Category Archives: Vancouver

Hydrogen In Motion (H2M), its solid state hydrogen storage nanomaterial, and running for Vancouver (Canada) City Council?

Vancouver city politics don’t usually feature here. but this June 13 ,2022 article by Kenneth Chan for the Daily Hive suggests that might be changing,

Colleen Hardwick’s TEAM for a Livable Vancouver party has officially nominated six candidates to fill Vancouver city councillor seats in the upcoming civic election.

….

Grace Quan is a co-founder and the head of Hydrogen In Motion, which specializes in developing a nanomaterial to store hydrogen [emphasis mine]. She previously worked for the Canadian International Development Agency and in the Foreign Service and served as a senior advisor to the CFO of the Treasury Board of Canada.

There’s not a lot of detail in the description which is reasonable considering five other candidates were being announced.

Since this blog is focused on nanotechnology and other emerging technologies, the word ‘nanomaterial’ popped out. Its use in the candidate’s description is close to meaningless, similar to saying that your storage container is made from a material. In this case, the material (presumably) is exploiting advantages found at the nanoscale. As for Quan, the work experience cited highlights experience working in government agencies but doesn’t include any technology development.

My main interest is the technology followed by the business aspects. As for why Quan is running for political office and how she will find the time; I can only offer speculation.

Hydrogen in Motion’s storage technology

Obviously the place to look is the Hydrogen in Motion (H2M) website. Descriptions of their technology are vague (from the company’s Hydrogen page),

Hydrogen In Motion solution is leading a breakthrough in solid state hydrogen storage nanomaterial. H2M hydrogen storage redefines the use of hydrogen fuel technologies and simplifying its logistical applications. Our technology offers hydrogen energy solution that has positive economic and environmental impact and provides an infinite source of constant energy with no emissions, low cost commitment and versatility with compact storage. Our technology solution has resolved the constraints currently burdening the hydrogen economy, making it the most viable solution for commercialization of future clean energy.

Which nanomaterial(s) are they using? Carbon nanotubes, graphene, gold nanoparticles, borophene, perovskite, fullerenes, etc.? The company’s Products page offers a little more information and some diagrams,

H2M fuel cell technology is well-adapted for a wide range of applications, from nomadic to stationary, enabling for easy transition to emission free systems. As the H2M nanomaterial is conformable, H2M hydrogen storage containers can be shaped to meet the application requirements; from extending flight duration for drones to grid scale renewable energy storage for solar, wind, and wave. H2M is the most effective Hydrogen storage ever designed.

There are no product names nor pictures of products other than this, which is in the banner,

[downloaded from https://www.hydrogeninmotion.com/products/]

No names, no branding, no product specifications.

Unusually for a startup, neither member of the executive team seems to have been the scientist who developed or is developing the nanomaterial for this technology. Also unusual, there’s not a scientific advisory board. Grace Quan has credentials as a Certified Public Accountant (CPA) and holds a Master of Business Administration (MB). Plus there’s this from the About Us page,

Grace has over 25 years of experience spanning a wealth of sectors including government – Federal Government of Canada, the Provincial Government (Minister’s Office) of Alberta; Academia – University of British Columbia, and Management of a Flying School; Not-for-Profit / Research Funding Agency – Genome British Columbia; and private sector with various management positions. Grace is well positioned to lead H2M in navigating the complicated world of Federal and Provincial politics and program funding requirements. At the same time Grace’s skills and expertise in the private sector will be invaluable in providing strategic direction in the marketing, finance, human resource, and production domains.

The other member of the executive team, Mark Cannon, the chief technical officer, has a Master of Science and a Bachelor of Mathematics. Plus there’s this from the About Us page,

Mark has over thirty years of experience commercializing academic developments, covering such diverse fields as: real time vision analysis, electromagnetic measurement and simulation, Computer Aided Design of printed circuit boards and microchips, custom integrated semiconductor chips for encryption, optical fibre signal measurement and recovery, and building energy management systems. He has worked at major research and development companies such as Systemhouse, Bell-Northern Research (later absorbed by Nortel), and Cadence Design Systems. Mark is very familiar with technology startups, the exigencies of entrepreneurship, and the business cycle of introducing new products into the market having cofounded two successful start-ups: Unicad Inc. (bought by Cooper & Chyan Technologies) and Viewnyx Corporation. He has also held key roles in two other start-ups, Chrysalis ITS and Optovation Inc.

His experience seems almost entirely focused on electronics and optics. It’s not clear to me how this experience is transferable to hydrogen storage and nanomaterials. (As well, his TechCrunch profile lists him as having founded one company rather than the three listed in his company’s profile.)

The company’s R&D page offers an overview of the process, the skills needed to conduct the research, and some quite interesting details about hydrogen storage but no scientific papers,

Conceive/Improve Theoretical Modelling

The theoretical team uses physical chemical theory starting at the quantum level using density functional theory (DFT) to model material composed of the elements that provide a structure and attract hydrogen. Once the theoretical material has been tested on that scale, further models are built using Molecular dynamics, thermodynamic modeling and finally computational fluid dynamic modeling. The team continuously provide support by modeling the different stages of synthesis to determine the optimal parameters required to achieve the correct synthesis.

Material Synthesis

The synthesis team uses a variety of chemical and physical state alteration techniques to synthesize the desired material. Series of experiments are devised to build the desired material usually one stage at a time. Usually a series of experiments are planned to determine key synthesis parameters that effect the material. Once a base material is completed, a series of experiments is devised and repeated to bring it to the next stage.

Characterization

Test Hydrogen Absorption & Desorption

Ultimately, the material’s performance is based on the results from the H2MS hydrogen measurement system. Once a material has been successfully synthesized and validated using the H2MS, multiple measurements are made at different temperatures for multiple cycles. This validates the robustness, operating range, and re-usability of the hydrogen storage material. For our first material [emphasis mine], a scale up plan is being developed. Moving from laboratory scale to manufacturing scale [emphasis mine] introduces several challenges in the synthesis of material. This includes equipment selection, fluid and thermal dynamic effects at a larger scale, reaction kinetics, chemical equilibrium and of course, cost.

At what stage is this company?

The business

There are a couple of promising business developments. First, there’s a September 1, 2021 Hydrogen in Motion news release (Note: Links have been removed),

Loop Energy (TSX: LPEN), a developer and manufacturer of hydrogen fuel cell-based solutions, and Hydrogen In Motion (H2M), a leading provider of solid state hydrogen storage, announce their plans to collaborate on converting  a Southern Railway of BC owned and operated diesel electric switcher locomotive to hydrogen electric.

The two British Columbia-based companies will use locally developed technology, including Loop Energy’s 50kw eFlow™ fuel cell system and a low pressure solid state hydrogen storage tank developed by H2M. The project signifies the first instance of Loop supplying its products for use in a rail transport application.

“This is an exciting phase for the hydrogen fuel cell industry as this proves that it is technically and economically feasible to convert diesel-powered switcher locomotives to hydrogen fuel cell-based power systems,” said Grace Quan, CEO of Hydrogen-in-Motion. “The introduction of a hydrogen infrastructure into railyards reduces air contaminants and greenhouse gases and brings clean technologies, job growth and innovation to local communities.”

A few months before, a July 30, 2021 Hydrogen in Motion news release announced an international deal,

Hydrogen In Motion (H2M) announced a collaboration with H2e Power [h2e Power Systems] out of Pune, India for a project to assess, design, install and demonstrate a hydrogen fuel cell 3-Wheeler using H2e PEM Fuel Cell integrated with Hydrogen In Motion’s innovative solid state hydrogen storage technology onboard. This Indo-Canadian collaboration leverages the zero emission and hydrogen strategies released in India and Canada. Hydrogen In Motion is receiving advisory services and up to $600,000 in funding support for this project through the Canadian International Innovation Program (CIIP). CIIP is a funding program offered by Global Affairs Canada [emphasis mine] and is delivered in collaboration with the National Research Council of Canada Industrial Research Assistance Program (NRC IRAP). Respectively in India, H2e’s contributions towards this collaboration are supported by the Department of Science & Technology (DST) in collaboration with Global Innovation and Technology Alliance (GITA).

About This Project – This project will install a hydrogen fuel cell range extender using H2M low pressure hydrogen storage tanks on an electric powered three-wheeled auto rickshaw. Project goal is to significantly extend operational range and provide auxiliary power for home use when not in service.

