Tag Archives: Aydogan Ozcan

Wearable microscopes

It never occurred to me that someone might want a wearable microscope but, apparently, there is a need. A Sept. 27, 2016 news item on phys.org,

UCLA [University of California at Los Angeles] researchers working with a team at Verily Life Sciences have designed a mobile microscope that can detect and monitor fluorescent biomarkers inside the skin with a high level of sensitivity, an important tool in tracking various biochemical reactions for medical diagnostics and therapy.

A Sept. 26, 2016 UCLA news release by Meghan Steele Horan, which originated the news item, describes the work in more detail,

This new system weighs less than a one-tenth of a pound, making it small and light enough for a person to wear around their bicep, among other parts of their body. In the future, technology like this could be used for continuous patient monitoring at home or at point-of-care settings.

The research, which was published in the journal ACS Nano, was led by Aydogan Ozcan, UCLA’s Chancellor’s Professor of Electrical Engineering and Bioengineering and associate director of the California NanoSystems Institute and Vasiliki Demas of Verily Life Sciences (formerly Google Life Sciences).

Fluorescent biomarkers are routinely used for cancer detection and drug delivery and release among other medical therapies. Recently, biocompatible fluorescent dyes have emerged, creating new opportunities for noninvasive sensing and measuring of biomarkers through the skin.

However, detecting artificially added fluorescent objects under the skin is challenging. Collagen, melanin and other biological structures emit natural light in a process called autofluorescence. Various methods have been tried to investigate this problem using different sensing systems. Most are quite expensive and difficult to make small and cost-effective enough to be used in a wearable imaging system.

To test the mobile microscope, researchers first designed a tissue phantom — an artificially created material that mimics human skin optical properties, such as autofluorescence, absorption and scattering. The target fluorescent dye solution was injected into a micro-well with a volume of about one-hundredth of a microliter, thinner than a human hair, and subsequently implanted into the tissue phantom half a millimeter to 2 millimeters from the surface — which would be deep enough to reach blood and other tissue fluids in practice.

To measure the fluorescent dye, the wearable microscope created by Ozcan and his team used a laser to hit the skin at an angle. The fluorescent image at the surface of the skin was captured via the wearable microscope. The image was then uploaded to a computer where it was processed using a custom-designed algorithm, digitally separating the target fluorescent signal from the autofluorescence of the skin, at a very sensitive parts-per-billion level of detection.

“We can place various tiny bio-sensors inside the skin next to each other, and through our imaging system, we can tell them apart,” Ozcan said. “We can monitor all these embedded sensors inside the skin in parallel, even understand potential misalignments of the wearable imager and correct it to continuously quantify a panel of biomarkers.”

This computational imaging framework might also be used in the future to continuously monitor various chronic diseases through the skin using an implantable or injectable fluorescent dye.

Here’s a link to and a citation for the paper,

Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy by Zoltán Göröcs, Yair Rivenson, Hatice Ceylan Koydemir, Derek Tseng, Tamara L. Troy, Vasiliki Demas, and Aydogan Ozcan. ACS Nano, 2016, 10 (9), pp 8989–8999 DOI: 10.1021/acsnano.6b05129 Publication Date (Web): September 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Nano and a Unified Microbiome Initiative (UMI)

A Jan. 6, 2015 news item on Nanowerk features a proposal by US scientists for a Unified Microbiome Initiative (UMI),

In October [2015], an interdisciplinary group of scientists proposed forming a Unified Microbiome Initiative (UMI) to explore the world of microorganisms that are central to life on Earth and yet largely remain a mystery.

An article in the journal ACS Nano (“Tools for the Microbiome: Nano and Beyond”) describes the tools scientists will need to understand how microbes interact with each other and with us.

A Jan. 6, 2016 American Chemical Society (ACS) news release, which originated the news item, expands on the theme,

Microbes live just about everywhere: in the oceans, in the soil, in the atmosphere, in forests and in and on our bodies. Research has demonstrated that their influence ranges widely and profoundly, from affecting human health to the climate. But scientists don’t have the necessary tools to characterize communities of microbes, called microbiomes, and how they function. Rob Knight, Jeff F. Miller, Paul S. Weiss and colleagues detail what these technological needs are.

