechnology,” “nanoscale” or related terms… Based on FDA’s current scientific and technical understanding of nanomaterials and their characteristics, FDA believes that evaluations of safety, effectiveness or public health impact of such products should consider the unique properties and behaviors that nanomaterials may exhibit”

I recommend reading the full text of Andrew’s comments.


Meanwhile, there was a June 10, 2011 news item on Nanowerk about the availability of  28 presentations from a May 10-12, 2011 joint European workshop hosted by the Engineered NanoParticle Risk Assessment (ENPRA) FP (Framework Programme) 7 project and the European Commission’s Joint Research Centre. From the news item about the Challenges of Regulation and Risk Assessment of Nanomaterials workshop,

Twenty-eight presentations delivered at the Joint JRC Nano event and 2nd ENPRA Stakeholders Workshop are now available on-line: ENPRA Workshop 2011 – Programme with Presentations.

The workshop (by invitation only) involved about 90 participants, from industry, government, NGOs, and academia. …

During two days and a half, 34 experts from 26 different organisations informed the participants on the latest scientific progress in the field of nanoparticles risk assessment produced within national and European projects, and first results of ENPRA FP7 project were presented in detail. In addition, recent developments concerning legislation in the EU and beyond were discussed.

Amongst other participants, you can include representatives of EU Associate and Candidate Countries, environment and workers’ protection organisations, CAIQ (Chinese Academy of Inspection and Quarantine), US-EPA, ECHA, and EFSA.

To close this piece (and I want to do that very badly), I’m going to give Tim Harper at his TNT blog (on the Cientifica website) the final word from his June 10, 2011 posting,

The White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) has developed a set of principles (pdf) specific to the regulation and oversight of applications of nanotechnology, to guide the development and implementation of policies at the agency level.

I’m glad to see that it addresses those two old bugbears, the confusion between risk and hazard and the prejudging of issues without reference to scientific evidence …

It is an approach which appears to diverge slightly from the European adoption of the precautionary principle …

As with any regulation, the problems will arise not from the the original wording, but through its (mis)interpretation and inconsistent application.

Environmental Nanoscience Initiative goes transatlantic (UK/US) in phase 2 and related ISO news

Launched in 2006, the Environmental Nanoscience Initiative (ENI) will see scientists from the US and UK collaborate on three projects in phase 2. From the Jan. 26, 2011 news item on Nanowerk,

One of the ENI consortia will carry out a risk assessment for manufactured nanoparticles used in consumer products. Earlier research has focused on the toxicities – the degrees to which the nanoparticles can affect organisms – at the source. It has also shown that nanomaterials can affect marine organisms and change the properties of chemicals they come into contact with. For this project the researchers intend to evaluate the effect of the nanoparticles on people and aquatic animals at the point of exposure.

A second research team will investigate how the nanoparticles and nanotubes are transported into sewage treatment systems, into soil, surface waters and sediments, as well as their toxicity and absorption into a range of organisms such as bacteria, algae, invertebrates and fish.

The third group will examine the rate and behaviour of nanomaterials carried into soils used for agriculture and absorbed into plants, bacteria and invertebrates such as worms. They will also be generating new knowledge for use in risk assessment models using a unique pilot-scale waste water treatment facility.

Overall this research will provide key information about whether wildlife and humans are exposed to manufactured nanomaterials, and if so in what form.

The three Phase 2 consortium projects and the institutes involved are:

Risk assessment for manufactured nanoparticles used in consumer products (RAMNUC):
– Imperial College, London; Health Protection Agency, Oxfordshire.
USA – University of Medicine and Dentistry of New Jersey; Rutgers University, Piscataway NJ; Duke University, Durham, NC.

Consortium for manufactured nanomaterial bioavailability & environmental exposure (nanoBEE):
– University of Birmingham; Napier University, Edinburgh; Natural History Museum, London.
USARice University, Houston, TX; Clemson University, SC; University of California, Davis, CA. [emphasis mine]

Transatlantic initiative for nanotechnology and the environment (TINE):
UK – Rothamsted Research, Hertfordshire; Cranfield University, Cranfield, Bedfordshire; Centre for Ecology & Hydrology, Wallingford, Oxfordshire; Lancaster University, Lancashire.
USA – University of Kentucky, Lexington, KY; Duke University, Durham, NC; Carnegie Mellon University, Pittsburgh, PA.

