Tag Archives: EPFL

Needles not needed for blood tests with implantable lab-on-a-chip

Swiss Nano-Tera program researchers have developed an implantable lab-on-a-chip which can test blood and convey the results to your doctor (once they take the device out of the laboratory) according to a Mar. 19, 2013 news release on EurekAlert,

Humans are veritable chemical factories – we manufacture thousands of substances and transport them, via our blood, throughout our bodies. Some of these substances can be used as indicators of our health status. A team of EPFL (École Polytechnique Fédérale de Lausanne) scientists has developed a tiny device that can analyze the concentration of these substances in the blood. Implanted just beneath the skin, it can detect up to five proteins and organic acids simultaneously, and then transmit the results directly to a doctor’s computer. This method will allow a much more personalized level of care than traditional blood tests can provide. Health care providers will be better able to monitor patients, particularly those with chronic illness or those undergoing chemotherapy. The prototype, still in the experimental stages, has demonstrated that it can reliably detect several commonly traced substances. The research results will be published and presented March 20, 2013 in Europe’s largest electronics conference, DATE 13.

Design,  Automation, and Test in Europe (DATE) 2013 can be found here. For those of us who won’t be at the DATE 13 conference, this EPFL video highlights some of the research being presented there,

The EPFL Mar. 20, 2013 news release provides more information about the technology and potential applications,

The device was developed by a team led by EPFL scientists Giovanni de Micheli and Sandro Carrara. The implant, a real gem of concentrated technology, is only a few cubic millimeters in volume but includes five sensors, a radio transmitter and a power delivery system. Outside the body, a battery patch provides 1/10 watt of power, through the patient’s skin – thus there’s no need to operate every time the battery needs changing.

Information is routed through a series of stages, from the patient’s body to the doctor’s computer screen. The implant emits radio waves over a safe frequency. The patch collects the data and transmits them via Bluetooth to a mobile phone, which then sends them to the doctor over the cellular network.

Great care was taken in developing the sensors. To capture the targeted substance in the body – such as lactate, glucose, or ATP – each sensor’s surface is covered with an enzyme. “Potentially, we could detect just about anything,” explains De Micheli. “But the enzymes have a limited lifespan, and we have to design them to last as long as possible.” The enzymes currently being tested are good for about a month and a half; that’s already long enough for many applications. “In addition, it’s very easy to remove and replace the implant, since it’s so small.”

The electronics were a considerable challenge as well. “It was not easy to get a system like this to work on just a tenth of a watt,” de Micheli explains. The researchers also struggled to design the minuscule electrical coil that receives the power from the patch.

The implant could be particularly useful in chemotherapy applications. Currently, oncologists use occasional blood tests to evaluate their patients’ tolerance to a particular treatment dosage. In these conditions, it is very difficult to administer the optimal dose. …

In patients with chronic illness, the implants could send alerts even before symptoms emerge, and anticipate the need for medication. “In a general sense, our system has enormous potential in cases where the evolution of a pathology needs to be monitored or the tolerance to a treatment tested.”

The prototype has already been tested in the laboratory for five different substances, and proved as reliable as traditional analysis methods. The project brought together eletronics experts, computer scientists, doctors and biologists from EPFL, the Istituto di Ricerca di Bellinzona, EMPA (Swiss Federal Laboratories for Materials Science and Technology) and ETHZ (Eidgenössische Technische Hochschule Zürich). It is part of the Swiss Nano-Tera program, whose goal is to encourage interdisciplinary research in the environmental and medical fields. Researchers hope the system will be commercially available within 4 years. [emphases mine]

“Making this technology commercially available within four years” seems rather optimistic since the news release mentions laboratory testing only. Optimistic that is, unless the researchers are already running human clinical trials not mentioned in the news release.

One last thought, objects implanted into the body tend to break down over time as per hip and knee replacements. I wonder if this lab-on-a-chip could be subject to some of the same drawbacks.