The lack of scientific papers about the company’s technology is a little concerning. It’s not unheard of but combined with not identifying the scientist/inventor who developed the technology or identifying the source for the technology (in Canada, it’s almost always a university), or giving details about the technology or giving product details or noting that their products are being beta tested (?) in two countries India and Canada, or information about funding (where do they get their money?), or having a scientific advisory board, raises questions. The answer may be simple. They don’t place much value on keeping their website up to date as they are busy.

I did find some company details on the Companies of Canada.com website,

Hydrogen In Motion Inc. (H2M) is a company from Vancouver BC Canada. The company has corporate status: Active.

This business was incorporated 8 years ago on 8th January 2014

Hydrogen In Motion Inc. (H2M) is governed under the Canada Business Corporations Act – 2014-01-08. It a company of type: Non-distributing corporation with 50 or fewer shareholders.

The date of the company’s last Annual Meeting is 2021-01-01. The status of its annual filings are: 2021 -Filed, 2020 -Filed, 2019 -Filed.

Kona Equity offers an analysis (from the second quarter of 2019 to the fourth quarter of 2020),

Hydrogen In Motion

Founded in 2014

Strengths

There are no known strengths for Hydrogen In Motion

Weaknesses

Hydrogen In Motion has a very small market share in their industry

Revenue generated per employee is less than the industry average

Revenue growth is less than the industry average

The number of employees is not growing as fast as the industry average

Variance of revenue growth is more than the industry average

7 employees

Employee growth rate from first known quarter to current -69.6%

I’d love to see a more recent analysis taking into account the 2021 business deals.

It’s impossible to tell when this job was posted but it provides some interesting insight, All the emphases are mine,

We are looking for an accomplished Chemical Process Engineer to lead our nanomaterial and carbon-rich material production, development and scale-up efforts. The holder of this position will be responsible for leading a team of engineers and technicians in the designing, developing and optimizing of process unit operations to provide high quality nanomaterials at various scales ranging from Research and Development to Commercial Manufacturing with good manufacturing practices (cGMP). The successful candidate is expected to independently strategize, analyze, design and control product scale-up to meet volume and quality demands.

Finally, there’s a chemical engineer or two. Plus, according to the company’s LinkedIn profile, there’s a theoretical physicist, Andrey Tokarev. Two locations are listed for Hydrogen in Motion, the Cordova St. office and something at 12388 88 Ave, Surrey. The company size is listed at 11 to 50 employees.

Grace Quan is good at getting government support for her company as this February 2019 story on the Government of Canada website shows,

Mark Cannon, Hydrogen in Motion CTO, Quak Foo Lee, chemical engineer, Angus Hui, co-op student, Dr. Pei Pei, research associate, Grace Quan, CEO, Sahida Kureshi PhD Candidate, and Dr. Andrey Tokerav, theoretical physicist. [downloaded from https://www.international.gc.ca/world-monde/stories-histoires/2019/CPTPP-hydrogen.aspx?lang=eng]

Canada in Asia-Pacific

Trade diversification | February 2019

Grace Quan’s goal is to deliver hydrogen around the world to help the environment and address climate change.

Quan is the CEO of Vancouver-based Hydrogen in Motion, a clean-tech company leading the way in hydrogen storage.

The number one problem with hydrogen is how to store it, which is why Quan founded Hydrogen in Motion. She set out to find a way to get hydrogen to people around the world.

Quan’s company has figured out how to do this. By using a material that soaks up hydrogen like a sponge, more of it can be stored at a lower pressure and at lower cost.

In the future, clean energy, including hydrogen, should become the method of choice to power anything that requires gas or electricity. For example, vehicles, snow blowers and drones could be powered by hydrogen in the future. Hydrogen is an infinite source of clean energy that can lessen the environmental impact from other sources of energy.

Thanks to the Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP), Quan says she can explore new markets in the Asia-Pacific region for hydrogen export.

Japan is a new market that Quan’s company will explore as a result of the CPTPP. There’s a lot of opportunity there, with Tokyo hosting the 2020 Olympics, which are expected to be powered by hydrogen.

Quan recently returned from a trade mission to India [emphasis mine], where local trade commissioners helped her set up a meeting with a major auto maker.

In 2020, Hydrogen in Motion was a ‘success story‘ for Canada’s Scientific Research and Experimental Development (SR&ED) Tax Incentive Program (Note: A link has been removed),

H2M was selected for the free in-person First-time claimant advisory service when filing its first scientific research and experimental development (SR&ED) claim. Since then, the SR&ED tax incentives have had a significant impact on the company’s work. The company is not only thankful for the program’s funding, but also to the SR&ED staff for their hard work and assistance, especially during the pandemic.

The company’s Chief Executive Officer, Grace Quan, had the following comments:

“In the context of COVID-19 shutdowns and general business disruption, the SR&ED tax incentives have become a critical source of funds as other sources were put on hold due to the pandemic and the financial uncertainty of the times. I wish to express my extreme gratitude for the consideration, efforts and support, as well as thanks, to the Canadian government, the SR&ED Program and its staff for their compassionate and empathetic treatment of individuals and businesses. The staff was friendly, professional, prompt and went above and beyond to help a small business like Hydrogen In Motion. They were a pleasure to work with and were extremely effective in problem resolution and facilitating processing of our SR&ED refund to provide much needed cash flow during these difficult times.”

As you might expect from someone running for political office, Quan is good at promoting herself. From her Advisory Board profile page for the Vancouver Economic Commission,

As President & CEO of Hydrogen In Motion Inc. (H2M), Grace brings fiduciary accountability and strategic vision to the table with her CPA/CMA [certified management accountant] and MBA credentials. Grace has a vast range of financial and managerial experience in private and public sectors from managing a Flying School, to working in a Provincial Minister’s office, to helping to manage the $250 billion dollar budget for the Treasury Board Secretariat of the Government of Canada. 

In 2018 Grace Quan, CEO was recognized by BC Business magazine as one of the 50 Most Influential Women In STEM. [emphasis mine]

July 28, 2021 it was announced that Quan became a member of the World Hydrogen Advisory Board of the Sustainable Energy Council (UK).

Speculating about a political candidate

Grace Quan’s electoral run seems like odd timing. If your company just signed two deals less than a year ago during what seems to be an upswing in its business affairs then running for office (an almost full time job in itself) as a city councillor (a full time job, should you be elected) is an unexpected move from someone with no experience in public office.

Another surprising thing? The British Columbia Centre for Innovation and Clean Energy (CICE) announced a new consortium according to a Techcouver.com June 9, 2022 news item (about four days before the announcement of Quan’s political candidacy on the Daily Hive),

The British Columbia Centre for Innovation and Clean Energy (CICE) is partnering with businesses and government organizations to drive B.C.’s low-carbon hydrogen economy forward, with the launch of the B.C. Hydrogen Changemakers Consortium (BCHCC).

The partnership was announced at last night’s official Consortium launch event hosted by CICE and attended by leading B.C. hydrogen players, investors, and government officials. The Consortium launch is part of CICE’s previously announced Hydrogen Blueprint Investment, which will lay a foundation for the establishment of a hydrogen hub in Metro Vancouver, co-locating hydrogen supply and demand.

The group is expected to grow as projects and collaborations increase. To date, the Consortium members include: Ballard Power Systems, Capilano Maritime Design Ltd., Climate Action Secretariat, Fort Capital, FortisBC, Geazone Eco-Courier, Hydra Energy, HTEC, Innovative Clean Energy Fund, InBC Investment Corp., Modo, Parkland Refining, Powertech Labs, and TransLink.

Hydrogen in Motion doesn’t seem to be one of the inaugural members, which may mean nothing or may hint at why Quan is running for office.

Three possibilities

Perhaps the company is not doing so well? There’s a very high failure rate with technology companies. The ‘valley of death’ is the description for taking a development from the lab and turning it into a business (which is almost always highly dependent on government funding). Assuming the company manages to get something to market and finds customers, the next stage, growing the company from a few million in revenues to 10s and 100s of millions of dollars is equally fraught.

Keeping the company afloat for eight years is a big accomplishment especially when you factor in COVID-19 which has had a devastating impact on businesses large and small.

Alternatively, the company is being acquired (or would that be absorbed?) by a larger company. Entrepreneurs in British Columbia have a long history of growing their tech companies with the goal of being acquired and getting a large payout. Quan’s co-founder certainly has experience with growing a company and then selling it to a larger company.

