Monthly Archives: December 2013

GoldieBlox and the Beastie Boys: my final words (I hope)

One hopes that people will somehow be able to work things out when there’s a dispute although it seemed obvious at a fairly early stage with the GoldieBlox and Beastie Boys situation, as described in my Nov. 26, 2013 posting, that might not occur given the speed at which the situation escalated.

Thanks to a Dec.12, 2013 article on Slate by Kal Raustiala and Christopher Jon Sprigman, a couple of law professors, for an excellent and entertaining job of laying out some of the legal issues. Before discussing the article any further, here’s a précis of the situation: the GoldieBlox company repurposed (wrote a parody of) a Beastie Boys song to sell an engineering toy product to girls. The Beastie Boys (the remaining two) strenuously objected due to a policy of never allowing their songs to be used in advertising the GoldieBlox took a preliminary legal action and followed up by writing a public apology letter. At this point (dec. 17, 2013), the Beastie Boys have instituted their own legal action. Meanwhile, Raustiala and Sprigman point out that this seems to have bee a publicity strategy on GoldieBlox’s part.

What I had not fully appreciated, due to my ignorance of the Beastie Boys’ oeuvre, is the subversiveness of  the GoldieBlox parody (from the Raustiala & Sprigman article),,

Set to a basic drumbeat and vibraphone loop, the Beasties rap in “Girls” about their love of … girls. Sort of. As with many Beasties songs, the lyrics contain a lot of maybe serious/maybe satirical misogyny:

Girls, to do the dishes
Girls, to clean up my room
Girls, to do the laundry
Girls, and in the bathroom
Girls, that’s all I really want is girls
Two at a time I want girls
With New Wave hairdos I want girls
I ought to whip out my girls, girls, girls, girls, girls!

One of the best things about the GoldieBlox video is how it subverts the Beasties’ song to trash the very same gender stereotypes the Beasties celebrated. Here is GoldieBlox’s revision of the Beasties’ lyrics:

Girls, you think you know what we want
Girls, pink and pretty it’s girls
Just like the ‘50s it’s girls

You like to buy us pink toys
And everything else is for boys
And you can always get us dolls
And we’ll grow up like them, false

It’s time to change
We deserve to see a range
Cause all our toys look just the same
And we would like to use our brains

And we are all more than princess maids

Girls, to build a spaceship
Girls, to code a new app
To grow up knowing
That they can engineer that

Girls, that’s all we really need is girls
To bring us up to speed, it’s girls
Our opportunity is girls
Don’t underestimate girls

Clever and cute. And you might think that the Beastie Boys, who—by the way—made a career out of repurposing others’ music for their own songs through sampling, would roll with the punches. But that’s not what happened. Because the Beastie Boys never wanted their music to be used in commercials.

Raustiala & Sprigman go on to excerpt text from the 3rd (now deceased) Beastie Boys’ will, as well as, the trademark and copyright claims by the remaining band members before closing with this,

So the Beastie Boys should lose their lawsuit—although once the lawyers take over, anything can happen. Maybe the improbable will occur in court and the Beasties will win. But thanks to the media blizzard around this silly fight, GoldieBlox simply can’t lose.

Here’s more about the Slate article authors (Note: Links have been removed),

Kal Raustiala is a law professor at UCLA. He is a co-author of The Knockoff Economy: How Imitation Sparks Innovation.

Christopher Jon Sprigman is a professor at the New York University School of Law and co-director of the NYU Engelberg Center on Innovation Law and Policy. He is a co-author of The Knockoff Economy: How Imitation Sparks Innovation.

Clearly, these lawyers are not maximalists where intellectual property is concerned, which coincides with my own bias.

One final thought, did anyone else notice that the offbeat resemblance between Goldilocks and three bears and GoldieBlox and the Beastie Boys, a musical trio?

ETA May 12, 2014: Mike Masnick has written a May 12, 2014 posting on Techdirt titled, Goldieblox Agreed To Pay Charity $1 Million For Using Beastie Boys’ Girls.  Clearly, he’s not thrilled with the outcome.

Fundamental mechanical behaviour of cellulose nanocrystals (aka nanocrystalline cellulose)

Emil Venere at Purdue University offers an excellent explanation of why there’s so much international interest in cellulose nanocrystals (CNC aka, nanocrystalline cellulose [NCC]) in his Dec. 16, 2013 Purdue University (Indiana, US) news release (also on EurekAlert), Note: A link has been removed,

The same tiny cellulose crystals that give trees and plants their high strength, light weight and resilience, have now been shown to have the stiffness of steel.

The nanocrystals might be used to create a new class of biomaterials with wide-ranging applications, such as strengthening construction materials and automotive components.

Calculations using precise models based on the atomic structure of cellulose show the crystals have a stiffness of 206 gigapascals, which is comparable to steel, said Pablo D. Zavattieri, a Purdue University assistant professor of civil engineering.

Here’s an image of the cellulose crystals being examined,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures that give trees and plants their high strength, light weight and resilience. The nanocrystals might be used to create a new class of biomaterials that would have a wide range of applications. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures that give trees and plants their high strength, light weight and resilience. The nanocrystals might be used to create a new class of biomaterials that would have a wide range of applications. (Purdue Life Sciences Microscopy Center)

You’ll notice this image is not enhanced and made pretty as compared to the images in my Dec. 16, 2013 posting about Bristol University’s Art of Science competition. It takes a lot of work to turn the types of images scientists use into ‘art’.

Getting back to the CNC, this news release was probably written by someone who’s not familiar with the other work being done in the field (university press officers typically write about a wide range of topics and cannot hope to have in depth knowledge on each topic) and so it’s being presented as if it is brand new information. In fact, there has been several years work done in five other national jurisdictions that I know of (Sweden, Finland, Canada, Brazil, and Israel) and there are likely more. That’s not including other US states pursuing research in this area, notably Wisconsin.

