Tag Archives: US National Nanotechnology Coordination Office

Celebrating the 20th Anniversary of the Authorization of the US 21st Century Nanotechnology Research and Development Act

The US National Nanotechnology Initiative (NNI) was signed into existence by then US President Bill Clinton in 2000 (one of his last official acts while still in office) but it was then US President George W. Bush who signed the 21st Century Nanotechnology Research and Development Act in 2003. My understanding is the act gave the NNI a more permanent status.

In any event it’s the 20th anniversary of the 2003 signing of the act as noted in a December 6, 2023 posting by : Lynn L. Bergeson and Carla N. Hutton on the National Law Review blog, Note: A link has been removed,

The White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) announced on December 4, 2023, a series of events to drive U.S. leadership in nanotechnology, in celebration of the 20-year anniversary of the 21st Century Nanotechnology Research and Development Act. The announcement notes that for the past two decades, the National Nanotechnology Initiative (NNI) “has worked with more than 20 departments and agencies to advance a vision to understand and control matter at the nanoscale, for the benefit of society.” …

A December 4, 2023 White House Office of Science and Technology Policy (OSTP) news release announced the 20th anniversary and celebrations, Note: Links have been removed,

In celebration of the 20-year anniversary of the 21st Century Nanotechnology Research and Development Act, the White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) are announcing a series of events to drive U.S. leadership in nanotechnology.

For the past two decades, the National Nanotechnology Initiative (NNI) has worked with more than 20 departments and agencies to advance a vision to understand and control matter at the nanoscale, for the benefit of society. Coordination across the government has allowed Americans to safely enjoy the benefits of nanotechnology, which has led to revolutions in technology and industry, including faster microchips, powerful mRNA vaccines, and clean energy technologies. Meanwhile, carbon nanotubes have improved the power and lifecycle of batteries; quantum dots make flat screen TVs more vibrant; and nanoparticles allow for faster medical diagnostics.

“Over the years, the NNI has dynamically and responsibly responded to the needs of the country,” said Dr. Branden Brough, Director of NNCO, which coordinates the NNI. “The initiative is a model for collaborative and thoughtful technology development, while supporting the rapid development of other emerging fields by creating the infrastructure and workforce development programs that bolster these growing industries.”

The NNI community will host a symposium on March 5, 2024 [emphasis mine] at the National Academies of Sciences, Engineering, and Medicine in Washington, D.C., to recognize the impact of research and development at the nanoscale and plan the NNI’s promising future. The event is open to the public. …

This week, as we celebrate the Act’s signing, the NNCO will release a series of reports and stories that illustrate the impact of the NNI. This includes readouts from the Nano4EARTH roundtable discussions [emphasis mine] about applying nanotechnology solutions to address climate change, such as surface technologies, new batteries and energy storage solutions, and greenhouse gas capture approaches. Also, the NNCO will highlight a new independent study [emphasis mine] about how the U.S. nanotechnology community contributes tens of billions of dollars—and potentially hundreds of billions of dollars—to the economy each year. And, to highlight the importance of this growing field, NNCO will feature the stories of early-career scientists who represent the promising future of nanotechnology.

Additional events will be held during the coming months, including science cafes across the country, activities at local museums, and podcasts and articles in the media. For more information about these activities, visit the NNI website.

The report/study

The independent study (Economic Impact Analysis: 20 Years of Nanotechnology Investments, 2002 – 2022) mentioned in the OSTP news release was launched on December 5, 2023 and highlighted here in a January 2, 2024 posting.