Finally, the company is doing just fine but Quan is bored and needs a new challenge (which may be the case in the other two scenarios as well). if you look at her candidate profile page, you’ll see she has a range of interests.

Note: I am not offering an opinion on Quan’s suitability for political office. This is neither an endorsement nor an ‘anti-endorsement’.

Ethọ́s Lab (youth STEAM academy) launches physical space in Vancouver (Canada) with a block party on June 18, 2022

The Ethọ́s Lab offers extra-curricular programming through STEAM (science, technology, engineering, arts, and mathematics) for youths between 12 and 18 . Here’s more from Rebecca Bollwitt’s May 17, 2022 article on her Miss604.com website, Note: A link has been removed,

… has been offering virtual, STEAM-based education (science, technology, engineering, arts, math) within an antiracist, technology-forward framework throughout the pandemic, and will now be able to add in-person programming.

Ethọ́s Lab was founded to increase access and representation in STEAM,” says parent and founder Anthonia Ogundele.

“These past two years have shown us that this goal is more important than ever before. The ‘metaverse’ has become a hot topic since Facebook’s name change to Meta, the rise of NFTs, and the digital pivot the world underwent at the start of the pandemic. Parents are realizing that their kids need equitable access to tools and information that will help them challenge and shape a digital future that is quickly arriving upon us. We need young, diverse voices co-creating innovative solutions and leading change, in order to ensure we aren’t just perpetuating antiquated, unjust systems — whether those hierarchies are found in coding, urban planning, or the art market. We can’t wait to connect with even more young people with our new home in Mount Pleasant.”

Here’s the Grand Opening/party information (from Bollwitt’s May 17, 2022 article),

Ethọ́s Lab Opens in Mount Pleasant

  • What: Opening Block Party
  • When: Saturday, June 18 from 10:00am to 8:00pm
  • Where: 177 East 3rd Ave, Vancouver
  • Admission: Free!

According to Katie Hyslop’s February 26, 2021 article for The Tyee, Ethọ́s Lab began with a search,

When Anthonia Ogundele was looking for after-school programs for her 11-year-old daughter in 2019, she was frustrated by the lack of options. Particularly when it came to science, technology, engineering and math, or STEM, programs.

“Innovation in STEM is often reserved to gifted, enrichment-type kids or programs, streams and mini-schools,” she said.

“And if you don’t have access, you end up missing out on really great project-based learning, or competitions, or even just the basic tools and equipment to be able to innovate within that space.”

Access to current STEM after-school programs can be limited by an inability to afford program fees, but also by class, race and who you know.

When Ogundele, who is Black, spoke to other parents about after-school program options, she found she wasn’t alone in her struggle. She wondered: what would a program look like that provided access for all young people, but especially Black youth, to technology and STEM skills and addressed needs like belonging and self-worth?

Hyslop’s February 26, 2021 article provides a couple of examples of early Ethọ́s Lab programmes,

… a four-week session on 3D modelling exposed young people to 3D technology and skills. The session had young people design housing specifically for Hogan’s Alley, the Black community in Vancouver that was razed in 1970 to make way for the Georgia Viaducts.

“The theme was ‘place, race and space.’ So the young people come in to learn about place, race and space, but it’s actually a 3D modelling course and they learn how to build homes in a geographical context of Hogan’s Alley,” said Ogundele, who has a master’s in urban planning and launched the Hogan’s Alley Land Trust, now known as the Hogan’s Alley Society.

“We would talk about monuments, and what it means to create or build things that have meaning and place. That’s how we contextualize it.”

Korinne Tsang’s first introduction to Ethọ́s Lab was a screen-printing session last summer [2020]. The 16-year-old student was a bit reluctant to participate at first due to shyness, but she eventually decided to give it a try.

Eight months later, Tsang is still taking Ethọ́s Lab workshops, including sessions on bias in artificial intelligence, coding and creating a personal avatar.

“One of the interesting things is we look at the bias in every part of technology, where I may try to go make an avatar in a video game. And you can’t always make one that looks like yourself because we don’t have those features, and figuring out how to change that,” said Tsang, who is of Chinese and European descent.

I gather the A (arts) was added to this STEM initiative after Hyslop’s article was written.

Bollwitt’s May 17, 2022 article describes the building which will house Ethọ́s Lab, Note: A link has been removed)

The organization is housed inside a new building owned by the City of Vancouver and operated over the next 60 years by non-profit cultural organization 221A [emphasis mine] in collaboration with the Community Land Trust. In addition to a nearly 1,000-sq.-ft. dedicated space, Ethọ́s Lab has shared access to a 2,700-sq.-ft. production facility.

The site is the physical manifestation of the thriving community that Ethọ́s Lab built in their own proprietary metaverse over the pandemic, a virtual hub called Atlanthọ́s that was co-created with youth members and developed by local tech start-up Active Replica. Now, the organization will be a hub for the broader community, a place for members and their families to gather and collaborate. 

The space features a mix of organic, sustainable materials and digital elements, and makes use of the site’s natural light. Local firm Tectonic Architecture, which prioritizes community-based work, led design discussions with youth members — also known as Ethósians — to ensure their vision was incorporated into the space. Comic artist and illustrator Jazz Gordon-Gillquist and Chase Gray (who recently designed the Vancouver Canucks’ First Nations Night warmup jersey) created an original mural in collaboration with curator Krystal Paraboo. Microsoft, Sony, and Heritage Office Furnishings equipped and furnished the space. 

Given 221A’s involvement (see my June 17, 2021 posting; scroll down to the “Arts and blockchain events in Vancouver” subhead), it’s no surprise that Ethọ́s Lab offers a course on blockchain and NFTs (nonfungible tokens).

As for events at the block party and information about Ethọ́s Lab’s summer programmes, check out Bollwitt’s May 17, 2022 article or, for events at the block party only, the Ethos Lab 3rd & Main Grand Opening page on eventbrite. Finally, the organization is fundraising and, as of May 17, 2022, was 3/4 of the way ($75,000) to their goal of $100,000.

Enjoy!

Research communicated by puppets

Yes, there’s protein folding as explained by puppets,

An April 25, 2019 article by Madeleine O’Keefe for BU (Boston University) Today describes both the course “Thinking through Puppets and Performing Objects: Using Theatrical Tools to Communicate the Complex, the Abstract, and the Technical” and a then upcoming Puppet Slam performance (Note: Links have been removed),

Thinking through Puppets is the brainchild of Felice Amato, a College of Fine Arts assistant professor of art education and a Pardee Center for the Study of the Longer-Range Future faculty associate, and Anna Panszczyk (CAS’97), a College of Arts & Sciences Writing Program senior lecturer.

The course is part of the BU Cross-College Challenge (XCC), the Hub’s signature project-based, one-semester four-credit elective course open to juniors and seniors from all 10 undergraduate schools and colleges. It fulfills four Hub units: Creativity/Innovation, Oral Communication, Research and Information Literacy, and Teamwork/Collaboration.

Amato previously taught K-12 art in public schools and focused her doctoral work on puppetry. Panszczyk focuses on children’s literature and culture in her writing, and says she was interested in working with Amato to see how a puppet project could help students develop the aforementioned four Hub skills.

The course attracted six undergraduates, … . Suddenly, they were thrust into a world of cutting, crafting, sewing, gluing, shaping, and molding. They worked with fabric, wood, paper, everyday trash, and more—even M&Ms.

“It was definitely challenging,” Kasanaa [Vinamre Kasanaa. senior at BU] acknowledges. “Taking the leap from our passive classes, which are information-intensive—you get the information, you regurgitate it out on paper, you write, you debate—it’s all abstract.…Tapping your fingers on the screen is not a replacement for craftsmanship, where you’re using your hands. So that’s the one thing that we all were able to learn, because most of us made our own puppets and made these things by ourselves.”

An important aspect of the XCC courses is working on real-world projects with a variety of on-campus and community clients. As the culmination of Thinking through Puppets, Amato, Panszczyk, and their students produced puppet slams …

What exactly is a puppet slam? Amato defines it as “a series of short experimental pieces,” each typically about three minutes long. Puppet slams got their launch at Puppet Showplace Theater, but have become so popular that they now are held all over the world. Heather Henson, daughter of Jim Henson, the Emmy-winning creator of the Muppets, supports a national Puppet Slam Network.