Shake hands with Sacha, a robot controlled by carbon nanotube transistors

Since we use computer chips built from silicon in any number devices including robots, the announcement of a robot controlled by the first computer chip built entirely of a material other silicon bears notice. From the Mar. 15, 2013 news item on Nanowerk (Note: Links have been removed),

A group of Stanford researchers recently debuted the first robot controlled by a computer chip built entirely from carbon nanotube transistors, which many scientists predict may eventually replace silicon.

While scientists have produced simple demonstrations of working carbon nanotube circuit components in the past, the Stanford team, led by Professor of Electrical Engineering Philip Wong and Associate Professor of Electrical Engineering and Computer Science Subhasish Mitra Ph.D. ’00, was able to demonstrate an actual subsystem composed entirely of the material.

The news item was originated by a Mar. 7, 2013 article by Nikhita Obeegadoo for the Stanford Daily, where she noted,

The project was presented in the form of a robot named Sacha at the 2013 International Solid-State Circuits Conference (“Sacha, the Stanford Carbon Nanotube Controlled Handshaking Robot”), which was held in San Francisco. According to Mitra, the robot was created to demonstrate the development of a system that can function despite the errors caused by inherently imperfect nanotubes, which have posed issues for research teams working with carbon nanotubes in the past.

“Through several generations of technology, devices keep getting smaller and denser, and silicon will no longer be the best material for the purpose in about ten years,” Guha [Supratik Guha, director of physical sciences at IBM’s Yorktown Heights Research Center] said. “For needs that are close to atomic dimensions, carbon nanotubes have just the right shape and the right electrical behavior.”

Eric Juma on his eponymous blog offers more insight into the project in his Mar. 16, 2013 posting,

… The robot contained a carbon nanotube capacitor, a device found in many touchscreens, connected to another nanotube circuit, which turned the analog signal from the capacitor into a digital signal, which was transmitted to the microprocessor that contained CNT transistors. The microporcessor then sent a signal to a motor on the hand of the robot, which shook the person’s hand that touched the capacitors embedded in it.

This is not the first example of carbon nanotube circuitry, but it is the first example of CNTs being produced at mass for a microprocessor and circuit that were integrated. This advancement showed that it is possible to produce mass amounts of CNTs and have them integrate succesfully into a complex system. Although the size of the CNTs in this system are far from the optimal size of 10nm, it is a good starting point, and the nanotubes still can be much further refined.

Carbon nanotubes, although perfect in theory for microprocessors, present new challenges for engineers. The greatest challenge is the actual integration of CNTs into circuitry. Nanotubes often force themselves into a tangled position, which can cause circuits to fail without warning.

Juma gives a good explanation for why there is so much interest in carbon nanotubes in the field of electronics and he provides links to more information about it all. (There’s a video about carbon nanotubes and their various shapes and structures in my Mar. 15, 2013 posting about them.)

Sacha will be seen (or perhaps the work will simply be presented by Max Shulaker?) next in Switzerland at a Mar. 25, 2013 workshop (FED ’13; Functionality-Enhanced Devices Workshop) at the EPFl (École Polytechnique Fédérale de Lausanne.

Montréal Neuro and one of Europe’s biggest research enterprises, the Human Brain Project

Its official title is the Montréal Neurological Institute and Hospital (Montréal Neuro) which is and has been, for several decades, an international centre for cutting edge neurological research. From the Jan. 28, 2013 news release on EurekAlert,

The Neuro

The Montreal Neurological Institute and Hospital — The Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre.

Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit theneuro.com.

Nonetheless, it was a little surprising to see that ‘The Neuro’ is part one of the biggest research projects in history since it’s the European Union, which is bankrolling the project (see my posting about the Jan. 28, 2013 announcement of the winning FET Flagship Initatives). Here’s more information about the project, its lead researchers, and Canada’s role, from the news release,

The goal of the Human Brain Project is to pull together all our existing knowledge about the human brain and to reconstruct the brain, piece by piece, in supercomputer-based models and simulations. The models offer the prospect of a new understanding of the human brain and its diseases and of completely new computing and robotic technologies. On January 28 [2013], the European Commission supported this vision, announcing that it has selected the HBP as one of two projects to be funded through the new FET [Future and Emerging Technologies] Flagship Program.