What I (taking into account  my limitations) find particularly exciting in this work is the detail they’ve been able to determine and the reference to quantum mechanics. Here’s more from the news release (Note: Links have been removed),

“It is very difficult to measure the properties of these crystals experimentally because they are really tiny,” Zavattieri said. “For the first time, we predicted their properties using quantum mechanics.”

The nanocrystals are about 3 nanometers wide by 500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments.

The findings represent a milestone in understanding the fundamental mechanical behavior of the cellulose nanocrystals.

“It is also the first step towards a multiscale modeling approach to understand and predict the behavior of individual crystals, the interaction between them, and their interaction with other materials,” Zavattieri said. “This is important for the design of novel cellulose-based materials as other research groups are considering them for a huge variety of applications, ranging from electronics and medical devices to structural components for the automotive, civil and aerospace industries.”

From an applications perspective (which is what excites so much international interest),

The cellulose nanocrystals represent a potential green alternative to carbon nanotubes for reinforcing materials such as polymers and concrete. Applications for biomaterials made from the cellulose nanocrystals might include biodegradable plastic bags, textiles and wound dressings; flexible batteries made from electrically conductive paper; new drug-delivery technologies; transparent flexible displays for electronic devices; special filters for water purification; new types of sensors; and computer memory.

Cellulose could come from a variety of biological sources including trees, plants, algae, ocean-dwelling organisms called tunicates, and bacteria that create a protective web of cellulose.

“With this in mind, cellulose nanomaterials are inherently renewable, sustainable, biodegradable and carbon-neutral like the sources from which they were extracted,” Moon said. “They have the potential to be processed at industrial-scale quantities and at low cost compared to other materials.”

Biomaterials manufacturing could be a natural extension of the paper and biofuels industries, using technology that is already well-established for cellulose-based materials.

“Some of the byproducts of the paper industry now go to making biofuels, so we could just add another process to use the leftover cellulose to make a composite material,” Moon said. “The cellulose crystals are more difficult to break down into sugars to make liquid fuel. So let’s make a product out of it, building on the existing infrastructure of the pulp and paper industry.”

Their surface can be chemically modified to achieve different surface properties.

“For example, you might want to modify the surface so that it binds strongly with a reinforcing polymer to make a new type of tough composite material, or you might want to change the chemical characteristics so that it behaves differently with its environment,” Moon said.

Zavattieri plans to extend his research to study the properties of alpha-chitin, a material from the shells of organisms including lobsters, crabs, mollusks and insects. Alpha-chitin appears to have similar mechanical properties as cellulose.

“This material is also abundant, renewable and waste of the food industry,” he said.

Here’s a link to and a citation for the paper,

Anisotropy of the Elastic Properties of Crystalline Cellulose Iβ from First Principles Density Functional Theory with Van der Waals Interactions by Fernando L. Dri, Louis G. Hector Jr., Robert J. Moon, Pablo D. Zavattieri.  Cellulose December 2013, Volume 20, Issue 6, pp 2703-2718. 10.1007/s10570-013-0071-8

This paper is behind a paywall although you can preview the first few pages.

NanoDefine: a project for implementing the European Union’s definition for nanomaterials

Here”s an excerpt from the Dec. 13, 2013 news item on Azonano about a new consortium focused on measuring nanomaterials and, if I understand the news item rightly, refining the definition so that it can be implemented,

A 29-partner consortium of top European RTD [?] performers, metrology institutes, and nanomaterials and instrument manufacturers, gathered at a launch meeting in Wageningen, NL, [Netherlands] last month to begin the mobilisation of the critical mass of expertise required to establish the measurement tools and scientific data that help to implement the EU recommendation on the definition of a nanomaterial.

We have come a long way in exploring the full potential of nano as a key enabling technology, yet, there are still uncertainties surrounding environment, health and safety (EHS) issues and the questions that need to be addressed: what is or isn’t a nanomaterial. One challenge consists in the development of methods that reliably identify, characterize and measure nanomaterials (NM) both as substance and in various products and matrices. In responses, the European Commission has recently recommended a definition of NM as a reference to determine this (2011/696/EU).

The NanoDefine project will explicitly address this question over the next four years.

I have written about the European Union’s definition of nanomaterials in an Oct, 18, 2011 posting,

After all the ‘sturm und drang’ in the last few months (my Sept. 8, 2011 posting summarizing some of the lively discussion), a nanomaterials definition for Europe has been adopted. It is the first ‘cross-cutting’ nanomaterials definition to date according to the Oct. 18, 2011 news item on Nanowerk,

“Nanomaterials” are materials whose main constituents have a dimension of between 1 and 100 billionth of a metre, according to a Recommendation on the definition of nanomaterial (pdf) adopted by the European Commission today. The announcement marks an important step towards greater protection for citizens, clearly defining which materials need special treatment in specific legislation.

I also featured some specific critiques of the then newly proclaimed definition in an Oct. 19, 2011 posting and again in an Oct. 20, 2011 posting.

The Institute of Nanotechnology Dec. 12, 2013 news release, which originated the news item, provides more details about the NanoDefine project,

Based on a comprehensive evaluation of existing methodologies and a rigorous intra-lab and inter-lab comparison, validated measurement methods and instruments will be developed that are robust, readily implementable, cost-effective and capable to reliably measure the size of particles in the range of 1 – 100 nm, with different shapes, coatings and for the widest possible range of materials, in various complex media and products. Practical case studies will assess their applicability for various sectors, including food/feed, cosmetics etc.