Devyani Chhetri’s March 26, 2020 article for BU Hub updates the story with a description of the 2020 class’s Puppet Slam,

They say that actions speak louder than words. Nothing was more true when XCC students took the stage last Friday to reveal the anxieties of the world borne from issues such as climate change, sexual harassment and immigration— through puppets.

In …, “Puppets against Climate Change”, two puppets are seated in a car and driving around puppet city when they ignore a sign that said ‘no dumping’ and throw trash out of the car.

With Rindner’s [Alexis Rindner, BU student] exaggerated puppet voice leaving the audience in splits, the two puppets are struck soon after by a ‘trash’ comet that decimates the puppet planet.

The humor of the moment gives way to a grim montage of a destroyed planet when the ghosts of the puppets go over the years of excesses where deforestation and pollution in the name of progress led to global warming and the puppet planet’s eventual demise.

You can find the Puppet Slam Network here. The homepage includes a map of various Puppet Slam members.

There are three network members in Canada: Vancouver International Puppet Festival (VIPF) in British Columbia, Calgary Animated Objects Society (CAOS) in Alberta, and the Winnipeg Puppet Slam in Manitoba.

As far as I’m aware, none of the three Canadian members are focused on explicitly communicating research in the manner of the Boston University programme.

The sound of the mushroom

A May 13, 2022 article by Philip Drost for the Canadian Broadcasting Corporation’s (CBC) As It Happens radio programme highlights the “From funky fungi to melodious mangos, this artist makes music out of nature” segment of the show, Note: Links have been removed,

At the intersection of biology and electronic music, you can find Tarun Nayar plugging his synthesizer equipment into mushrooms and other forms of plant life, hoping to capture their invisible bioelectric rhythms and build them into tranquil soundscapes. 

“What I’m really doing is trying to stimulate joy and wonder and create these little sketches or vignettes using the plants themselves, so I like to think of it as definitely a collaboration,” Nayar told As It Happens guest host Helen Mann.

Nayar is an electronic musician and former biologist in Vancouver who uses his TikTok account and Youtube page, Modern Biology, to show off his serenading spores. And his videos have millions of views.

To make his fungi sing, Nayar uses little jumper cables to connect the vegetation with his synthesizer and measure their biological energy, or bioelectricity, which has an effect on the notes. 

“The mushroom is contributing the pitch changes and the rhythm, and the synthesizer, which I have the mushroom plugged into, is contributing the timbre or the quality of the sound,” Nayar said. 

You may be familiar with Nayar’s work (from a Creative Mornings Vancouver About The Speaker webpage for a talk given on July 3, 2020), Note: Links have been removed,

Tarun Nayar has built his world at intersections. Of east and west. Of music and business. Of science and art. Born to a white Canadian mother and an immigrant Indian father in French Canada, he has always lived in multiple worlds. He is comfortable in discomfort and fascinated with helping people find common ground, opening doors, and equalling the playing field. He is passionate about changing perceptions and championing unheard stories and talent.

rained formally in Indian Classical Music from the age of seven, Tarun’s involvement in Vancouver’s underground electronic music scene in his early 20s led to the formation of well-known Canadian band Delhi 2 Dublin [emphasis mine] in 2006. He has since led the band to Glastonbury (UK), Hardly Strictly Bluegrass (US), Woodford (AUS) and hundreds of other club and festival gigs around the world. Tarun is passionate about creating opportunities in the arts for people of colour. He is Executive Director of 5X Festival [emphasis mine], one of North America’s largest South Asian festivals. He is on the board of Vancouver’s New Forms Festival, the Canadian Live Music Association, and a member of BC’s Ministry of Education Advisory Committee, Vancouver’s Music City Task Force, and Vancouver’s 2018 Juno Host City Committee. Tarun manages emerging Pakistani-Canadian electronic artist Khanvict, and is the co-founder and owner of digital label Snakes x Ladders [emphasis mine] which focuses on the new wave of hybrid South Asian artists.

As best I can determine after looking at the Modern Biology YouTube channel and Tik Tok account, Nayar seems to have started his project or made it public about 10 months ago (August 2021?). There’s lots of mushroom music along with fruit music, and flower music in either location although Tik Tok seems have a more complete collection.

There’s also a Modern Biology page on linktree.ee where you can sign up for an email list. It also features a link to PlantWave, (Note: This is not a product endorsement),

$299.00 USD

Listen to the music of plants. Tune into Nature with PlantWave!

PlantWave allows you to wirelessly connect from your plant to your phone, making it easier than ever to listen to nature’s song.

Pre-orders will ship June of 2022. We sold out of our January run of devices before shipping. Thank you for your patience as we do our best to meet demand for this experience.

Package Includes:

Hardware

PlantWave Plant Music Device

Electrode leads

3 pairs of reusable sticky pads for leaves

Duck beak clips for smaller plants

USB C cable for charging / data transmission

Free iOS / Android App

….

Enjoy!

Going blind when your neural implant company flirts with bankruptcy (long read)

This story got me to thinking about what happens when any kind of implant company (pacemaker, deep brain stimulator, etc.) goes bankrupt or is acquired by another company with a different business model.

As I worked on this piece, more issues were raised and the scope expanded to include prosthetics along with implants while the focus narrowed to neuro as in, neural implants and neuroprosthetics. At the same time, I found salient examples for this posting in other medical advances such as gene editing.

In sum, all references to implants and prosthetics are to neural devices and some issues are illustrated with salient examples from other medical advances (specifically, gene editing).

Definitions (for those who find them useful)

The US Food and Drug Administration defines implants and prosthetics,

Medical implants are devices or tissues that are placed inside or on the surface of the body. Many implants are prosthetics, intended to replace missing body parts. Other implants deliver medication, monitor body functions, or provide support to organs and tissues.

As for what constitutes a neural implant/neuroprosthetic, there’s this from Emily Waltz’s January 20, 2020 article (How Do Neural Implants Work? Neural implants are used for deep brain stimulation, vagus nerve stimulation, and mind-controlled prostheses) for the Institute of Electrical and Electronics Engineers (IEEE) Spectrum magazine,

A neural implant, then, is a device—typically an electrode of some kind—that’s inserted into the body, comes into contact with tissues that contain neurons, and interacts with those neurons in some way.

Now, let’s start with the recent near bankruptcy of a retinal implant company.

The company goes bust (more or less)

From a February 25, 2022 Science Friday (a National Public Radio program) posting/audio file, Note: Links have been removed,

Barbara Campbell was walking through a New York City subway station during rush hour when her world abruptly went dark. For four years, Campbell had been using a high-tech implant in her left eye that gave her a crude kind of bionic vision, partially compensating for the genetic disease that had rendered her completely blind in her 30s. “I remember exactly where I was: I was switching from the 6 train to the F train,” Campbell tells IEEE Spectrum. “I was about to go down the stairs, and all of a sudden I heard a little ‘beep, beep, beep’ sound.’”

It wasn’t her phone battery running out. It was her Argus II retinal implant system powering down. The patches of light and dark that she’d been able to see with the implant’s help vanished.

Terry Byland is the only person to have received this kind of implant in both eyes. He got the first-generation Argus I implant, made by the company Second Sight Medical Products, in his right eye in 2004, and the subsequent Argus II implant in his left 11 years later. He helped the company test the technology, spoke to the press movingly about his experiences, and even met Stevie Wonder at a conference. “[I] went from being just a person that was doing the testing to being a spokesman,” he remembers.

Yet in 2020, Byland had to find out secondhand that the company had abandoned the technology and was on the verge of going bankrupt. While his two-implant system is still working, he doesn’t know how long that will be the case. “As long as nothing goes wrong, I’m fine,” he says. “But if something does go wrong with it, well, I’m screwed. Because there’s no way of getting it fixed.”

Science Friday and the IEEE [Institute of Electrical and Electronics Engineers] Spectrum magazine collaborated to produce this story. You’ll find the audio files and the transcript of interviews with the authors and one of the implant patients in this February 25, 2022 Science Friday (a National Public Radio program) posting.