The symposium

Here’s a poster of the March 5, 2024 symposium celebrating the 20th anniversary of the act,

There’s a registration page where you can register for the in-person symposium and find more information about the speakers. I thought introduction and agenda from the registration page might be of interest, Note: A link has been removed,

Scientists and engineers across many fields and disciplines are united by their work at the nanoscale. Their diverse efforts have helped produce everything from faster microchips to powerful mRNA vaccines. The transformative impact of this work has been spurred by the coordination and focus on U.S. nanotechnology established by the 21st Century Nanotechnology Research and Development Act in 2003. Celebrating such a broad impact and envisioning the future can be quite challenging, but this event will bring together voices from across the emerging technology landscape. There will be experts who can speak on the importance of nanotechnology in quantum engineering, optics, EHS, plastics, DEIA, microelectronics, medicine, education, manufacturing, and more. We can’t predict what will emerge from this lively discussion between researchers, policymakers, members of industry, educators, and the public, but the conversation can only benefit from including more diverse perspectives – especially yours.

AGENDA

8:30-9:00   Coffee and refreshments

9:00-9:05   Welcome and Introduction

9:05-9:30   Policy Perspectives #1

9:30-10:15  Morning Keynote

10:15-10:45  Coffee Break

10:45-11:30  Panel: Responsible Development

11:30-12:15  Panel: Fundamental Research

12:15-1:15  Lunch, Poster Session, and Networking

1:15-1:45  Policy Perspectives #2

1:45-2:30  Keynote Panel: The Future of Nanotechnology

2:30-3:15  Panel: Workforce Development

3:15-3:45  Break

3:45-4:30  Panel: Infrastructure

4:30-5:15  Panel: Commercialization

5:15-6:00  Closing Keynote

6:00-7:00  Reception Sponsored by the Kavli Foundation

No details about exactly what is being discussed but it certainly seems like it will be a busy day.

Nano4EARTH

I found the OSTP news release a little confusing with regard to the “readouts from the Nano4EARTH roundtable discussions” but here’s how the Nano4EARTH (Climate Change National Nanotechnology Challenge) webpage describes its upcoming workshop and roundtables,

Nano4EARTH Kick-off Workshop

Click here for information about the Nano4EARTH Kick-off hybrid workshop, to be held in Washington, DC and online on Jan. 24–25, 2023.

Nano4EARTH Roundtable Discussions

The Nano4EARTH roundtable discussions aim to identify fundamental knowledge gaps, needs, and opportunities to advance current energy efficiency, sustainable development, and climate change goals. By convening stakeholders from different sectors, backgrounds, and expertise, the goals of these roundtables are to identify applicable lessons across the spectrum of technologies, discuss system-specific needs, scalability and commercialization challenges, and potential paths forward.

The topics of the roundtables were identified at the Nano4EARTH Kick-off Workshop as particularly promising areas that could have an impact in a short time frame (four years or less). 

Roundtables:

Coatings, Lubricants, Membranes, and Other Interface Technologies

Roundtable Information, Discussion Summary

Batteries and Energy Storage

Roundtable Information, Discussion Summary

Capture, Storage, and Use of Greenhouse Gases

Roundtable Information, Discussion Summary

Nano4EARTH Roundtable Discussion on Catalysts (January 24, 2024)

Roundtable Information

Other celebrations around the country

There’s this December 11, 2023 notice from the “Celebrating nanotechnology around the country” webpage on the NNI website,

In celebration of the 20-year anniversary of the signing of the 21st Century Nanotechnology Research and Development Act, which codified the National Nanotechnology Initiative, the National Nanotechnology Coordination Office is showing its appreciation for the many organizations across the country that have put together engagement events with the general public to raise awareness about nanotechnology.

Such events (compiled by the National Informal STEM Education (NISE) Network) include:

Nanotechnology Day Activities in Arizona

Family Science Nights in Greensboro, NC

Celebrating 45 Years of Nanoscale Research at the Cornell Nanoscale Science and Technology Facility

Twenty Years of Nanotechnology! Opportunity to engage your community with NanoDays activities

The end

Chad Mirkin at Northwestern University (Chicago, Illinois, US) who’s a pretty big deal in the nanomedicine field wrote an October 29, 2021 introductory essay for Scientific American,