One major outcome of the project will be the establishment of an integrated tiered approach including validated rapid screening methods (tier 1) and validated in depth methods (tier 2), with a user manual to guide end-users, such as manufacturers, regulatory bodies and contract laboratories, to implement the developed methodology.

NanoDefine will closely collaborate with its sister projects in the NanoSafety Cluster (www.nanosafetycluster.eu) as well as engage with international EHS, RTD and metrology initiatives. NanoDefine will also be strongly linked to main standardization bodies, such as CEN, ISO and OECD, by actively participating in Technical Commissions and Working Groups, and by proposing specific ISO/CEN work items, to integrate the developed and validated methodology into the current standardization work.

For more information:
NanoDefine: ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’ receives funding from the European Community’s Seventh Framework Programme under grant agreement n°604347 and runs from 1/11/2013 – 31/10/2017

Visit the project website: www.nanodefine.eu (currently under construction) [as of Dec. 13, 2013 there is no landing page]
Contact the Project Coordinators:
hans.marvin@wur.nl
wim.beek@wur.nl
stefan.weigel@wur.nl
rudolf.reuther@enas-online.com

Visit the NanoSafety Cluster website: www.nanosafetycluster.eu

I have searched on this blog to see if I’ve stumbled across the Institute of Nanotechnology, located in the UK, previously but cannot find any other mentions (which may be due to the search function and my impatience for paging through apparently irrelevant search results). At any rate, here’s more about the institute from its About Us webpage (Note: Links have been removed),

Background

The Institute of Nanotechnology (IoN) was founded by Ottilia Saxl in January 1997. It is a registered Charity, whose core activities are focused on education and training in nanotechnology. It grew out of the Centre for Nanotechnology, part funded by the DTI through the UK’s National Initiative on Nanotechnology (NION). The Institute was one of the world’s first nanotechnology information providers and is now a global leader.

The Institute works closely with governments, universities, researchers, companies and the general public to educate and inform on all aspects of nanotechnology. It also organises various international scientific events, conferences and educational courses that examine the implications of nanotechnology across a wide variety of themes and sectors.

As most people know (except maybe policymakers), implementation is the tricky part of any rule, policy, and/or law and  the definitions are crucial.

A planet-satellite model for nanoparticles

For anyone who visualizes atoms as planets (many of us were taught to think of atoms and their electrons in that way) then, the planet-satellite model for nanoparticles proposed by scientists at the Nanosystems Initiative Munich (NIM) will have a comforting familiarity, Here’s the model as per a Dec. 13, 2013 news item from Nanowerk,

Nanosystems Initiative Munich (NIM) physicists have developed a “planet-satellite model” to precisely connect and arrange nanoparticles in three-dimensional structures. Like photosystems of plants and algae, the model might in future serve to collect and convert energy.

If the scientists‘ nanoparticles were one million times larger, the laboratory would look like an arts and crafts room at Christmas time: gold, silver and colorful shiny spheres in different sizes and filaments in various lengths. For at the center of the nanoscale “planet-satellite model” there is a gold particle which is orbited by other nanoparticles made of silver, cadmium selenide or organic dyes.

A Dec. 2, 2013 NIM press release, which originated the news item, describes the proposed model in detail,

As if by magic, cleverly designed DNA strands connect the satellites with the central planet in a very precise manner. The technique behind this, called “DNA origami”, is a specialty of physics professor Tim Liedl (LMU Munich) and his team. The expertise on the optical characterization of the individual nanosystems is contributed by Professor Jochen Feldmann, Chair of Photonics and Optoelectronics at LMU and Coordinator of the Nanosystems Initiative Munich (NIM).

Large or small, near or far

A distinctive feature of the new model is the modular assembly system which allows the scientists to modify all aspects of the structure very easily and in a controlled manner: the size of the central nanoparticle, the types and sizes of the “satellites” and the distance between planet and satellite particle. It also enables the physicists to adapt and optimize their system for other purposes.

Artificial photosystem

Metals, semiconductors or fluorescent organic molecules serve as satellites. Thus, like the antenna molecules in natural photosystems, such satellite elements might in future be organized to collect light energy and transfer it to a catalytic reaction center where it is converted into another form of energy. For the time being, however, the model allows the scientists to investigate basic physical effects such as the so-called quenching process, which refers to the changing fluorescence intensity of a dye molecule as a function of the distance to the central gold nanoparticle.

“The modular assembly principle and the high yield we obtained in the production of the planet-satellite systems were the crucial factors for reliably investigating this well-known effect with the new methods,” explains Robert Schreiber, lead author of the study.

A whole new cosmos

In addition, the scientists succeeded in joining individual planet-satellite units together into larger structures, combining them as desired. This way, it might be possible to develop complex and functional three-dimensional nanosystems in future, which could be used as directed energy funnels, in Raman spectroscopy or as nanoporous materials for catalytic applications.