The researchers are seeking the development of advanced tools in bioinformatics, high-resolution imaging, and the sequencing of microbial macromolecules and metabolites. They say that such technology would enable scientists to gain a deeper understanding of microbiomes. Armed with new knowledge, they could then tackle related medical and other challenges with greater agility than what is possible today.

Here’s a link to and a citation for the paper,

Tools for the Microbiome: Nano and Beyond by Julie S. Biteen, Paul C. Blainey, Zoe G. Cardon, Miyoung Chun, George M. Church, Pieter C. Dorrestein, Scott E. Fraser, Jack A. Gilbert, Janet K. Jansson, Rob Knight, Jeff F. Miller, Aydogan Ozcan, Kimberly A. Prather, Stephen R. Quake, Edward G. Ruby, Pamela A. Silver, Sharif Taha, Ger van den Engh, Paul S. Weiss, Gerard C. L. Wong, Aaron T. Wright, and Thomas D. Young. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b07826 Publication Date (Web): December 22, 2015

Copyright © 2015 American Chemical Society

This is an open access paper.

I sped through very quickly and found a couple of references to ‘nano’,

Ocean Microbiomes and Nanobiomes

Life in the oceans is supported by a community of extremely small organisms that can be called a “nanobiome.” These nanoplankton particles, many of which measure less than 0.001× the volume of a white blood cell, harvest solar and chemical energy and channel essential elements into the food chain. A deep network of larger life forms (humans included) depends on these tiny microbes for its energy and chemical building blocks.

The importance of the oceanic nanobiome has only recently begun to be fully appreciated. Two dominant forms, Synechococcus and Prochlorococcus, were not discovered until the 1980s and 1990s.(32-34) Prochloroccus has now been demonstrated to be so abundant that it may account for as much as 10% of the world’s living organic carbon. The organism divides on a diel cycle while maintaining constant numbers, suggesting that about 5% of the world’s biomass flows through this species on a daily basis.(35-37)

Metagenomic studies show that many other less abundant life forms must exist but elude direct observation because they can neither be isolated nor grown in culture.

The small sizes of these organisms (and their genomes) indicate that they are highly specialized and optimized. Metagenome data indicate a large metabolic heterogeneity within the nanobiome. Rather than combining all life functions into a single organism, the nanobiome works as a network of specialists that can only exist as a community, therein explaining their resistance to being cultured. The detailed composition of the network is the result of interactions between the organisms themselves and the local physical and chemical environment. There is thus far little insight into how these networks are formed and how they maintain steady-state conditions in the turbulent natural ocean environment.

Rather than combining all life functions into a single organism, the nanobiome works as a network of specialists that can only exist as a community

The serendipitous discovery of Prochlorococcus happened by applying flow cytometry (developed as a medical technique for counting blood cells) to seawater.(34) With these medical instruments, the faint signals from nanoplankton can only be seen with great difficulty against noisy backgrounds. Currently, a small team is adapting flow cytometric technology to improve the capabilities for analyzing individual nanoplankton particles. The latest generation of flow cytometers enables researchers to count and to make quantitative observations of most of the small life forms (including some viruses) that comprise the nanobiome. To our knowledge, there are only two well-equipped mobile flow cytometry laboratories that are regularly taken to sea for real-time observations of the nanobiome. The laboratories include equipment for (meta)genome analysis and equipment to correlate the observations with the local physical parameters and (nutrient) chemistry in the ocean. Ultimately, integration of these measurements will be essential for understanding the complexity of the oceanic microbiome.

The ocean is tremendously undersampled. Ship time is costly and limited. Ultimately, inexpensive, automated, mobile biome observatories will require methods that integrate microbiome and nanobiome measurements, with (meta-) genomics analyses, with local geophysical and geochemical parameters.(38-42) To appreciate how the individual components of the ocean biome are related and work together, a more complete picture must be established.