A Big Bet on Nanotechnology Has Paid Off

The National Nanotechnology Initiative promised a lot. It has delivered more

We’re now more than two decades out from the initial announcement of the National Nanotechnology Initiative (NNI), a federal program from President Bill Clinton founded in 2000 to support nanotechnology research and development in universities, government agencies and industry laboratories across the United States. It was a significant financial bet on a field that was better known among the general public for science fiction than scientific achievement. Today it’s clear that the NNI did more than influence the direction of research in the U.S. It catalyzed a worldwide effort and spurred an explosion of creativity in the scientific community. And we’re reaping the rewards not just in medicine, but also clean energy, environmental remediation and beyond.

Before the NNI, there were people who thought nanotechnology was a gimmick. I began my research career in chemistry, but it seemed to me that nanotechnology was a once-in-a-lifetime opportunity: the opening of a new field that crossed scientific disciplines. In the wake of the NNI, my university, Northwestern University, made the strategic decision to establish the International Institute for Nanotechnology, which now represents more than $1 billion in pure nanotechnology research, educational programs and supporting infrastructure. Other universities across the U.S. made similar investments, creating new institutes and interdisciplinary partnerships.

He’s a little euphoric but his perspective and the information he offers is worth knowing about.

US government’s 2016 National Nanotechnology Initiative strategic plan released

Another year, another US National Nanotechnology Initiative Strategic Plan, from a Nov. 8, 2016 news item on Nanowerk,

The [US] National Nanotechnology Coordination Office (NNCO) is pleased to announce the release of the new [US 2016] National Nanotechnology Initiative Strategic Plan. Under the 21st Century Nanotechnology Research and Development Act of 2003, NNI agencies are required to develop an updated NNI Strategic Plan every three years.

The NNI, a collaboration of twenty Federal agencies and departments, has enabled groundbreaking discoveries that have revolutionized science; established world-class facilities for the characterization of nanoscale materials and their fabrication into nanoscale devices; educated tens of thousands of individuals from undergraduate students to postdoctoral researchers; and fostered the responsible incorporation of nanotechnology into commercial products.

A Nov. 1, 2016 NNCO news release, which originated the news item, provides more information,

NNI investments together with those of industry have transitioned nanotechnology discoveries into a variety of commercial products including apparel, consumer electronics, sporting goods, and automobiles. Nanotechnology is poised to revolutionize the way we diagnose and treat disease, improve our health and fitness, and enable human exploration of Mars. Looking toward the future, nanotechnology is moving from a fundamental research area to an enabling technology that can lead to new materials, devices, and systems that will profoundly impact our quality of life, economy, and national security. The strong collaborations built under the NNI will be critical in sustaining an ecosystem that invests in the next breakthroughs in nanoscale materials and devices but also promotes the effective and responsible transition of nanotechnology discoveries from lab to market.

This strategic plan builds upon the collaborations and prior accomplishments of the NNI to develop and nurture that ecosystem and to move the NNI into its next phase. This document represents a consensus among NNI agencies on the high-level goals and priorities of the initiative and on specific objectives to be pursued over at least the next three years. The plan provides the framework under which individual agencies conduct their own mission-specific nanotechnology programs, coordinate these activities with those of other NNI agencies, and collaborate.

You can find the report and other related materials on the 2016 Strategic NNI Plan webpage (on the NNI website) or you can to directly to the 2016 Strategic NNI Plan (PDF 66pp.).

Underwriting nanotechnology: a webinar for the insurance industry

The US National Nanotechnology Coordination Office (NNCO) is hosting a free webinar “Nanotechnology and the insurance industry” according to a Sept. 9, 2016 NNCO news release,

The National Nanotechnology Coordination Office (NNCO) will hold the next in its series of free webinars addressing challenges in commercializing nanotechnology on Thursday, September 22, 2016, from 1 to 2 PM EDT. This webinar will focus on the insurance industry and the challenges of underwriting nanotechnology and other emerging technologies. NNCO Director Dr. Michael Meador will moderate the webinar discussion.

