Tag Archives: PCAST

The US White House and its Office of Science and Technology Policy (OSTP)

It’s been a while since I first wrote this but I believe this situation has not changed.

There’s some consternation regarding the US Office of Science and Technology Policy’s (OSTP) diminishing size and lack of leadership. From a July 3, 2017 article by Bob Grant for The Scientist (Note: Links have been removed),

Three OSTP staffers did leave last week, but it was because their prearranged tenures at the office had expired, according to an administration official familiar with the situation. “I saw that there were some tweets and what-not saying that it’s zero,” the official tells The Scientist. “That is not true. We have plenty of PhDs that are still on staff that are working on science. All of the work that was being done by the three who left on Friday had been transitioned to other staffers.”

At least one of the tweets that the official is referring to came from Eleanor Celeste, who announced leaving OSTP, where she was the assistant director for biomedical and forensic sciences. “science division out. mic drop,” she tweeted on Friday afternoon.

The administration official concedes that the OSTP is currently in a state of “constant flux” and at a “weird transition period” at the moment, and expects change to continue. “I’m sure that the office will look even more different in three months than it does today, than it did six months ago,” the official says.

Jeffrey Mervis in two articles for Science Magazine is able to provide more detail. From his July 11, 2017 article,

OSTP now has 35 staffers, says an administration official who declined to be named because they weren’t authorized to speak to the media. Holdren [John Holdren], who in January [2017] returned to Harvard University, says the plunge in staff levels is normal during a presidential transition. “But what’s shocking is that, this far into the new administration, the numbers haven’t gone back up.”

The office’s only political appointee is Michael Kratsios, a former aide to Trump confidant and Silicon Valley billionaire Peter Thiel. Kratsios is serving as OSTP’s deputy chief technology officer and de facto OSTP head. Eight new detailees have arrived from other agencies since the inauguration.

Although there has been no formal reorganization of OSTP, a “smaller, more collaborative staff” is now grouped around three areas—science, technology, and national security—according to the Trump aide. Three holdovers from Obama’s OSTP are leading teams focused on specific themes—Lloyd Whitman in technology, Chris Fall in national security, and Deerin Babb-Brott in environment and energy. They report to Kratsios and Ted Wackler, a career civil servant who was Holdren’s deputy chief of staff and who joined OSTP under former President George W. Bush.

“It’s a very flat structure,” says the Trump official, consistent with the administration’s view that “government should be looking for ways to do more with less.” Ultimately, the official adds, “the goal is [for OSTP] to have “probably closer to 50 [people].”

A briefing book prepared by Obama’s outgoing OSTP staff may be a small but telling indication of the office’s current status. The thick, three-ring binder, covering 100 issues, was modeled on one that Holdren received from John “Jack” Marburger, Bush’s OSTP director. “Jack did a fabulous job of laying out what OSTP does, including what reports it owes Congress, so we decided to do likewise,” Holdren says. “But nobody came [from Trump’s transition team] to collect it until a week before the inauguration.”

That person was Reed Cordish, the 43-year-old scion of billionaire real estate developer David Cordish. An English major in college, Reed Cordish was briefly a professional tennis player before joining the family business. He “spent an hour with us and took the book away,” Holdren says. “He told us, ‘This is an important operation and I’ll do my best to see that it flourishes.’ But we don’t know … whether he has the clout to make that happen.”

Cordish is now assistant to the president for intragovernmental and technology initiatives. He works in the new Office of American Innovation led by presidential son-in-law Jared Kushner. That office arranged a recent meeting with high-tech executives, and is also leading yet another White House attempt to “reinvent” government.

Trump has renewed the charter of the National Science and Technology Council, a multiagency group that carries out much of the day-to-day work of advancing the president’s science initiatives. … Still pending is the status of the President’s Council of Advisors on Science and Technology [emphasis mine], a body of eminent scientists and high-tech industry leaders that went out of business at the end of the Obama administration.

Mervis’ July 12, 2017 article is in the form of a Q&A (question and answer) session with the previously mentioned John Holdren, director of the OSTP in Barack Obama’s administration,

Q: Why did you have such a large staff?

A: One reason was to cover the bases. We knew from the start that the Obama administration thought cybersecurity would be an important issue and we needed to be capable in that space. We also knew we needed people who were capable in climate change, in science and technology for economic recovery and job creation and sustained economic growth, and people who knew about advanced manufacturing and nanotechnology and biotechnology.

We also recruited to carry out specific initiatives, like in precision medicine, or combating antibiotic resistance, or the BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative. Most of the work will go on in the departments and agencies, but you need someone to oversee it.

The reason we ended up with 135 people at our peak, which was twice the number during its previous peak in the Clinton administration’s second term, was that this president was so interested in knowing what science could do to advance his agenda, on economic recovery, or energy and climate change, or national intelligence. He got it. He didn’t need to be tutored on why science and technology matters.

I feel I’ve been given undue credit for [Obama] being a science geek. It wasn’t me. He came that way. He was constantly asking what we could do to move the needle. When the first flu epidemic, H1N1, came along, the president immediately turned to me and said, “OK, I want [the President’s Council of Advisors on Science and Technology] to look in depth on this, and OSTP, and NIH [National Institutes of Health], and [the Centers for Disease Control and Prevention].” And he told us to coordinate my effort on this stuff—inform me on what can be done and assemble the relevant experts. It was the same with Ebola, with the Macondo oil spill in the Gulf, with Fukushima, where the United States stepped up to work with the Japanese.

It’s not that we had all the expertise. But our job was to reach out to those who did have the relevant expertise.

Q: OSTP now has 35 people. What does that level of staffing say to you?

A: I have to laugh.

Q: Why?

A: When I left, on 19 January [2017], we were down to 30 people. And a substantial fraction of the 30 were people who, in a sense, keep the lights on. They were the OSTP general counsel and deputy counsel, the security officer and deputy, the budget folks, the accounting folks, the executive director of NSTC [National Science and Technology Council].

There are some scientists left, and there are some scientists there still. But on 30 June the last scientist in the science division left.

Somebody said OSTP has shut down. But that’s not quite it. There was no formal decision to shut anything down. But they did not renew the contract of the last remaining science folks in the science division.

I saw somebody say, “Well, we still have some Ph.D.s left.” And that’s undoubtedly true. There are still some science Ph.D.s left in the national security and international affairs division. But because [OSTP] is headless, they have no direct connection to the president and his top advisers.

I don’t want to disparage the top people there. The top people there now are Michael Kratsios, who they named the deputy chief technology officer, and Ted Wackler, who was my deputy chief of staff and who was [former OSTP Director] Jack Marberger’s deputy, and who I kept because he’s a fabulously effective manager. And I believe that they are doing everything they can to make sure that OSTP, at the very least, does the things it has to do. … But right now I think OSTP is just hanging on.

