Tag Archives: Globe and Mail

Research2Reality: a science media engagement experience dedicated to Canadian science

As of May 11, 2015, Canadians will be getting an addition to their science media environment (from the May 4, 2015 news release),

Research2Reality to celebrate Canadian research stars

Social media initiative to popularize scientific innovation

May 4, 2015, TORONTO – On Monday, May 11, Research2Reality.com goes live and launches a social media initiative that will make the scientist a star. Following in the footsteps of popular sites like IFLScience and How Stuff Works, Research2Reality uses a video series and website to engage the community in the forefront of scientific discoveries made here in Canada.

The interviews feature some of Canada’s leading researchers such as Dick Peltier – director of the Centre for Global Change Science at the University of Toronto, Sally Aitken – director of the Centre for Forest Conservation Genetics at the University of British Columbia and Raymond Laflamme – executive director of the Institute for Quantum Computing at the University of Waterloo.

“Right now many Canadians don’t understand the scope of cutting-edge work being done in our backyards,” says Research2Reality co-founder and award-winning professor Molly Shoichet. “This initiative will bridge that gap between researchers and the public.”

Also launching Monday, May 11, courtesy of Research2Reality’s official media partner, Discovery Science, is a complementary website www.sciencechannel.ca/Shows/Research2Reality. The new website will feature the exclusive premieres of a collection of interview sessions. In addition, Discovery Science and Discovery will broadcast an imaginative series of public service announcements through the end of the year, while social media accounts will promote Research2Reality, including Discovery’s flagship science and technology program DAILY PLANET.

About Research2Reality:
Research2Reality is a social media initiative designed to popularize the latest Canadian research. It was founded by Molly Shoichet, Professor of Chemical Engineering & Applied Chemistry and Canada Research Chair in Tissue Engineering at the University of Toronto, and Mike MacMillan, founder and producer of Lithium Studios Productions. Research2Reality’s founding partners are leading research-intensive universities – the University of Alberta, the University of British Columbia, McMaster University, the University of Toronto, the University of Waterloo, and Western University – along with the Ontario Government and Discovery Networks. Discovery Science is the official media partner. Research2Reality is also supported by The Globe and Mail.

Research2Reality details

A Valentine of sorts to Canadian science researchers from Molly Shoichet (pronounced shoy [and] quette as in David Arquette)  and her producing partner Mike MacMillan of Lithium Studios, Research2Reality gives Canadians an opportunity to discover online some of the extraordinary work done by scientists of all stripes, including (unusually) social scientists, in this country. The top tier in this effort is the interview video series ‘The Orange Chair Sessions‘  which can be found and shared across

Shoichet and MacMillan are convinced there’s an appetite for more comprehensive science information. Supporting The Orange Chair Sessions is a complementary website operated by Discovery Channel where there are

  • more interviews
  • backgrounders,
  • biographies,
  • blogs, and
  • links to other resources

Discovery Channel is also going to be airing special one minute  public service announcements (PSA) on topics like water, quantum computing, and cancer. Here’s one of the first of those PSAs,

“I’m very excited about this and really hope that other people will be too,” says Shoichet. The audience for the Research2Reality endeavour is for people who like to know more and have questions when they see news items about science discoveries that can’t be answered by investigating mainstream media programmes or trying to read complex research papers.

This is a big undertaking. ” Mike and I thought about this for about two years.” Building on the support they received from the University of Toronto, “We reached out to the vice-presidents of research at the top fifteen universities in the country.” In the end, six universities accepted the invitation to invest in this project,

  • the University of British Columbia,
  • the University of Alberta,
  • Western University (formerly the University of Western Ontario),
  • McMaster University,
  • Waterloo University, and, of course,
  • the University of Toronto

(Unfortunately, Shoichet was not able to answer a question about the cost for an individual episode but perhaps when there’s time that detail and more about the financing will be made available. [ETA May 11, 2015 1625 PDT: Ivan Semeniuk notes this is a $400,000 project in his Globe and Mail May 11, 2015 article.]) As part of their involvement, the universities decide which of their researchers/projects should be profiled then Research2Reality swings into action. “We shoot our own video, that is, we (Mike and I) come out and conduct interviews that take approximately fifteen minutes. We also shoot a b-roll, that is, footage of the laboratories and other relevant sites so it’s not all ‘talking heads’.” Shoichet and MacMillan are interested in the answer to two questions, “What are you doing? and Why do we care?” Neither interviewer/producer is seen or heard on camera as they wanted to keep the focus on the researcher.

Three videos are being released initially with another 67 in the pipeline for a total of 70.  The focus is on research of an international calibre and one of the first interviews to be released (Shoichet’s will be release later) is Raymond Laflamme’s (he’s also featured in the ‘quantum PSA’.