Speakers:

  • Allen Gelwick, Executive Vice President of the Lockton Companies. Mr. Gelwick is a leading insurance expert and has been active in the nanotechnology community for over ten years.
  • Christie Sayes, Associate Professor of Environmental Science and Toxicology at Baylor University. Dr. Sayes is a subject matter expert in nanomaterial-related toxicology and exposure.
  • David Swatzell, Managing Partner at Knowtional, a management consulting firm. Mr. Swatzell is a business strategy expert in IT and other high-tech industries. Prior to joining Knowtional, he held various senior positions at Hewlett-Packard and other technology firms.
  • Madhu Nutakki, Digital Chief Technology Officer, Innovation & Mobile Delivery, at AIG. Mr. Nutakki develops digital strategies from concept to implementation at AIG, one of the world’s largest insurance companies.

Audience:  Representatives of the insurance industry, the nanotechnology business community, and interested members of the general public, media, academia, industry, NGOs, and Federal, State, and local governments are encouraged to participate.

Why: To engage in a dialogue about insurance and risk issues of interest to the nanotechnology and insurance communities through a free, online format.

How: Invited speakers will begin the event by providing an overview of their experiences, successes, and challenges in insuring and underwriting products based on nanotechnology and other emerging technologies. Questions for the panel can be submitted to webinar@nnco.nano.gov from now through the end of the webinar at 2 PM on September 22, 2016.

Registration:  This webinar is free and open to the public with registration on a first-come, first-served basis. Registration is now open and will be capped at 500. To register, visit https://nnco.adobeconnect.com/e2lmvye37yw/event/registration.html

h/t for webinar information to Nanowerk Sept. 9, 2016 news item.

$1.4B for US National Nanotechnology Initiative (NNI) in 2017 budget

According to an April 1, 2016 news item on Nanowerk, the US National Nanotechnology (NNI) has released its 2017 budget supplement,

The President’s Budget for Fiscal Year 2017 provides $1.4 billion for the National Nanotechnology Initiative (NNI), affirming the important role that nanotechnology continues to play in the Administration’s innovation agenda. NNI
Cumulatively totaling nearly $24 billion since the inception of the NNI in 2001, the President’s 2017 Budget supports nanoscale science, engineering, and technology R&D at 11 agencies.

Another 9 agencies have nanotechnology-related mission interests or regulatory responsibilities.

An April 1, 2016 NNI news release, which originated the news item, affirms the Obama administration’s commitment to the NNI and notes the supplement serves as an annual report amongst other functions,

Throughout its two terms, the Obama Administration has maintained strong fiscal support for the NNI and has implemented new programs and activities to engage the broader nanotechnology community to support the NNI’s vision that the ability to understand and control matter at the nanoscale will lead to new innovations that will improve our quality of life and benefit society.

This Budget Supplement documents progress of these participating agencies in addressing the goals and objectives of the NNI. It also serves as the Annual Report for the NNI called for under the provisions of the 21st Century Nanotechnology Research and Development Act of 2003 (Public Law 108-153, 15 USC §7501). The report also addresses the requirement for Department of Defense reporting on its nanotechnology investments, per 10 USC §2358.

For additional details and to view the full document, visit www.nano.gov/2017BudgetSupplement.

I don’t seem to have posted about the 2016 NNI budget allotment but 2017’s $1.4B represents a drop of $100M since 2015’s $1.5 allotment.