Federating more than 80 European and international research institutions, the Human Brain Project is planned to last ten years (2013-2023). The cost is estimated at 1.19 billion euros. The project will also associate some important North American and Japanese partners. It will be coordinated at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, by neuroscientist Henry Markram with co-directors Karlheinz Meier of Heidelberg University, Germany, and Richard Frackowiak of Centre Hospitalier Universitaire Vaudois (CHUV) and the University of Lausanne (UNIL).

Canada’s role in this international project is through Dr. Alan Evans of the Montreal Neurological Institute (MNI) at McGill University. His group has developed a high-performance computational platform for neuroscience (CBRAIN) and multi-site databasing technologies that will be used to assemble brain imaging data across the HBP. He is also collaborating with European scientists on the creation of ultra high-resolution 3D brain maps. «This ambitious project will integrate data across all scales, from molecules to whole-brain organization. It will have profound implications for our understanding of brain development in children and normal brain function, as well as for combatting brain disorders such as Alzheimer’s Disease,» said Dr. Evans. “The MNI’s pioneering work on brain imaging technology has led to significant advances in our understanding of the brain and neurological disorders,” says Dr. Guy Rouleau, Director of the MNI. “I am proud that our expertise is a key contributor to this international program focused on improving quality of life worldwide.”

“The Canadian Institutes of Health Research (CIHR) is delighted to acknowledge the outstanding contributions of Dr. Evans and his team. Their work on the CBRAIN infrastructure and this leading-edge HBP will allow the integration of Canadian neuroscientists into an eventual global brain project,” said Dr. Anthony Phillips, Scientific Director for the CIHR Institute of Neurosciences, Mental Health and Addiction. “Congratulations to the Canadian and European researchers who will be working collaboratively towards the same goal which is to provide insights into neuroscience that will ultimately improve people’s health.”

“From mapping the sensory and motor cortices of the brain to pioneering work on the mechanisms of memory, McGill University has long been synonymous with world-class neuroscience research,” says Dr. Rose Goldstein, Vice-Principal (Research and International Relations). “The research of Dr. Evans and his team marks an exciting new chapter in our collective pursuit to unlock the potential of the human brain and the entire nervous system – a critical step that would not be possible without the generous support of the European Commission and the FET Flagship Program.”

Canada is not the only non-European Union country making an announcement about its role in this extraordinary project. There’s a Jan. 28, 2013 news release on EurekAlert touting Israel’s role,

The European Commission has chosen the Human Brain Project, in which the Hebrew University of Jerusalem is participating, as one of two Future and Emerging Technologies Flagship topics. The enterprise will receive funding of 1.19 billion euros over the next decade.

The project will bring together top scientists from around the world who will work on one of the great challenges of modern science: understanding the human brain. Participating from Israel will a team of eight scientists, led by Prof. Idan Segev of the Edmond and Lily Safra Center for Brain Sciences (ELSC) at the Hebrew University, Prof. Yadin Dudai of the Weizmann Institute of Science, and Dr. Mira Marcus-Kalish of Tel Aviv University.

More than 80 universities and research institutions in Europe and the world will be involved in the ten-year Human Brain Project, which will commence later this year and operate until the year 2023. The project will be centered at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, headed by Prof. Henry Markram, a former Israeli who was recruited ten years ago to the EPFL.

The participation of the Israeli scientists testifies to the leading role that Israeli brain research occupies in the world, said Israeli President Shimon Peres. “Israel has put brain research at the heart of its efforts for the coming decade, and our country is already spearheading the global effort towards the betterment of our understanding of mankind. I am confident that the forthcoming discoveries will benefit a wide range of domains, from health to industry, as well as our society as a whole,” Peres said.

“The human brain is the most complex and amazing structure in the universe, yet we are very far from understanding it. In a way, we are strangers to ourselves. Unraveling the mysteries of the brain will help us understand our functioning, our choices, and ultimately ourselves. I congratulate the European Commission for its vision in selecting the Human Brain Project as a Flagship Mission for the forthcoming decade,” said Peres.