Q: Why did some people choose to stay on?

A: A large portion of OSTP staff are borrowed from other agencies, and because the White House is the White House, we get the people we need. These are dedicated folks who want to get the job done. They want to see science and technology applied to advance the public interest. And they were willing to stay and do their best despite the considerable uncertainty about their future.

But again, most of the detailees, and the reason we went from 135 to 30 almost overnight, is that it’s pretty standard for the detailees to go back to their home agencies and wait for the next administration to decide what set of detailees it wants to advance their objects.

So there’s nothing shocking that most of the detailees went back to their home agencies. The people who stayed are mostly employed directly by OSTP. What’s shocking is that, this far into the new administration, that number hasn’t gone back up. That is, they have only five more people than they had on January 20 [2017].

As I had been wondering about the OSTP and about the President’s Council of Advisors on Science and Technology (PCAST), it was good to get an update.

On a more parochial note, we in Canada are still waiting for an announcement about who our Chief Science Advisor might be.

$1.4B for US National Nanotechnology Initiative (NNI) in 2017 budget

According to an April 1, 2016 news item on Nanowerk, the US National Nanotechnology (NNI) has released its 2017 budget supplement,

The President’s Budget for Fiscal Year 2017 provides $1.4 billion for the National Nanotechnology Initiative (NNI), affirming the important role that nanotechnology continues to play in the Administration’s innovation agenda. NNI
Cumulatively totaling nearly $24 billion since the inception of the NNI in 2001, the President’s 2017 Budget supports nanoscale science, engineering, and technology R&D at 11 agencies.

Another 9 agencies have nanotechnology-related mission interests or regulatory responsibilities.

An April 1, 2016 NNI news release, which originated the news item, affirms the Obama administration’s commitment to the NNI and notes the supplement serves as an annual report amongst other functions,

Throughout its two terms, the Obama Administration has maintained strong fiscal support for the NNI and has implemented new programs and activities to engage the broader nanotechnology community to support the NNI’s vision that the ability to understand and control matter at the nanoscale will lead to new innovations that will improve our quality of life and benefit society.

This Budget Supplement documents progress of these participating agencies in addressing the goals and objectives of the NNI. It also serves as the Annual Report for the NNI called for under the provisions of the 21st Century Nanotechnology Research and Development Act of 2003 (Public Law 108-153, 15 USC §7501). The report also addresses the requirement for Department of Defense reporting on its nanotechnology investments, per 10 USC §2358.

For additional details and to view the full document, visit www.nano.gov/2017BudgetSupplement.

I don’t seem to have posted about the 2016 NNI budget allotment but 2017’s $1.4B represents a drop of $100M since 2015’s $1.5 allotment.

The 2017 NNI budget supplement describes the NNI’s main focus,

Over the past year, the NNI participating agencies, the White House Office of Science and Technology Policy (OSTP), and the National Nanotechnology Coordination Office (NNCO) have been charting the future directions of the NNI, including putting greater focus on promoting commercialization and increasing education and outreach efforts to the broader nanotechnology community. As part of this effort, and in keeping with recommendations from the 2014 review of the NNI by the President’s Council of Advisors for Science and Technology, the NNI has been working to establish Nanotechnology-Inspired Grand Challenges, ambitious but achievable goals that will harness nanotechnology to solve National or global problems and that have the potential to capture the public’s imagination. Based upon inputs from NNI agencies and the broader community, the first Nanotechnology-Inspired Grand Challenge (for future computing) was announced by OSTP on October 20, 2015, calling for a collaborative effort to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” This Grand Challenge has generated broad interest within the nanotechnology community—not only NNI agencies, but also industry, technical societies, and private foundations—and planning is underway to address how the agencies and the community will work together to achieve this goal. Topics for additional Nanotechnology-Inspired Grand Challenges are under review.

Interestingly, it also offers an explanation of the images on its cover (Note: Links have been removed),

US_NNI_2017_budget_cover

About the cover

Each year’s National Nanotechnology Initiative Supplement to the President’s Budget features cover images illustrating recent developments in nanotechnology stemming from NNI activities that have the potential to make major contributions to National priorities. The text below explains the significance of each of the featured images on this year’s cover.

US_NNI_2017_front_cover_CloseUp

Front cover featured images (above): Images illustrating three novel nanomedicine applications. Center: microneedle array for glucose-responsive insulin delivery imaged using fluorescence microscopy. This “smart insulin patch” is based on painless microneedles loaded with hypoxia-sensitive vesicles ~100 nm in diameter that release insulin in response to high glucose levels. Dr. Zhen Gu and colleagues at the University of North Carolina (UNC) at Chapel Hill and North Carolina State University have demonstrated that this patch effectively regulates the blood glucose of type 1 diabetic mice with faster response than current pH-sensitive formulations. The inset image on the lower right shows the structure of the nanovesicles; each microneedle contains more than 100 million of these vesicles. The research was supported by the American Diabetes Association, the State of North Carolina, the National Institutes of Health (NIH), and the National Science Foundation (NSF). Left: colorized rendering of a candidate universal flu vaccine nanoparticle. The vaccine molecule, developed at the NIH Vaccine Research Center, displays only the conserved part of the viral spike and stimulates the production of antibodies to fight against the ever-changing flu virus. The vaccine is engineered from a ~13 nm ferritin core (blue) combined with a 7 nm influenza antigen (green). Image credit: NIH National Institute of Allergy and Infectious Diseases (NIAID). Right: colorized scanning electron micrograph of Ebola virus particles on an infected VERO E6 cell. Blue represents individual Ebola virus particles. The image was produced by John Bernbaum and Jiro Wada at NIAID. When the Ebola outbreak struck in 2014, the Food and Drug Administration authorized emergency use of lateral flow immunoassays for Ebola detection that use gold nanoparticles for visual interpretation of the tests.

US_NNI_2017_back_cover._CloseUp

Back cover featured images (above): Images illustrating examples of NNI educational outreach activities. Center: Comic from the NSF/NNI competition Generation Nano: Small Science Superheroes. Illustration by Amina Khan, NSF. Left of Center: Polymer Nanocone Array (biomimetic of antimicrobial insect surface) by Kyle Nowlin, UNC-Greensboro, winner from the first cycle of the NNI’s student image contest, EnvisioNano. Right of Center: Gelatin Nanoparticles in Brain (nasal delivery of stroke medication to the brain) by Elizabeth Sawicki, University of Illinois at Urbana-Champaign, winner from the second cycle of EnvisioNano. Outside right: still photo from the video Chlorination-less (water treatment method using reusable nanodiamond powder) by Abelardo Colon and Jennifer Gill, University of Puerto Rico at Rio Piedras, the winning video from the NNI’s Student Video Contest. Outside left: Society of Emerging NanoTechnologies (SENT) student group at the University of Central Florida, one of the initial nodes in the developing U.S. Nano and Emerging Technologies Student Network; photo by Alexis Vilaboy.

