Monthly Archives: May 2013

Safe use of nanotechnology for environmental remediation June 5 – 7, 2013 conference/workshop

The inaugural conference/national workshop on the safe use of nanotechnology for environmental remediation is being held at Southeastern Louisiana University from June 5 – 7, 2013. A Southeastern Louisiana University May 23, 2013 news release provides more detail,

An increasing number of hazardous waste disposal sites are using nanotechnology and nanomaterials in their environmental remediation efforts, leaving open questions about the safety of such techniques.

“While applications and results of nano-enabled strategies for environmental remediation are promising, there is still the challenge of ensuring such applications are both safe and sustainable,” said conference organizer Ephraim Massawe. “The federal government has established different projects coordinated by different agencies, called signature initiatives. We plan on generating information supportive of some of these federal initiatives.”

The event, “Nano-4_Rem_Anseers2013: Applications of Nanotechnolgoy for Safe and Sustainable Environmental Remediations,” [sic] is a cooperative endeavor involving the university and agencies and institutions, such as the U.S. Environmental Protection Agency (EPA), the National Institute of Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA). The Louisiana Board of Regents is providing partial financial support.

The news release (which can also be viewed as a May 24, 2013 news item on Azonano) goes on to provide details about the keynote speakers,

Four keynote speakers are slated to address the three-day conference, which will be held on the Southeastern campus. Speakers and topics include:

— Patrick O’Shaughnessy, professor of occupational and environmental health in the Department of Civil and Environmental Engineering at the University of Iowa, “Nanosafety: Current Issues and Guidance;”
— Dongye Zhao, Huff endowed professor of environmental engineering at Auburn University: “Application of Stabilized Nanoparticles for in situ Remediation of Contaminated Soil and Groundwater;”
— Souhail Al-Abed of the EPA Office of Research and Development, National Risk Management Research Laboratory in Cincinnati: “Nanotechnology and the Environment: an Overview of Sustainable and Safe Applications in Site Remediation.”

In addition, a representative of the National Nanotechnology Coordinating Office will speak at the workshop.

Massawe had this to add about federal initiatives (from the news release),

Massawe said at least 30 EPA Superfund sites across the nation are currently using nanomaterials in remediation operations.

I have written about Nano-4_Rem_aNssERs2013: Applications of Nanotechnology for Safe and Sustainable Environmental Remediations before in a Nov. 7, 2012 posting when it was first announced and where you will find links to some of my other posts on nanotechnology and environmental remediation. Rather than add links to yet a few my other postings on the topic, here’s a link to the Project for Emerging Nanotechnologies Nanoremediation Map. I’m not sure how exhaustive the listings are or how recent but it should give you some idea about the activities occurring in the US and around the world.

Vancouver’s (Canada) Café Scientifique; an origins story on May 28, 2013

Returning to  the back room at The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), the next Café Scientifique Vancouver talk will be given by Lars Martin on Tuesday, May 28,  2013 at 7:30 pm. Here’s the talk description, from the announcement,

Nuclear Astrophysics at TRIUMF

Nuclear Astrophysics is the field of science that tries to explain the natural origin of all chemical elements. [emphasis mine] Scenarios that are studied in this field include the Big Bang, the life cycle of a regular star like our sun and cataclysmic events like supernovae. One key ingredient for this endeavour is the experimental study of nuclear reactions in accelerator labs like TRIUMF.

In his presentation Lars Martin will give an introduction into the field of nuclear astrophysics and describe some of the experiments he was involved with as a PhD student at TRIUMF.

That’s all I’ve got.

Only for the truly obsessed: a movie featuring gold nanocrystal vibrations

Folks at the London Centre for Nanotechnology (at the University College of London) have released a film made with a pioneering 3D imaging technique that shows how gold nanocrystals vibrate. From the May 23, 2013 news release on EurekAlert,

A billon-frames-per-second film has captured the vibrations of gold nanocrystals in stunning detail for the first time.

The film, which was made using 3D imaging pioneered at the London Centre for Nanotechnology (LCN) at UCL [University College of London], reveals important information about the composition of gold. The findings are published in the journal Science.

Jesse Clark, from the LCN and lead author of the paper said: “Just as the sound quality of a musical instrument can provide great detail about its construction, so too can the vibrations seen in materials provide important information about their composition and functions.”