What’s amusing is that as various officials and interested parties (such as myself) wax lyrical about these projects, most of the rest of the world is serenely oblivious to it all.

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)

The European Commission has announced the two winners of its FET (Future and Emerging Technologies) Flagships Initiative in a Jan. 28, 2013 news release,

The winning Graphene and Human Brain initiatives are set to receive one billion euros each, to deliver 10 years of world-beating science at the crossroads of science and technology. Each initiative involves researchers from at least 15 EU Member States and nearly 200 research institutes.

“Graphene” will investigate and exploit the unique properties of a revolutionary carbon-based material. Graphene is an extraordinary combination of physical and chemical properties: it is the thinnest material, it conducts electricity much better than copper, it is 100-300 times stronger than steel and it has unique optical properties. The use of graphene was made possible by European scientists in 2004, and the substance is set to become the wonder material of the 21st century, as plastics were to the 20th century, including by replacing silicon in ICT products.

The “Human Brain Project” will create the world’s largest experimental facility for developing the most detailed model of the brain, for studying how the human brain works and ultimately to develop personalised treatment of neurological and related diseases. This research lays the scientific and technical foundations for medical progress that has the potential to will dramatically improve the quality of life for millions of Europeans.

The European Commission will support “Graphene” and the “Human Brain Project” as FET “flagships” over 10 years through its research and innovation funding programmes. Sustained funding for the full duration of the project will come from the EU’s research framework programmes, principally from the Horizon 2020 programme (2014-2020) which is currently negotiated in the European Parliament and Council.

European Commission Vice President Neelie Kroes said: “Europe’s position as a knowledge superpower depends on thinking the unthinkable and exploiting the best ideas. This multi-billion competition rewards home-grown scientific breakthroughs and shows that when we are ambitious we can develop the best research in Europe. To keep Europe competitive, to keep Europe as the home of scientific excellence, EU governments must agree an ambitious budget for the Horizon 2020 programme in the coming weeks.”

“Graphene” is led by Prof. Jari Kinaret, from Sweden’s Chalmers University. The Flagship involves over 100 research groups, with 136 principal investigators, including four Nobel laureates. “The Human Brain Project” involves scientists from 87 institutions and is led by Prof. Henry Markram of the École Polytechnique Fédérale de Lausanne.

As noted in my Jan. 24, 2013 posting about the new Cambridge Graphene Centre in the UK, while the Graphene flagship lead is from Sweden, the UK  has more educational institutions than any other country party to the flagship consortium.

Here are some funding details from the Jan. 28, 2013 news release,

Horizon 2020 is the new EU programme for research and innovation, presented by the Commission as part of its EU budget proposal for 2014 to 2020. In order to give a boost to research and innovation as a driver of growth and jobs, the Commission has proposed an ambitious budget of €80 billion over seven years, including the FET flagship programme itself.

The winners will receive up to €54 million from the European Commission’s ICT 2013 Work Programme. Further funding will come from subsequent EU research framework programmes, private partners including universities, Member States and industry.

1 billion Euros sounds like a lot of money but it’s being paid out over 10 years (100 million per year) and through many institutional layers at the European Commission and at the educational institutions themselves. One wonders how much of the money will go to research rather than administration.

2000th posting: My heartfelt thanks to everyone who has taken the time to read this blog and and to those who’ve taken the time to comment on the blog, on Twitter, or directly to me. Your interest has kept this blog going far longer than I believed it would.

University of Waterloo researchers use 2.5M (virtual) neurons to simulate a brain

I hinted about some related work at the University of Waterloo earlier this week in my Nov. 26, 2012 posting (Existential risk) about a proposed centre at the University of Cambridge which would be tasked with examining possible risks associated with ‘ultra intelligent machines’.  Today (Science (magazine) published an article about SPAUN (Semantic Pointer Architecture Unified Network) [behind a paywall])and its ability to solve simple arithmetic and perform other tasks as well.