Raymond Laflamme

Who convinces a genius that he’s gotten an important cosmological concept wrong or ignored it? Alongside Don Page, Laflamme accomplished that feat as one of Stephen Hawking’s PhD students at the University of Cambridge. Today (May 11, 2015), Laflamme is (from his Wikipedia entry)

… co-founder and current director of the Institute for Quantum Computing at the University of Waterloo. He is also a professor in the Department of Physics and Astronomy at the University of Waterloo and an associate faculty member at Perimeter Institute for Theoretical Physics. Laflamme is currently a Canada Research Chair in Quantum Information.

Laflamme changed his focus from quantum cosmology to quantum information while at Los Alamos, “To me, it seemed natural. Not much of a change.” It is the difference between being a theoretician and an experimentalist and anyone who’s watched The Big Bang Theory (US television programme) knows that Laflamme made a big leap.

One of his major research interests is quantum cryptography, a means of passing messages you can ensure are private. Laflamme’s team and a team in Vienna (Austria) have enabled two quantum communication systems, one purely terrestrial version, which can exchange messages with another such system up to 100 km. away. There are some problems yet to be solved with terrestrial quantum communication. First, buildings, trees, and other structures provide interference as does the curvature of the earth. Second, fibre optic cables absorb some of the photons en route.

Satellite quantum communication seems more promising as these problems are avoided altogether. The joint Waterloo/Vienna team of researchers has  conducted successful satellite experiments in quantum communication in the Canary Islands.

While there don’t seem to be any practical, commercial quantum applications, Laflamme says that isn’t strictly speaking the truth, “In the last 10  to 15 years many ideas have been realized.” The talk turns to quantum sensing and Laflamme mentions two startups and notes he can’t talk about them yet. But there is Universal Quantum Devices (UQD), a company that produces parts for quantum sensors. It is Laflamme’s startup, one he co-founded with two partners. (For anyone unfamiliar with the Canadian academic scene, Laflamme’s home institution, the University of Waterloo, is one of the most actively ‘innovative’ and business-oriented universities in Canada.)

LaFlamme’s interests extend beyond laboratory work and business. He’s an active science communicator as can be seen in this 2010 TEDxWaterloo presentation where he takes his audience from the discovery of fire to quantum physics concepts such as a ‘quantum superposition’ and the ‘observer effect’ to the question, ‘What is reality?’ in approximately 18 mins.

For anyone who needs a little more information, a quantum superposition is a term referring the ability of a quantum object to inhabit two states simultaneously, e.g., on/off. yes/no, alive/dead, as in Schrödinger’s cat. (You can find out more about quantum superpositions in this Wikipedia essay and about Schrodinger’s cat in this Wikipedia essay.) The observer effect is a phenomenon whereby the observer of a quantum experiment affects that experiment by the act of observing it. (You can find out more about the observer effect in this Wikipedia essay.)

The topic of reality is much trickier to explain. No one has yet been able to offer a viable theory for why the world at the macro scale behaves one way (classical physics) and the world at the quantum scale behaves another way (quantum physics). As Laflamme notes, “There is no such thing as a superposition in classical physics but we can prove in the laboratory that it exists in quantum physics.” He goes on to suggest that children, raised in an environment where quantum physics and its applications are commonplace, will have an utterly different notion as to what constitutes reality.

Laflamme is also interested in music and consulted on a ‘quantum symphony’. He has this to say about it in an Sept. 20, 2012 piece on the University of Waterlo website,

Science and art share a common goal — to help us understand our universe and ourselves.  Research at IQC [Institute for Quantum Computing] aims to provide important new understanding of nature’s building blocks, and devise methods to turn that understanding into technologies beneficial for society.Since founding IQC a decade ago, I have sought ways to bridge science and the arts, with the belief that scientific discovery itself is a source of beauty and inspiration.  Our collaboration with the Kitchener-Waterloo Symphony was an example — one of many yet to come — of how science and the arts provide different but complementary insights into our universe and ourselves.

I wrote about the IQC and the symphony which debuted at the IQC’s opening in a Sept. 25, 2012 posting.

Music is not the only art which has attracted Laflamme’s talents. He consulted on a documentary, The Quantum Tamers: Revealing our weird and wired future, a co-production between Canada’s Perimeter Institute and Title Entertainment,

From deep inside the sewers of Vienna, site of groundbreaking quantum teleportation experiments, to cutting-edge quantum computing labs, to voyages into the minds of the world’s brightest thinkers, including renowned British scientist Stephen Hawking, this documentary explores the coming quantum technological revolution.