US White House Office of Science and Technology Policy issues a Nanotechnology Grand Challenges request for information

First, there was the Bill and Melinda Gates Foundation Grand Challenges, then there was some sort of Canadian government Grand Challenges, and now there’s the US government Nanotechnology-Inspired Grand Challenges for the Next Decade.

I find it fascinating that ‘Grand Challenges’ have become so popular given the near certainty of at least one defeat and the possibility the entire project will fail. By definition, it’s not a challenge if it’s an easy accomplishment.

Enough musing, a June 18, 2015 news item on Azonano announces the US government (White House Office of Science and Technology Policy [OSTP]) request for information (RFI), which has a deadline of July 16, 2015,

The National Nanotechnology Coordination Office (NNCO) is pleased to highlight an important Request for Information (RFI) issued today by the White House Office of Science and Technology Policy (OSTP) seeking suggestions for Nanotechnology-Inspired Grand Challenges for the Next Decade: ambitious but achievable goals that harness nanoscience, nanotechnology, and innovation to solve important national or global problems and have the potential to capture the public’s imagination.

A June 17, 2015 NNCO news release further describes the RFI,

The RFI can be found online at https://federalregister.gov/a/2015-14914  [blog posting] and is discussed in a White House blog post at https://www.whitehouse.gov/blog/2015/06/17/call-nanotechnology-inspired-grand-challenges. Responses must be received by July 16, 2015, to be considered.

As explained by Dr. Michael Meador, Director of the NNCO, the RFI is a key step in responding to the most recent assessment of the National Nanotechnology Initiative (NNI) by the President’s Council of Advisors on Science and Technology (PCAST). “PCAST specifically recommended that the Federal government launch nanotechnology grand challenges in order to focus and amplify the impact of Federal nanotechnology investments and activities.”

The RFI includes a number of potential grand challenges as examples. Federal agencies participating in the NNI (see www.nano.gov), working with NNCO and OSTP, developed examples in the areas of health care, electronics, materials, sustainability, and product safety in order to illustrate how such grand challenges should be framed and to help stimulate the development of additional grand challenges by the wider community.

The RFI seeks input from nanotechnology stakeholders including researchers in academia and industry, non-governmental organizations, scientific and professional societies, and all other interested members of the public. “We strongly encourage everyone to spread the word about this request,” adds Meador. “We are excited about this request and hope to receive suggestions for bold and exciting challenges that nanotechnology can solve.”

A June 17, 2015 blog posting on the White House website (referred to previously) by Lloyd Whitman and Tom Kalil provides more insight into the ‘Grand Challenges’,

In a recent review of the NNI [US National Nanotechnology Initiative], the President’s Council of Advisors on Science and Technology called for government agencies, industry, and the research community to identify and pursue nanotechnology Grand Challenges. Through today’s RFI, we want to hear your game-changing ideas for Grand Challenges that harness nanoscience and nanotechnology to solve important national or global problems. These Grand Challenges should stimulate additional public and private investment, and foster the commercialization of Federally-funded nanotechnology research.

By 2025, the nanotechnology R&D community is challenged to achieve the following:

  1. Increase the five-year survival rates by 50% for the most difficult to treat cancers.
  2. Create devices no bigger than a grain of rice that can sense, compute, and communicate without wires or maintenance for 10 years, enabling an “internet of things” revolution.
  3. Create computer chips that are 100 times faster yet consume less power.
  4. Manufacture atomically-precise materials with fifty times the strength of aluminum at half the weight and the same cost.
  5. Reduce the cost of turning sea water into drinkable water by a factor of four.
  6. Determine the environmental, health, and safety characteristics of a nanomaterial in a month.

What would you propose? Read more about what makes an effective Grand Challenge and how to propose your own Nanotechnology-Inspired Grand Challenges for the Next Decade and comment on these examples here. Responses must be received by July 16, 2015 to be considered.

Good luck!

Nanotechnology announcements: a new book and a new report

Two quick announcements. The first concerns a forthcoming book to be published in March 2015. Titled, Nanotechnology Law & Guidelines: A Practical Guide for the Nanotechnology Industries in Europe, the book is featured in an Aug. 15, 2014 news item on Nanowerk,

The book is a concise guideline to different issues of nanotechnology in the European Legislation.- It offers an extensive review of all European Patent Office (EPO) cases on nanotechnological inventions. The challenge for new nanotechnology patents is to determine how patent criteria could be met in a patent application. This book shows how to identify the approach and the ways to cope with this challenge.

More about the book and purchasing options can be found on the publisher’s (Springer) Nanotechnology Law & Guidelines webpage,

[Table of Contents:]

Introduction.- Part I Nanotechnology from Research to Manufacture: The legal framework of the nanotechnology research and development.- Structuring the research and development of nanotechnologies.- Manufacturing nanotechnologies.-

Part II Protecting Nanotechnological Inventions: A Matter of Strategy : Trade Secrets vs. Patents and Utility Models.- Trade Secrets and Nanotechnologies.- International, European or National Patent for Nanotechnological Inventions ?- Nanotechnology Patents and Novelty.- Nanotechnology Patents and the Inventive Step.- Nanotechnology Patents and the Industrial Application.- Drafting Nanotechnology Patents Applications.- Utility Models as Alternative Means for Protecting Nanotechnological Inventions.- Copyright, Databases and Designs in the Nano Industry.- Managing and Transferring Nanotechnology Intellectual Property.-

Part III Nanotechnologies Investment and Finance.- Corporate Law and the nanotechnology industry.- Tax Law for the nanotechnology industry.- Investing and financing a nanotechnological project.-

Part IV Marketing Nanotechnologies.- Authorization and Registration Systems.- Product Safety and Liability.- Advertising “Nano”.- “Nano” Trademarks.- Importing and Exporting Nanotechnologies. Annexes: Analytic Table of EPO Cases on Nanotechnologies.- Analytic Table of National Cases on Nanotechnologies.- Analytic Table of OHIM Cases on Nano Trademarks.

I was able to find some information about the author, Anthony Bochon on his University of Stanford (where he is a Fellow) biography page,

Anthony Bochon is an associate in a Brussels-based law firm, an associate lecturer in EU Law & Trade Law/IP Law at the Université libre de Bruxelles and a lecturer in EU Law at the Brussels Business Institute. He is an associate researcher at the unit of Economic Law of the Faculty of Law of the Université libre de Bruxelles. Anthony graduated magna cum laude from the Université libre de Bruxelles in 2010 and received a year later an LL.M. from the University of Cambridge where he studied EU Law, WTO Law and IP Law. He has published on topics such as biotechnological patents, EU trade law and antitrust law since 2008. Anthony is also the author of the first European website devoted to the emerging legal area of nanotechnology law, a field about which he writes frequently and speaks regularly at international conferences. His legal practice is mainly focussed on EU Law, competition law and regulatory issues and he has a strong and relevant experience in IP/IT Law. He devotes his current research to EU and U.S. trade secrets law. Anthony has been a TTLF Fellow since June 2013.