The 2017 NNI budget supplement describes the NNI’s main focus,

Over the past year, the NNI participating agencies, the White House Office of Science and Technology Policy (OSTP), and the National Nanotechnology Coordination Office (NNCO) have been charting the future directions of the NNI, including putting greater focus on promoting commercialization and increasing education and outreach efforts to the broader nanotechnology community. As part of this effort, and in keeping with recommendations from the 2014 review of the NNI by the President’s Council of Advisors for Science and Technology, the NNI has been working to establish Nanotechnology-Inspired Grand Challenges, ambitious but achievable goals that will harness nanotechnology to solve National or global problems and that have the potential to capture the public’s imagination. Based upon inputs from NNI agencies and the broader community, the first Nanotechnology-Inspired Grand Challenge (for future computing) was announced by OSTP on October 20, 2015, calling for a collaborative effort to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” This Grand Challenge has generated broad interest within the nanotechnology community—not only NNI agencies, but also industry, technical societies, and private foundations—and planning is underway to address how the agencies and the community will work together to achieve this goal. Topics for additional Nanotechnology-Inspired Grand Challenges are under review.

Interestingly, it also offers an explanation of the images on its cover (Note: Links have been removed),

US_NNI_2017_budget_cover

About the cover

Each year’s National Nanotechnology Initiative Supplement to the President’s Budget features cover images illustrating recent developments in nanotechnology stemming from NNI activities that have the potential to make major contributions to National priorities. The text below explains the significance of each of the featured images on this year’s cover.

US_NNI_2017_front_cover_CloseUp

Front cover featured images (above): Images illustrating three novel nanomedicine applications. Center: microneedle array for glucose-responsive insulin delivery imaged using fluorescence microscopy. This “smart insulin patch” is based on painless microneedles loaded with hypoxia-sensitive vesicles ~100 nm in diameter that release insulin in response to high glucose levels. Dr. Zhen Gu and colleagues at the University of North Carolina (UNC) at Chapel Hill and North Carolina State University have demonstrated that this patch effectively regulates the blood glucose of type 1 diabetic mice with faster response than current pH-sensitive formulations. The inset image on the lower right shows the structure of the nanovesicles; each microneedle contains more than 100 million of these vesicles. The research was supported by the American Diabetes Association, the State of North Carolina, the National Institutes of Health (NIH), and the National Science Foundation (NSF). Left: colorized rendering of a candidate universal flu vaccine nanoparticle. The vaccine molecule, developed at the NIH Vaccine Research Center, displays only the conserved part of the viral spike and stimulates the production of antibodies to fight against the ever-changing flu virus. The vaccine is engineered from a ~13 nm ferritin core (blue) combined with a 7 nm influenza antigen (green). Image credit: NIH National Institute of Allergy and Infectious Diseases (NIAID). Right: colorized scanning electron micrograph of Ebola virus particles on an infected VERO E6 cell. Blue represents individual Ebola virus particles. The image was produced by John Bernbaum and Jiro Wada at NIAID. When the Ebola outbreak struck in 2014, the Food and Drug Administration authorized emergency use of lateral flow immunoassays for Ebola detection that use gold nanoparticles for visual interpretation of the tests.

US_NNI_2017_back_cover._CloseUp

Back cover featured images (above): Images illustrating examples of NNI educational outreach activities. Center: Comic from the NSF/NNI competition Generation Nano: Small Science Superheroes. Illustration by Amina Khan, NSF. Left of Center: Polymer Nanocone Array (biomimetic of antimicrobial insect surface) by Kyle Nowlin, UNC-Greensboro, winner from the first cycle of the NNI’s student image contest, EnvisioNano. Right of Center: Gelatin Nanoparticles in Brain (nasal delivery of stroke medication to the brain) by Elizabeth Sawicki, University of Illinois at Urbana-Champaign, winner from the second cycle of EnvisioNano. Outside right: still photo from the video Chlorination-less (water treatment method using reusable nanodiamond powder) by Abelardo Colon and Jennifer Gill, University of Puerto Rico at Rio Piedras, the winning video from the NNI’s Student Video Contest. Outside left: Society of Emerging NanoTechnologies (SENT) student group at the University of Central Florida, one of the initial nodes in the developing U.S. Nano and Emerging Technologies Student Network; photo by Alexis Vilaboy.