All of this suggests an interest in science not seen since the 19th century when scientists could fill theatres for their lectures. Even Hollywood is capitalizing on this interest. Laflamme, who saw ‘Interstellar’, ‘The Imitation Game’ (Alan Turing), and ‘The Theory of Everything’ (Stephen Hawking) in fall 2014 comments, “I was surprised by how much science there was in The Imitation Game and Interstellar.” As for the Theory of Everything, “I was apprehensive since I know Stephen well. But, the actor, Eddie Redmayne, and the movie surprised me. There were times when he moved his head or did something in a particular way—he was Stephen. Also, most people don’t realize what an incredible sense of humour Stephen has and the movie captured that well.” Laflamme also observed that it was a movie about a relationship and not really concerned with science and its impacts (good and ill) or scientific accomplishments.  Although he allows, “It could have had more science.”

Research2Reality producers

Molly Shoichet

Co-producer Shoichet has sterling scientific credentials of her own. In addition to this science communication project, she runs the Shoichet Lab at the University of Toronto (from the Dr. Molly Shoichet bio page),

Dr. Molly Shoichet holds the Tier 1 Canada Research Chair in Tissue Engineering and is University Professor of Chemical Engineering & Applied Chemistry, Chemistry and Biomaterials & Biomedical Engineering at the University of Toronto. She is an expert in the study of Polymers for Drug Delivery & Regeneration which are materials that promote healing in the body.

Dr. Shoichet has published over to 480 papers, patents and abstracts and has given over 310 lectures worldwide.  She currently leads a laboratory of 25 researchers and has graduated 134 researchers over the past 20 years.  She founded two spin-off companies from research in her laboratory.

Dr. Shoichet is the recipient of many prestigious distinctions and the only person to be a Fellow of Canada’s 3 National Academies: Canadian Academy of Sciences of the Royal Society of Canada, Canadian Academy of Engineering, and Canadian Academy of Health Sciences. Dr. Shoichet holds the Order of Ontario, Ontario’s highest honour and is a Fellow of the American Association for the Advancement of Science. In 2013, her contributions to Canada’s innovation agenda and the advancement of knowledge were recognized with the QEII Diamond Jubilee Award. In 2014, she was given the University of Toronto’s highest distinction, University Professor, a distinction held by less than 2% of the faculty.

Mike MacMillan

MacMIllan’s biography (from the Lithium Studios website About section hints this is his first science-oriented series (Note: Links have been removed),

Founder of Lithium Studios Productions
University of Toronto (‘02)
UCLA’s Professional Producing Program (‘11)

His first feature, the dark comedy / thriller I Put a Hit on You (2014, Telefilm Canada supported), premiered at this year’s Slamdance Film Festival in Park City. Guidance (2014, Telefilm Canada supported, with super producer Alyson Richards over at Edyson), a dark comedy/coming of age story is currently in post-production, expected to join the festival circuit in September 2014.

Mike has produced a dozen short films with Toronto talents Dane Clark and Linsey Stewart (CAN – Long Branch, Margo Lily), Samuel Fluckiger (SWISS – Terminal, Nightlight) and Darragh McDonald (CAN – Love. Marriage. Miscarriage.). They’ve played at the top film fests around the world and won a bunch of awards.

Special skills include kickass hat collection and whiskey. Bam.

Final comments

It’s nice to see the Canadian scene expanding; I’m particularly pleased to learn social scientists will be included.Too often researchers from the physical sciences or natural sciences and researchers from the social sciences remain aloof from each other. In April 2013, I attended a talk by Evelyn Fox Keller, physicist, feminist, and philosopher, who read from a paper she’d written based on a then relatively recent experience in South Africa where researchers had aligned themselves in two different groups and refused to speak to each other. They were all anthropologists but the sticking point was the type of science they practiced. One group were physical anthropologists and the other were cultural anthropologists. That’s an extreme example unfortunately symptomatic of a great divide. Bravo to Research2Reality for bringing the two groups together.

As for the science appetite Shoichet and MacMillan see in Canada, this is not the only country experiencing a resurgence of interest; they’ve been experiencing a science media expansion in the US.  Neil deGrasse Tyson’s Star Talk television talk show, which also exists as a radio podcast, debuted on April 19, 2015 (Yahoo article by Calla Cofield); Public Radio Exchange’s (PRX) Transistor; a STEM (science, technology, engineering, and mathematics) audio project debuted in Feb. 2015; and video podcast Science Goes to the Movies also debuted in Feb. 2015 (more about the last two initiatives in my March 6, 2015 posting [scroll down about 40% of the way]). Finally (for the burgeoning US science media scene) and neither least nor new, David Bruggeman has a series of posts titled, Science and Technology Guests on Late Night, Week of …, on his Pasco Phronesis blog which has been running for many years. Bruggeman’s series is being included here because most people don’t realize that US late night talk shows have jumped into the science scene. You can check  David’s site here as he posts this series on Mondays and this is Monday, May 11, 2015.