The physicists have supplied an image illustrating their model,

 

[downloaded from http://www.nano-initiative-munich.de/index.php?eID=tx_cms_showpic&file=uploads%2Fpics%2FBasiccover_6_Zeilen_02.jpg&md5=aec790fc11262dc94b41a440fa6788baeacfac97&parameters[0]=YTo0OntzOjU6IndpZHRoIjtzOjQ6IjUwMG0iO3M6NjoiaGVpZ2h0IjtzOjM6IjUw&parameters[1]=MCI7czo3OiJib2R5VGFnIjtzOjI0OiI8Ym9keSBiZ0NvbG9yPSIjZmZmZmZmIj4i&parameters[2]=O3M6NDoid3JhcCI7czozNzoiPGEgaHJlZj0iamF2YXNjcmlwdDpjbG9zZSgpOyI%2B&parameters[3]=IHwgPC9hPiI7fQ%3D%3D] Courtesy NIM

[downloaded from http://www.nano-initiative-munich.de/index.php?eID=tx_cms_showpic&file=uploads%2Fpics%2FBasiccover_6_Zeilen_02.jpg&md5=aec790fc11262dc94b41a440fa6788baeacfac97&parameters[0]=YTo0OntzOjU6IndpZHRoIjtzOjQ6IjUwMG0iO3M6NjoiaGVpZ2h0IjtzOjM6IjUw&parameters[1]=MCI7czo3OiJib2R5VGFnIjtzOjI0OiI8Ym9keSBiZ0NvbG9yPSIjZmZmZmZmIj4i&parameters[2]=O3M6NDoid3JhcCI7czozNzoiPGEgaHJlZj0iamF2YXNjcmlwdDpjbG9zZSgpOyI%2B&parameters[3]=IHwgPC9hPiI7fQ%3D%3D] Courtesy NIM

Here’s a link to and a citation for the researchers’ paper,

Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds by Robert Schreiber, Jaekwon Do, Eva-Maria Roller, Tao Zhang, Verena J. Schüller, Philipp C. Nickels, Jochen Feldmann, & Tim Liedl. Nature Nanotechnology (2013) doi:10.1038/nnano.2013.253 Published online 01 December 2013

It is behind a paywall but you can preview it for free via ReadCube Access.

‘Zero-dimensional’ carbon nanotubes

They never say (at least not in the news releases I read) but I get the impression that the carbon nanotube researchers are pretty competitive with the graphene researchers since graphene has largely replaced carbon nanotubes as the basis for magic materials that will transform electronics and make everything thinner, lighter, and stronger. I exaggerate the claims but not by much. At any rate, members of the carbon nanotube research community from the University of Pittsburgh have announced the smallest, thinnest carbon nanotubes yet in a Dec. 9, 2013 University of Pittsburgh news release (also on EurekAlert but dated Dec. 10, 2013),

Synthetic, man-made cells and ultrathin electronics built from a new form of “zero-dimensional” carbon nanotube may be possible through research at the University of Pittsburgh Swanson School of Engineering. The research, ““Zero-Dimensional” Single-Walled Carbon Nanotubes,” was published in the journal Angewandte Chemie.

“Since its discovery, carbon nanotubes have held the promise to revolutionize the field of electronics, material science and even medicine,” says Dr. Little [Steven R. Little, PhD, associate professor]. “Zero-dimensional carbon nanotubes present the possibility to build ultrathin, superfast electronic devices, far superior to the best existing ones and it could be possible to build strong and ultralight cars, bridges, and airplanes.”

One of the most difficult hurdles is processing the carbon nanotubes into smaller forms. However, previous research at Pitt has managed to cut the carbon nanotubes into the smallest dimensions ever to overcome this problem.

“We have confirmed that these shorter nanotubes are more dispersible and potentially easier to process for industrial as well as biomedical application, and could even constitute the building blocks for the creation of synthetic cells,” says Dr. Gottardi.

The organization of the atoms within nanotubes makes them particularly interesting materials to work with. However, they are barely soluble, making industrial processing difficult. One aspect of the team’s research will focus on creating more soluble and therefore more usable carbon nanotubes. These shorter nanotubes have the same dimensions as many proteins that compose the basic machinery of living cells, presenting the potential for cell or protein-level biomedical imaging, protein or nucleic acid vaccination carriers, drug delivery vehicles, or even components of synthetic cells.

Overall, the project is aimed at developing and working with these more dispersible carbon nanotubes with the aim of making them easier to process. The creation of the smaller nanotubes is the first step toward reaching this goal.

For the curious, here’s a link to and a citation for the paper,

“Zero-Dimensional” Single-Walled Carbon Nanotubes by Dr. Kaladhar Kamalasanan, Dr. Riccardo Gottard, Dr. Susheng Tan, Dr. Yanan Chen, Dr. Bhaskar Godugu, Dr. Sam Rothstein, Dr. Anna C. Balazs, Dr. Alexander Star, Dr. Steven R. Little. Angewandte Chemie Volume 125, Issue 43, pages 11518–11522, October 18, 2013 Article first published online: 5 SEP 2013 DOI: 10.1002/ange.201305526

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

New way to practice brain surgery skills before working on live patients

It’s a little disconcerting to learn that neurosurgeons don’t have many options to test drive their skills before they start practicing on patients as a Dec. 10, 2013 news release on EurekAlert about 3D printing (and a new way for neurosurgeons to practice) notes,,

Researchers from the University of Malaya in Malaysia, with collaboration from researchers from the University of Portsmouth and the University of Oxford in the United Kingdom, announce the creation of a cost-effective two-part model of the skull for use in practicing neurosurgical techniques. The model, produced using the latest generation of multimaterial 3D printers, is composed of a variety of materials that simulate the various consistencies and densities of human tissues encountered during neurosurgery. Details on the model are provided in “Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. Technical note.” By Vicknes Waran, F.R.C.S.(Neurosurgery), Vairavan Narayanan, F.R.C.S.(Neurosurgery), M.Surg., Ravindran Karuppiah, M.Surg., Sarah L. F. Owen, D.Phil., and Tipu Aziz, F.Med.Sci., published today [Dec. 10, 2013] online, ahead of print, in the Journal of Neurosurgery.

Here’s the disconcerting part (from the news release),

Neurosurgery is a difficult discipline to master. Trainees may spend as many as 10 years after graduation from medical school developing and honing their surgical skills before they can be designated as proficient in their specialty. The greater the number and variety of neurosurgical training sessions, the better the training experience. However, the authors point out that it is difficult to find suitable simulation models that offer accuracy and realism for neurosurgical training while keeping training costs down.

