Tag Archives: Paul Gatenholm

Tiny, electrically conductive 3D-printed chair made from cellulose

Sweden’s Chalmers University of Technology researchers have just announced that they’ve printed a very small 3D chair with electrical properties using cellulose nanomaterials. From a June 17, 2015 news item on Nanowerk,

A group of researchers at Chalmers University of Technology have managed to print and dry three-dimensional objects made entirely by cellulose for the first time with the help of a 3D-bioprinter. They also added carbon nanotubes to create electrically conductive material. The effect is that cellulose and other raw material based on wood will be able to compete with fossil-based plastics and metals in the on-going additive manufacturing revolution, which started with the introduction of the 3D-printer.

Here’s the 3D-printed chair,

The tiny chair made of cellulose is a demonstrational object, printed using the 3D bioprinter at Chalmers University of Technology. Photo: Peter Widing

The tiny chair made of cellulose is a demonstrational object, printed using the 3D bioprinter at Chalmers University of Technology. Photo: Peter Widing

A June 17, 2015 Chalmers University of Technology press release (also on EurekAlert*), which originated the news item, describes the problem with printing from cellulose nanomaterials and how it was solved,

The difficulty using cellulose in additive manufacturing is that cellulose does not melt when heated. Therefore, the 3D printers and processes designed for printing plastics and metals cannot be used for materials like cellulose. The Chalmers researchers solved this problem by mixing cellulose nanofibrils in a hydrogel consisting of 95-99 percent water. The gel could then in turn be dispensed with high fidelity into the researchers’ 3D bioprinter, which was earlier used to produce scaffolds for growing cells, where the end application is patient-specific implants.

The next challenge was to dry the printed gel-like objects without them losing their three-dimensional shape.

“The drying process is critical,” Paul Gatenholm explains. “We have developed a process in which we freeze the objects and remove the water by different means as to control the shape of the dry objects. It is also possible to let the structure collapse in one direction, creating thin films.”

Furthermore, the cellulose gel was mixed with carbon nanotubes to create electrically conductive ink after drying. Carbon nanotubes conduct electricity, and another project at Wallenberg Wood Science Center aims at developing carbon nanotubes using wood.

Using the two gels together, one conductive and one non-conductive, and controlling the drying process, the researchers produced three-dimensional circuits, where the resolution increased significantly upon drying.

The two gels together provide a basis for the possible development of a wide range of products made by cellulose with in-built electric currents.

“Potential applications range from sensors integrated with packaging, to textiles that convert body heat to electricity, and wound dressings that can communicate with healthcare workers,” says Paul Gatenholm. “Our research group now moves on with the next challenge, to use all wood biopolymers, besides cellulose.”

The research findings are presented this week at the conference New Materials From Trees that takes place in Stockholm, Sweden, June 15-17 [2015].

The research team members are Ida Henriksson, Cristina de la Pena, Karl Håkansson, Volodymyr Kuzmenko and Paul Gatenholm at Chalmers University of Technology.

This research reminds me of another effort, a computer chip fashioned of cellulose nanofibrils (CNF) from the University of Wisconsin-Madison (mentioned in my May 27, 2015 post).

* EurekAlert link added June 18, 2015.

Nanocellulose at the American Chemical Society’s 243rd annual meeting

Nanocellulose seems to be one of the major topics at the ACS’s (Americal Chemical Society) 243rd annual meeting themed Chemistry of Life  in San Diego, California, March 25-29, 2012. From the March 25, 2012 news item on Nanowerk,

… almost two dozen reports in the symposium titled, “Cellulose-Based Biomimetic and Biomedical Materials,” that focused on the use of specially processed cellulose in the design and engineering of materials modeled after biological systems. Cellulose consists of long chains of the sugar glucose linked together into a polymer, a natural plastic–like material. Cellulose gives wood its remarkable strength and is the main component of plant stems, leaves and roots. Traditionally, cellulose’s main commercial uses have been in producing paper and textiles –– cotton being a pure form of cellulose. But development of a highly processed form of cellulose, termed nanocellulose, has expanded those applications and sparked intense scientific research. Nanocellulose consists of the fibrils of nanoscale diameters so small that 50,000 would fit across the width of the period at the end of this sentence.

“We are in the middle of a Golden Age, in which a clearer understanding of the forms and functions of cellulose architectures in biological systems is promoting the evolution of advanced materials,” said Harry Brumer, Ph.D., of Michael Smith Laboratories, University of British Columbia, Vancouver. He was a co-organizer of the symposium with J. Vincent Edwards, Ph.D., a research chemist with the Agricultural Research Service, U.S. Department of Agriculture in New Orleans, Louisiana. “This session on cellulose-based biomimetic and biomedical materials is really very timely due to the sustained and growing interest in the use of cellulose, particularly nanoscale cellulose, in biomaterials.”