“It is absolutely amazing that we are able to capture snapshots of these nanoscale motions and create movies of these processes. This information is crucial to understanding the response of materials after perturbation. “

Caption: The acoustic phonons can be visualized on the surface as regions of contraction (blue) and expansion (red). Also shown are two-dimensional images comparing the experimental results with theory and molecular dynamics simulation. The scale bar is 100 nanometers. Credit: Jesse Clark/UCL

Caption: The acoustic phonons can be visualized on the surface as regions of contraction (blue) and expansion (red). Also shown are two-dimensional images comparing the experimental results with theory and molecular dynamics simulation. The scale bar is 100 nanometers. Credit: Jesse Clark/UCL

Here are more details from the news release,

Scientists found that the vibrations were unusual because they start off at exactly the same moment everywhere inside the crystal. It was previously expected that the effects of the excitation would travel across the gold nanocrystal at the speed of sound, but they were found to be much faster, i.e., supersonic.

The new images support theoretical models for light interaction with metals, where energy is first transferred to electrons, which are able to short-circuit the much slower motion of the atoms.

The team carried out the experiments at the SLAC National Accelerator Laboratory using a revolutionary X-ray laser called the “Linac Coherent Light Source”. The pulses of X-rays are extremely short (measured in femtoseconds, or quadrillionths of a second), meaning they are able to freeze all motion of the atoms in any sample, leaving only the electrons still moving.

However, the X-ray pulses are intense enough that the team was able to take single snapshots of the vibrations of the gold nanocrystals they were examining. The vibration was started with a short pulse of infrared light.

The real keeners can watch the movie if they click on the link to the May 23, 2013 news release on EurekAlert.

The team developing this movie was international in scope (from the news release),

The research team included contributors from UCL, University of Oxford, SLAC, Argonne National Laboratory [US] and LaTrobe University, Australia.

NanoRosetta; a Kickstarter archiving project for the human genome

The NanoRosetta Kickstarter project needs to raise $100,000 by June 2, 2013 if the organizers are to shrink the human genome to the nanoscale and archive it by printing  it on five nickel discs which will be good for 10,000 years. From the NanoRosetta campaign page,

NanoRosetta is seeking to bring the archival industry into the modern age by using nanotechnology to print analog information onto nickel discs. With a life-span of 10,000 years, no other technology can match the durability and longevity of these discs, and because of the microscopic size of the images printed on the discs, we are able to print high volumes of data that were once thought to be unprintable.

To showcase this paradigm-shifting technology, we are seeking to print multiple sets of all 3.2 BILLION characters of the Human genome on five nickel discs about the size of CDs. Previously, this task would have required a room of books to archive the information as analog data.

Storing this information digitally may be effective in the short term, but for the purposes of long-term archiving, the computer, the operating system and the software would also need to be archived equally well. This is the Achilles heel of digital archiving, and the reason why an analog system is the only way to properly archive important data.

Such passion for archiving warms my heart and I love this notion which reminds me of certain types of science fiction novels (from NanoRosetta campaign page),

No matter how well something is stored, it is always susceptible to a single point of failure.

This is where you come in.

With 80 custodians of the Human genome, with at least one custodian located on each continent, we can avoid the problem of a single point of failure and give you a unique piece to hang on your wall.

After the campaign started in early April, the team partnered with the Moon Arts Project with a plan to send the discs into outer space,

This Kickstarter has just gone from a 10,000 year archiving project to a 1 Billion year archiving project! Thanks to the vision of Lowry Burgess, the former dean of the College of Fine Arts at Carnegie Mellon University and head of the mission’s Moon Arts Project, the university’s engineers and artists have made room for the Human genome discs on their lunar lander.

“One of these days, one of these days…” 

Launching in 2015.

More information on the university’s mission, their status, and the Moon Arts Project can be found at: http://www.cmu.edu/google-lunar-x/
http://moonarts.org/

As for the original Rosetta Stone which provides the inspiration for this project, here’s a little information from its Wikipedia essay (Note: Links have been removed),

Originally displayed within a temple, the stone was probably moved during the early Christian or medieval period and eventually used as building material in the construction of Fort Julien near the town of Rashid (Rosetta) in the Nile Delta. It was rediscovered there in 1799 by a soldier, Pierre-François Bouchard, of the French expedition to Egypt. As the first Ancient Egyptian bilingual text recovered in modern times, the Rosetta Stone aroused widespread public interest with its potential to decipher this hitherto untranslated ancient language. Lithographic copies and plaster casts began circulating among European museums and scholars. Meanwhile, British troops defeated the French in Egypt in 1801, and the original stone came into British possession under the Capitulation of Alexandria. Transported to London, it has been on public display at the British Museum since 1802. It is the most-visited object in the British Museum.

The NanoRosetta team has created a campaign video,

For those who like to know something about the people behind a project, this team doesn’t provide much information (from the campaign page),

Bruce Ha, John Bishop, and Jakub Svec make up the NanoRosetta team bringing technical expertise and the archiving industry together.