The news release provides a description of what makes the current generation of 3D printers particularly attractive for creating practice skulls, etc.,

Three-dimensional printers have been used to create models of normal and pathological human tissues and organs for physician training and patient instruction for some time. Until recently, however, only one material could be used in the creation of models. While useful for display purposes, one-material models have little value for hands-on training. With the advent of multimaterial 3D printers, the sophistication and versatility of the new models that could be created increased substantially, but so did their price.

Waran and colleagues tell us that this situation is now changing. They state that the newest generation of multimaterial 3D printers can aid neurosurgical training by creating models that simulate different diseases in a variety of body tissues, and they can do this in a cost-effective manner.

With the aid of an Objet500 Connex™ multimaterial 3D printer (Stratasys, Ltd.), researchers at the University of Malaya created a two-part model that can simulate pathological conditions in actual patients. The base piece of the model (the “head”) consists of one material. It has human features (a “face”) and the natural contours of a human skull. This piece is used to train the novice in neuronavigation techniques and can be reused again and again. The second part of the model defines the region in which simulated surgery is performed. This piece contains several different materials, which separately simulate skin, bone, dura mater, tumor, and normal brain tissue. The second piece fits into a slot in the base piece; this multi-textured piece can only be used once and is discarded after the practice session. Fortunately, it is easy to reproduce a steady stream of new pieces.

To make the training session valuable, the trainee must be able to see, feel, and even hear different “tissue” responses to surgical instruments and techniques during simulation surgery. The researchers tell us that the “skin” is designed to be pliable enough to be cut by a scalpel and repaired by sutures, yet sturdy enough to be held by a retractor; the “bone” has to be hard enough for the trainee to obtain experience using bone perforators and cutters; the “dura mater” must be thin and pliable—just like the real thing. The consistency and color of the “tumor” differ from those of the “brain” to simulate actual tissues. The researchers made the “tumor” softer than the “brain” and colored it orange, whereas they colored the brain light yellow.

To test the quality of the model produced by the printer and to make minor adjustments, the researchers from Malaysia were aided by other researchers from the UK. Three neurosurgeons and one expert in surgical simulations performed simulated surgery and assessed the model’s “tissue” components. All parts received ratings of “fair” or “good,” with most rated “good.”

The usefulness of the model in training neuronavigation techniques was also assessed. Since the two-part model was based on data from a real patient, it was no surprise that “neuroimaging” was rated “excellent” by the evaluating team. Two navigation systems were used, and in both cases “registration was accurate and planning possible.”

Waran and colleagues state that the reusable base piece of the model costs approximately US $2000 to fabricate and the disposable inset costs US $600. This makes these training models affordable. In addition, model designs are based on actual patient data, providing limitless variety.

Here’s a link to and a citation for the paper,

Waran V, Narayana V, Karuppiah R, Owen SLF, Aziz T: Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. Technical note. Journal of Neurosurgery, published online, ahead of print, December 10, 2013; DOI: 10.3171/2013.11.JNS131066.

This appears to be an open access paper.

Funding opportunities from the European Union’s Horizon 2010 programme and US DARPA’s Young Faculty Award program

A Dec. 12, 2013 news item on Nanowerk announces a call for proposals from the European Union’s (EU) massive science funding programme, Horizon 2020, which replaces the EU’s previous Framework Programme 7 initiative,

The European Commission presented for the first time today calls for Proposals under Horizon 2020, the European Union’s new 80 billion euro research and innovation program, which runs from 2014 to 2020. Worth more than 15 billion euros over the first two years, the funding is intended to help boost Europe’s knowledge-driven economy, and tackle issues that will make a difference in people’s lives. International cooperation is a priority in Horizon 2020 with the program open to participation of researchers from across the world, including the United States.

“It’s time to get down to business,” said European Research, Innovation and Science Commissioner Maire Geoghegan-Quinn. “Horizon 2020 funding is vital for the future of research and innovation in Europe, and will contribute to growth, jobs and a better quality of life. We have designed Horizon 2020 to produce results, and we have slashed red tape to make it easier to participate. So I am calling on researchers, universities, businesses including SMEs, and others to sign up!”

A Dec. 11, 2013 EU press release provides more details about the call and about Horizon 2020,

For the first time, the Commission has indicated funding priorities over two years, providing researchers and businesses with more certainty than ever before on the direction of EU research policy. Most calls from the 2014 budget are already open for submissions as of today, with more to follow over the course of the year. Calls in the 2014 budget alone are worth around €7.8 billion, with funding focused on the three key pillars of Horizon 2020:

  • Excellent Science: Around €3 billion, including €1.7 billion for grants from the European Research Council for top scientists and €800 million for Marie Skłodowska-Curie fellowships for younger researchers (see MEMO/13/1123).
  • Industrial Leadership: €1.8 billion to support Europe’s industrial leadership in areas like ICT, nanotechnologies, advanced manufacturing, robotics, biotechnologies and space.
  • Societal challenges: €2.8 billion for innovative projects addressing Horizon 2020’s seven societal challenges, broadly: health; agriculture, maritime and bioeconomy; energy; transport; climate action, environment, resource efficiency and raw materials; reflective societies; and security.

Background

Horizon 2020 is the EU’s biggest ever research and innovation framework programme with a seven year budget worth nearly €80 billion. Most EU research funding is allocated on the basis of competitive calls, but the budget for Horizon includes funding also for the Joint Research Centre, the European Commission’s in-house science service; the European Institute for Innovation and Technology and research carried out within the framework of the Euratom Treaty. Separate calls will also be published under specific Partnerships with industry and with Member States (see IP/13/668). In 2014 the total EU research budget, including these items and administrative expenditure, will be around €9.3 billion, rising to around €9.9 billion in 2015. Final 2015 amounts are subject to the decision on the 2015 annual budget.