I first came across the news in a Jan. 26, 2011 article in the Houston (Texas) Business Journal which provides more details about the research team that includes professor Vicki Colvin from Rice University,

Colvin, a professor of chemistry and director of the Center for Biological and Environmental Nanotechnology at Rice, is heading up a team of three researchers in the U.S., which is collaborating with three U.K. researchers on the project.

Known as the Nanomaterial Bioavailability and Environmental Exposure Consortia, it will focus on creating a “plug and play” tool for regulators to input information about the size and type of the nanomaterial, local water chemistry, soil types and other factors. Once this data is in the system, regulators will be shown how much of the material could be safely released into a given area.

Coincidentally or not, the ENI announcement was made the same day as the International Standards Organization (ISO) announced a new standard for establishing nanoparticle inhalation toxicity testing. From the Jan. 26, 2011 ISO news release,

Dr. Peter Hatto, Chair of the committee that developed the standard explains, “With the rapid expansion of nanotechnology applications comes a growing risk of exposure to potentially toxic substances, especially for workers in nanotechnology-based industries. Moreover, if airborne nanoparticles were liberated from products, the general public could also be affected. Ensuring the safety of these particles is therefore paramount for the well-being of workers and consumers.”

Carefully monitored tests are used to establish the inhalation toxicity of airborne nanoparticles. The new standard, ISO 10808:2010, Nanotechnologies – Characterization of nanoparticles in inhalation exposure chambers for inhalation toxicity testing, helps ensure that the results of such tests are reliable and harmonized worldwide.

While these projects are distantly related (with the ENI focused on establishing possible risks associated with nanomaterials released  into soil and water and the ISO standard focused on developing parameters for standards for testing toxicity when nanoparticles are inhaled), this all suggests that we are learning to assess the impact of nanotechnology-enabled products and processes.

ISO nanomaterials definition

There’s a new definition from the International Standards Organization (ISO) for nanomaterials.  From the news item on Nanowerk,

ISO has therefore published a new technical report, ISO/TR 11360:2010, Nanotechnologies – Methodology for the classification and categorization of nanomaterials, offering a comprehensive, globally harmonized methodology for classifying nanomaterials.

ISO/TR 11360 introduces a system called the “nano-tree”, which places nanotechnology concepts into a logical context by indicating relationships among them as a branching out tree. The most basic and common elements are defined as the main trunk of the tree, and nanomaterials are then differentiated in terms of structure, chemical nature and other properties.

“The document provides users with a structured view of nanotechnology, and facilitates a common understanding of its concepts,” says Peter Hatto, Chair of the committee that developed the standard (ISO/TC 229). “It offers a systematic approach and a commonsensical hierarchy”.

The new definition is called: ISO/TR 11360:2010, Nanotechnologies – Methodology for the classification and categorization of nanomaterials. It will cost you 112 Swiss Francs or, roughly, $112.90 CAD.

I’m not sure what the big difference is between this definition and the one I posted about Oct. 24, 2008 but I suspect the difference lies in the classification level, i.e., the 2008 definition (ISO/TS 27687:2008 titled Nanotechnologies — Terminology and definitions for nano-objects — Nanoparticle, nanofibre and nanoplate) laid the groundwork for this more specific nanomaterials definition.

ETA Aug.21.10: Dexter Johnson at Nanoclast has posted about the new ISO definition and the impact this may have on commercialization of nanomaterials. Go here to read more.

Isotopes, beverages, and nuclear isotope shortages

Nanowerk recently posted a news item about isotopes and beverages which indicates that scientists can track your geographic location because the beverages you drink leave a signature or trace  in your hair. From the news item,

The scientists analyzed isotope patterns in bottled water, soda pop, and beer from 33 cities and found that patterns in the beverages generally matched those already known for the tap water. They noted that the isotope pattern in beverages tends to vary from city to city in ways that give cities in different regions characteristic “iso-signatures.” A person who drinks a beer or soda in Denver, Des Moines, or Dallas, for instance, consumes a different isotope signature than a person in Las Cruces, Las Vegas, or Laramie. The finding may help trace the origin of drinks or help criminal investigators identify the geographic travels of crime suspects and other individuals through analysis of hair strands, the study suggests.