Websites

The team (also known as Norsam Technologies) notes on its campaign page that it has worked with the Long Now Foundation on that organization’s, The Rosetta Project.

I wish them the best of luck with NanoRosetta.

There are other pieces about archives on the blog but this Mar. 8, 2012 posting, Digital disasters, probably provides the best justifications for this NanoRosetta project.

Spider-mites spin new nanomaterial at Canada’s University of Western Ontario

I’m not always the sharpest knife in the drawer and skimming news articles exacerbates the problem, so, it took me a minute (more or less) to realize that spiders and spider-mites are not the same, which is what makes this discovery about spider-mite silk, featured in a May 23, 2013 news item on phys.org, special in amongst the many stories on spider silk (Note: A link has been removed),

A new, natural nanomaterial, which may prove incredibly beneficial to medical bioengineers, has been discovered by the research team at Western University [aka University of Western Ontario] that successfully sequenced the spider mite genome in 2011.

Western biology professor Miodrag Grbic and his team have now collaborated with physicist Jeff Hutter to test – for the first-time ever – the durability of spider-mite silk and found the bionanomaterial, which is one thousand times thinner than human hair, to be a potentially superior alternative to spider silk, itself long considered a highly attractive light-weight biomaterial due to its high tensile strength and elasticity.

This is a very good video from Western University (aka University of Western Ontario) featuring both Grbić and Hutter describing their work,

The Western University Apr. 25, 2013 media release, which originated the news item on phys.org, echoes the content in the video,

“One of the discoveries spinning out from our sequencing of the spider-mite genome was spider-mite silk,” explains Grbic, regarding the findings published in Nature in 2011. “When we conceived this project, our idea was to develop tools to control this important world-wide pest but we didn’t even dream that we were going to discover a potential bionanomaterial naturally produced by the spider-mite.”

Due to the near infinitesimal size of the spider mite silk, traditional theories were irrelevant so Hutter and Steve Hudson from the Department of Physics & Astronomy were forced to rethink conventional methods used for measuring the mechanical properties of nanomaterials.

“Basically you measure the strength of a nanofibre by anchoring it at both ends, suspending it, and then bending it with an atomic force microscope,” explains Hutter. “These fibres were so thin that the conventional theory didn’t apply and we had to develop a new theory to understand the data.”

Hutter and Grbic are most excited that spider mite silk has proven to be a truly natural nanomaterial, making its practical applications numerous.

“Spider silk, which people often talk about, has similar properties but it doesn’t score quite as high on Young’s modulus,” says Hutter, explaining the scientific measure used to characterize stiffness in elastic materials. “Plus spider mite silk is way thinner.”

Grbic says potential applications would require further research but could include construction of scaffolding for cell growth, as well as tissue regeneration and transplantation.

Here’s a link to and citation for the team’s latest spider mite silk paper,

Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy
by Stephen D. Hudson, Vladimir Zhurov, Vojislava Grbić, Miodrag Grbić, and Jeffrey L. Hutter. J. Appl. Phys. 113, 154307 (2013); http://dx.doi.org/10.1063/1.4800865 (7 pages) Published online 16 April 2013

The paper is behind a paywall.

Gary Goodyear rouses passions: more on Canada’s National Research Council and its new commitment to business

Gary Goodyear’s, Minister of State (Science and Technology), office in attempting to set the record straight has, inadvertently, roused even more passion in Phil Plait’s (Slate.com blogger) bosom and inspired me to examine more commentary about the situation regarding the NRC and its ‘new’ commitment to business.

Phil Plait in a May 22, 2013 followup to one 0f his recent postings (I have the details about Plait’s and other commentaries in my May 13, 2013 posting about the NRC’s recent declarations) responds to an email from Michele-Jamali Paquette, the director of communication for Goodyear (Note: A link has been removed),

I read the transcripts, and assuming they are accurate, let me be very clear: Yes, the literal word-for-word quotation I used was incorrect, and one point I made was technically and superficially in error. But the overall point—that this is a terrible move by the NRC and the conservative Canadian government, short-changing real science—still stands. And, in my opinion, Goodyear’s office is simply trying to spin what has become a PR problem.

I’ll note that in her email to me, Paquette quoted my own statement:

John MacDougal [sic], President of the NRC, literally said, “Scientific discovery is not valuable unless it has commercial value”

Paquette took exception to my use of the word “literally,” emphasizing it in her email. (The link, in both her email and my original post, goes to the Toronto Sun story with the garbled quotation.) Apparently MacDougal did not literally say that. But the objection strikes me as political spin since the meaning of what MacDougal said at the press conference is just as I said it was in my original post.