Ed Yong writing for Nature magazine (Simulated brain scores top test marks, Nov. 29, 2012) offers this description,

Spaun sees a series of digits: 1 2 3; 5 6 7; 3 4 ?. Its neurons fire, and it calculates the next logical number in the sequence. It scrawls out a 5, in legible if messy writing.

This is an unremarkable feat for a human, but Spaun is actually a simulated brain. It contains2.5 millionvirtual neurons — many fewer than the 86 billion in the average human head, but enough to recognize lists of numbers, do simple arithmetic and solve reasoning problems.

Here’s a video demonstration, from the University of Waterloo’s Nengo Neural Simulator home page,

The University of Waterloo’s Nov. 29, 2012 news release offers more technical detail,

… The model captures biological details of each neuron, including which neurotransmitters are used, how voltages are generated in the cell, and how they communicate. Spaun uses this network of neurons to process visual images in order to control an arm that draws Spaun’s answers to perceptual, cognitive and motor tasks. …

“This is the first model that begins to get at how our brains can perform a wide variety of tasks in a flexible manner—how the brain coordinates the flow of information between different areas to exhibit complex behaviour,” said Professor Chris Eliasmith, Director of the Centre for Theoretical Neuroscience at Waterloo. He is Canada Research Chair in Theoretical Neuroscience, and professor in Waterloo’s Department of Philosophy and Department of Systems Design Engineering.

Unlike other large brain models, Spaun can perform several tasks. Researchers can show patterns of digits and letters the model’s eye, which it then processes, causing it to write its responses to any of eight tasks.  And, just like the human brain, it can shift from task to task, recognizing an object one moment and memorizing a list of numbers the next. [emphasis mine] Because of its biological underpinnings, Spaun can also be used to understand how changes to the brain affect changes to behaviour.

“In related work, we have shown how the loss of neurons with aging leads to decreased performance on cognitive tests,” said Eliasmith. “More generally, we can test our hypotheses about how the brain works, resulting in a better understanding of the effects of drugs or damage to the brain.”

In addition, the model provides new insights into the sorts of algorithms that might be useful for improving machine intelligence. [emphasis mine] For instance, it suggests new methods for controlling the flow of information through a large system attempting to solve challenging cognitive tasks.

Laura Sanders’ Nov. 29, 2012 article for ScienceNews suggests that there is some controversy as to whether or not SPAUN does resemble a human brain,

… Henry Markram, who leads a different project to reconstruct the human brain called the Blue Brain, questions whether Spaun really captures human brain behavior. Because Spaun’s design ignores some important neural properties, it’s unlikely to reveal anything about the brain’s mechanics, says Markram, of the Swiss Federal Institute of Technology in Lausanne. “It is not a brain model.”

Personally, I have a little difficulty seeing lines of code as ever being able to truly simulate brain activity. I think the notion of moving to something simpler (using fewer neurons as the Eliasmith team does) is a move in the right direction but I’m still more interested in devices such as the memristor and the electrochemical atomic switch and their potential.

Blue Brain Project

Memristor and artificial synapses in my April 19, 2012 posting

Atomic or electrochemical atomic switches and neuromorphic engineering briefly mentioned (scroll 1/2 way down) in my Oct. 17, 2011 posting.

ETA Dec. 19, 2012: There was an AMA (ask me anything) session on Reddit with the SPAUN team in early December, if you’re interested, you can still access the questions and answers,

We are the computational neuroscientists behind the world’s largest functional brain model

Hydrogen ‘traffic jams’ and embrittlement

Here’s something about how hydrogen atoms cause metals to become embrittled, from  a Nov. 19, 2012 McGill University (Montréal, Québec) news release,

Hydrogen, the lightest element, can easily dissolve and migrate within metals to make these otherwise ductile materials brittle and substantially more prone to failures.

Since the phenomenon was discovered in 1875, hydrogen embrittlement has been a persistent problem for the design of structural materials in various industries, from battleships to aircraft and nuclear reactors. Despite decades of research, experts have yet to fully understand the physics underlying the problem or to develop a rigorous model for predicting when, where and how hydrogen embrittlement will occur.  As a result, industrial designers must still resort to a trial- and-error approach.