Here’s more from the February 15, 2022 IEEE Spectrum article by Eliza Strickland and Mark Harris,

Ross Doerr, another Second Sight patient, doesn’t mince words: “It is fantastic technology and a lousy company,” he says. He received an implant in one eye in 2019 and remembers seeing the shining lights of Christmas trees that holiday season. He was thrilled to learn in early 2020 that he was eligible for software upgrades that could further improve his vision. Yet in the early months of the COVID-19 pandemic, he heard troubling rumors about the company and called his Second Sight vision-rehab therapist. “She said, ‘Well, funny you should call. We all just got laid off,’ ” he remembers. She said, ‘By the way, you’re not getting your upgrades.’ ”

These three patients, and more than 350 other blind people around the world with Second Sight’s implants in their eyes, find themselves in a world in which the technology that transformed their lives is just another obsolete gadget. One technical hiccup, one broken wire, and they lose their artificial vision, possibly forever. To add injury to insult: A defunct Argus system in the eye could cause medical complications or interfere with procedures such as MRI scans, and it could be painful or expensive to remove.

The writers included some information about what happened to the business, from the February 15, 2022 IEEE Spectrum article, Note: Links have been removed,

After Second Sight discontinued its retinal implant in 2019 and nearly went out of business in 2020, a public offering in June 2021 raised US $57.5 million at $5 per share. The company promised to focus on its ongoing clinical trial of a brain implant, called Orion, that also provides artificial vision. But its stock price plunged to around $1.50, and in February 2022, just before this article was published, the company announced a proposed merger with an early-stage biopharmaceutical company called Nano Precision Medical (NPM). None of Second Sight’s executives will be on the leadership team of the new company, which will focus on developing NPM’s novel implant for drug delivery.The company’s current leadership declined to be interviewed for this article but did provide an emailed statement prior to the merger announcement. It said, in part: “We are a recognized global leader in neuromodulation devices for blindness and are committed to developing new technologies to treat the broadest population of sight-impaired individuals.”

It’s unclear what Second Sight’s proposed merger means for Argus patients. The day after the merger was announced, Adam Mendelsohn, CEO of Nano Precision Medical, told Spectrum that he doesn’t yet know what contractual obligations the combined company will have to Argus and Orion patients. But, he says, NPM will try to do what’s “right from an ethical perspective.” The past, he added in an email, is “simply not relevant to the new future.”

There may be some alternatives, from the February 15, 2022 IEEE Spectrum article (Note: Links have been removed),

Second Sight may have given up on its retinal implant, but other companies still see a need—and a market—for bionic vision without brain surgery. Paris-based Pixium Vision is conducting European and U.S. feasibility trials to see if its Prima system can help patients with age-related macular degeneration, a much more common condition than retinitis pigmentosa.

Daniel Palanker, a professor of ophthalmology at Stanford University who licensed his technology to Pixium, says the Prima implant is smaller, simpler, and cheaper than the Argus II. But he argues that Prima’s superior image resolution has the potential to make Pixium Vision a success. “If you provide excellent vision, there will be lots of patients,” he tells Spectrum. “If you provide crappy vision, there will be very few.”

Some clinicians involved in the Argus II work are trying to salvage what they can from the technology. Gislin Dagnelie, an associate professor of ophthalmology at Johns Hopkins University School of Medicine, has set up a network of clinicians who are still working with Argus II patients. The researchers are experimenting with a thermal camera to help users see faces, a stereo camera to filter out the background, and AI-powered object recognition. These upgrades are unlikely to result in commercial hardware today but could help future vision prostheses.

The writers have carefully balanced this piece so it is not an outright condemnation of the companies (Second Sight and Nano Precision), from the February 15, 2022 IEEE Spectrum article,

Failure is an inevitable part of innovation. The Argus II was an innovative technology, and progress made by Second Sight may pave the way for other companies that are developing bionic vision systems. But for people considering such an implant in the future, the cautionary tale of Argus patients left in the lurch may make a tough decision even tougher. Should they take a chance on a novel technology? If they do get an implant and find that it helps them navigate the world, should they allow themselves to depend upon it?

Abandoning the Argus II technology—and the people who use it—might have made short-term financial sense for Second Sight, but it’s a decision that could come back to bite the merged company if it does decide to commercialize a brain implant, believes Doerr.

For anyone curious about retinal implant technology (specifically the Argus II), I have a description in a June 30, 2015 posting.

Speculations and hopes for neuroprosthetics

The field of neuroprosthetics is very active. Dr Arthur Saniotis and Prof Maciej Henneberg have written an article where they speculate about the possibilities of a neuroprosthetic that may one day merge with neurons in a February 21, 2022 Nanowerk Spotlight article,

For over a generation several types of medical neuroprosthetics have been developed, which have improved the lives of thousands of individuals. For instance, cochlear implants have restored functional hearing in individuals with severe hearing impairment.

Further advances in motor neuroprosthetics are attempting to restore motor functions in tetraplegic, limb loss and brain stem stroke paralysis subjects.

Currently, scientists are working on various kinds of brain/machine interfaces [BMI] in order to restore movement and partial sensory function. One such device is the ‘Ipsihand’ that enables movement of a paralyzed hand. The device works by detecting the recipient’s intention in the form of electrical signals, thereby triggering hand movement.

Another recent development is the 12 month BMI gait neurohabilitation program that uses a visual-tactile feedback system in combination with a physical exoskeleton and EEG operated AI actuators while walking. This program has been tried on eight patients with reported improvements in lower limb movement and somatic sensation.

Surgically placed electrode implants have also reduced tremor symptoms in individuals with Parkinson’s disease.

Although neuroprosthetics have provided various benefits they do have their problems. Firstly, electrode implants to the brain are prone to degradation, necessitating new implants after a few years. Secondly, as in any kind of surgery, implanted electrodes can cause post-operative infection and glial scarring. Furthermore, one study showed that the neurobiological efficacy of an implant is dependent on the rate of speed of its insertion.

But what if humans designed a neuroprosthetic, which could bypass the medical glitches of invasive neuroprosthetics? However, instead of connecting devices to neural networks, this neuroprosthetic would directly merge with neurons – a novel step. Such a neuroprosthetic could radically optimize treatments for neurodegenerative disorders and brain injuries, and possibly cognitive enhancement [emphasis mine].

A team of three international scientists has recently designed a nanobased neuroprosthetic, which was published in Frontiers in Neuroscience (“Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders“). [open access paper published in 2018]

An interesting feature of their nanobot neuroprosthetic is that it has been inspired from nature by way of endomyccorhizae – a type of plant/fungus symbiosis, which is over four hundred million years old. During endomyccorhizae, fungi use numerous threadlike projections called mycelium that penetrate plant roots, forming colossal underground networks with nearby root systems. During this process fungi take up vital nutrients while protecting plant roots from infections – a win-win relationship. Consequently, the nano-neuroprosthetic has been named ‘endomyccorhizae ligand interface’, or ‘ELI’ for short.

The Spotlight article goes on to describe how these nanobots might function. As for the possibility of cognitive enhancement, I wonder if that might come to be described as a form of ‘artificial intelligence’.

(Dr Arthur Saniotis and Prof Maciej Henneberg are both from the Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences; and Biological Anthropology and Comparative Anatomy Research Unit, Adelaide Medical School, University of Adelaide. Abdul-Rahman Sawalma who’s listed as an author on the 2018 paper is from the Palestinian Neuroscience Initiative, Al-Quds University, Beit Hanina, Palestine.)

Saniotis and Henneberg’s Spotlight article presents an optimistic view of neuroprosthetics. It seems telling that they cite cochlear implants as a success story when it is viewed by many as ethically fraught (see the Cochlear implant Wikipedia entry; scroll down to ‘Criticism and controversy’).

Ethics and your implants

This is from an April 6, 2015 article by Luc Henry on technologist.eu,

Technologist: What are the potential consequences of accepting the “augmented human” in society?

Gregor Wolbring: There are many that we might not even envision now. But let me focus on failure and obsolescence [emphasis mine], two issues that are rarely discussed. What happens when the mechanisms fails in the middle of an action? Failure has hazardous consequences, but obsolescence has psychological ones. …. The constant surgical inter­vention needed to update the hardware may not be feasible. A person might feel obsolete if she cohabits with others using a newer version.

T. Are researchers working on prosthetics sometimes disconnected from reality?

G. W. Students engaged in the development of prosthetics have to learn how to think in societal terms and develop a broader perspective. Our education system provides them with a fascination for clever solutions to technological challenges but not with tools aiming at understanding the consequences, such as whether their product might increase or decrease social justice.