As I pointed out in my first post: Science can and should be done for its own sake. It pays off in the end, but that’s not why we do it. To wit …

Paquette’s choice of what issues (the 2nd issue was Plait’s original description of the NRC as a funding agency) to dispute seem odd and picayune as they don’t have an impact on Plait’s main argument,

Unfortunately, despite these errors, the overall meaning remains the same: The NRC is moving away from basic science to support business better, and the statements by both Goodyear and MacDougal [sic] are cause for concern.

Plait goes on to restate his argument and provide a roundup of commentaries. It’s well worth reading for the roundup alone.  (One picayune comment from me, I wish Plait would notice that the head of Canada’s National Research Council’s name is spelled this way, John McDougall.)

Happily, Nassif Ghoussoub has also chimed in with a May 22, 2013 posting (on his Piece of Mind blog) regarding the online discussion (Note: Links have been removed),

The Canadian twitter world has been split in the last couple of days. … But then, you have the story of the Tories’ problem with science, be it defunding, muzzling, disbelieving, doubting, preventing, delegitimizing etc. The latter must have restarted with the incredible announcement about the National Research Council (NRC), presented as “Canada sells out science” in Slate, and as “Failure doesn’t come cheap” in Maclean’s. What went unnoticed was the fact that the restructuring turned out to be totally orthogonal to the recommendations of the Jenkins report about the NRC. Then came the latest Science, Technology and Innovation Council (STIC) report, which showed that Canada’s expenditure on research and development has fallen from 16th out of 41 comparable countries in the year Stephen Harper became prime minister, to 23rd in 2011. Paul Wells seems to be racking up hits on his Maclean’s article,  “Stephen Harper and the knowledge economy: perfect strangers.”  But the story of the last 48 hours has been John Dupuis’s chronology of what he calls, “The Canadian war on science” and much more.

Yes, it’s another roundup but it’s complementary (albeit with one or two repetitions) since Plait does not seem all that familiar with the Canadian scene (I find it’s always valuable to have an outside perspective) and Nassif is a longtime insider.

John Dupuis’ May 20, 2013 posting (on his Confessions of a Science Librarian blog), mentioned by both Nassif and Plait, provides an extraordinary listing of stories ranging from 2006 through to 2013 whose headlines alone paint a very bleak picture of the practice of science in Canada,

As is occasionally my habit, I have pulled together a chronology of sorts. It is a chronology of all the various cuts, insults, muzzlings and cancellations that I’ve been able to dig up. Each of them represents a single shot in the Canadian Conservative war on science. It should be noted that not every item in this chronology, if taken in isolation, is necessarily the end of the world. It’s the accumulated evidence that is so damning.

As I’ve noted before, I am no friend of Stephen Harper and his Conservative government and many of their actions have been reprehensible and, at times, seem childishly spiteful but they do occasionally get something right. There was a serious infrastructure problem in Canada. Buildings dedicated to the pursuit of science were sadly aged and no longer appropriate for the use to which they were being put. Harper and his government have poured money into rebuilding infrastructure and for that they should be acknowledged.

As for what the Conservatives are attempting with this shift in direction for the National Research Council (NRC), which has been ongoing for at least two years as I noted in my May 13, 2013 posting, I believe they are attempting to rebalance the Canadian research enterprise.  It’s generally agreed that Canada historically has very poor levels of industrial research and development (R&D) and high levels of industrial R&D are considered, internationally, as key to a successful economy. (Richard Jones, Pro-Vice Chancellor for Research and Innovation at the University of Sheffield, UK, discusses how a falling percentage of industrial R&D, taking place over decades,  is affecting the UK economy in a May 10, 2013 commentary on the University of  Sheffield SPERI [Sheffield Political Economy Research Institute] website.)

This NRC redirection when taken in conjunction with the recent StartUp visa programme (my May 20, 2013 posting discusses Minister of Immigration Jason Kenney’s recent recruitment tour in San Francisco [Silicon Valley]),  is designed to take Canada and Canadians into uncharted territory—the much desired place where we develop a viable industrial R&D sector and an innovative economy in action.

In having reviewed at least some of the commentary, there are a couple of questions left unasked about this international obsession with industrial R&D,

  • is a country’s economic health truly tied to industrial R&D or is this ‘received’ wisdom?
  • if industrial R&D is the key to economic health, what would be the best balance between it and the practice of basic science?

As for the Canadian situation, what might be some of the unintended consequences? It occurs to me that if scientists are rewarded for turning their research into commercially viable products they might be inclined to constrain access to materials. Understandable if the enterprise is purely private but the NRC redirection is aimed at bringing together academics and private enterprise in a scheme that seems a weird amalgam of both.