The marine environment consists of stratified zones, each with a unique, characteristic biome.(43) The sunlit waters near the surface are mixed by wind action. Deeper waters may be mixed only occasionally by passing storms. The dark deepest layers are stabilized by temperature/salinity density gradients. Organic material from the photosynthetically active surface descends into the deep zone, where it decomposes into nutrients that are mixed with compounds that are released by volcanic and seismic action. These nutrients diffuse upward to replenish the depleted surface waters. The biome is stratified accordingly, sometimes with sudden transitions on small scales. Photo-autotrophs dominate near the surface. Chemo-heterotrophs populate the deep. The makeup of the microbial assemblages is dictated by the local nutrient and oxygen concentrations. The spatiotemporal interplay of these systems is highly relevant to such issues as the carbon budget of the planet but remains little understood.

And then, there was this,

Nanoscience and Nanotechnology Opportunities

The great advantage of nanoscience and nanotechnology in studying microbiomes is that the nanoscale is the scale of function in biology. It is this convergence of scales at which we can “see” and at which we can fabricate that heralds the contributions that can be made by developing new nanoscale analysis tools.(159-168) Microbiomes operate from the nanoscale up to much larger scales, even kilometers, so crossing these scales will pose significant challenges to the field, in terms of measurement, stimulation/response, informatics, and ultimately understanding.

Some progress has been made in creating model systems(143-145, 169-173) that can be used to develop tools and methods. In these cases, the tools can be brought to bear on more complex and real systems. Just as nanoscience began with the ability to image atoms and progressed to the ability to manipulate structures both directly and through guided interactions,(162, 163, 174-176) it has now become possible to control structure, materials, and chemical functionality from the submolecular to the centimeter scales simultaneously. Whereas substrates and surface functionalization have often been tailored to be resistant to bioadhesion, deliberate placement of chemical patterns can also be used for the growth and patterning of systems, such as biofilms, to be put into contact with nanoscale probes.(177-180) Such methods in combination with the tools of other fields (vide infra) will provide the means to probe and to understand microbiomes.

Key tools for the microbiome will need to be miniaturized and made parallel. These developments will leverage decades of work in nanotechnology in the areas of nanofabrication,(181) imaging systems,(182, 183) lab-on-a-chip systems,(184) control of biological interfaces,(185) and more. Commercialized and commoditized tools, such as smart phone cameras, can also be adapted for use (vide infra). By guiding the development and parallelization of these tools, increasingly complex microbiomes will be opened for study.(167)

Imaging and sensing, in general, have been enjoying a Renaissance over the past decades, and there are various powerful measurement techniques that are currently available, making the Microbiome Initiative timely and exciting from the broad perspective of advanced analysis techniques. Recent advances in various -omics technologies, electron microscopy, optical microscopy/nanoscopy and spectroscopy, cytometry, mass spectroscopy, atomic force microscopy, nuclear imaging, and other techniques, create unique opportunities for researchers to investigate a wide range of questions related to microbiome interactions, function, and diversity. We anticipate that some of these advanced imaging, spectroscopy, and sensing techniques, coupled with big data analytics, will be used to create multimodal and integrated smart systems that can shed light onto some of the most important needs in microbiome research, including (1) analyzing microbial interactions specifically and sensitively at the relevant spatial and temporal scales; (2) determining and analyzing the diversity covered by the microbial genome, transcriptome, proteome, and metabolome; (3) managing and manipulating microbiomes to probe their function, evaluating the impact of interventions and ultimately harnessing their activities; and (4) helping us identify and track microbial dark matter (referring to 99% of micro-organisms that cannot be cultured).

In this broad quest for creating next-generation imaging and sensing instrumentation to address the needs and challenges of microbiome-related research activities comprehensively, there are important issues that need to be considered, as discussed below.

The piece is extensive and quite interesting, if you have the time.

Earth Day, Water Day, and every day

I’m blaming my confusion on the American Chemical Society (ACS) which seemed to be celebrating Earth Day on April 15, 2014 as per its news release highlighting their “Chemists Celebrate Earth Day” video series  while in Vancouver, Canada, we’re celebrating it on April 26, 2014 and elsewhere it seems to be on April 20, this year. Regardless, here’s more about how chemist’s are celebrating from the ACS news release,

Water is arguably the most important resource on the planet. In celebration of Earth Day, the American Chemical Society (ACS) is showcasing three scientists whose research keeps water safe, clean and available for future generations. Geared toward elementary and middle school students, the “Chemists Celebrate Earth Day” series highlights the important work that chemists and chemical engineers do every day. The videos are available at http://bit.ly/CCED2014.