Wolbring is a professor at the University of Calgary’s Cumming School of Medicine (profile page) who writes on social issues to do with human enhancement/ augmentation. As well,

Some of his areas of engagement are: ability studies including governance of ability expectations, disability studies, governance of emerging and existing sciences and technologies (e.g. nanoscale science and technology, molecular manufacturing, aging, longevity and immortality, cognitive sciences, neuromorphic engineering, genetics, synthetic biology, robotics, artificial intelligence, automatization, brain machine interfaces, sensors), impact of science and technology on marginalized populations, especially people with disabilities he governance of bodily enhancement, sustainability issues, EcoHealth, resilience, ethics issues, health policy issues, human rights and sport.

He also maintains his own website here.

Not just startups

I’d classify Second Sight as a tech startup company and they have a high rate of failure, which may not have been clear to the patients who had the implants. Clinical trials can present problems too as this excerpt from my September 17, 2020 posting notes,

This October 31, 2017 article by Emily Underwood for Science was revelatory,

“In 2003, neurologist Helen Mayberg of Emory University in Atlanta began to test a bold, experimental treatment for people with severe depression, which involved implanting metal electrodes deep in the brain in a region called area 25 [emphases mine]. The initial data were promising; eventually, they convinced a device company, St. Jude Medical in Saint Paul, to sponsor a 200-person clinical trial dubbed BROADEN.

This month [October 2017], however, Lancet Psychiatry reported the first published data on the trial’s failure. The study stopped recruiting participants in 2012, after a 6-month study in 90 people failed to show statistically significant improvements between those receiving active stimulation and a control group, in which the device was implanted but switched off.

… a tricky dilemma for companies and research teams involved in deep brain stimulation (DBS) research: If trial participants want to keep their implants [emphases mine], who will take responsibility—and pay—for their ongoing care? And participants in last week’s meeting said it underscores the need for the growing corps of DBS researchers to think long-term about their planned studies.”

Symbiosis can be another consequence, as mentioned in my September 17, 2020 posting,

From a July 24, 2019 article by Liam Drew for Nature Outlook: The brain,

“It becomes part of you,” Patient 6 said, describing the technology that enabled her, after 45 years of severe epilepsy, to halt her disabling seizures. Electrodes had been implanted on the surface of her brain that would send a signal to a hand-held device when they detected signs of impending epileptic activity. On hearing a warning from the device, Patient 6 knew to take a dose of medication to halt the coming seizure.

“You grow gradually into it and get used to it, so it then becomes a part of every day,” she told Frederic Gilbert, an ethicist who studies brain–computer interfaces (BCIs) at the University of Tasmania in Hobart, Australia. “It became me,” she said. [emphasis mine]

Symbiosis is a term, borrowed from ecology, that means an intimate co-existence of two species for mutual advantage. As technologists work towards directly connecting the human brain to computers, it is increasingly being used to describe humans’ potential relationship with artificial intelligence. [emphasis mine]

It’s complicated

For a lot of people these devices are or could be life-changing. At the same time, there are a number of different issues related to implants/prosthetics; the following is not an exhaustive list. As Wolbring notes, issues that we can’t begin to imagine now are likely to emerge as these medical advances become more ubiquitous.

Ability/disability?

Assistive technologies are almost always portrayed as helpful. For example, a cochlear implant gives people without hearing the ability to hear. The assumption is that this is always a good thing—unless you’re a deaf person who wants to define the problem a little differently. Who gets to decide what is good and ‘normal’ and what is desirable?

While the cochlear implant is the most extreme example I can think of, there are variations of these questions throughout the ‘disability’ communities.

Also, as Wolbring notes in his interview with the Technologist.eu, the education system tends to favour technological solutions which don’t take social issues into account. Wolbring cites social justice issues when he mentions failure and obsolescence.

Technical failures and obsolescence

The story, excerpted earlier in this posting, opened with a striking example of a technical failure at an awkward moment; a blind woman depending on her retinal implant loses all sight as she maneuvers through a subway station in New York City.

Aside from being an awful way to find out the company supplying and supporting your implant is in serious financial trouble and can’t offer assistance or repair, the failure offers a preview of what could happen as implants and prosthetics become more commonly used.

Keeping up/fomo (fear of missing out)/obsolescence

It used to be called ‘keeping up with the Joneses, it’s the practice of comparing yourself and your worldly goods to someone else(‘s) and then trying to equal what they have or do better. Usually, people want to have more and better than the mythical Joneses.

These days, the phenomenon (which has been expanded to include social networking) is better known as ‘fomo’ or fear of missing out (see the Fear of missing out Wikipedia entry).

Whatever you want to call it, humanity’s competitive nature can be seen where technology is concerned. When I worked in technology companies, I noticed that hardware and software were sometimes purchased for features that were effectively useless to us. But, not upgrading to a newer version was unthinkable.

Call it fomo or ‘keeping up with the Joneses’, it’s a powerful force and when people (and even companies) miss out or can’t keep up, it can lead to a sense of inferiority in the same way that having an obsolete implant or prosthetic could.

Social consequences

Could there be a neural implant/neuroprosthetic divide? There is already a digital divide (from its Wikipedia entry),

The digital divide is a gap between those who have access to new technology and those who do not … people without access to the Internet and other ICTs [information and communication technologies] are at a socio-economic disadvantage because they are unable or less able to find and apply for jobs, shop and sell online, participate democratically, or research and learn.

After reading Wolbring’s comments, it’s not hard to imagine a neural implant/neuroprosthetic divide with its attendant psychological and social consequences.

What kind of human am I?

There are other issues as noted in my September 17, 2020 posting. I’ve already mentioned ‘patient 6’, the woman who developed a symbiotic relationship with her brain/computer interface. This is how the relationship ended,

… He [Frederic Gilbert, ethicist] is now preparing a follow-up report on Patient 6. The company that implanted the device in her brain to help free her from seizures went bankrupt. The device had to be removed.

… Patient 6 cried as she told Gilbert about losing the device. … “I lost myself,” she said.

“It was more than a device,” Gilbert says. “The company owned the existence of this new person.”

Above human

The possibility that implants will not merely restore or endow someone with ‘standard’ sight or hearing or motion or … but will augment or improve on nature was broached in this May 2, 2013 posting, More than human—a bionic ear that extends hearing beyond the usual frequencies and is one of many in the ‘Human Enhancement’ category on this blog.

More recently, Hugh Herr, an Associate Professor at the Massachusetts Institute of Technology (MIT), leader of the Biomechatronics research group at MIT’s Media Lab, a double amputee, and prosthetic enthusiast, starred in the recent (February 23, 2022) broadcast of ‘Augmented‘ on the Public Broadcasting Service (PBS) science programme, Nova.

I found ‘Augmented’ a little offputting as it gave every indication of being an advertisement for Herr’s work in the form of a hero’s journey. I was not able to watch more than 10 mins. This preview gives you a pretty good idea of what it was like although the part in ‘Augmented, where he says he’d like to be a cyborg hasn’t been included,

At a guess, there were a few talking heads (taking up from 10%-20% of the running time) who provided some cautionary words to counterbalance the enthusiasm in the rest of the programme. It’s a standard approach designed to give the impression that both sides of a question are being recognized. The cautionary material is usually inserted past the 1/2 way mark while leaving several minutes at the end for returning to the more optimistic material.

In a February 2, 2010 posting I have excerpts from an article featuring quotes from Herr that I still find startling,

Written by Paul Hochman for Fast Company, Bionic Legs, iLimbs, and Other Super-Human Prostheses [ETA March 23, 2022: an updated version of the article is now on Genius.com] delves further into the world where people may be willing to trade a healthy limb for a prosthetic. From the article,

There are many advantages to having your leg amputated.

Pedicure costs drop 50% overnight. A pair of socks lasts twice as long. But Hugh Herr, the director of the Biomechatronics Group at the MIT Media Lab, goes a step further. “It’s actually unfair,” Herr says about amputees’ advantages over the able-bodied. “As tech advancements in prosthetics come along, amputees can exploit those improvements. They can get upgrades. A person with a natural body can’t.”

Herr is not the only one who favours prosthetics (also from the Hochman article),

This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.”

But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human.[emphasis mine] It’s a very powerful thing.”

My September 17, 2020 posting touches on more ethical and social issues including some of those surrounding consumer neurotechnologies or brain-computer interfaces (BCI). Unfortunately, I don’t have space for these issues here.

As for Paul Hochman’s article, Bionic Legs, iLimbs, and Other Super-Human Prostheses, now on Genius.com, it has been updated.

Money makes the world go around

Money and business practices have been indirectly referenced (for the most part) up to now in this posting. The February 15, 2022 IEEE Spectrum article and Hochman’s article, Bionic Legs, iLimbs, and Other Super-Human Prostheses, cover two aspects of the money angle.