On a completely other note and in the more recent future, there’s a report about the US National Nanotechnology Initiative to be released Aug. 28, 2014 as per David Bruggeman’s Aug. 14. 2014 posting on his Pasco Phronesis blog, (Note: A link has been removed)

On August 28 PCAST [President’s Council of Advisors on Science and Technology] will hold a public conference call in connection with the release of two new reports.  One will be a review of the National Nanotechnology Initiative (periodically required by law) … .

The call runs from 11:45 a.m. to 12:30 p.m. Eastern.  Registration is required, and closes at noon Eastern on the 26th..

That’s it for nanotechnology announcements today (Aug. 15, 2014).

Report on nano EHS from US General Accountability Office (GAO)

According the June 22, 2012 news item on Nanowerk, The US General Accountability Office (GAO) has release a new report titled, Nanotechnology: Improved Performance Information Needed for Environmental, Health, and Safety Research (published May 2012). From the report,

Nanotechnology involves the ability to control matter at approximately 1 to 100 nanometers. Worldwide trends suggest that products that rely on nanotechnology will be a $3 trillion market by 2020. However, some of the EHS [Environmental, Health, and Safety]impacts of nanotechnology are unknown. The NSTC [National Science and Technology Council] coordinates and oversees the NNI [National Nanotechnology Initiative], an interagency program that, among other things, develops national strategy documents for federal efforts in nanotechnology.

In this context, GAO examined: (1) changes in federal funding for nanotechnology EHS research from fiscal years 2006 to 2010; (2) the nanomaterials that NNI member agencies’ EHS research focused on in fiscal year 2010; (3) the extent to which NNI member agencies collaborate with stakeholders on this research and related strategies; and (4) the extent to which NNI strategy documents address desirable characteristics of national strategies. GAO’s review included seven NNI agencies that funded 93 percent of the EHS research dollars in fiscal year 2010. This report is based on analysis of NNI and agency documents and responses to a questionnaire of nonfederal stakeholders.

GAO recommends that the Director of the Office of Science and Technology Policy (OSTP), which administers the NSTC, (1) coordinate development of performance information for NNI EHS research needs and publicly report this information; and (2) estimate the costs and resources necessary to meet the research needs. OSTP and the seven included agencies neither agreed nor disagreed with the recommendations. [p.2 of the PDF]

This provides some interesting contrast to the National Nanotechnology Initiative’s (NNI) 4th assessment report which I wrote about in my May 2, 2012 posting,

PCAST [President’s Council of Advisors on Science and Technology] acknowledges that the NSET [Nanoscale Science, Engineering, and Technology Subcommittee coordinates planning, budgeting, program implementation, and review of the NNI] has acted on our recommendation to identify a central coordina­tor for nanotechnology-related EHS research within NNCO. The EHS coordinator has done a laudable job developing and communicating the 2011 NNI EHS research strategy. [emphasis mine] However, there is still a lack of integration between nanotechnology-related EHS research funded through the NNI and the kind of information policy makers need to effectively manage potential risks from nanomaterials. The estab­lishment of the Emerging Technologies Interagency Policy Coordination Committee (ETIPC) through OSTP has begun to bridge that gap, but without close integration between ETIPC and the NEHI working group [Nanotechnology Environmental and Health Implications Working Group], the gap may not be sufficiently narrowed. OSTP and the NSET Subcommittee should expand the charter of the NEHI working group to enable the group to address cross-agency nanotechnology-related policy issues more broadly.

Alphabet soup, eh? The best I can gather is that the GAO report has identified gaps that are identified by the NNI (and which they have begun to address) as per my emphasis in the excerpt from the 4th assessment. As someone who does not know the politics or have access to inside information, the GAO report recommendations are much simpler to understand as the issues are laid out from a more ‘global’ perspective (or big picture perspective) as per US EHS nanotechnology research efforts. The NNI’s 4th assessment report offers more detail and, frankly, I found it more confusing.

This is my 2nd GAO report and, again, I love the writing and organization of the report. (Note: I am lauding the report writing skills.)  Thank you to Frank Rusco, Dan Haas, Krista Anderson, Nirmal Chaudhary, Elizabeth Curda, Lorraine Ettaro, Alison O’Neill, Tind Shepper Ryen, Jeanette Soares, Ruth Solomon, Hai Tran, and Jack Wang.

4th assessment of the US’s National Nanotechnology Initiative (found some info. about Canada in the rept.!)

It seems there a number of reports concerning the US National Nanotechnology Initiative and their efforts and responses to the PCAST 2010 recommendations (I commented on another of their reports in my Dec. 13, 2011 posting). This fourth report/assessment was submitted by the President’s Council of Advisors on Science and Technology (PCAST) and focuses on efforts from various government agencies to follow recommendations from that 2010 PCAST assessment and set of recommendations.

According to the April 27, 2012 news item on Nanowerk,

PCAST found that the Federal agencies in the NNI have made substantial progress in addressing many of the 2010 recommendations that were aimed at maintaining U.S. leadership in nanotechnology. One of the primary goals of the NNI is to stay ahead of heavily-investing competitors such as China, South Korea, the European Union, and Russia. Overall, PCAST concluded that the NNI remains a successful cooperative venture that is supporting high-quality research, facilitating the translation of discoveries into new commercial products, and ensuring the Nation’s continued global leadership in this important field.

The PCAST assessment particularly commends the expanded efforts of the NNCO [National Nanotechnology Coordination Office] in the area of commercialization and coordination with industry, and the NNCO’s release of a focused research strategy for addressing environmental, health, and safety (EHS) implications of nanotechnology. In addition, the assessment recognizes NNI’s strong and growing portfolio of research on the societal implications of nanotechnology, nanotechnology education, and public outreach.

Dexter Johnson at his Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website comments in his May 1, 2012 posting,

Okay, pat on the back, job well done…uh, wait, there are still some new recommendations that PCAST would like to see addressed.  You can find them in the PDF of the full report on page vii. They fall into the areas of strategic planning, program management, metrics for assessing nanotechnology’s commercial and societal impacts, and…wait for it…increased support for EHS research.

Additional support for EHS research might be a required element for every PCAST report in the future. More interesting to me, however, is this continued emphasis on improved “metrics for assessing nanotechnology’s commercial and societal impacts.”

Dexter goes on to observe that many countries and corporations are interested in better metrics regarding  nanotechnology and its impacts and hints that he has a few ideas for better metrics.