It’s early days for Research2Reality and it doesn’t yet have the depth one might wish. The videos are short (the one featured on the Discovery Channel’s complementary website is less than 2 mins. and prepare yourself for ads). They may not be satisfying from an information perspective but what makes The Orange Chair Series fascinating is the peek into the Canadian research scene. Welcome to Research2Reality and I hope to hear more about you in the coming months.

[ETA May 11, 2015 at 1625 PDT: Semeniuk’s May 11, 2015 article mentions a few other efforts to publicize Canadian research (Note: Links have been removed),

For example, Research Matters, a promotional effort by the Council of Ontario Universities, has built up a large bank of short articles on its website that highlight researchers across the province. Similarly, the Canada Foundation for Innovation, which channels federal dollars toward research infrastructure and projects, produces features stories with embedded videos about the scientists who are enabled by their investments.

What makes Research2Reality different, said Dr. Shoichet, is an approach that doesn’t speak for one region, field of research of  [sic] funding stream.

One other aspect which distinguishes Research2Reality from the other science promotion efforts is the attempt to reach out to the audience. The Canada Foundation for Innovation and Council for Ontario Universities are not known for reaching out directly to the general public.]

Part 2 (b) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Carrying on from part 2 (a) of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC).

One of the most intriguing aspects of this assessment was the reliance on an unpublished inventory of Canadian science outreach initiatives (informal science education) that was commissioned by the Korean Foundation for the Advancement of Science and Creativity,

The system of organizations, programs, and initiatives that supports science culture in any country is dynamic. As a result, any inventory provides only a snapshot at a single point in time, and risks quickly becoming out of date. No sustained effort has been made to track public science outreach and engagement efforts in Canada at the national or regional level. Some of the Panel’s analysis relies on data from an unpublished inventory of public science communication initiatives in Canada undertaken in 2011 by Bernard Schiele, Anik Landry, and Alexandre Schiele for the Korean Foundation for the Advancement of Science and Creativity (Schiele et al., 2011). This inventory identified over 700 programs and organizations across all provinces and regions in Canada, including over 400 initiatives related to museums, science centres, zoos, or aquariums; 64 associations or NGOs involved in public science outreach; 49 educational initiatives; 60 government policies and programs; and 27 media programs. (An update of this inventory completed by the Panel brings the total closer to 800 programs.) The inventory is used throughout the chapter [chapter five] to characterize different components of the Canadian system supporting public science outreach, communication, and engagement. (p. 130 PDF; p. 98 print)

I’m fascinated by the Korean interest and wonder if this due to perceived excellence or to budgetary considerations. The cynic in me suspects the Korean foundation was interested in the US scene but decided that information from the Canadian scene would be cheaper to acquire and the data could be extrapolated to give a perspective on the US scene.

In addition to the usual suspects (newspapers, television, radio, science centres, etc.), the Expert Panel did recognize the importance of online science sources (they would have looked foolish if they hadn’t),

Canadians are increasingly using the internet to seek out information relating to science. This activity can take the form of generalized searches about science-related issues or more targeted forms of information acquisition. For example, Canadians report using the internet to seek out information on health and medical issues an average of 47 times a year, or nearly every week. Other forms of online exposure to scientific content also appear to be common. For example, 46% of Canadians report having read a blog post or listserv related to science and technology at least once in the last three months, and 62% having watched an online video related to science and technology.

An increasing reliance on the internet as the main source of information about science and technology is consistent with the evolution of the media environment, as well as with survey data from other countries. Based on the Panel’s survey, 17% of Canadians, for example, report reading a printed newspaper daily, while 40% report reading about the news or current events online every day. (p. 13/2 PDF; p. 100/1 print)

In common with the rest of the world, Canadians are producing and enjoying science festivals,

In Canada there are two established, large-scale science festivals. Science Rendezvous [founded in 2008 as per its Wikipedia entry] takes place in about 20 cities across the country and combines a variety of programming to comprise a day-long free event (Science Rendezvous, 2013).