For example, cellulose nanocrystals (CNC) are not easily accessed if you’re a run-of-the-mill entrepreneur. I’ve had more than one back-channel request about how to purchase the material and it would seem that access is tightly controlled by the academics and publicly funded enterprise, in this case, a private business, who produce the material. (I’m speaking of the FPInnovations and Domtar comingling in CelluForce, a CNC production facility and much more. It would make a fascinating case study on how public monies are used to help finance private enterprises and their R&D efforts; the relationship between nongovernmental agencies (FPInnovations, which I believe was an NRC spinoff), various federal public funding agencies, and Domtar, a private enterprise; and the power dynamics between all the players including the lowly entrepreneur.

At the nanoscale, grapefruit swings from being medication danger to medication enhancer

It’s known that grapefruit, despite its health benefits, can inhibit (or even a pose danger) to a medication’s effectiveness. Most of us have been warned at one time or another to avoid grapefruit juice when downing a pill. So, the news from the University of Louisville (Kentucky; UofL) about grapefruit as part of a drug delivery system seems a little counter-intuitive (from the May 22, 2013 news item on Azonano),

Grapefruits have long been known for their health benefits, and the subtropical fruit may revolutionize how medical therapies like anti-cancer drugs are delivered to specific tumor cells.

University of Louisville researchers have uncovered how to create nanoparticles using natural lipids derived from grapefruit, and have discovered how to use them as drug delivery vehicles. UofL scientists Huang-Ge Zhang, D.V.M., Ph.D., Qilong Wang, Ph.D., and their team today (May 21, 2013), published their findings in Nature Communications.

The May 21, 2013 University of Louisville news release by Julie Heflin, which originated the news item, describes how the nanoparticles are derived and their advantages,

“These nanoparticles, which we’ve named grapefruit-derived nanovectors (GNVs), are derived from an edible plant, and we believe they are less toxic for patients, result in less biohazardous waste for the environment and are much cheaper to produce at large scale than nanoparticles made from synthetic materials,” said Zhang, who holds the Founders Chair in Cancer Research at the Brown Cancer Center.

The researchers demonstrated that GNVs can transport various therapeutic agents, including anti-cancer drugs, DNA/RNA and proteins such as antibodies. Treatment of animals with GNVs seemed to cause less adverse effects than treatment with drugs encapsulated in synthetic lipids.

“Our GNVs can be modified to target specific cells — we can use them like missiles to carry a variety of therapeutic agents for the purpose of destroying diseased cells,” he said. “Furthermore, we can do this at an affordable price.”

The therapeutic potential of grapefruit derived nanoparticles was further validated through a Phase 1 clinical trial for treatment of colon cancer patients. So far, researchers have observed no toxicity in the patients who orally took the anti-inflammatory agent curcumin encapsulated in grapefruit nanoparticles.

The UofL scientists also plan to test whether this technology can be applied in the treatment of inflammation related autoimmune diseases like rheumatoid arthritis.

Here’s a link to and a citation for the researchers’ paper,

Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids by Qilong Wang, Xiaoying Zhuang, Jingyao Mu, Zhong-Bin Deng, Hong Jiang, Xiaoyu Xiang, Baomei Wang, Jun Yan, Donald Miller, & Huang-Ge Zhang. Nature Communications 4, 1867 doi:10.1038/ncomms2886 Published 21 May 2013

This paper is behind a paywall.

As for the dangers of grapefruit-medication interactions, ABC (American Broadcasting Corporation) has a Nov. 26, 2012 news item featuring then new research suggesting that even more medications are affected by grapefruit/grapefruit juice than had previously been believed,

It has long been known that grapefruit juice can pose dangerous — and even deadly — risks when taken along with certain medications. Now, experts warn the list of medications that can result in these interactions is longer than many may have believed.

In a new report released Monday in the Canadian Medical Association Journal [CMAJ], researchers at the University of Western Ontario said that while 17 drugs were identified in 2008 as having the potential to cause serious problems when taken with grapefruit, this number has now grown to 43.

So how does a common breakfast fruit cause these problems? Grapefruits contain chemicals called furanocoumarins that interfere with how your body breaks down drugs before they enter the bloodstream. By preventing this normal breakdown of a drug, these chemicals in grapefruit can effectively cause a drug overdose and more severe side-effects.

Among the side effects sometimes seen with grapefruit-induced overdoses are heart rhythm problems, kidney failure, muscle breakdown, difficulty with breathing and blood clots. …

ABC provides a list of drugs that are affected by grapefruit here.