I’ve looked at the report and found, to my surprise, mention of Canada. In analyzing the US NNI efforts, they also compare US government funding and corporate to that in other countries. On page 14 (print version; p. 30 PDF) of the PCAST 4th Assessment of the NNI, there’s a table which shows the top 10 countries for spending on nanotechnology,

As you can see, Canadian funding has been relatively flat throughout 2008 – 2010. It appears to have decreased slightly in 2009 and remained the same in 2010.

Aside: I’d dearly love to know how they sourced their data. A couple of years ago, a Canadian Member of Parliament (Peter Julian) asked for similar figures and received some 80 pages of Excel spreadsheets from various department listing any number of research projects that had been funded. (I’d asked Julian’s parliamentary assistant for a copy of the government’s response to his question, which is how I came to see that mess of paper.)

For anyone familiar with the Canadian scene (industrial research in Canada is rare), this next chart won’t be any surprise, from page 14 (print version; p. 30 PDF) of the PCAST 4th Assessment of the NNI,

However, this may be a surprise, from page 15 (print version; p. 31 PDF) of the PCAST 4th Assessment of the NNI,

Good grief! Canada is in the top five countries for venture capital spending on nanotechnology. Of course, we had our banner year in 2008, with quite a dip in 2009 but it looks like we rebounded mildly in 2010.

It’s always interesting for me to analyze the US nanotechnology efforts in relationship to the Canadian efforts (as well as, getting a sense of the international scene). Actually, I can’t analyze our efforts since the Canadian government doesn’t tend to share information (or provides reams of meaningless data) with its citizens so I’m driven to finding it in US government documents and materials provided by international governmental organizations such as the OECD (Organization for Econ0mic Cooperation and Development).

Getting back to the report, which after all is about the US situation, I’m particularly interested in the recommendations for metrics (thank you, Dexter) and EHS. From page 22 (print version; p. 38 PDF) of the PCAST 4th Assessment of the NNI (I have edited out some footnotes),

Agencies should develop a mission-appropriate definition of nanotechnology that enables the tracking of specific nanotechnology investments supported at the program level. The definition and funding details should be published in agency implementation plans to promote clarity.

This recommendation enables each agency to develop a mission-appropriate definition of nanotechnol­ogy to characterize its nanotechnology portfolio. Requiring each agency to publish its definition and the resulting budget allocations will improve clarity across the Federal nanotechnology portfolio and ensure that nanotechnology investments are accurately characterized.

The NNCO should track the development of metrics for quantifying the Federal nanotechnology portfolio and implement them to assess NNI outputs.

Current Federal efforts to measure public and private investment, scientific productivity, and workforce have been inconsistent and decentralized. The publication of agency-specific data will enable the NNCO to consistently track nanotechnology investments across the Federal government and enable it to report NNI impacts with greater confidence and transparency.

There is an extensive and growing body of high-quality academic research that is already working toward the establishment of nanotechnology metrics by drawing upon bibliometrics data from the public domain (e.g., publication and patent data). … Bibliometrics data are used as indicators of productivity beyond academia, often in the absence of other metrics from the private sector. As nanotechnology continues to mature and move closer toward commercialization, efforts to more accurately capture economic returns are picking up pace. Examples include the March 2012 International Symposium on Assessing Economic Impacts of Nanotechnologies sponsored jointly by the NNI and the Organization for Economic Co-Operation and Development held in Washington, DC, [mentioned in my March 29, 2012 posting] as well as the upcoming 2012 National Research Council review of the NNI.

A final area in need of metrics development is in the quantification of the nanotechnology workforce.  [emphasis mine] Accurately categorizing agency-level nanotechnology investments will facilitate the identification of nanotechnology trainees, including the academic, scientific, and professional nanotechnology workforce for which there is currently a paucity of data…. One area where such tracking would have significant impact is in the identification of nanotechnology-related jobs for which there are no standard occu­pational codes. Good data on the workforce will enable the implementation of additional measures to identify and mitigate future threats to occupational health and safety.

PCAST recommends that NNCO serve as a central repository to collect these metrics and leverage advances in metrics-development to collect, track, and analyze data regarding publications, patents, educational activities, and the workforce to produce and publish its own statistics on behalf of the NSET. This under­taking is an integral component of cross-agency coordination of the Federal nanotechnology portfolio.

That first recommendation seems problematic. The notion of agencies developing mission-specific definitions of nanotechnology, as recommended, sets the stage for multiple and competing definitions in a situation where you want to standardize as much as possible.

Unfortunately, the alternative is not an improvement. An attempt to standardize across all agencies would most probably lead to years of meetings and discussions before anything was ever measured.

I’m not quite as confident about bibliometrics as the authors of this report are but, as they hint, oftentimes it’s the only quantifiable data available. While there is much talk about establishing other metrics, there is no hint as to how this will be done or who will do it or whether money will be allocated for this purpose.

The recommendations for further EHS research, from pp. 22-3 (print version; pp. 38-9 PDF) of the PCAST 4th Assessment of the NNI, include (I have edited out a reference to an appendix),

The NSET should establish high-level, cross-agency authoritative and accountable governance of Federal nanotechnology-related EHS research so that the knowledge created as a result of Federal investments can better inform policy makers.

PCAST acknowledges that the NSET has acted on our recommendation to identify a central coordina­tor for nanotechnology-related EHS research within NNCO. The EHS coordinator has done a laudable job developing and communicating the 2011 NNI EHS research strategy. However, there is still a lack of integration between nanotechnology-related EHS research funded through the NNI and the kind of information policy makers need to effectively manage potential risks from nanomaterials. The estab­lishment of the Emerging Technologies Interagency Policy Coordination Committee (ETIPC) through OSTP has begun to bridge that gap, but without close integration between ETIPC and the NEHI working group, the gap may not be sufficiently narrowed. OSTP and the NSET Subcommittee should expand the charter of the NEHI working group to enable the group to address cross-agency nanotechnology-related policy issues more broadly.

The NSET should increase investment in cross-cutting areas of EHS that promote knowledge transfer such as informatics, partnerships, and instrumentation development.

The 2011 NNI EHS research strategy acknowledges the critical role that informatics, partnerships, and instrumentation development play in a comprehensive approach to addressing nanotechnology risks to human health and the environment. Nascent efforts in informatics should be supported so that advances can be accelerated in this critical cross-cutting area. Rather than continue to support the proliferation of databases that results from many new nano-EHS projects, the effort should be directed at enabling diverse communities to extract meaningful information from each other’s work. New networks that connect researchers together, along with new tools for extracting information from Federally funded research, should be established and supported through the NNI. The findings of the December 2011 workshop to establish a Nanoinformatics 2020 Roadmap19 in conjunction with the 2011 NNI EHS research strategy can serve as a guide for new work in this area.