The annual Eureka! Festival in Montréal (see Figure 5.6 [founded in 2007 as per its program list]) has over 100 activities over three days; it attracted over 68,000 attendees in 2012 (Eureka! Festival, 2013). More science festivals have recently been created. The University of Toronto launched the Toronto Science Festival in fall 2013 (UofT, 2013), and Beakerhead, a new festival described as a “collision of art and culture, technology, and engineering,” was launched in 2013 in Calgary (Beakerhead, 2013). Two Canadian cities have also recently won bids to host STEMfest (Saskatoon in 2015 and Halifax in 2018), an international festival of science, technology, engineering, and mathematics (Global STEM States, 2014). (pp. 145/6 PDF; pp. 113/4 PDF)

The assessment notes have a grand total of five radio and television programmes devoted to science: The Nature of Things, Daily Planet, Quirks and Quarks, Découverte, and Les années lumière (p. 150 PDF; p. 118 print) and a dearth of science journalism,

Dedicated science coverage is notably absent from the majority of newspapers and other print journalism in Canada. As shown in Table 5.3, none of the top 11 newspapers by weekly readership in Canada has a dedicated science section, including nationals such as The Globe and Mail and National Post. Nine of these newspapers have dedicated technology sections, which sometimes contain sub-sections with broader coverage of science or environment stories; however, story coverage tends to be dominated by technology or business (or gaming) stories. Few Canadian newspapers have dedicated science journalists on staff, and The Globe and Mail is unique among Canadian papers in having a science reporter, a medicine and health reporter, and a technology reporter. (p. 152 PDF; p. 120 print)

Not stated explicitly in the assessment is this: those science and technology stories you see in the newspaper are syndicated stories, i.e., written by reporters for the Associated Press, Reuters, and other international press organizations or simply reprinted (with credit) from another newspaper.

The report does cover science blogging with this,

Science blogs are another potential source of information about developments in science and technology. A database compiled by the Canadian Science Writers’ Association, as of March of 2013, lists 143 Canadian science blogs, covering all areas of science and other aspects of science such as science policy and science culture (CSWA, 2013). Some blogs are individually authored and administered, while others are affiliated with larger networks or other organizations (e.g., Agence Science-Presse, PLOS Blogs). Canadian science blogger Maryse de la Giroday has also published an annual round-up of Canadian science blogs on her blog (www.frogheart.ca) for the past three years, and a new aggregator of Canadian science blogs was launched in 2013 (www.scienceborealis.ca). [emphases mine]

Data from the Panel’s survey suggest that blogs are becoming a more prominent source of information about science and technology for the general public. As noted at the beginning of the chapter, 46% of Canadians report having read a blog post about science or technology at least once in the past three months. Blogs are also influencing the way that scientific research is carried out and disseminated. A technical critique in a blog post by Canadian microbiologist Rosie Redfield in 2010, for example, catalyzed a widely publicized debate on the validity of a study published in Science, exploring the ability of bacteria to incorporate arsenic into their DNA. The incident demonstrated the potential impact of blogs on mainstream scientific research. CBC highlighted the episode as the Canadian science story of the year (Strauss, 2011), and Nature magazine identified Redfield as one of its 10 newsmakers of the year in 2011 as a result of her efforts to replicate the initial study and publicly document her progress and results (Hayden, 2011).

The impact of online information sources, however, is not limited to blogs, with 42% of Canadians reporting having heard about a science and technology news story though social media sources like Twitter and Facebook in the last three months. And, as noted earlier, the internet is often used to search for information about specific science and technology topics, both for general issues such as climate change, and more personalized information on medical and health issues.(pp. 153/4 PDF; pp. 121/2 print)

Yes, I got a shout out as did Rosie Redfield. We were the only two science bloggers namechecked. (Years ago, the Guardian newspaper was developing a science blog network and the editor claimed he couldn’t find many female science bloggers after fierce criticism of its first list of bloggers. This was immediately repudiated not only by individuals but someone compiled a list of hundreds of female science bloggers.) Still, the perception persists and I’m thrilled that the panel struck out in a different direction. I was also pleased to see Science Borealis (a Canadian science blog aggregator) mentioned. Having been involved with its founding, I’m also delighted its first anniversary was celebrated in Nov. 2014.

I doubt many people know we have a science press organization in Canada, Agence Science-Presse, but perhaps this mention in the assessment will help raise awareness in Canada’s English language media,

Founded in 1978 with the motto Parce que tout le monde s’intéresse à la science (“because everyone is interested in science”), Agence Science-Presse is a not-for-profit organization in Quebec that supports media coverage of science by distributing articles on scientific research or other topical science and technology issues to media outlets in Canada and abroad. The organization also supports science promotion activities aimed at youth. For example, it currently edits and maintains an aggregation of blogs designed for young science enthusiasts and science journalists (Blogue ta science). (p. 154 PDF; p. 122)

The final chapter (the 6th) of the assessment makes five key recommendations for ‘Cultivating a strong science culture’:

  1. Support lifelong science learning
  2. Make science inclusive
  3. Adapt to new technologies
  4. Enhance science communication and engagement
  5. Provide national or regional leadership

Presumably the agriculture reference in the chapter title is tongue-in-cheek. Assuming that’s not one of my fantasies, it’s good to see a little humour.