For interested parties, here’s a link to and a citation for the research on grapefruit-medication interactions,

Grapefruit–medication interactions: Forbidden fruit or avoidable consequences? by David G. Bailey, George Dresser, and J. Malcolm O. Arnold. CMAJ March 5, 2013 185:309-316; published ahead of print November 26, 2012,

This paper is behind a paywall.

I have a couple of final comments. (1) It would seem that the grapefruit’s characteristics at the macroscale are not echoed at the nanoscale. (2) Interestingly, the grapefruit nanoparticles (grapefruit nanovectors [GNVs]) are being used to encapsulate curcumin (a constituent of turmeric). I wrote about turmeric and its healing properties in a Dec. 26, 2011 posting, which features a number of links to research in this area.

R.I.P. Heinrich Rohrer, co-inventor of the scanning tunneling microscope, 1933-2013

Heinrich Rohrer died May 16, 2013 according to the May 22, 2013 news item on Nanowerk,

The co-inventor of the scanning tunneling microscope, Dr. Heinrich Rohrer, passed away on the evening of May 16, 2013. He was 79.

Heinrich Rohrer, IBM Fellow and Nobel Laureate, joined the IBM Research Laboratory in Zurich, Switzerland, in December of 1963, where he worked for 34 years.

After hiring a young scientist named Gerd Binnig in the late 1970s, the two started collaborating, brought closely together by their backgrounds in superconductivity and their fascination with atomic surfaces. The two scientists grew increasingly frustrated by the limits of the tools then available to study the distinct characteristics of atomic surfaces, so they decided to build their own, something that would be capable of seeing and manipulating atoms at the nanoscale level.

The May 2013 obituary on the IBM research website, which originated the news item, commemorates Rohrer’s Nobel winning accomplishment, the co-invention of the scanning tunneling microscope (STM),

Dr. Heinrich Rohrer, IBM Fellow, Nobel Laureate and co-inventor of the scanning tunneling microscope, passed away on the evening of May 16, 2013. He was 79. Dr. Rohrer joined IBM Research – Zurich in December of 1963, where he worked for 34 years.

“The invention of the scanning tunneling microscope was a seminal moment in the history of science and information technology,” said Dr. John E. Kelly III, IBM senior vice president and director of Research. “This invention gave scientists the ability to image, measure and manipulate atoms for the first time, and opened new avenues for information technology that we are still pursuing today.”

After hiring a young scientist named Gerd Binnig in the late 1970s, the two started collaborating, brought together by their backgrounds in superconductivity and their fascination with atomic surfaces. They grew increasingly frustrated by the limits of the tools then available, so they built their own, capable of seeing and manipulating atoms at the nanoscale level.

They began experimenting with tunneling, a quantum phenomenon in which electrons can escape the surface of a solid. When another surface approaches, the electron clouds can overlap and an electric current can flow.

Binnig and Rohrer found that when maneuvering a sharp metal conducting tip over the surface of a sample, the amount of electrical current flowing between the tip and the surface could be measured. Variations in the current provided information about the inner structure, and from this information,  they could build a three-dimensional atomic-scale map of the sample’s surface.

In January 1979, Binnig and Rohrer submitted their first patent disclosure on the scanning tunneling microscope (STM). Soon afterwards, with the help of fellow IBM researcher Christoph Gerber, they began to design and construct the microscope.

In awarding Binnig and Rohrer the Nobel Prize in Physics in 1986, just five years after the first STM had been built, the Nobel committee said the invention opened up “entirely new fields… for the study of the structure of matter.”

In 2011, in the presence of 600 guests from throughout the research community, IBM and ETH Zurich dedicated the Binnig and Rohrer Nanotechnology Center in Rüschlikon in honor of the scientists’ achievements.

“ For me, Heini was father figure, role model, emotional and spiritual teacher, and best friend – all rolled into one. An eminent person, with an incredible sense of humanity and kindness. ”

-Gerd Binnig

Heinrich Rohrer was as famous for his kindly personality as for his sharp wit and humor. During the opening ceremony of the Center he participated in a public discussion with Binnig and Dr. Ralph Eicher, then president of ETH Zurich. After Binnig attempted to explain their invention, Rohrer jokingly apologized to the audience saying, “If you didn’t quite understand what Gerd just told you, you are not alone.”

Here are a few biographical details from the obituary page on the IBM website,

Heinrich Rohrer was born on June 6, 1933, in Buchs, Switzerland. In 1949, the Rohrer family moved to Zurich and a few years later Heinrich enrolled at the Swiss Federal Institute of Technology in Zurich (ETH), where he studied Physics under Wolfgang Pauli.

In the summer of 1961, Heinrich married Rose-Marie Egger and their honeymoon in the United States led to a two-year project studying thermal conductivity of type-II superconductors and metals at Rutgers University. Shortly thereafter in 1963, he returned to Switzerland to join the Physics department at the newly founded IBM Research – Zurich Laboratory.