Significant progress has been made in the area of partnerships with numerous examples of mul­tistakeholder and interagency collaboration underway. One of these is the Nanorelease Project,20 which brings together five NNI agencies, non-governmental organizations, a labor union, and several companies, among others, to develop methods for measuring the release of nanomaterials from com­mercial products. A specific area where better coordination could occur is in the area of occupational safety. The Occupational Safety and Health Administration (OSHA) should work with companies in a non-enforcement capacity to develop better tools for hazard communication similar to the National Institute of Occupational Health and Safety’s (NIOSH) partnership program. This is especially important as the United States seeks to bring its hazard communication standard in alignment with the Globally Harmonized System of Classification and Labeling of Chemicals. Greater engagement by OSHA would also begin to address some of the difficulties companies face in implementing good health and safety programs in their nanomaterial workplaces …

New modes of international cooperation, such as the joint funding of two environmental-impacts consortia by the EPA and the United Kingdom, have also emerged since the 2010 PCAST report. The NNI should increase funding for these cross-cutting activities to leverage the U.S. investment in nanotechnology-related EHS research.

The wealth of abbreviations makes this section a little hard to read. As I understand it, the recommendations are aimed at improving use of their current and future resources by better coordinating the research efforts, sharing data (with a special eye to providing information policymakers can use effectively), and collaborating internationally on EHS research.

US National Nanotechnology Initiative reports on last year’s recommendations

Richard M. Jones at the American Institute of Physics (AIP) reports in a Dec. 9, 2011 article in the AIP Bulletin no. 145,

Members of the President’s Council of Advisors on Science and Technology [PCAST] were briefed last month on the implementation of the council’s recommendations regarding the National Nanotechnology Initiative (NNI).  Now in its tenth year, federal agencies participating in the NNI expend about $2 billion per year, having spent a cumulative $14 billion on nanotechnology R&D since its inception.

Jones summarized the presentations (here’s a sampling),

Sally Tinkle, Deputy Director of the National Nanotechnology Coordination Office was the first of four speakers in this sixty-minute briefing. … As examples, she described an increase in the number of public-private partnerships (citing examples from the NIH and NIST), outreach to states (including a full-time employee dedicated to this effort), interactions with officials from the European Union,  better information dissemination programs, and research on health, environmental, safety, ethical, and legal matters.  …

Carlos Pena, Director of Emerging Technology at the Office of Science and Health Coordination of the Food and Drug Administration was the second speaker. He described FDA’s efforts to carefully protect human health while fostering the development of nanotechnology, using science-based decision making. Among those steps it has taken is increasing training of its staff and improved coordination and cooperation with other agencies. …

Other topics covered in a concluding question-and-answer period included monthly inter-agency briefings, meetings with the European Union, products awaiting FDA approval, federal agency funding collaborations, the desirability of a multi-agency roadmap to support further development of nanotechnology, the engagement of nongovernmental stakeholders, and computational support.

You can access the webcast, briefing materials, minutes, etc. from the Nov. 2, 2011 meeting here.

You can view the webcast here.

What I find most interesting is that this particular US government administration is making a big effort at offering access and information about science matters. It seems strange to me that I rarely come across similar information from the Canadian government, which makes no great effort to let us know about their (it is most definitely theirs and not ours) science.

Nano regulatory frameworks are everywhere!

The scene around nanotechnology regulatory frameworks has been frantic (by comparison with any other time period during the 3 years I’ve been blogging about nano) in the last month or so. This is my second attempt this month at pulling together information about nanotechnology regulatory frameworks (my June 9, 2011 posting).

I’ll start off slow and easy with this roundup of sorts with a brief look at the international scene, move on to US initiatives, offer a brief comment on the Canadian situation, and wrap up with Europe.

International

Dr. Andrew Maynard at the University of Michigan Risk Science Center (UMRSC) blog has written a commentary about the ISO’s (*International Organization for Standardization) latest set of nanotechnology guidelines in his May 27, 2011 posting.  From the posting,

ISO/TR 31321:2011: Nanotechnologies – Nanomaterial risk evaluation is unashamedly based on the Environmental Defense Fund/DuPont Nano Risk Framework. Much of the structure and content reflects that of the original – a testament to the thought and effort that went into the first document. …The ISO report is written in a much tighter style than that of the original document, and loses some of the occasionally long-winded expositions on what should be done and why. And the ISO document is more compact – 66 pages as opposed to 104. But from a comparative reading, surprisingly little has been changed from the 2007 document.

It’s build around a framework of six steps:

  1. describe materials and applications
  2. material profiles
  3. evaluate risks
  4. assess risk management options
  5. decide, document, and act
  6. review and adapt

From the posting,

Inherent to this framework is the need to make situation-specific decisions that are guided by the Technical Report but not necessarily prescribed by it, and the need to constantly review and revise procedures and decisions. This built-in flexibility and adaptability makes ISO/TR 31321 a powerful tool for developing tailored nanomaterial management strategies that are responsive to new information as it becomes available. It also presents an integrative approach to using materials safely, that deals with the need to make decisions under considerable uncertainty by blurring the line between risk assessment and risk management.

Andrew’s view of these guidelines is largely positive and you can get more details and history by viewing his original commentary. (I first mentioned these new ISO guidelines in my May 18, 2011 posting.)

Sticking with the international scene (in this case, ISO), there was a June 13, 2011 news item on Nanowerk about a new ISO general liability classification for nanotechnology and alternative energy (from the news item),

The new classifications to address the growing use of nanotechnology are Nanomaterial Distributors and Nanomaterial Manufacturing. The once-limited use of nanotechnology in electronics and information technology industries is now swiftly permeating the consumer marketplace, from cosmetics to clothing and more. The Nanomaterial Distributors classification applies to risks that sell nanomaterials to others, and the Nanomaterial Manufacturing classification applies to risks that manufacture or engineer nanomaterials for others.

“With heightened interest to reduce the carbon footprint, establish energy independence, and increase the use of renewable resources, alternative power is a priority for many,” said Beth Fitzgerald, vice president of commercial lines and modeling at ISO. “In response to the growing demand for alternative energy, ISO introduced classifications for risks in three main areas: biofuels, solar energy, and wind energy. The new classifications will allow for future evaluation of the loss experience of those emerging markets.”

The biofuels classifications consist of Biofuels Manufacturing and Biofuels Distributors. Since ethanol already has a widespread and accepted use, a further distinction is made between “ethanol” and “biofuels other than ethanol.”

The solar energy classifications include Solar Energy Farms, Solar Energy Equipment Dealers or Distributors, and Solar Energy Equipment Manufacturing. The wind energy classifications include Wind Turbine Contractors – Installation, Service, or Repair and onshore and offshore Wind Farms.

* I have for many years understood that ISO is the International Standards Organization and I see from a note on the UMRSC blog that these days it is the International Organization for Standardization.