Now, Jun Song, an Assistant Professor in Materials Engineering at McGill University, and Prof. William Curtin, Director of the Institute of Mechanical Engineering at Ecole Polytechnique Federale de Lausanne in Switzerland, have shown that the answer to hydrogen embrittlement may be rooted in how hydrogen modifies material behaviours at the nanoscale.  In their study, published in Nature Materials, Song and Curtin present a new model that can accurately predict the occurrence of hydrogen embrittlement.

Under normal conditions, metals can undergo substantial plastic deformation when subjected to forces. This plasticity stems from the ability of nano-  and micro-sized cracks to generate “dislocations” within the metal – movements of atoms that serve to relieve stress in the material.

“Dislocations can be viewed as vehicles to carry plastic deformation, while the nano- and micro-sized cracks can be viewed as hubs to dispatch those vehicles,” Song explains. “The desirable properties of metals, such as ductility and toughness, rely on the hubs functioning well.  Unfortunately those hubs also attract hydrogen atoms. The way hydrogen atoms embrittle metals is by causing a kind of traffic jam: they crowd around the hub and block all possible routes for vehicle dispatch. This eventually leads to the material breaking down.”

State-of-the-art computer simulations were performed by Song to reveal explicitly how hydrogen atoms move within metals and how they interact with metal atoms. This simulation was followed by rigorous kinetic analysis, to link the nanoscale details with macroscopic experimental conditions.

This model has been applied to predict embrittlement thresholds in a variety of ferritic iron-based steels and produced excellent agreements with experiments.  The findings provide a framework for interpreting experiments and designing next-generation embrittlement-resistant structural materials.

Here’s a citation for the paper and a link,

Atomic mechanism and prediction of hydrogen embrittlement in iron” by Jun Song & W. A. Curtin in Nature Materials (2012) doi:10.1038/nmat3479 (advance online publication Nov.11, 2012)

This article is behind a paywall.

Cars that read minds?

Today’s blogging seems to have acquired a transportation theme. Here’s another item about a car, this one can read minds. From the Sept. 28, 2011 news item on physorg.com,

In the future, thinking about turning left may no longer be just a thought. Japanese auto giant Nissan and a Swiss university are developing cars that scan the driver’s thoughts and prepares the vehicle for the next move.

I found more information at the Nissan website in their Sept.28, 2011 news release,

As the driver thinks about turning left ahead, for example, so the car will prepare itself for the manoeuvre, selecting the correct speed and road positioning, before completing the turn. The aim? To ensure that our roads are as safe as possible and that the freedom that comes with personal mobility remains at the heart of society.

Nissan is undertaking this pioneering work in collaboration with the École Polytechnique Fédérale de Lausanne in Switzerland (EPFL). Far reaching research on Brain Machine Interface (BMI) systems by scientists at EPFL already allows disabled users to manoeuvre their wheelchairs by thought transference alone. The next stage is to adapt the BMI processes to the car – and driver – of the future.

Professor José del R. Millán, leading the project, said: “The idea is to blend driver and vehicle intelligence together in such a way that eliminates conflicts between them, leading to a safer motoring environment.”

Using brain activity measurement, eye movement patterns and by scanning the environment around the car in conjunction with the car’s own sensors, it should be possible to predict what the driver plans to do – be it a turn, an overtake, a lane change – and then assist with the manoeuvre in complete safety, thus improving the driving experience.

Here’s an image of some of the lab work being performed,

Nissan Brain-Computer Interface. Photo Credit: EPFL / Alain Herzog

I wonder what it’s going to look like when it’s ready for testing with real people. I’m pretty sure most people are not going to be interested in wearing head caps for very long. I imagine the researchers have come to this conclusion too, which means that they are likely considering some very sophisticated sensors. (I hope so, otherwise the researchers are somewhat delusional.  Sadly, this can be true. I speak from experiences dealing with technical experts who seemed to be designing their software for failure, i.e. the average person using would be likely to make an error.)