The series focuses on the following subjects:

  • Transforming Tech Toys– Featuring Aydogan Ozcan, Ph.D., of UCLA: Ozcan takes everyday gadgets and turns them into powerful mobile laboratories. He’s made a cell phone into a blood analyzer and a bacteria detector, and now he’s built a device that turns a cell phone into a water tester. It can detect very harmful mercury even at very low levels.
  • All About Droughts – Featuring Collins Balcombe of the U.S. Bureau of Reclamation: Balcombe’s job is to keep your drinking water safe and to find new ways to re-use the water that we flush away everyday so that it doesn’t go to waste, especially in areas that don’t get much rain.
  • Cleaning Up Our Water – Featuring Anne Morrissey, Ph.D., of Dublin City University: We all take medicines, but did you know that sometimes the medicine doesn’t stay in our bodies? It’s up to Anne Morrissey to figure out how to get potentially harmful pharmaceuticals out of the water supply, and she’s doing it using one of the most plentiful things on the planet: sunlight.

Sadly, I missed marking World Water Day which according to a March 21, 2014 news release I received was being celebrated on Saturday, March 22, 2014 with worldwide events and the release of a new UN report,

World Water Day: UN Stresses Water and Energy Issues 

Tokyo Leads Public Celebrations Around the World

Tokyo — March 21 — The deep-rooted relationships between water and energy were highlighted today during main global celebrations in Tokyo marking the United Nations’ annual World Water Day.

“Water and energy are among the world’s most pre-eminent challenges. This year’s focus of World Water Day brings these issues to the attention of the world,” said Michel Jarraud, Secretary-General of the World Meteorological Organization and Chair of UN-Water, which coordinates World Water Day and freshwater-related efforts UN system-wide.

The UN predicts that by 2030 the global population will need 35% more food, 40% more water and 50% more energy. Already today 768 million people lack access to improved water sources, 2.5 billion people have no improved sanitation and 1.3 billion people cannot access electricity.

“These issues need urgent attention – both now and in the post-2015 development discussions. The situation is unacceptable. It is often the same people who lack access to water and sanitation who also lack access to energy, ” said Mr. Jarraud.

The 2014 World Water Development Report (WWDR) – a UN-Water flagship report, produced and coordinated by the World Water Assessment Programme, which is hosted and led by UNESCO – is released on World Water Day as an authoritative status report on global freshwater resources. It highlights the need for policies and regulatory frameworks that recognize and integrate approaches to water and energy priorities.

WWDR, a triennial report from 2003 to 2012, this year becomes an annual edition, responding to the international community’s expression of interest in a concise, evidence-based and yearly publication with a specific thematic focus and recommendations.

WWDR 2014 underlines how water-related issues and choices impact energy and vice versa. For example: drought diminishes energy production, while lack of access to electricity limits irrigation possibilities.

The report notes that roughly 75% of all industrial water withdrawals are used for energy production. Tariffs also illustrate this interdependence: if water is subsidized to sell below cost (as is often the case), energy producers – major water consumers – are less likely to conserve it.  Energy subsidies, in turn, drive up water usage.

The report stresses the imperative of coordinating political governance and ensuring that water and energy prices reflect real costs and environmental impacts.

“Energy and water are at the top of the global development agenda,” said the Rector of United Nations University, David Malone, this year’s coordinator of World Water Day on behalf of UN-Water together with the United Nations Industrial Development Organization (UNIDO).

“Significant policy gaps exist in this nexus at present, and the UN plays an instrumental role in providing evidence and policy-relevant guidance. Through this day, we seek to inform decision-makers, stakeholders and practitioners about the interlinkages, potential synergies and trade-offs, and highlight the need for appropriate responses and regulatory frameworks that account for both water and energy priorities. From UNU’s perspective, it is essential that we stimulate more debate and interactive dialogue around possible solutions to our energy and water challenges.”