US

On the US front, three different agencies have made announcements that in one way or another will have an impact on the nanotechnology regulatory frameworks in that country.

The White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) recently released a set of principles for the regulation and oversight of nanotechnology applications and guidance for the development and implementation of policies at the agency level. From the June 9, 2011 news item on Nanowerk,

The realization of nanotechnology’s full potential will require continued research and flexible, science-based approaches to regulation that protect public health and the environment while promoting economic growth, innovation, competitiveness, exports, and job creation.

In furtherance of those goals, the White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) has developed a set of principles (pdf) specific to the regulation and oversight of applications of nanotechnology, to guide the development and implementation of policies at the agency level.

These principles reinforce a set of overarching principles (pdf) for the regulation and oversight of emerging technologies released on March 11, 2011. They also reflect recommendations from a report on nanotechnology (pdf) by the President’s Council of Advisors on Science and Technology. The report encourages Federal support for the commercialization of nanotech products and calls for the development of rational, science- and risk-based regulatory approaches that would be based on the full array of a material’s properties and their plausible risks and not simply on the basis of size alone.

You can read more about the guidelines at Nanowerk or on the Environemental Expert website here.

Back over on the UMRSC blog, Dr. Andrew Maynard had these comments in his June 13, 2011 posting,

In a joint memorandum, the Office of Science and Technology Policy, the Office of Management and Budget and the Office of the United States Trade Representative laid out Policy Principles for the U.S. Decision Making Concerning Regulations and Oversight of Applications of Nanotechnology and Nanomaterials.

Reading through it, a number of themes emerge, including:

  • Existing regulatory frameworks provide a firm foundation for the oversight of nanomaterials, but there is a need to respond to new scientific evidence on potential risks, and to consider administrative and legal modifications to the regulatory landscape should the need arise.
  • Regulatory action on nanomaterials should be based on scientific evidence of risk, and not on definitions of materials that do not necessarily reflect the evidence-based likelihood of a material causing harm.
  • There should be no prior judgement on whether nanomaterials are intrinsically benign or harmful, in the absence of supporting scientific evidence.
  • Transparency and communication are important to ensuring effective evidence-based regulation.

Overall, this is a strong set of policy principles that lays the groundwork for developing regulation that is grounded in science and not swayed by speculative whims, and yet is responsive and adaptive to emerging challenges. Gratifyingly, the memorandum begins to touch on some of the concerns I have expressed previously about approaches to nanomaterial regulation that seem not to be evidence-based. There is a reasonable chance that they will help move away from the dogma that engineered nanomaterials should be regulated separately because they are new, to a more nuanced and evidence-based approach to ensuring the safe use of increasingly sophisticated materials. Where it perhaps lacks is in recognizing the importance of other factors in addition to science in crafting effective regulation, and in handling uncertainty in decision making.

June 9, 2011 was quite the day as in addition to the White House documents, the US Environmental Protection Agency (EPA) and the US Food and Drug Administration (FDA) both announced public consultations on nanotechnology regulation.

From the June 9, 2011 news item on Nanowerk about the US EPA public consultation,

The U.S. Environmental Protection Agency announced today it plans to obtain information on nanoscale materials in pesticide products. Under the requirements of the law, EPA will gather information on what nanoscale materials are present in pesticide products to determine whether the registration of a pesticide may cause unreasonable adverse effects on the environment and human health. The proposed policy will be open for public comment.

“We want to obtain timely and accurate information on what nanoscale materials may be in pesticide products, “said Steve Owens assistant administrator for EPA’s Office of Chemical Safety and Pollution Prevention. “This information is needed for EPA to meet its requirement under the law to protect public health and the environment.”

Comments on the Federal Register notice will be accepted until 30 days after publication. The notice will be available at www.regulations.gov in docket number EPA–HQ–OPP–2010-0197. More information or to read the proposed notice: http://www.epa.gov/pesticides/regulating/nanotechnology.html [Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public Comment]

The US FDA has taken a more complicated approach to its public consultation with two notices being issued about the same consultation. The June 9, 2011 news item on Nanowerk had this to say,

The U.S. Food and Drug Administration today released draft guidance to provide regulated industries with greater certainty about the use of nanotechnology, which generally involves materials made up of particles that are at least one billionth of a meter in size. The guidance outlines the agency’s view on whether regulated products contain nanomaterials or involve the application of nanotechnology.

The draft guidance, “Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology”, is available online and open for public comment. It represents the first step toward providing regulatory clarity on the FDA’s approach to nanotechnology.

Specifically, the agency named certain characteristics – such as the size of nanomaterials used and the exhibited properties of those materials – that may be considered when attempting to identify applications of nanotechnology in regulated products.

“With this guidance, we are not announcing a regulatory definition of nanotechnology,” said Margaret A. Hamburg, MD, Commissioner of Food and Drugs. “However, as a first step, we want to narrow the discussion to these points and work with industry to determine if this focus is an appropriate starting place.”

Then there was a June 15, 2011 news item on Nanowerk offering more details about the draft guidance announcement of June 9, 2011,

The guidelines list things that might be considered when deciding if nanotechnology was used on a product regulated by FDA—including the size of the nanomaterials that were used, and what their properties are.

And FDA wants industry leaders and the public to weigh-in.

Nanotechnology—the science of manipulating materials on a scale so small that it can’t be seen with a regular microscope—could have a broad range of applications, such as increasing the effectiveness of a particular drug or improving the packaging of food or cosmetics. “Nanotechnology is an emerging technology that has the potential to be used in a broad array of FDA-regulated medical products, foods, and cosmetics,” says Carlos Peña, director of FDA’s emerging technology programs. “But because materials in the nanoscale dimension may have different chemical, physical, or biological properties from their larger counterparts, FDA is monitoring the technology to assure such use is beneficial.”

In other words, using nanotechnology can change the way a product looks or operates, Peña says.

Although the technology is still evolving, it’s already in use as display technology for laptop computers, cell phones, and digital cameras. In the medical community, a number of manufacturers have used nanotechnology in:

  • Drugs
  • Medical imaging
  • Antimicrobial materials
  • Medical devices
  • Sunscreens

Andrew Maynard in his previously noted June 13, 2011 posting on on the UMRSC blog had this to say  about the EPA’s draft document,

This is a long and somewhat convoluted document, that spends some time outlining what the agency considers is an engineered nanomaterial, and reviewing nanomaterial hazard data.

Reading the document, EPA still seems somewhat tangled up with definitions of engineered nanomaterials. After outlining conventional attributes associated with engineered nanomaterials, including structures between ~1 – 100 nm and unique or novel properties, the document states,

“These elements do not readily work in a regulatory context because of the high degree of subjectivity involved with interpreting such phrases as “unique or novel properties” or “manufactured or engineered to take advantage of these properties” Moreover the contribution of these subjective elements to risk has not been established.”