In the IEEE Spectrum article, a tech start-up company, Second Sight, ran into financial trouble and is acquired by a company that has no plans to develop Second Sight’s core technology. The people implanted with the Argus II technology have been stranded as were ‘patient 6’ and others participating in the clinical trial described in the July 24, 2019 article by Liam Drew for Nature Outlook: The brain mentioned earlier in this posting.

I don’t know anything about the business bankruptcy mentioned in the Drew article but one of the business problems described in the IEEE Spectrum article suggests that Second Sight was founded before answering a basic question, “What is the market size for this product?”

On 18 July 2019, Second Sight sent Argus patients a letter saying it would be phasing out the retinal implant technology to clear the way for the development of its next-generation brain implant for blindness, Orion, which had begun a clinical trial with six patients the previous year. …

“The leadership at the time didn’t believe they could make [the Argus retinal implant] part of the business profitable,” Greenberg [Robert Greenberg, Second Sight co-founder] says. “I understood the decision, because I think the size of the market turned out to be smaller than we had thought.”

….

The question of whether a medical procedure or medicine can be profitable (or should the question be sufficiently profitable?) was referenced in my April 26, 2019 posting in the context of gene editing and personalized medicine

Edward Abrahams, president of the Personalized Medicine Coalition (US-based), advocates for personalized medicine while noting in passing, market forces as represented by Goldman Sachs in his May 23, 2018 piece for statnews.com (Note: A link has been removed),

Goldman Sachs, for example, issued a report titled “The Genome Revolution.” It argues that while “genome medicine” offers “tremendous value for patients and society,” curing patients may not be “a sustainable business model.” [emphasis mine] The analysis underlines that the health system is not set up to reap the benefits of new scientific discoveries and technologies. Just as we are on the precipice of an era in which gene therapies, gene-editing, and immunotherapies promise to address the root causes of disease, Goldman Sachs says that these therapies have a “very different outlook with regard to recurring revenue versus chronic therapies.”

The ‘Glybera’ story in my July 4, 2019 posting (scroll down about 40% of the way) highlights the issue with “recurring revenue versus chronic therapies,”

Kelly Crowe in a November 17, 2018 article for the CBC (Canadian Broadcasting Corporation) news writes about Glybera,

It is one of this country’s great scientific achievements.

“The first drug ever approved that can fix a faulty gene.

It’s called Glybera, and it can treat a painful and potentially deadly genetic disorder with a single dose — a genuine made-in-Canada medical breakthrough.

But most Canadians have never heard of it.

Here’s my summary (from the July 4, 2019 posting),

It cost $1M for a single treatment and that single treatment is good for at least 10 years.

Pharmaceutical companies make their money from repeated use of their medicaments and Glybera required only one treatment so the company priced it according to how much they would have gotten for repeated use, $100,000 per year over a 10 year period. The company was not able to persuade governments and/or individuals to pay the cost

In the end, 31 people got the treatment, most of them received it for free through clinical trials.

For rich people only?

Megan Devlin’s March 8, 2022 article for the Daily Hive announces a major research investment into medical research (Note: A link has been removed),

Vancouver [Canada] billionaire Chip Wilson revealed Tuesday [March 8, 2022] that he has a rare genetic condition that causes his muscles to waste away, and announced he’s spending $100 million on research to find a cure.

His condition is called facio-scapulo-humeral muscular dystrophy, or FSHD for short. It progresses rapidly in some people and more slowly in others, but is characterized by progressive muscle weakness starting the the face, the neck, shoulders, and later the lower body.

“I’m out for survival of my own life,” Wilson said.

“I also have the resources to do something about this which affects so many people in the world.”

Wilson hopes the $100 million will produce a cure or muscle-regenerating treatment by 2027.

“This could be one of the biggest discoveries of all time, for humankind,” Wilson said. “Most people lose muscle, they fall, and they die. If we can keep muscle as we age this can be a longevity drug like we’ve never seen before.”

According to rarediseases.org, FSHD affects between four and 10 people out of every 100,000 [emphasis mine], Right now, therapies are limited to exercise and pain management. There is no way to stall or reverse the disease’s course.

Wilson is best known for founding athleisure clothing company Lululemon. He also owns the most expensive home in British Columbia, a $73 million mansion in Vancouver’s Kitsilano neighbourhood.

Let’s see what the numbers add up to,

4 – 10 people out of 100,000

40 – 100 people out of 1M

1200 – 3,000 people out of 30M (let’s say this is Canada’s population)\

12,000 – 30,000 people out of 300M (let’s say this is the US’s population)

42,000 – 105,000 out of 1.115B (let’s say this is China’s population)

The rough total comes to 55,200 to 138,000 people between three countries with a combined population total of 1.445B. Given how business currently operates, it seems unlikely that any company will want to offer Wilson’s hoped for medical therapy although he and possibly others may benefit from a clinical trial.

Should profit or wealth be considerations?

The stories about the patients with the implants and the patients who need Glybera are heartbreaking and point to a question not often asked when medical therapies and medications are developed. Is the profit model the best choice and, if so, how much profit?

I have no answer to that question but I wish it was asked by medical researchers and policy makers.

As for wealthy people dictating the direction for medical research, I don’t have answers there either. I hope the research will yield applications and/or valuable information for more than Wilson’s disease.

It’s his money after all

Wilson calls his new venture, SolveFSHD. It doesn’t seem to be affiliated with any university or biomedical science organization and it’s not clear how the money will be awarded (no programmes, no application procedure, no panel of experts). There are three people on the team, Eva R. Chin, scientist and executive director, Chip Wilson, SolveFSHD founder/funder, and FSHD patient, and Neil Camarta, engineer, executive (fossil fuels and clean energy), and FSHD patient. There’s also a Twitter feed (presumably for the latest updates): https://twitter.com/SOLVEFSHD.

Perhaps unrelated but intriguing is news about a proposed new building in Kenneth Chan’s March 31, 2022 article for the Daily Hive,

Low Tide Properties, the real estate arm of Lululemon founder Chip Wilson [emphasis mine], has submitted a new development permit application to build a 148-ft-tall, eight-storey, mixed-use commercial building in the False Creek Flats of Vancouver.

The proposal, designed by local architectural firm Musson Cattell Mackey Partnership, calls for 236,000 sq ft of total floor area, including 105,000 sq ft of general office space, 102,000 sq ft of laboratory space [emphasis mine], and 5,000 sq ft of ground-level retail space. An outdoor amenity space for building workers will be provided on the rooftop.

[next door] The 2001-built, five-storey building at 1618 Station Street immediately to the west of the development site is also owned by Low Tide Properties [emphasis mine]. The Ferguson, the name of the existing building, contains about 79,000 sq ft of total floor area, including 47,000 sq ft of laboratory space and 32,000 sq ft of general office space. Biotechnology company Stemcell technologies [STEMCELL] Technologies] is the anchor tenant [emphasis mine].

I wonder if this proposed new building will house SolveFSHD and perhaps other FSHD-focused enterprises. The proximity of STEMCELL Technologies could be quite convenient. In any event, $100M will buy a lot (pun intended).

The end

Issues I’ve described here in the context of neural implants/neuroprosthetics and cutting edge medical advances are standard problems not specific to these technologies/treatments:

  • What happens when the technology fails (hopefully not at a critical moment)?
  • What happens when your supplier goes out of business or discontinues the products you purchase from them?
  • How much does it cost?
  • Who can afford the treatment/product? Will it only be for rich people?
  • Will this technology/procedure/etc. exacerbate or create new social tensions between social classes, cultural groups, religious groups, races, etc.?

Of course, having your neural implant fail suddenly in the middle of a New York City subway station seems a substantively different experience than having your car break down on the road.

There are, of course, there are the issues we can’t yet envision (as Wolbring notes) and there are issues such as symbiotic relationships with our implants and/or feeling that you are “above human.” Whether symbiosis and ‘implant/prosthetic superiority’ will affect more than a small number of people or become major issues is still to be determined.

There’s a lot to be optimistic about where new medical research and advances are concerned but I would like to see more thoughtful coverage in the media (e.g., news programmes and documentaries like ‘Augmented’) and more thoughtful comments from medical researchers.