A study in contrasts: innovation and education strategies in US and British Columbia (Canada)

It’s always interesting to contrast two approaches to the same issue, in this case, innovation and education strategies designed to improve the economies of the United States and of British Columbia, a province in Canada.

One of the major differences regarding education in the US and in Canada is that the Canadian federal government, unlike the US federal government, has no jurisdiction over the matter. Education is strictly a provincial responsibility.

I recently wrote a commentary (a Jan. 19, 2016 posting) about the BC government’s Jan. 18, 2016 announcement of its innovation strategy in a special emphasis on the education aspect. Premier Christy Clark focused largely on the notion of embedding courses on computer coding in schools from K-12 (kindergarten through grade 12) as Jonathon Narvey noted in his Jan. 19, 2016 event recap for Betakit,

While many in the tech sector will be focused on the short-term benefits of a quick injection of large capital [a $100M BC Tech Fund as part of a new strategy was announced in Dec. 2015 but details about the new #BCTECH Strategy were not shared until Jan. 18, 2016], the long-term benefits for the local tech sector are being seeded in local schools. More than 600,000 BC students will be getting basic skills in the K-12 curriculum, with coding academies, more work experience electives and partnerships between high school and post-secondary institutions.

Here’s what I had to say in my commentary (from the Jan. 19, 2016 posting),

… the government wants to embed  computer coding into the education system for K-12 (kindergarten to grade 12). One determined reporter (Canadian Press if memory serves) attempted to find out how much this would cost. No answer was forthcoming although there were many words expended. Whether this failure was due to ignorance (disturbing!) or a reluctance to share (also disturbing!) was impossible to tell. Another reporter (Georgia Straight) asked about equipment (coding can be taught with pen and paper but hardware is better). … Getting back to the reporter’s question, no answer was forthcoming although the speaker was loquacious.

Another reporter asked if the government had found any jurisdictions doing anything similar regarding computer coding. It seems they did consider other jurisdictions although it was claimed that BC is the first to strike out in this direction. Oddly, no one mentioned Estonia, known in some circles as E-stonia, where the entire school system was online by the late 1990s in an initiative known as the ‘Tiger Leap Foundation’ which also supported computer coding classes in secondary school (there’s more in Tim Mansel’s May 16, 2013 article about Estonia’s then latest initiative to embed computer coding into grade school.) …

Aside from the BC government’s failure to provide details, I am uncomfortable with what I see as an overemphasis on computer coding that suggests a narrow focus on what constitutes a science and technology strategy for education. I find the US approach closer to what I favour although I may be biased since they are building their strategy around nanotechnology education.

The US approach had been announced in dribs and drabs until recently when a Jan. 26, 2016 news item on Nanotechnology Now indicated a broad-based plan for nanotechnology education (and computer coding),

Over the past 15 years, the Federal Government has invested over $22 billion in R&D under the auspices of the National Nanotechnology Initiative (NNI) to understand and control matter at the nanoscale and develop applications that benefit society. As these nanotechnology-enabled applications become a part of everyday life, it is important for students to have a basic understanding of material behavior at the nanoscale, and some states have even incorporated nanotechnology concepts into their K-12 science standards. Furthermore, application of the novel properties that exist at the nanoscale, from gecko-inspired climbing gloves and invisibility cloaks, to water-repellent coatings on clothes or cellphones, can spark students’ excitement about science, technology, engineering, and mathematics (STEM).

An earlier Jan. 25, 2016 White House blog posting by Lisa Friedersdorf and Lloyd Whitman introduced the notion that nanotechnology is viewed as foundational and a springboard for encouraging interest in STEM (science, technology, engineering, and mathematics) careers while outlining several formal and information education efforts,

The Administration’s updated Strategy for American Innovation, released in October 2015, identifies nanotechnology as one of the emerging “general-purpose technologies”—a technology that, like the steam engine, electricity, and the Internet, will have a pervasive impact on our economy and our society, with the ability to create entirely new industries, create jobs, and increase productivity. To reap these benefits, we must train our Nation’s students for these high-tech jobs of the future. Fortunately, the multidisciplinary nature of nanotechnology and the unique and fascinating phenomena that occur at the nanoscale mean that nanotechnology is a perfect topic to inspire students to pursue careers in science, technology, engineering, and mathematics (STEM).

