Tag Archives: soft robots

Popcorn-powered robots

A soft robotic device powered by popcorn, constructed by researchers in Cornell’s Collective Embodied Intelligence Lab. Courtesy: Cornell University

What an intriguing idea, popcorn-powered robots, and one I have difficulty imagining even with the help of the image above. A July 26, 2018 Cornell University news release (an edited version is on EurekAlert) by Melanie Lefkowitz describes the concept,

Cornell researchers have discovered how to power simple robots with a novel substance that, when heated, can expand more than 10 times in size, change its viscosity by a factor of 10 and transition from regular to highly irregular granules with surprising force.

You can also eat it with a little butter and salt.

“Popcorn-Driven Robotic Actuators,” a recent paper co-authored by doctoral student Steven Ceron, mechanical engineering, and Kirstin H. Petersen, assistant professor of electrical and computer engineering, examines how popcorn’s unique qualities can power inexpensive robotic devices that grip, expand or change rigidity.

“The goal of our lab is to try to make very minimalistic robots which, when deployed in high numbers, can still accomplish great things,” said Petersen, who runs Cornell’s Collective Embodied Intelligence Lab. “Simple robots are cheap and less prone to failures and wear, so we can have many operating autonomously over a long time. So we are always looking for new and innovative ideas that will permit us to have more functionalities for less, and popcorn is one of those.”

The study is the first to consider powering robots with popcorn, which is inexpensive, readily available, biodegradable and of course, edible. Since kernels can expand rapidly, exerting force and motion when heated, they could potentially power miniature jumping robots. Edible devices could be ingested for medical procedures. The mix of hard, unpopped granules and lighter popped corn could replace fluids in soft robots without the need for air pumps or compressors.

“Pumps and compressors tend to be more expensive, and they add a lot of weight and expense to your robot,” said Ceron, the paper’s lead author. “With popcorn, in some of the demonstrations that we showed, you just need to apply voltage to get the kernels to pop, so it would take all the bulky and expensive parts out of the robots.”

Since kernels can’t shrink once they’ve popped, a popcorn-powered mechanism can generally be used only once, though multiple uses are conceivable because popped kernels can dissolve in water, Ceron said.

The researchers experimented with Amish Country Extra Small popcorn, which they chose because the brand did not use additives. The extra-small variety had the highest expansion ratio of those they tested.

After studying popcorn’s properties using different types of heating, the researchers constructed three simple robotic actuators – devices used to perform a function.

For a jamming actuator, 36 kernels of popcorn heated with nichrome wire were used to stiffen a flexible silicone beam. For an elastomer actuator, they constructed a three-fingered soft gripper, whose silicone fingers were stuffed with popcorn heated by nichrome wire. When the kernels popped, the expansion exerted pressure against the outer walls of the fingers, causing them to curl. For an origami actuator, they folded recycled Newman’s Own organic popcorn bags into origami bellows folds, filled them with kernels and microwaved them. The expansion of the kernels was strong enough to support the weight of a nine-pound kettlebell.

The paper was presented at the IEEE [Institute of Electrical and Electronics Engineers] International Conference on Robotics and Automation in May and co-authored with Aleena Kurumunda ’19, Eashan Garg ’20, Mira Kim ’20 and Tosin Yeku ’20. Petersen said she hopes it inspires researchers to explore the possibilities of other nontraditional materials.

“Robotics is really good at embracing new ideas, and we can be super creative about what we use to generate multifunctional properties,” she said. “In the end we come up with very simple solutions to fairly complex problems. We don’t always have to look for high-tech solutions. Sometimes the answer is right in front of us.”

The work was supported by the Cornell Engineering Learning Initiative, the Cornell Electrical and Computer Engineering Early Career Award and the Cornell Sloan Fellowship.

Here’s a link to and a citation for the paper,

Popcorn-Driven Robotic Actuators by Steven Ceron, Aleena Kurumunda, Eashan Garg, Mira Kim, Tosin Yeku, and Kirstin Petersen. Presented at the IEEE International Conference on Robotics and Automation held in May 21-25, 2018 in Brisbane, Australia.

The researchers have made this video demonstrating the technology,

3D printing soft robots and flexible electronics with metal alloys

This research comes from Purdue University (Indiana, US) which seems to be on a publishing binge these days. From an April 7, 2015 news item on Nanowerk,

New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for “soft robots” and flexible electronics.

Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. However, new manufacturing techniques must be developed before soft machines become commercially feasible, said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University.

“We want to create stretchable electronics that might be compatible with soft machines, such as robots that need to squeeze through small spaces, or wearable technologies that aren’t restrictive of motion,” she said. “Conductors made from liquid metal can stretch and deform without breaking.”

A new potential manufacturing approach focuses on harnessing inkjet printing to create devices made of liquid alloys.

“This process now allows us to print flexible and stretchable conductors onto anything, including elastic materials and fabrics,” Kramer said.

An April 7, 2015 Purdue University news release (also on EurekAlert) by Emil Venere, which originated the news item, expands on the theme,

A research paper about the method will appear on April 18 [2015] in the journal Advanced Materials. The paper generally introduces the method, called mechanically sintered gallium-indium nanoparticles, and describes research leading up to the project. It was authored by postdoctoral researcher John William Boley, graduate student Edward L. White and Kramer.

A printable ink is made by dispersing the liquid metal in a non-metallic solvent using ultrasound, which breaks up the bulk liquid metal into nanoparticles. This nanoparticle-filled ink is compatible with inkjet printing.

“Liquid metal in its native form is not inkjet-able,” Kramer said. “So what we do is create liquid metal nanoparticles that are small enough to pass through an inkjet nozzle. Sonicating liquid metal in a carrier solvent, such as ethanol, both creates the nanoparticles and disperses them in the solvent. Then we can print the ink onto any substrate. The ethanol evaporates away so we are just left with liquid metal nanoparticles on a surface.”

After printing, the nanoparticles must be rejoined by applying light pressure, which renders the material conductive. This step is necessary because the liquid-metal nanoparticles are initially coated with oxidized gallium, which acts as a skin that prevents electrical conductivity.

“But it’s a fragile skin, so when you apply pressure it breaks the skin and everything coalesces into one uniform film,” Kramer said. “We can do this either by stamping or by dragging something across the surface, such as the sharp edge of a silicon tip.”

The approach makes it possible to select which portions to activate depending on particular designs, suggesting that a blank film might be manufactured for a multitude of potential applications.

“We selectively activate what electronics we want to turn on by applying pressure to just those areas,” said Kramer, who this year was awarded an Early Career Development award from the National Science Foundation, which supports research to determine how to best develop the liquid-metal ink.

The process could make it possible to rapidly mass-produce large quantities of the film.

Future research will explore how the interaction between the ink and the surface being printed on might be conducive to the production of specific types of devices.

“For example, how do the nanoparticles orient themselves on hydrophobic versus hydrophilic surfaces? How can we formulate the ink and exploit its interaction with a surface to enable self-assembly of the particles?” she said.

The researchers also will study and model how individual particles rupture when pressure is applied, providing information that could allow the manufacture of ultrathin traces and new types of sensors.

Here’s a link to and a citation for the paper,

Nanoparticles: Mechanically Sintered Gallium–Indium Nanoparticles by John William Boley, Edward L. White and Rebecca K. Kramer. Advanced Materials Volume 27, Issue 14, page 2270, April 8, 2015 DOI: 10.1002/adma.201570094 Article first published online: 7 APR 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.