This aligns with where my own thinking has been moving in recent years. Yet following this statement, the document reverts back to considering nanoparticles between 1 – 100 nm as the archetypal nanomaterial, and intimates “novel” properties such as “larger surface area per unit volume and/or quantum effects” as raising new risk concerns.

Canadian segue

I’ll point out here that Health Canada’s Interim Policy definition also adheres to the 1 to 100 nm definition for a nanomaterial, a concern I expressed in my submission to the public consultation held last year. Interestingly, since 29 submissions does seem particularly daunting to read there has yet to be any public response to these submissions. Not even a list of which agencies and individuals made submissions.

Back to US

Andrew also comments on the FDA document,

The FDA Guidance for Industry: Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology is a very different kettle of fish to the EPA document. It is overtly responsive to the White House memo; it demonstrates a deep understanding of the issues surrounding nanotechnology and regulation; and it is mercifully concise.

To be fair, the scope of the draft guidance is limited to helping manufacturers understand how the agency is approaching nanotechnology-enabled products under their purview. But this is something it does well.

One of the more significant aspects of the guidance is the discussion on regulatory definitions of nanomaterials. Following a line of reasoning established some years ago, the agency focuses on material properties rather than rigid definitions:

“FDA has not to date established regulatory definitions of “nanotechnology,” “nanoscale” or related terms… Based on FDA’s current scientific and technical understanding of nanomaterials and their characteristics, FDA believes that evaluations of safety, effectiveness or public health impact of such products should consider the unique properties and behaviors that nanomaterials may exhibit”

I recommend reading the full text of Andrew’s comments.

Europe

Meanwhile, there was a June 10, 2011 news item on Nanowerk about the availability of  28 presentations from a May 10-12, 2011 joint European workshop hosted by the Engineered NanoParticle Risk Assessment (ENPRA) FP (Framework Programme) 7 project and the European Commission’s Joint Research Centre. From the news item about the Challenges of Regulation and Risk Assessment of Nanomaterials workshop,

Twenty-eight presentations delivered at the Joint JRC Nano event and 2nd ENPRA Stakeholders Workshop are now available on-line: ENPRA Workshop 2011 – Programme with Presentations.

The workshop (by invitation only) involved about 90 participants, from industry, government, NGOs, and academia. …

During two days and a half, 34 experts from 26 different organisations informed the participants on the latest scientific progress in the field of nanoparticles risk assessment produced within national and European projects, and first results of ENPRA FP7 project were presented in detail. In addition, recent developments concerning legislation in the EU and beyond were discussed.

Amongst other participants, you can include representatives of EU Associate and Candidate Countries, environment and workers’ protection organisations, CAIQ (Chinese Academy of Inspection and Quarantine), US-EPA, ECHA, and EFSA.

To close this piece (and I want to do that very badly), I’m going to give Tim Harper at his TNT blog (on the Cientifica website) the final word from his June 10, 2011 posting,

The White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) has developed a set of principles (pdf) specific to the regulation and oversight of applications of nanotechnology, to guide the development and implementation of policies at the agency level.

I’m glad to see that it addresses those two old bugbears, the confusion between risk and hazard and the prejudging of issues without reference to scientific evidence …

It is an approach which appears to diverge slightly from the European adoption of the precautionary principle …

As with any regulation, the problems will arise not from the the original wording, but through its (mis)interpretation and inconsistent application.

Comments on the Golden Triangle workshop for PCAST’s PITAC

I didn’t catch the entire webcast as it was live streaming but what I caught was fascinating to observe. For those who don’t know, PCAST is the US President’s Council of Advisors on Science and Technology and PITAC is the President’s Innovation and Technology Advisory Committee. This morning they held a workshop mentioned in yesterday’s posting here that was focused on innovation in the US regarding information technology, nanotechnology, and biotechnology (the Golden Triangle). You can go to the PCAST website for information about this morning’s workshop and hopefully find a copy of the webcast once they’ve posted it.

A few items from the webcast caught my attention such as a comment by Judith Estrin (invitee and business woman). She talked about a laboratory gap (aka valley of death) while referencing the loss of large industrial labs such as the Bell Labs where as of Aug. 2008 the focus shifted from basic science to more easily commercialized applications.

I think there’s a significant difference between doing basic research in an academic environment and doing it in an industrial environment. I believe what Estrin is referencing is the support an industrial laboratory can offer a scientist who wants to pursue an avenue of basic research which might not find initial support within the academic structure and/or ongoing support as it makes its arduous way to commercialization.

With the loss of a number of large laboratories, start-up companies are under pressure to fill the gap but they have a big problem trying to support that interstitial space between basic research and applied research as they don’t have sufficient capitalization.

The similarity to the Canadian situation with its lack of industrial laboratories really caught my attention.

Franco Vitiliano, President and CEO of ExQor Technologies Inc., reiterated a point made earlier and afterwards about the interdisciplinary nature of the work and difficulty of operating in a business environment that is suspicious and/or fails to understand that kind of work. I was captivated by his story about bio-nanolasers and how these were developed from an observations made about water drops.

Anita Goel, Chairman and CEO of Nanobiosym Inc., noted that another problem with financing lies with the current financial models which are increasingly focused on the short-term and are risk-averse. As well, the current venture capital model is designed to support one technology application for one market. This presents a problem with the interdisciplinary nature of the work in the biotechnology, nanotechnology, and information technology fields currently taking place with its applications being considered for multiple markets.

There were many astute and interesting speakers. I can’t always remember who said what and sometimes I couldn’t see the person’s placard so I apologize if I’ve wrongly attributed some of the comments. If someone could correct me, I’d be more than happy to edit the changes in.

I was suprised that there were no individuals from the venture capital  community or representatives from some of the large companies such as HP Labs, IBM, etc. Most of the start-ups represented at the meeting came from the biomedical sector. I did not hear anyone discuss energy, clean water, site remediation, or other such applications. As far as I could tell there weren’t any nongovernmental agencies present either. Nonetheless, it was a very crowded table and I imagine that more people would have necessitated a much longer session.

I found the webcast was stimulating but the acid test for this meeting and others of its type is always whether or not action is taken.

As for the Canadian situation with it’s ‘innovation gap’, there’s more in Rob Annan’s posting, Research policy odds and sods, where he highlights a number of recent articles  about Canadian innovation laced with some of his observations. It’s a good roundup of the latest and I encourage you to check it out.

ETA June 23 2010: Dexter Johnson at Nanoclast offers his thoughts on the webcast and notes that while the promotional material suggested a discussion about public engagement, the workshop itself was focused on the ‘innovation gap’. He highlights comments from speakers I did not mention, as well as some of the questions received via Facebook and Twitter. For someone who doesn’t have the time to sit through the webcast, I strongly suggest that you check out Dexter’s posting as he adds insight borne of more intimate knowledge than mine of the US situation.