UNIDO Director-General LI Yong, emphasized the importance of water and energy for inclusive and sustainable industrial development.

“There is a strong call today for integrating the economic dimension, and the role of industry and manufacturing in particular, into the global post-2015 development priorities. Experience shows that environmentally sound interventions in manufacturing industries can be highly effective and can significantly reduce environmental degradation. I am convinced that inclusive and sustainable industrial development will be a key driver for the successful integration of the economic, social and environmental dimensions,” said Mr. LI.

Rather unusually, Michael Bergerrecently published two Nanowerk Spotlight articles about water (is there theme, anyone?) within 24 hours of each other. In his March 26, 2014 Spotlight article, Michael Berger focuses on graphene and water remediation (Note: Links have been removed),

The unique properties of nanomaterials are beneficial in applications to remove pollutants from the environment. The extremely small size of nanomaterial particles creates a large surface area in relation to their volume, which makes them highly reactive, compared to non-nano forms of the same materials.

The potential impact areas for nanotechnology in water applications are divided into three categories: treatment and remediation; sensing and detection: and pollution prevention (read more: “Nanotechnology and water treatment”).

Silver, iron, gold, titanium oxides and iron oxides are some of the commonly used nanoscale metals and metal oxides cited by the researchers that can be used in environmental remediation (read more: “Overview of nanomaterials for cleaning up the environment”).

A more recent entrant into this nanomaterial arsenal is graphene. Individual graphene sheets and their functionalized derivatives have been used to remove metal ions and organic pollutants from water. These graphene-based nanomaterials show quite high adsorption performance as adsorbents. However they also cause additional cost because the removal of these adsorbent materials after usage is difficult and there is the risk of secondary environmental pollution unless the nanomaterials are collected completely after usage.

One solution to this problem would be the assembly of individual sheets into three-dimensional (3D) macroscopic structures which would preserve the unique properties of individual graphene sheets, and offer easy collecting and recycling after water remediation.

The March 27, 2014 Nanowerk Spotlight article was written by someone at Alberta’s (Canada) Ingenuity Lab and focuses on their ‘nanobiological’ approach to water remediation (Note: Links have been removed),

At Ingenuity Lab in Edmonton, Alberta, Dr. Carlo Montemagno and a team of world-class researchers have been investigating plausible solutions to existing water purification challenges. They are building on Dr. Montemagno’s earlier patented discoveries by using a naturally-existing water channel protein as the functional unit in water purification membranes [4].

Aquaporins are water-transport proteins that play an important osmoregulation role in living organisms [5]. These proteins boast exceptionally high water permeability (~ 1010 water molecules/s), high selectivity for pure water molecules, and a low energy cost, which make aquaporin-embedded membrane well suited as an alternative to conventional RO membranes.

Unlike synthetic polymeric membranes, which are driven by the high pressure-induced diffusion of water through size selective pores, this technology utilizes the biological osmosis mechanism to control the flow of water in cellular systems at low energy. In nature, the direction of osmotic water flow is determined by the osmotic pressure difference between compartments, i.e. water flows toward higher osmotic pressure compartment (salty solution or contaminated water). This direction can however be reversed by applying a pressure to the salty solution (i.e., RO).

The principle of RO is based on the semipermeable characteristics of the separating membrane, which allows the transport of only water molecules depending on the direction of osmotic gradient. Therefore, as envisioned in the recent publication (“Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications”), the core of Ingenuity Lab’s approach is to control the direction of water flow through aquaporin channels with a minimum level of pressure and to use aquaporin-embedded biomimetic membranes as an alternative to conventional RO membranes.

Here’s a link to and a citation for Montemagno’s and his colleague’s paper,

Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications by Hyo-Jick Choi and Carlo D. Montemagno. Materials 2013, 6(12), 5821-5856; doi:10.3390/ma6125821

This paper is open access.

Returning to where I started, here’s a water video featuring graphene from the ACS celebration of Earth Day 2014,

Happy Earth Day!