The funding opportunities under Horizon 2020 are set out in work programmes published on the EU’s digital portal for research funding, which has been redesigned for quicker, paperless procedures. Participants will also find simpler programme architecture and funding, a single set of rules, and a reduced burden from financial controls and audits.

The 2014-15 calls include €500 million over two years dedicated to innovative small and medium-sized enterprises (SMEs) through a brand new SME Instrument. Gender aspects are expected to be included in many of the projects, and there is funding to further stimulate debate on science’s role within society. There are also new rules to make ‘open access’ a requirement for Horizon 2020, so that publications of project results are freely accessible to all.

The EU’s Horizon 2010 programme has created a How to get funding? webpage, which should answer your questions and does provide links to applications and more.

Moving on: Jessica Leber writes about a US DARPA (Defense Advanced Research Projects Agency) call for research proposals in her Dec. 11, 2013 article for Fast Company (Note: Links have been removed),

The Pentagon’s advanced research arm is always dreaming up crazy, futuristic technologies that will shape the future of the military and society. DARPA was involved in early Internet development, and these days the agency works on everything from drone-slaying lasers to humanoid robots that could save your life.

Every year, DARPA gives out young faculty awards aimed at recruiting the “rising star” researchers in academia to devote their brains to the military’s technological needs. “The long-term goal of the program is to develop the next generation of scientists and engineers in the research community who will focus a significant portion of their future careers on DoD and National Security issues,” this year’s grant program announcement reads.

A Nov. 19, 2013 DARPA news release describes the Young Faculty Awards program, eligibility (you must be employed in a US institution of higher learning), and their areas of interest,

2014 YFA announcement increases the number of research topics from 13 to 18 and for the first time permits teaming with subcontractors

DARPA defines its research portfolio within a framework that puts the Agency’s enduring mission in the context of tomorrow’s environment for national security and technology. An integral part of this strategy includes establishing and sustaining a pipeline of talented scientists, engineers, and mathematicians who are motivated to pursue high risk, high payoff fundamental research in disciplines that are critical to maintaining the technological superiority of the U.S. military.

DARPA’s Young Faculty Awards (YFA) program addresses this need by funding the work of promising researchers and pairing them with DARPA program managers.  This pairing provides YFA researchers with mentoring and networking opportunities as well as exposure to DoD technology needs and the overall research and development process. The 2014 YFA solicitation includes technical topic areas in the physical sciences, engineering, materials, mathematics, biology, computing, informatics and manufacturing disciplines that are relevant to the research interests of DARPA’s Defense Sciences and Microsystems Technology Offices.

“YFA offers promising junior faculty members and their peers at nonprofit research institutions the chance to do potentially revolutionary work much earlier in their careers than they otherwise could,” said William Casebeer, DARPA program manager for the 2014 class. “By expanding the list of research topics this year from 13 to 18—our largest portfolio since the program started in 2006—we hope to attract even more creative proposals that could lead to future breakthroughs on critical defense challenges. The growth reflects how successful past awardees have been in supporting DARPA’s mission.”

Eligible applicants must be employed in U.S. institutions of higher learning and within five years of appointment to a tenure-track position, or hold equivalent positions at non-profit research institutions.

Researchers selected for YFA grants receive up to $500,000 in funding over a 24-month period. As many as four of the most exceptional performers may be selected to receive up to another $500,000 over an additional year under a DARPA Director’s Fellowship.

DARPA is, for the first time, permitting proposers to form partnerships with subcontractors. The subcontractor relationship cannot exceed 30 percent of the total grant value. In addition to enhancing the competitiveness of proposed research plans, this change is designed to provide young investigators with the opportunity to manage a multidisciplinary team and gain a better understanding of the work performed by a DARPA program manager.

“The YFA program represents a strategic investment in fundamental research and professional development of the next generation of scientists and engineers focused on defense and national security issues,” said Mari Maeda, director of DARPA’s Defense Sciences Office. “It also benefits the young researchers and their institutions by engaging them in valuable, high-risk, high-impact research, providing a mentoring relationship with a DARPA program manager, expanding channels for future ideas to flow, and, now, exposing them to the rigors of managing a multidisciplinary team.”

The list of technical topic areas for 2014 includes:

  • Optimizing Supervision for Improved Autonomy
  • Neurobiological Mechanisms of Social Media Processing
  • Next-generation Neural Sensing for Brain-Machine Interfaces
  • Mathematical and Computational Methods to Identify and Characterize Logical and Causal Relations in Information
  • Time-Dependent Integrated Computational Materials Engineering
  • Long-range Detection of Special Nuclear Materials
  • Alternate Fusion Concepts
  • New Materials and Devices for Monitoring and Modulating Local Physiology
  • Methods and Theory for Fundamental Circuit-Level Understanding of the Human Brain
  • Hierarchically Complex Materials that Respond and Adapt
  • Disruptive Materials Processing
  • Disruptive Computing Architectures
  • Appliqué Antenna Elements for Platform Integration
  • Modeling Phonon Generation and Transport in the Near Junction Region of Wide-Bandgap Transistors
  • Advanced Automation and Microfluidic Technologies for Engineering Biology
  • Energy Recovery in Post-CMOS Technologies
  • Thin Film Transistors for High-performance RF and Power Electronics
  • Neural-inspired Computer Engineering

You can go here  http://www.grants.gov/web/grants/view-opportunity.html?oppId=247637 for all the details about DAARPA’s YFA call for proposals,

As for deadlines, I had some difficulty finding one for the current 2020 Horizon call for proposals, as I gather there a number of calls being announced in the news item on Nanowerk,. You can find more information on the How to participate page but it is only one of several starting points for your journey through this remarkable and huge funding programme.