Of course, the biggest issue I’ve raised here is about the current business models for health care products where profit is valued over people’s health and well-being. it’s a big question and I don’t see any definitive answers but the question put me in mind of this quote (from a September 22, 2020 obituary for US Supreme Court Justice Ruth Bader Ginsburg by Irene Monroe for Curve),

Ginsburg’s advocacy for justice was unwavering and showed it, especially with each oral dissent. In another oral dissent, Ginsburg quoted a familiar Martin Luther King Jr. line, adding her coda:” ‘The arc of the universe is long, but it bends toward justice,’” but only “if there is a steadfast commitment to see the task through to completion.” …

Martin Luther King Jr. popularized and paraphrased the quote (from a January 18, 2018 article by Mychal Denzel Smith for Huffington Post),

His use of the quote is best understood by considering his source material. “The arc of the moral universe is long, but it bends toward justice” is King’s clever paraphrasing of a portion of a sermon delivered in 1853 by the abolitionist minister Theodore Parker. Born in Lexington, Massachusetts, in 1810, Parker studied at Harvard Divinity School and eventually became an influential transcendentalist and minister in the Unitarian church. In that sermon, Parker said: “I do not pretend to understand the moral universe. The arc is a long one. My eye reaches but little ways. I cannot calculate the curve and complete the figure by experience of sight. I can divine it by conscience. And from what I see I am sure it bends toward justice.”

I choose to keep faith that people will get the healthcare products they need and that all of us need to keep working at making access more fair.

Orca-shaped puzzle pieces in puzzle for orca conservation

H/t to Rebecca Bollwitt’s Miss604.com’s January 26, 2022 posting about a puzzle being used to help raise funds for the Raincoast Conservation Foundation. ($20 from each puzzle sold will be donated to the foundation.)

[puzzle image downloaded from https://www.puzzle-lab.com/collections/new-puzzles/products/rise-wood-jigsaw-puzzle]

I am fascinated by the orca-shaped pieces. Here’s more about the puzzle from the January 26, 2022 Miss604 posting (Note: A link has been removed),

The Rise puzzle is unique in its design, even for the innovative Puzzle Lab. It features 206 identical orca-shaped pieces in an Escher-style tessellation pattern. The technology in Puzzle Lab draws from cofounder Andrew Robev’s knowledge of parametric, computational, and generative design, involving writing custom computer algorithms to generate highly complex geometry and digital fabrication (using robotic tools such as a laser cutter, 3D printer, or CNC router). 

The January 26, 2022 Miss604 posting features an image of the whole puzzle along with a succinct description of the project and the people behind it.

Puzzle Lab?

According to Puzzle Lab’s About Us page, they make puzzles you can feel good about,

Puzzle Lab was founded by Tinka Robev and Andrew Azzopardi, who met studying architecture at the University of Waterloo in 2012.

The couple moved to Victoria, BC in 2014 where they started Studio Robazzo, a multidisciplinary design & branding agency.

During the coronavirus pandemic, they came up with the idea to launch a puzzle company to encourage more people to get off their devices and into the real world. Sharon Parker joined them and Puzzle Lab was born in the fall of 2020.

Since its founding, Puzzle Lab has been dedicated to fabricating heirloom-quality puzzles as well as providing a platform for talented Canadian artists.

a next-level puzzling experience

Our heirloom-quality wood puzzles merge technology, art, and nature.

We start by curating stunning graphics and local art. Next, the wacky puzzle pieces are created in our digital laboratory with custom computer algorithms. Then, they’re laser cut at our studio in the heart of Victoria, BC.

Each puzzle design has a unique cut pattern, so you won’t find the same piece twice!

You won’t find the same shape twice? it seems an exception has been made for Rise.

Artwork

The company solicits artwork for its puzzles (from the Artist Submission page),

Winter 2021-2022

Please fill out the form below to submit your artwork, and/or share this page with artists in your community to help us spread the word!This is a paid opportunity: all selected artists receive ongoing royalties on the puzzles sold using their licensed artwork(s).

The Rise artwork is by Art by Di,

Beauty of nature is the key inspiration behind Di’s contemporary west coast acrylic paintings. With a focus on light, color and movement Di seeks to reduce the endless detail of life into simple form and palette, allowing viewers’ imaginations to fill in details of time and place. …

… The artist lives and works on Bowen Island, Canada.

Filling in the last pieces

You can find more of Puzzle Lab’s work on their Instagram account. Should you be interested in purchasing a Rise wood jigsaw puzzle,

Strength. Resilience. Recovery. ‘Rise’ is a celebration of life – a celebration of Howe Sound. It is a celebration of cleaner air, cleaner water, cleaner land. Lose yourself in this enchanting west coast scene as you take on a uniquely challenging wood jigsaw puzzle composed of just over 200 identical orca-shaped pieces seamlessly tiled in an Escher-style tessellation pattern.

This exciting Puzzle with a Purpose supports the wildlife conservation efforts of the Raincoast Conservation Foundation.

It is $100.

Again, the organization receiving the $20 donation from the purchase price is the Raincoast Conservation Foundation.

Night of ideas/Nuit des idées 2022: (Re)building Together on January 27, 2022 (7th edition in Canada)

Vancouver and other Canadian cities are participating in an international culture event, Night of ideas/Nuit des idées, organized by the French Institute (Institut de France), a French Learned society first established in 1795 (during the French Revolution, which ran from 1789 to 1799 [Wikipedia entry]).

Before getting to the Canadian event, here’s more about the Night of Ideas from the event’s About Us page,

Initiated in 2016 during an exceptional evening that brought together in Paris foremost French and international thinkers invited to discuss the major issues of our time, the Night of Ideas has quickly become a fixture of the French and international agenda. Every year, on the last Thursday of January, the French Institute invites all cultural and educational institutions in France and on all five continents to celebrate the free flow of ideas and knowledge by offering, on the same evening, conferences, meetings, forums and round tables, as well as screenings, artistic performances and workshops, around a theme each one of them revisits in its own fashion.

“(Re)building together

For the 7th Night of Ideas, which will take place on 27 January 2022, the theme “(Re)building together” has been chosen to explore the resilience and reconstruction of societies faced with singular challenges, solidarity and cooperation between individuals, groups and states, the mobilisation of civil societies and the challenges of building and making our objects. This Nuit des Idées will also be marked by the beginning of the French Presidency of the Council of the European Union.

According to the About Us page, the 2021 event counted participants in 104 countries/190 cities/with other 200 events.

The French embassy in Canada (Ambassade de France au Canada) has a Night of Ideas/Nuit des idées 2022 webpage listing the Canadian events (Note: The times are local, e.g., 5 pm in Ottawa),

Ottawa: (Re)building through the arts, together

Moncton: (Re)building Together: How should we (re)think and (re)habilitate the post-COVID world?

Halifax: (Re)building together: Climate change — Building bridges between the present and future

Toronto: A World in Common

Edmonton: Introduction of the neutral pronoun “iel” — Can language influence the construction of identity?

Vancouver: (Re)building together with NFTs

Victoria: Committing in a time of uncertainty

Here’s a little more about the Vancouver event, from the Night of Ideas/Nuit des idées 2022 webpage,

Vancouver: (Re)building together with NFTs [non-fungible tokens]

NFTs, or non-fungible tokens, can be used as blockchain-based proofs of ownership. The new NFT “phenomenon” can be applied to any digital object: photos, videos, music, video game elements, and even tweets or highlights from sporting events.

Millions of dollars can be on the line when it comes to NFTs granting ownership rights to “crypto arts.” In addition to showing the signs of being a new speculative bubble, the market for NFTs could also lead to new experiences in online video gaming or in museums, and could revolutionize the creation and dissemination of works of art.

This evening will be an opportunity to hear from artists and professionals in the arts, technology and academia and to gain a better understanding of the opportunities that NFTs present for access to and the creation and dissemination of art and culture. Jesse McKee, Head of Strategy at 221A, Philippe Pasquier, Professor at School of Interactive Arts & Technology (SFU) and Rhea Myers, artist, hacker and writer will share their experiences in a session moderated by Dorothy Woodend, cultural editor for The Tyee.

- 7 p.m on Zoom (registration here) Event broadcast online on France Canada Culture’s Facebook. In English.

Not all of the events are in both languages.

One last thing, if you have some French and find puppets interesting, the event in Victoria, British Columbia features both, “Catherine Léger, linguist and professor at the University of Victoria, with whom we will discover and come to accept the diversity of French with the help of marionnettes [puppets]; … .”