A complete medical checkup in a stapler-sized laboratory

I find this device strangely attractive,

© 2014 EPFL

A March 4, 2014 news item on Azonano provides more information,

About the size of a stapler, this new handheld device developed at EFPL [École polytechnique fédérale de Lausanne] is able to test a large number of proteins in our body all at once-a subtle combination of optical science and engineering.

Could it be possible one day to do a complete checkup without a doctor’s visit? EPFL’s latest discovery is headed in that direction. Professor Hatice Altug and postoctoral fellow Arif Cetin, in collaboration with Prof. Aydogan Ozcan from UCLA [University of California at Los Angeles], have developed an “optical lab on a chip.” Compact and inexpensive, it could offer to quickly analyze up to 170,000 different molecules in a blood sample. This method could simultaneously identify insulin levels, cancer and Alzheimer markers, or even certain viruses. “We were looking to build an interface similar to a car’s dashboard, which is able to indicate gas and oil levels as well as let you know if your headlights are on or if your engine is working correctly,” explains Altug.

A March 3, 2014 EPFL news release, which originated the news item, describes the technique and the device in detail,

Nanoholes on the gold substrates are compartmented into arrays of different sections, where each section functions as an independent sensor. Sensors are coated with special biofilms that are specifically attracting targeted proteins. Consequently, multiple different proteins in the biosamples could be captured at different places on the platform and monitored simultaneously.

The diode then allows for detection of the trapped proteins almost immediately. The light shines on the platform, passes through the nano-openings and its properties are recorded onto the CMOS chip. Since light going through the nanoscaled holes changes its properties depending on the presence of biomolecules, it is possible to easily deduce the number of particles trapped on the sensors.

Laboratories normally observe the difference between the original wavelength and the resulting one, but this requires using bulky spectrometers. Hatice Altug’s ingenuity consists in choosing to ignore the light’s wavelength, or spectrum, and focus on changes in the light’s intensity instead. This method is possible by tuning into the “surface plasmonic resonance” – the collective oscillation of electrons when in contact with light. And this oscillation is very different depending on the presence or absence of a particular protein. Then, the CMOS chip only needs to record the intensity of the oscillation.

The size, price and efficiency of this new multi-analyze device make it a highly promising invention for a multiplicity of uses. “Recent studies have shown that certain illness like cancer or Alzheimer’s are better diagnosed and false positive results avoided when several parameters can be analyzed at once,” says Hatice Altug. “Moreover, it is possible to remove the substrate and then replace it with another one, allowing to be adapted for a wide range of biomedical and environmental research requiring monitoring of biomolecules, chemicals and bioparticles.” The research team foresees collaborating with local hospitals in the near future to find the best way to use this new technology.

Looking at nanoparticles with your smartphone

Researcher Aydogan Ozcan and his team at the University of California at Los Angeles (UCLA) have developed a device which when attached to a smartphone allows the user to view viruses, bacteria, and/or nanoparticles. (Yikes, I understood nanoparticles were perceptible with haptic devices and that any work on developing optical capabilities was pretty rudimentary). From the UCLA Sept. 16, 2013 news release on EurekAlert,

Aydogan Ozcan, a professor of electrical engineering and bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science, and his team have created a portable smartphone attachment that can be used to perform sophisticated field testing to detect viruses and bacteria without the need for bulky and expensive microscopes and lab equipment. The device weighs less than half a pound.

“This cellphone-based imaging platform could be used for specific and sensitive detection of sub-wavelength objects, including bacteria and viruses and therefore could enable the practice of nanotechnology and biomedical testing in field settings and even in remote and resource-limited environments,” Ozcan said. “These results also constitute the first time that single nanoparticles and viruses have been detected using a cellphone-based, field-portable imaging system.”

In the ACS [American Chemical Society]  Nano paper, Ozcan details a fluorescent microscope device fabricated by a 3-D printer that contains a color filter, an external lens and a laser diode. The diode illuminates fluid or solid samples at a steep angle of roughly 75 degrees. This oblique illumination avoids detection of scattered light that would otherwise interfere with the intended fluorescent image.