I think Sherlock Holmes would have liked this. On another note, for anyone (like me) who’s not quite sure what an isotope is, I found a number of definitions and this one best fits the use described in the news item,

some elements have more than one form. They differ only in nuclear terms rather than chemical ones and have different relative atomic mass as a result. They may behave slightly differently which allows us to use them in geography for a number of measurements relating to constructing past conditions. http://www.tuition.com.hk/geography/i.htm

On other isotopic fronts, Dave Bruggeman at Pasco Phronesis posted about a move by the Government of British Columbia (a Canadian province) to address the shortage of medical isotopes. There was a bit of a scandal last year when Canadians found out that the Chalk River facility which produces a fair chunk (1/3 according to this Wikipedia essay) of the global supply of  isotopes used for medical purposes was badly deteriorating.

There have been a number of problems with the facility since 2007 culminating in a shutdown in 2009 which helped to precipitate a worldwide shortage and a Canadian scandal. The Chalk River facility has yet to reopen but (from Pasco Phronesis),

… The B.C. Premier recently announced that a $63 million (Canadian) accelerator facility will be developed at the national physics lab [TRIUMF] in Vancouver (H/T Science Canada). The use of an accelerator for generating isotopes is critical, as it’s a relatively new means for doing so. It allows for a means to move away from using fission reactors for isotope generation.

Bravo Premier Campbell! Margaret Munro in her June 23, 2010 article about the initiative noted in the Vancouver Sun,

Premier Gordon Campbell, who handed over $30.7 million for the project, talked up the more down-to-earth benefits, such as helping alleviate the global medical-isotope shortage, and demonstrating that B.C. is home to “world-class ” science and groundbreaking technology.

The new accelerator promises “a new way to produce the radio isotopes needed by doctors and patients everywhere,” Campbell said.

The provincial money means construction can begin this summer on the powerful accelerator that is expected to beam Canada into the forefront of subatomic and isotope research. The Canada Foundation for Innovation has invested $18 million, and $14 million will come from core federal funding for TRIUMF.

Isotopes, used for medical scans and treatments, are now made by aging and increasingly unreliable nuclear reactors [Chalk River]. Researchers at TRIUMF are working with teams across Canada to explore new options.

This doesn’t sound like the same kind of isotope the chemists were talking about with the beverages and the discussion of geographic tracking. If I understand the difference rightly, the isotopes in the beverages are naturally occurring while these other isotopes are engineered and, I imagine, less stable. For anyone who loves definitions, here’s another one for isotopes,

an atom that has more neutrons in the nucleus than its stable counterpart. For example: Hydrogen has one electron and a nucleus containing one proton, Deuterium (an isotope of hydrogen) has one electron plus a nucleus containing one proton and one neutron. www.hiper-laser.org/glossary.asp

New US nanotechnology legislation for health and safety proposed; SAFENANO reviews 2009

After finding this announcement on Azonano (or you can find it on Senator Pryor’s site here),

U.S. Senators Mark Pryor (D-AR) and Benjamin L. Cardin (D-MD) today introduced legislation to address potential health and safety risks about products that contain nanotechnology materials.

The Nanotechnology Safety Act of 2010 would establish a program within the Food and Drug Administration (FDA) to assess the health and safety implications of nanotechnology in everyday products and develop best practices for companies who employ nanotechnology. The legislation authorizes $25 million each year from 2011 through 2015.

I went looking for a comment or news release about it on the Project on Emerging Nanotechnologies website and was surprised to find nothing. In fact, I couldn’t find any commentary anwyhere in my very brief search this morning.

Meanwhile, SAFENANO (an initiative of the UK’s Institute of Occupational Medicine) has produced a review of  nanotechnology environment, health, and safety developments for 2009. They cover both developments in Europe and elsewhere. From the review,

In January, the International Standards Organisation ISO published a technical report ISO/TR 12885:2008 ” Health and safety practices in occupational settings relevant to nanotechnologies “. The report provides a general background the nanoparticle risk issues and describes in some detail current practices for risk assessment, exposure measurement and control which are appropriate for use with engineered nanoparticles. This report takes an encyclopaedic view but stops short of recommending which practices are appropriate for which materials under which circumstances, leading to disappointment for some users. This report is commercially available from ISO.
This was closely followed by a report from Canada published by Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), in collaboration with CSST and  NanoQuébec The document ” Best Practices Guide to Synthetic Nanoparticle Risk Management, Report R599 “, covered much of the same ground as the ISO document but in less detail. This document also introduced the idea of using a “control banding” approach based on that described by Paik and recommends that this approach is used where there is insufficient information for a quantitative risk assessment.

It is a very interesting and useful review which you can read here.