One of the presenters has a very charming way of describing the nanocellulose product his team is working on (from the news item),

Olli Ikkala, Ph.D., [Aalto University, Finland] described the new buoyant material, engineered to mimic the water strider’s long, thin feet and made from an “aerogel” composed of the tiny nano-fibrils from the cellulose in plants. Aerogels are so light that some of them are denoted as “solid smoke. [emphasis mine]” The nanocellulose aerogels also have remarkable mechanical properties and are flexible.

There were some 20 presentations in this symposium held under the auspices of the ACS annual meeting. Here’s a few of the presentations (some of these folks have been featured on this blog previously), from the news item,

Native cellulose nanofibers: From biomimetic nanocomposites to functionalized gel spun fibers and functional aerogels Olli Ikkala, Professor, PhD, Aalto University, P.O. Box 5100, Espoo, Finland, FIN-02015, Finland , 358-9-470 23154, olli.ikkala@aalto.fi Native cellulose nanofibers and whiskers attract interest even beyond the traditional cellulose community due to their mechanical properties, availability and sustainability. We describe biomimetic nanocomposites with aligned self-assemblies combining nanocellulose with nanoclays, polymers, block copolymer, or graphene, allowing exciting mechanical properties. Functional ductile and even flexible aerogels are presented, combining superhydrophobicity, superoleophobicity, oil-spill absorption, photocatalytics, optically switchable water absorption, sensing, and antimicrobial properties. Finally mechanically excellent fibers are gel-spun and functionalized for electric, magnetic, optical and drug-release properties.

Evaluation of skin tissue repair materials from bacterial cellulose Lina Fu, Miss, Huazhong University of Science & Technology, College of Life Science & Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China , 86-18971560696, runa0325@gmail.com Bacterial cellulose (BC) has been reported as the materials in the tissue engineering fields, such as skin, bone, vascular and cartilage tissue engineering. Exploitation of the skin substitutes and modern wound dressing materials by using BC has attracted much attention. A skin tissue repair materials based on BC have been biosynthesized by Gluconacetobacter xylinus. The nano-composites of BC and chitosan form a cohesive gel structure, and the cell toxicity of the composite is excellent. Unlike other groups, which showed more inflammatory behavior, the inflammatory cells of the BC group were mainly polymorph-nuclear and showed few lymphocytes. The BC skin tissue repair material has an obviously curative effect in promoting the healing of epithelial tissue and reducing inflammation. With its superior mechanical properties, and the excellent biocompatibility, these skin tissue repair materials based on BC have great promise and potential for wound healing and very high clinical value.

….

New materials from nanocrystalline cellulose Mark MacLachlan [mentioned in my Nov. 18, 2010 posting], University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada , 604-822-3070, mmaclach@chem.ubc.ca Nanocrystalline cellulose (NCC) is available from the acid-catalyzed degradation of cellulosic materials. NCC is composed of cylindrical crystallites with diameters of ca. 5-10 nm and large aspect ratios. This form of cellulose has intriguing properties, including its ability to form a chiral nematic structure. By using the chiral nematic organization of NCC as a template, we have been able to create highly porous silica films and carbon films with chiral nematic organization.1,2 These materials are iridescent and their structures mimic the shells of jewel beetles. In this paper, I will describe our recent efforts to use NCC to create new materials with interesting optical properties.

Factors influencing chiral nematic pitch and texture of cellulose nanocrystal films Derek G Gray, McGill University, Department of Chemistry, Pulp and Paper Building, 3420 University Street, Montreal, QC, H3A 2A7, Canada , 1-514-398-6182, derek.gray@mcgill.ca Appropriately stabilized cellulose nanocrystal (NCC) suspensions in water form chiral nematic liquid crystalline phases above some critical concentration. In the absence of added electrolye, the chiral nematic pitch of such suspensions is longer than that of visible light. Films prepared by evaporation from the suspensions also often display the characteristic fingerprint patterns characteristic of long-pitch chiral nematic phases, but the pitch values can be shifted into the visible range by adding small quantities of electrolyte to the evaporating suspension. The factors that control the final pitch have been the subject of some confusion. While still not well understood, it is clear that at high nanocrystal concentrations and in solid films, the pitch is not simply a reversible function of nanocrystal concentration. We examine some of the factors that control the pitch and liquid crystal texture during the drying of chiral nematic NCC films.

….

Bioprinting of 3D porous nanocellulose scaffolds for tissue engineering and organ regeneration Paul Gatenholm, Professor, [mentioned in my March 19, 2012 posting] Wallenberg Wood Science Center, Chalmers, Department of Chemical and Biological Engineering, Kemigarden 4, Goteborg, V. Gotaland, SE41296, Sweden , 46317723407, paul.gatenholm@chalmers.se Nanocellulose is a promising biocompatible hydrogel like nano-biomaterial with potential uses in tissue engineering and regenerative medicine. Biomaterial scaffolds for tissue engineering require precise control of porosity, pore size, and pore interconnectivity. Control of scaffold architecture is crucial to promote cell migration, cell attachment, cell proliferation and cell differentiation. 3D macroporous nanocellulose scaffolds, produced by unique biofabrication process using porogens incorporated in the cultivation step, have shown ability to attract smooth muscle cells, endothelial cells, chondrocytes of various origins, urethral cells and osteoprogenitor cells. We have developed bioprinter which is able to produce 3D porous nanocellulose scaffolds with large size and unique architecture. Surface modifications have been applied to enhance cell adhesion and cell differentiation. In this study we have focused on use of 3D porous Nanocellulose scaffolds for stem cell differentiation into osteogenic and chondral lineages.