Using this device, which attaches directly to the camera module on a smartphone, Ozcan’s team was able to detect single human cytomegalovirus (HCMV) particles. HCMV is a common virus that can cause birth defects such as deafness and brain damage and can hasten the death of adults who have received organ implants, who are infected with the HIV virus or whose immune systems otherwise have been weakened. A single HCMV particle measures about 150–300 nanometers; a human hair is roughly 100,000 nanometers thick.

In a separate experiment, Ozcan’s team also detected nanoparticles — specially marked fluorescent beads made of polystyrene — as small as 90-100 nanometers.

To verify these results, researchers in Ozcan’s lab used other imaging devices, including a scanning electron microscope and a photon-counting confocal microscope. These experiments confirmed the findings made using the new cellphone-based imaging device.

For some reason I’m completely gobsmacked by the notion that I could look at nanoparticles on a smartphone at sometime in the foreseeable future.

Here’s a citation and a link to the paper,

Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone by Qingshan Wei, Hangfei Qi, Wei Luo, Derek Tseng , So Jung Ki, Zhe Wan, Zoltán Göröcs, Laurent A. Bentolila, Ting-Ting Wu, Ren Sun, and Aydogan Ozcan. ACS Nano, Article ASAP DOI: 10.1021/nn4037706 Publication Date (Web): September 9, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall. Ozcan’s work was last mentioned here in a Jan. 21, 2013 posting about self-assembling liquid lenses.


Self-assembling liquid lenses used in optical microscopy to reveal nanoscale objects

A Jan. 21, 2013 news item on Azonano highlights some research on microscope and self-assembling lenses done at University of California Los Angeles (UCLA),

By using tiny liquid lenses that self-assemble around microscopic objects, a team from UCLA’s Henry Samueli School of Engineering and Applied Science has created an optical microscopy method that allows users to directly see objects more than 1,000 times smaller than the width of a human hair.

Coupled with computer-based computational reconstruction techniques, this portable and cost-effective platform, which has a wide field of view, can detect individual viruses and nanoparticles, making it potentially useful in the diagnosis of diseases in point-of-care settings or areas where medical resources are limited.

The UCLA Jan. 20, 2013 news release, written by Matthew Chin and which originated the news item, explains why another microscopy technique is needed for viewing objects at the nanoscale,

Electron microscopy is one of the current gold standards for viewing nanoscale objects. This technology uses a beam of electrons to outline the shape and structure of nanoscale objects. Other optical imaging–based techniques are used as well, but all of them are relatively bulky, require time for the preparation and analysis of samples, and have a limited field of view — typically smaller than 0.2 square millimeters — which can make viewing particles in a sparse population, such as low concentrations of viruses, challenging.

To overcome these issues, the UCLA team, led by Aydogan Ozcan, an associate professor of electrical engineering and bioengineering, developed the new optical microscopy platform by using nanoscale lenses that stick to the objects that need to be imaged. This lets users see single viruses and other objects in a relatively inexpensive way and allows for the processing of a high volume of samples.

At scales smaller than 100 nanometers, optical microscopy becomes a challenge because of its weak light-signal levels. Using a special liquid composition, nanoscale lenses, which are typically thinner than 200 nanometers, self-assemble around objects on a glass substrate.

A simple light source, such as a light-emitting diode (LED), is then used to illuminate the nano-lens object assembly. By utilizing a silicon-based sensor array, which is also found in cell-phone cameras, lens-free holograms of the nanoparticles are detected. The holograms are then rapidly reconstructed with the help of a personal computer to detect single nanoparticles on a glass substrate.

The researchers have used the new technique to create images of single polystyrene nanoparticles, as well as adenoviruses and H1N1 influenza viral particles.

While the technique does not offer the high resolution of electron microscopy, it has a much wider field of view — more than 20 square millimeters — and can be helpful in finding nanoscale objects in samples that are sparsely populated.

Here a citation for and a link to the research article,

Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses by Onur Mudanyali, Euan McLeod, Wei Luo, Alon Greenbaum, Ahmet F. Coskun, Yves Hennequin, Cédric P. Allier, & Aydogan Ozcan. Nature Photonics (2013) doi:10.1038/nphoton.2012.337 Published online: 20 January 2013

The article is behind a paywall.