Meanwhile ,the current deadline for the DARPA YRA proposals is Jan. 7, 2014.

Good luck!

Stabilizing or destabilitizing gold nanoparticles

Every once in a while I stumble across a ‘nanotechnology’ news release from Oregon (either Oregon State University or the University of Oregon) and as I recall it’s always environment-focused. The latest in an almost complete change-of-pace is, a Dec. 9, 2013 University of Oregon news release (also on EurekAlert) profiling some work on gold nanoparticles and nanoelectronics,

University of Oregon chemists studying the structure of ligand-stabilized gold nanoparticles have captured fundamental new insights about their stability. The information, they say, could help to maintain a desired, integral property in nanoparticles used in electronic devices, where stability is important, or to design them so they readily condense into thin films for such things as inks or catalysts in electronic or solar devices.

The news release goes on to detail the work,

They focused on nanoparticles less than two nanometers in diameter — the smallest studied to date — to better understand structural stability of these tiny particles being engineered for use in electronics, medicine and other materials. Whether a nanoparticle needs to remain stable or condense depends on how they are being used. Those used as catalysts in industrial chemical processing or quantum dots for lighting need to remain intact; if they are precursors for coatings in solar devices or for printing ink, nanoparticles need to be unstable so they sinter and condense into a thin mass.

For their experiments, Smith and Hutchison produced gold nanoparticles in four well-controlled sizes, ranging from 0.9 nanometers to 1.5 nanometers, and analyzed ligand loss and sintering with thermogravimetric analysis and differential scanning calorimetry, and examined the resulting films by scanning electron microscopy and X-ray photoelectron spectroscopy. As the nanoparticles were heated at 5 degrees Celsius per minute, from room temperature to 600 degrees Celsius, the nanoparticles began to transform near 150 degrees Celsius.

The researchers found that smaller nanoparticles have better structural integrity than larger-sized particles that have been tested. In other words, Hutchison said, they are less likely to lose their ligands and bind together. “If you have unstable particles, then the property you want is fleeting,” he said. “Either the light emission degrades over time and you’re done, or the metal becomes inactive and you’re done. In that case, you want to preserve the function and keep the particles from aggregating.”The opposite is desired for Hutchison and others working in the National Science Foundation-funded Center for Sustainable Materials Chemistry, a multi-universities collaboration led by the UO and Oregon State University. Researchers there are synthesizing nanoparticles as precursors for thin films.

“We want solution precursors that can lead to inorganic thin films for use in electronics and solar industries,” said Hutchison, who also is a member of the UO Materials Science Institute.

“In this case, we want to know how to keep our nanoparticles or other precursors stable enough in solution so that we can work with them, using just a tiny amount of additional energy to make them unstable so that they condense into a film — where the property that you want comes from the extended solid that is generated, not from the nanoparticles themselves.”

The research, Hutchison said, identified weak sites on nanoparticles where ligands might pop off. If only a small amount do so, he said, separate nanoparticles are more likely to come together and begin the sintering process to create thin films.

“That’s a really stabilizing effect that, in turn, kicks out all these ligands on the outside,” he said. “The surface area decreases quickly and the particles get bigger, but now all the extra ligands gets excluded into the film and then, over time, the ligands vaporize and go away.”

The coming apart, however, is a “catastrophic failure” if protecting against sintering is the goal. It may be possible to use the findings, he said, to explore ways to strengthen nanoparticles, such as developing ligands that bind in at least two sites or avoiding volatile ligands.

The process, as studied, produced porous gold films. “A next step might be to study how to manipulate the process to get a more dense film if that is desired,” Hutchison said. Understanding how nanoparticles respond to certain conditions, such as changing temperatures, he added, may help researchers reduce waste in the manufacturing process.

As I hinted earlier, this work retains an ‘environment focus’,

“Researchers at the University of Oregon are re-engineering the science, manufacturing and business processes behind critical products,” said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. “This research analyzing the structural stability of nanoparticles by Dr. Hutchison and his team has the potential to improve the engineering of electronics, medicine and other materials, helping to foster a sustainable future for our planet and its people.” [emphasis mine]

Here’s a link to and a citation for the paper,

Transformations during Sintering of Small (Dcore < 2 nm) Ligand-Stabilized Gold Nanoparticles: Influence of Ligand Functionality and Core Size by Beverly L. Smith and James E. Hutchison. J. Phys. Chem. C, 2013, 117 (47), pp 25127–25137 DOI: 10.1021/jp408111v Publication Date (Web): October 24, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

*University of Waterloo (Canada) and three of its nano startup companies

All three of these University of Waterloo (UW) startups could be said to feature windows in one fashion or another but it is a bit of a stretch to describe their products as ‘window-oriented’ since these entrepreneurs have big plans.

The first company I’m mentioning is Lumotune, a company whose homepage features NanoShutters and this tagline, “Smarter Glass for a Smarter World”. A Dec. 10, 2013 article by Terry Pender for GuelphMercury.com provides a description of this product which is controlled by a smartphone application,

The product is made of two thin sheets of clear plastic. In between the sheets is the nanotechnology the trio started developing as a school project. The optics of the glass can easily be changed from clear to opaque using a laptop, tablet or smartphone.

The NanoShutters adhere to a window and are connected to a control box with tiny wires. The control box can be plugged into a laptop or controlled wirelessly with tablets and smartphones.