Nanocellulose as scaffolding for nerve cells

Swedish scientists have announced success with growing nerve cells using nanocellulose as the scaffolding. From the March 19, 2012 news item on Naowerk,

Researchers from Chalmers and the University of Gothenburg have shown that nanocellulose stimulates the formation of neural networks. This is the first step toward creating a three-dimensional model of the brain. Such a model could elevate brain research to totally new levels, with regard to Alzheimer’s disease and Parkinson’s disease, for example.

“This has been a great challenge,” says Paul Gatenholm, Professor of Biopolymer Technology at Chalmers.?Until recently the cells were dying after a while, since we weren’t able to get them to adhere to the scaffold. But after many experiments we discovered a method to get them to attach to the scaffold by making it more positively charged. Now we have a stable method for cultivating nerve cells on nanocellulose.”

When the nerve cells finally attached to the scaffold they began to develop and generate contacts with one another, so-called synapses. A neural network of hundreds of cells was produced. The researchers can now use electrical impulses and chemical signal substances to generate nerve impulses, that spread through the network in much the same way as they do in the brain. They can also study how nerve cells react with other molecules, such as pharmaceuticals.

I found the original March 19, 2012 press release  and an image on the University of Chalmers website,

Nerve cells growing on a three-dimensional nanocellulose scaffold. One of the applications the research group would like to study is destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer’s disease. Synapses are the connections between nerve cells. In the image, the functioning synapses are yellow and the red spots show where synapses have been destroyed. Illustration: Philip Krantz, Chalmers

This latest research from Gatenholm and his team will be presented at the American Chemical Society annual meeting in San Diego, March 25, 2012.

The research team from Chalmers University and its partners are working on other applications for nanocellulose including one for artificial ears. From the Chalmers University Jan. 22, 2012 press release,

As the first group in the world, researchers from Chalmers will build up body parts using nanocellulose and the body’s own cells. Funding will be from the European network for nanomedicine, EuroNanoMed.

Professor Paul Gatenholm at Chalmers is leading and co-ordinating this European research programme, which will construct an outer ear using nanocellulose and a mixture of the patient’s own cartilage cells and stem cells.

Previously, Paul Gatenholm and his colleagues succeeded, in close co-operation with Sahlgrenska University Hospital, in developing artificial blood vessels using nanocellulose, where small bacteria “spin” the cellulose.

In the new programme , the researchers will build up a three-dimensional nanocellulose network that is an exact copy of the patient’s healthy outer ear and construct an exact mirror image of the ear. It will have sufficient mechanical stability for it to be used as a bioreactor, which means that the patient’s own cartilage and stem cells can be cultivated directly inside the body or on the patient, in this case on the head. [Presumably the patient has one ear that is healthy and the researchers are attempting to repair or replace an unhealthy ear on the other side of the head.]

As for the Swedish perspective on nanocellulose (from the 2010 press release),

Cellulose-based material is of strategic significance to Sweden and materials science is one of Chalmers eight areas of advance. Biopolymers are highly interesting as they are renewable and could be of major significance in the development of future materials.

Further research into using the forest as a resource for new materials is continuing at Chalmers within the new research programme that is being built up with different research groups at Chalmers and Swerea – IVF. The programme is part of the Wallenberg Wood Science Center, which is being run jointly by the Royal Institute of Technology in Stockholm and Chalmers under the leadership of Professor Lars Berglund at the Royal Institute of Technology.

The 2012 press release announcing the work on nerve cells had this about nanocellulose,

Nanocellulose is a material that consists of nanosized cellulose fibers. Typical dimensions are widths of 5 to 20 nanometers and lengths of up to 2,000 nanometers. Nanocellulose can be produced by bacteria that spin a close-meshed structure of cellulose fibers. It can also be isolated from wood pulp through processing in a high-pressure homogenizer.

I last wrote about the Swedes and nanocellulose in a Feb. 15, 2012 posting about recovering it (nanocellulose) from wood-based sludge.

As for anyone interested in the Canadian scene, there is an article by David Manly in the Jan.-Feb. 2012 issue of Canadian Biomass Magazine that focuses largely on economic impacts and value-added products as they pertain to nanocellulose manufacturing production in Canada. You can also search this blog as I have covered the nanocellulose story in Canada and elsewhere as extensively as I can.