On to the first recommendation, lifelong learning,

… Science centres and museums, science programs on radio and television, science magazines and journalism, and online resources can all help fulfil this function by providing accessible resources for adult science learning, and by anticipating emerging information needs based on topical issues.

Most informal science learning organizations already provide these opportunities to varying degrees; however, this conception of the relative roles of informal and formal science learning providers differs from the traditional understanding, which often emphasizes how informal environments can foster engagement in science (particularly among youth), thereby triggering additional interest and the later acquisition of knowledge (Miller, 2010b). [emphasis mine] Such a focus may be appropriate for youth programming, but neglects the role that these institutions can play in ongoing education for adults, who often seek out information on science based on specific, well-defined interests or needs (e.g., a medical diagnosis, a newspaper article on the threat of a viral pandemic, a new technology brought into the workplace) (Miller, 2012). [emphases mine] Informal science learning providers can take advantage of such opportunities by anticipating these needs, providing useful and accessible information, and then simultaneously building and deepening knowledge of the underlying science through additional content.

I’m glad to see the interest in adult informal science education although the emphasis on health/medical and workplace technology issues suggests the panel underestimates, despite the data from its own survey, Canadians’ curiosity about and interest in science and technology. The panel also underestimates the tenacity with which many gatekeepers hold to the belief that no one is interested in science. It took me two years before a local organizer would talk to me about including one science-themed meeting in his programme (the final paragraph in my April 14, 2014 post describes some of the process  and my April 18, 2014 post describes the somewhat disappointing outcome). In the end, it was great to see a science-themed ‘city conversation’ but I don’t believe the organizer found it to be a success, which means it’s likely to be a long time before there’s another one.

The next recommendation, ‘Making science inclusive’, is something that I think needs better practice. If one is going to be the change one wants to see that means getting people onto your expert panels that reflect your inclusiveness and explaining to your audience how your expert panel is inclusive.

The ‘Adapting to new technologies’ recommendation is where I expected to see some mention of the social impact of such emerging technologies as robotics, nanotechnology, synthetic biology, etc. That wasn’t the case,

Science culture in Canada and other countries is now evolving in a rapidly changing technological environment. Individuals are increasingly turning to online sources for information about science and technology, and science communicators and the media are also adapting to the new channels of communication and outreach provided over the internet. As people engage more with new forms of technology in their home and work lives, organizations may be able to identify new ways to take advantage of available technologies to support learning and foster science interest and engagement. At the same time, as noted in Chapter 2, this transition is also challenging traditional models of operation for many organizations such as science centres, museums, and science media providers, forcing them to develop new strategies.

Examples of the use of new technologies to support learning are now commonplace. Nesta, an innovation-oriented organization based in the United Kingdom, conducted a study investigating the extent to which new technologies are transforming learning among students (Luckin et al., 2012) (p. 185 PDF; p. 153 print)

Admittedly, the panel was not charged with looking too far into the future but it does seem odd that in a science culture report there isn’t much mention (other than a cursory comment in an early chapter) of these emerging technologies and the major changes they are bringing with them. If nothing else, the panel might have wanted to make mention of artificial intelligence how the increasing role of automated systems may be affecting science culture in Canada. For example, in my July 16, 2014 post I made described a deal Associated Press (AP) signed with a company that automates the process of writing sports and business stories. You may well have read a business story (AP contracted for business stories) written by an artificial intelligence system or, if you prefer the term, an algorithm.

The recommendation for ‘Enhancing science communication and engagement’ is where I believe the Expert Panel should be offered a bouquet,

… Given the significance of government science in many areas of research, government science communication constitutes an important vector for increasing public awareness and understanding about science. In Canada current policies governing how scientists working in federal departments and agencies are allowed to interact with the media and the public have come under heavy criticism in recent years …

Concerns about the federal government’s current policies on government scientists’ communication with the media have been widely reported in Canadian and international
press in recent years (e.g., Ghosh, 2012; CBC, 2013c; Gatehouse, 2013; Hume, 2013; Mancini, 2013; Munro, 2013). These concerns were also recently voiced by the editorial board of Nature (2012), which unfavourably compared Canada’s current approach with the more open policies now in place in the United States. Scientists at many U.S. federal agencies are free to speak to the media without prior departmental approval, and to
express their personal views as long as they clearly state that they are not speaking on behalf of the government. In response to such concerns, and to a formal complaint filed by the Environmental Law Clinic at the University of Victoria and Democracy Watch, on April 2, 2013 Canada’s Information Commissioner launched an investigation into whether current policies and policy instruments in seven federal departments and agencies are “restricting or prohibiting government scientists from speaking with or sharing research with the media and the Canadian public” (OICC, 2013).