The rest, as they say, is history.

ETA May 23, 2013: Dexter Johnson wrote a touching tribute in his May 23, 2013 posting, Heinrich Rohrer: The Modest Pioneer of Nanotechnology.

NanoSustain published four case studies: zinc oxide, titanium dioxide, carbon nanotubes, and nanocellulose

A May 17, 2013 news item on Nanowerk highlight a European Commission-funded project, NanoSustain and its publication of a fact sheet and four case studies,,

NanoSustain, a €2.5 million NMP small collaborative project (2010-2013) funded by the European Union under FP7, has published a fact sheet and four case studies addressing these issues.

How do nanotechnology-based products impact human health and the environment?
Can they be recycled?
Can they be safely disposed of?
How can you find out?

The March 20, 2013 NanoSustain news release, which originated the news item, goes on to explain,

… the EC-funded NanoSustain project has been developing new sustainable solutions through an investigation of the life-cycle of nanotechnology-based products, in particular the physical and chemical characteristics of materials, hazard and exposure aspects, and end-of-life disposal or recycling to determine the fate and impact of nanomaterials.

A summary of the different materials and products tested within NanoSustain:

• Case Study #1: Titanium dioxide for paints
• Case Study #2: Zinc oxide for glazing products
• Case Study #3: Carbon nanotubes epoxy resins for plastics
– for structural or electrical/antistatic applications
• Case Study #4: Nanocellulose for advanced paper applications

Information about the individual experimental approaches

Descriptions of the different techniques developed

How these techniques have been successfully applied in physical-chemical characterisation; life-cycle analysis; final disposal; recycling.

Getting access to the case case studies and the fact sheet requires filling out a form but once you’ve done that you get instant access to the materials.

Here’s some information from EuroSustain’s fact sheet,

Factsheets

Analytical Techniques

Development of sustainable solutions for nanotechnology-based products based on hazard characterization and LCA1 The primary goal of the NanoSustain project is to develop new technical solutions for the sustainable design and use, recycling and final treatment of selected nanotechnology-based products.

To achieve this the project has the following objectives: 1) to assess the hazard of selected nanomaterials based on a comprehensive data survey and generation concerning their physicochemical (PC) and toxicological properties, exposure probabilities, etc., and the adaptation, evaluation, validation and use of existing analytical, testing and life-cycle assessment (LCA) methods; 2) to assess the impact of selected products during their life cycle in relation to material and energy flows (LCA); 3) to assess possible exposure routes and risks associated with the handling of these materials, their transformation and final fate; and 4) to explore the feasibility and sustainability of new technical solutions for end-of=life processes, such as reuse/recycling, final treatment or disposal.

Within NanoSustain an assessment has been made of the PC properties, exposure and toxicity, energy and material inputs and outputs at relevant stages of a material or product’s life-cycle. This means: material production, processing, manufacturing, use, transportation, and end-of-life (recycling/disposal). At each stage potential risks to human health and the environment have also been assessed, through a number of experimental models and test systems using materials that would be expected to be released from products containing nanomaterials.

Four nanomaterials were investigated that either already feature in commercial products or are expected to be commercialized on a large scale: titanium dioxide (TiO2) in paint, zinc oxide (ZnO) as a coating for glass, multi-walled carbon nanotubes (MWCNT) in epoxy resins, and nanocellulose in paper.

Detailed information on the nanomaterials have been summarized in internal project material datasheets (MDS), and will be made available as part of peer-reviewed publications on release studies and toxicological investigations. [emphases mine]

Having looked at the four case studies, each of which is two pages, I would describe them as teasers. There’s not a lot of information in them as to the results of the testing which makes sense when you see that they will be publishing in various publications.

I find the inclusion of titanium dioxide, zinc oxide and carbon nanotubes for life-cycle assessments easily understandable as they  have been integrated into many consumer products. However, it’s my understanding that nanocellulose has not reached that level of product integration. Still, given the number of times I’ve been told this is a ‘safe’ product, it’s interesting to see what NanoSustain has to say about its toxicity (from the NanoSustain’s nanocellulose case study),

Work in NanoSustain has provided new data and information on the physicochemical properties, potential human and environmental hazard and risk associated with relevant stages of the life-cycle of nanocellulose based products as well as on the overall energy and material input/output that may happen during manufacturing, use and disposal. Initial results indicate that the nanocellulose degrades efficiently under standard composting conditions, but does not in aquatic environments. Furthermore nanocellulose does not demonstrate any ecotoxicity. Unfortunately nanocellulose forms a gel when suspended in media for inhalation studies, and so no toxicology experiments could be performed (as for the other engineered nanomaterials studied in NanoSustain). Final results will be made available once published in peer-reviewed journals.