The control box is the most important part of the NanoShutters; the founders have applied for a patent to protect their ownership of it.

“That is basically the core technology,” Esfahani said. “It is futuristic to be able to control what passes through your window with your phone.”

Esfahani, Safaee and Siddiqi [Lumotune founders: Matin Esfahani, Hooman Safaee and Shafi Siddiqi] started all this as a project for their undergrad studies in 2011. They developed the technology, showcased it in March, won a lot of awards, incorporated Lumotune in April, and then collected their degrees from UW.

NanoShutters, the first commercial product to come out of Lumotune, is now in testing with a group of residential, commercial and institutional customers. The founders are using the testing to smooth out kinks and challenges in the technology and develop relationships with customers.

Safaee estimates the market for NanoShutters will be worth about $4 billion a year by 2016.

But the company was founded with much bigger ideas in mind. Instead of using their invention to make windows more or less transparent, they want the product to be used for digital displays that can be put on any surface with no visible technology.

I was not able to find any more details about how nanotechnology enables this window or, more accurately, glass ‘frosting’ experience (perhaps there’s some information in the installation guide mentioned later in this post) but the inventors do offer this video demonstrating their product,

Here’s more from the company’s homepage,

Windows drain energy and reduce privacy. NanoShutters can be fully automated to turn your window opaque or transparent according to the weather and your schedule. They can help lower heating and cooling costs by up to 20%, while always enabling privacy when you need it.

If you’re comfortable putting up a poster and setting up a toaster, you can install NanoShutters yourself. It takes less than 30 minutes. See how easy it is.

You can also get installation from a local NanoShutters Certified Professional.

I did click to find out if there’s a NanoShutter professional nearby but it appears there aren’t any entries yet so this may be an opportunity for entrepreneurial types.

The next two University of Waterloo startups are here courtesy of a Dec. 10, 2013 news item on DigitalJournal.com,

Harsh winter conditions may be easier for Canadians to manage with new products invented by two University of Waterloo graduates.

“Frost is a major problem for individuals and businesses daily. Not only is it inconvenient but it has an impact on safety and can even hinder economic activity,” said Abhinay Kondamreddy, a nanotechnology engineering graduate who developed Neverfrost along with three classmates.

For contractors who drop salt on parking lots and sidewalks, as well as the municipalities or owners who pay for it, there’s never been a way to measure how much salt is actually dispensed. Smart Scale, an automated salt logging and tracking system designed specifically for the winter maintenance industry is changing that.

The Dec. 10, 2013 University of Waterloo news release, which originated the news item, provides more detail about both Neverfrost and Smart Scale (Note: Links have been removed),

Neverfrost is an environmentally-friendly technology that prevents frost, fog, and ice formation. The innovation is the foundation for a new startup, also called Neverfrost.

By spraying Neverfrost on a windshield at night, drivers can avoid scraping and defrosting it on cold winter mornings, and clear the windshield simply by running the wipers. The Neverfrost technology prevents snow from freezing to the glass as well as fog and frost. Neverfrost expects to begin taking pre-orders for the spray with a Kickstarter campaign in March.Future plans for Neverfrost include incorporating it directly into washer fluids.

Frost and ice create challenges for aircrafts, air conditioning, commercial refrigerators, power lines, and agriculture – creating future opportunities for the Neverfrost technology.

Kondamreddy is one of two entrepreneurs who continue to further their technologies and startups thanks to a $60,000 Scientists and Engineers in Business fellowship. The fellowship is a University of Waterloo program supported by the Federal Economic Development Agency for Southern Ontario for promising entrepreneurs who want to commercialize their innovations and start high-tech businesses.

Developed by Raqib Omer, a Waterloo Engineering graduate, Smart Scale uses exclusive hardware wirelessly paired with GPS-enabled smart phones to track the location of a maintenance vehicle and amount of salt dispensed, and logs the information on a cloud-based system in real time. Since the cost of salt is based on size of load, property owners can be assured they’re getting what they paid for, as well as reducing risks that exist in the industry.

“With growing public concern on the environmental effects of salt, rising salt prices, and increasing fear of litigation due to slips and falls, as well as driving conditions, reliable and accurate information on salt application is becoming a necessity for maintenance contractors,” said Omer.

More than 20 winter maintenance contractors in Canada and the U.S., including Urban Meadows Property Maintenance Group in Ayr, Ontario, currently use Smart Scale.

Urban Meadows owner, William Jordan, met Omer in the early testing phase of Smart Scale and the startup phase of Omer’s company, Viaesys. As the first contractor to test Smart Scale, he quickly learned there were times his company was using too much salt.

“The accuracy rate wasn’t there at all,” said Jordan. “We’re now able to accurately monitor salt usage, prevent excessive material use, keep bullet-proof records of our work and job-cost a lot better. The real time tracking of salt has helped us use up to 30 per cent less salt.”

Smart Scale is now installed on all four of his company’s trucks which service 75 properties in Cambridge and Ayr, including parking lots for grocery stores and post offices.

Jordan, who is also chair of the snow and ice committee management sector for the horticultural trade association, Landscape Ontario, says he quickly jumped on board with Omer’s research and would like to see Smart Scale change the way salt is applied across Ontario. With no industry standards for salt application currently in place, Smart Scale could make this possible.

You can find Neverfrost and an opportunity to beta test the product here. I’ve not been able to find a website featuring Smart Scale but here’s Viaesys, a company founded by Raqib Omer, the person who developed the product. I was not able to find additional technical details for either Neverfrost or Smart Scale on either of the company websites.

* ‘Unviersity’ corrected to ‘University’  in posting header on Dec. 13, 2013. I uttered a very loud Drat! when I saw it.