Since these concerns have come to light, many current and former government scientists have discussed how these policies have affected their interactions with the media. Marley Waiser, a former scientist with Environment Canada, has spoken about how that department’s policies prevented her from discussing her research on chemical pollutants in Wascana Creek near Regina (CBC, 2013c). Dr. Kristi Miller, a geneticist with the Department of Fisheries and Oceans, was reportedly prevented from speaking publicly about a study she published in Science, which investigated whether a viral infection might be the cause of declines in Sockeye salmon stocks in the Fraser River (Munro, 2011).

According to data from Statistics Canada (2012), nearly 20,000 science and technology professionals work for the federal government. The ability of these researchers to communicate with the media and the Canadian public has a clear bearing on Canada’s science culture. Properly supported, government scientists can serve as a useful conduit for informing the public about their scientific work, and engaging the public in discussions about the social relevance of their research; however, the concerns reported above raise questions about the extent to which current federal policies in Canada are limiting these opportunities for public communication and engagement. (pp. 190/1 PDF; p. 158/9 print)

Kudos for including the information and for this passage as well,

Many organizations including science centres and museums, research centres, and even governments may be perceived as having a science promotion agenda that portrays only the benefits of science. As a result, these organizations are not always seen as promoters of debate through questioning, which is a crucial part of the scientific process. Acknowledging complexity and controversy is another means to improve the quality of public engagement in science in a range of different contexts. (p. 195 PDF; p. 163 print)

One last happy note, which is about integrating the arts and design into the STEM (science, technology, engineering, and mathematics communities),

Linking Science to the Arts and Design U.S. advocates for “STEM to STEAM” call for an incorporation of the arts in discussions of science, technology, engineering, and mathematics in an effort to “achieve a synergistic balance” (Piro, 2010). They cite positive outcomes such as cognitive development, reasoning skills, and concentration abilities. Piro (2010) argues that “if creativity, collaboration, communication, and critical thinking — all touted as hallmark skills for 21st-century success — are to be cultivated, we need to ensure that STEM subjects are drawn closer to the arts.” Such approaches offer new techniques to engage both student and adult audiences in science learning and engagement opportunities.

What I find fascinating about this STEM to STEAM movement is that many of these folks don’t seem to realize is that until fairly recently the arts and sciences recently have always been closely allied.  James Clerk Maxwell was also a poet, not uncommon amongst 19th century scientists.

In Canada one example of this approach is found in the work of Michael R. Hayden, who has conducted extensive genetic research on Huntington disease. In the lead-up to the 2000 Human Genome Project World Conference, Hayden commissioned Vancouver’s Electric Company Theatre to fuse “the spheres of science and art in a play that explored the implications of the revolutionary technology of the Human Genome Project” (ECT, n.d.). This play, The Score, was later adapted into a film. Hayden believes that his play “transforms the scientific ideas explored in the world of the laboratory into universal themes of human identity, freedom and creativity, and opens up a door for a discussion between the scientific community and the public in general” (Genome Canada, 2006). (p. 196 PDF; p. 164 print)

I’m not sure why the last recommendation presents an either/or choice, ‘Providing national or regional leadership’, while the following content suggests a much more fluid state,

…  it should be recognized that establishing a national or regional vision for science culture is not solely the prerogative of government. Such a vision requires broad support and participation from the community of affected stakeholders to be effective, and can also emerge from that community in the absence of a strong governmental role.

The final chapter (the seventh) restates the points the panel has made throughout its report. Unexpectedly, part 2 got bigger, ’nuff said.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as a Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

Publicity for Canadian nano companies, Quantium Technologies and Vive Nano

The Canadian nanotechnology business scene lit up, so to speak, late last week with articles about two companies, Vive Nano (based in Ontario) and Quantium Technologies (based in Alberta).

Anne McIlroy, science reporter for the Globe and Mail newspeper reported on October 8, 2010 (from her article, Nanotechnology firm sets sights on India) that

The president and CEO of Toronto-based nanotechnology firm Vive Nano [Keith Thomas] was looking for new clients, and he was prepared to talk about how Vive Nano’s nanomaterials can help protect crops or remove contaminants, such as textile dye effluents, from industrial waste water.

Keith Thomas didn’t expect to be asked so many personal questions on his first visit to a large company in India.

The president and CEO of Toronto-based nanotechnology firm Vive Nano was looking for new clients, and he was prepared to talk about how Vive Nano’s nanomaterials can help protect crops or remove contaminants, such as textile dye effluents, from industrial waste water.

But first, he had a 45-minute chat with a staff member who asked him about his life, his wife and family.

“He wanted to take the measure of the man,” Mr. Thomas says.