The Nanotechnology: Super Small Science series [mentioned in my Jan. 21, 2016 posting] is just the latest example of the National Nanotechnology Initiative (NNI)’s efforts to educate and inspire our Nation’s students. Other examples include:

The announcement about computer coding and courses being integrated in the US education curricula K-12 was made in US President Barack Obama’s 2016 State of the Union speech and covered in a Jan. 30, 2016 article by Jessica Hullinger for Fast Company,

In his final State Of The Union address earlier this month, President Obama called for providing hands-on computer science classes for all students to make them “job ready on day one.” Today, he is unveiling how he plans to do that with his upcoming budget.

The President’s Computer Science for All Initiative seeks to provide $4 billion in funding for states and an additional $100 million directly to school districts in a push to provide access to computer science training in K-12 public schools. The money would go toward things like training teachers, providing instructional materials, and getting kids involved in computer science early in elementary and middle school.

There are more details in the Hullinger’s article and in a Jan. 30, 2016 White House blog posting by Megan Smith,

Computer Science for All is the President’s bold new initiative to empower all American students from kindergarten through high school to learn computer science and be equipped with the computational thinking skills they need to be creators in the digital economy, not just consumers, and to be active citizens in our technology-driven world. Our economy is rapidly shifting, and both educators and business leaders are increasingly recognizing that computer science (CS) is a “new basic” skill necessary for economic opportunity and social mobility.

CS for All builds on efforts already being led by parents, teachers, school districts, states, and private sector leaders from across the country.

Nothing says one approach has to be better than the other as there’s usually more than one way to accomplish a set of goals. As well, it’s unfair to expect a provincial government to emulate the federal government of a larger country with more money to spend. I just wish the BC government (a) had shared details such as the budget allotment for their initiative and (b) would hint at a more imaginative, long range view of STEM education.

Going back to Estonia one last time, in addition to the country’s recent introduction of computer coding classes in grade school, it has also embarked on a nanotechnology/nanoscience educational and entrepreneurial programme as noted in my Sept. 30, 2014 posting,

The University of Tartu (Estonia) announced in a Sept. 29, 2014 press release an educational and entrepreneurial programme about nanotechnology/nanoscience for teachers and students,

To bring nanoscience closer to pupils, educational researchers of the University of Tartu decided to implement the European Union LLP Comenius project “Quantum Spin-Off – connecting schools with high-tech research and entrepreneurship”. The objective of the project is to build a kind of a bridge: at one end, pupils can familiarise themselves with modern science, and at the other, experience its application opportunities at high-tech enterprises. “We also wish to inspire these young people to choose a specialisation related to science and technology in the future,” added Lukk [Maarika Lukk, Coordinator of the project].

The pupils can choose between seven topics of nanotechnology: the creation of artificial muscles, microbiological fuel elements, manipulation of nanoparticles, nanoparticles and ionic liquids as oil additives, materials used in regenerative medicine, deposition and 3D-characterisation of atomically designed structures and a topic covered in English, “Artificial robotic fish with EAP elements”.

Learning is based on study modules in the field of nanotechnology. In addition, each team of pupils will read a scientific publication, selected for them by an expert of that particular field. In that way, pupils will develop an understanding of the field and of scientific texts. On the basis of the scientific publication, the pupils prepare their own research project and a business plan suitable for applying the results of the project.

In each field, experts of the University of Tartu will help to understand the topics. Participants will visit a nanotechnology research laboratory and enterprises using nanotechnologies.

The project lasts for two years and it is also implemented in Belgium, Switzerland and Greece.

As they say, time will tell.