I have written many times about nanocellulose, a topic featuring some interesting and confusing nomenclature and taking this opportunity to highlight a couple of responses from folks who took the time to clarify things for me (from my Aug. 2, 2012 posting),

KarenS says:

Hi Maryse!

From my understanding, nanocrystaline cellulose (NCC), cellulose nanocrystals (CNC), cellulose whiskers (CW) and cellulose nanowhiskers (CNW) are all the same stuff: cylindrical rods of crystalline cellulose (diameter: 5-10 nm; length: 20-1000 nm). Cellulose nanofibers or nanofibrils (CNF), on the contrary, are less crystalline and are in the form of long fibers (diameter: 20-50 nm; length: up to several micrometers).

There is still a lot of confusion on the nomenclature of cellulose nanoparticles, but nice explanations (and pictures!) are given here (and also in other papers from the same conference):

http://www.tappi.org/Downloads/Conference-Papers/2012/12NANO/12NANO49.aspx

and there’s this from my Sept. 26, 2012 posting,

Gary Chinga Carrasco says:

The definition of cellulose nanofibrils as “diameter: 20-50 nm; length: up to several micrometers)” is somewhat simplified. For terminology on MFC terms you may want to take a look at: http://www.nanoscalereslett.com/content/6/1/417

Bringing this piece back to where I started, I look forward to seeing the NanoSustain case studies published with more details in the future.

Note: Since the folks at NanoSustain are likely using their form to collect data, I’m not linking back to the factsheet or nanocellulose case study as I would usually. So, if you want to look at the material, you do need to register via the form.

2013 US National Nanotechnology Initiative stakeholder workshops

I found a May 20, 2013 news blurb about an upcoming 2013 US National Nanotechnology Initiative (NNI) workshop on the OH&S (Occupational Health Safety magazine website,

Nanotechnology experts will gather in Washington, D.C., on June 11-12 [2013] for workshops and discussions to inform the 2013 strategic plan for the National Nanotechnology Initiative (NNI). …

More details about the workshop (2013 NNI Strategic Planning Stakeholder Workshop), which is limited to 120 people, can be found in the agenda here (a few items have been excerpted),

AGENDA: Tuesday, June 11, 2013
8:00 – 8:30 Registration and Coffee Session
1: Setting the Scene
Moderator: Anthony Green, Vice President of Technology Commercialization: Life
Sciences, Ben Franklin Technology Partners; Director, The Nanotechnology Institute

8:30 – 8:45
Welcome, NNI Overview, & Charge to Participants
Altaf Carim, Assistant Director for Nanotechnology, Office of Science and TechnologyPolicy, Executive Office of the President, United States

8:45 – 9:10
Synergies with Other Federal Initiatives
Thomas Kalil , Deputy Director for Policy, Office of Science and Technology Policy,
Executive Office of the President, United States

9:10 – 9:35
Bridging Technologies
Paul Braun, Ivan Racheff Professor of Materials Science and Engineering, University of
Illinois at Urbana-Champaign

9:35 – 10:00
Commercializing Nanotechnology
Christopher Schuh, Head of Department of Materials Science and Engineering and Danae
and Vasilios Salapatas Professor of Metallurgy, Massachusetts Institute of Technology

10:00 – 10:25
Infrastructure Needs
Julia Phillips, Vice President and Chief Technology Officer, Sandia National Laboratories

Apparently you can still register. Here’s more from the nano.gov homepage (scroll down),

REGISTER NOW!

Date: June 11 – 12, 2013

Location: USDA Patriot Plaza Conference Center, 355 E Street, SW, Washington, DC

Scope: The 2013 NNI Stakeholder Workshop will obtain input outside the U.S. Government on the future directions of the NNI. The recommendations of this one-and-a-half day workshop will inform the development of the 2013 NNI Strategic Plan.

Objectives: The goal of this workshop is to obtain input from stakeholders – both those new to nanoscale science, engineering, and technology and those already familiar with these fields and with the NNI – regarding revisions to the NNI Strategic Plan that will be proposed in advance of the workshop.

Participants will be invited to suggest additions to and provide feedback on wording and emphasis areas in the NNI goals, the objectives that support these goals, and the Nanotechnology Signature Initiatives. Comments will also be solicited on the relationship between these topics and the revised Program Component Areas, which will be presented at the event.

Registration: This workshop is free and open to the public with registration on a first-come, first-served basis. Registration is now open and will be capped at 120 people.

Wish I could go.