Vive Nano is now working on two Indian projects, including one with the first company he visited. The privately-held firm employs 18 people, and two thirds of them hold a non-Canadian passport. Its clients include large chemical companies, but in 2008, two years after the company was founded, it seemed prudent to look for other markets, Mr. Thomas says.

Vive Nano wanted to focus on one country, and it picked India. There is an aggressive, entrepreneurial business style there, says Mr. Thomas, and huge interest in novel technology.

… scientists continue to investigate how they [nanoparticles] affect living organisms, including humans, and they are evaluating them for their potential toxicity and impact on the environment. The company is sensitive to the possibility that people may have concerns about nanotechnology, says Mr. Thomas, and it is part of a federally funded study at the University of Alberta that is testing the toxicity of nanoparticles.

McIroy’s article comes on heels of Vive Nano’s Sept. 14, 2010 media release about selling industrial-sized quantities of nanoparticles (from the item on Nanowerk),

Vive Nano is committed to driving down the cost of high-quality nanomaterials. The company’s pilot plant is now producing more than 5 tons/year of nanoparticles of Ceria, Magnetite, Silver and Zinc Oxide. Vive is offering samples up to 20L and full-scale production runs are available.

Vive’s nanoparticles are ultra-small (less than 10nm), non-agglomerating, and water dispersible, allowing simple incorporation into existing products and processes.

Vive Nano Magnetite nanoparticles are superparamagnetic with numerous novel applications in industry, medicine and research. Silver, Zinc Oxide and Ceria applications include catalysis, UV absorption and environmental treatment.

Business is not really my field but this looks to be a leap from a small, R&D-focused and project-based company to a more substantive manufacturing concern. If you’re interested in Vive Nano, their website is here.

Meanwhile in Alberta, Quantium Technologies (mentioned briefly in my August 21, 2009 posting) has made a bit of a splash with its recent announcement that it’s building a 34,000-square-foot (3,159-square-metre) production plant in Edmonton. From the news item on Nanowerk,

Quantiam Technologies Inc., this month’s featured innovator at Edmonton Research Park, is bringing Edmonton the potential of nanotechnology to benefit the environment and transform the city’s economy. The 12-year-old nanomaterials and clean-tech company and its 15 employees create, manufacture and apply advanced coatings based on the science of how materials interact with each other at the smallest detectable scale, such as the first few layers of atoms on the surface of a steel pipe.

Quantiam founder and CEO Dr. Steve Petrone and a small, PhD-rich team began the business by developing coatings that provide superior wear resistance to steel equipment. In addition to customers in petrochemicals, the oil sands, mining, oil and gas, Quantiam is working with the U.S. Defense Department to provide improved armored protection for soldiers and military vehicles.

Quantiam is building a 34,000-square-foot (3,159-square-metre) production plant in the Edmonton Research Park advanced technology centre, where it will join an innovation community of more than 50 companies. “From small start-up firms to global corporate players, Edmonton Research Park provides the environment where exciting developments like those of Quantiam Technologies can grow and thrive,” says the park’s manager, Neil Kaarsemaker.

The new facility, expected to open early in 2011, will house the most advanced private-sector nanotechnology research lab in Canada, an example of ERP’s commitment to its biotechnology business development centre.

How does housing the “most advanced private-sector nanotechnology research lab in Canada” act as an example of a commitment to a biotechnology business development centre? [emphases mine]

The news item posted October 7, 2010 on the Azonano website provides a slightly different picture of Quantium’s building project. I gather the information came from a different source. You can find out more about Quantium on their website although portions of it seem to be under construction.

Russian nanotechnology corporation (RUSNANO) develops joint Canada-Russian fund with VentureLink Funds

RUSNANO (Russian Corporation of Nanotechnologies) executives Mr. Alexander Losyukov, Mr. Kyrill Frolov and Mr. Rail Rafikov have signed an agreement with John Varghese, CEO and Managing Partner of Toronto based venture capital firm, VentureLink Funds. RUSNANO first visited and surveyed the Canadian nanotechnology scene in April 2009 (noted in my April 14, 2009 posting). From the Sept. 13, 2010 news item on Nanowerk,

During their visit [Sept. 7,2010], the delegation successfully concluded in-depth discussions with Mr. Varghese that commenced early in 2010. The goal of the meetings was to establish the basis on which to create a Canada-Russia Nanotechnology Venture Capital Fund co-founded by RUSNANO and Mr. Varghese in Canada. The Fund’s investment interests will mainly focus on nanotechnology based products and applications in the areas of information technology for Nano based applications, energy production and storage, (including renewable and clean energy sources), advanced materials, biomaterials, and other select sectors. The Fund will not be seeking out defense related projects.

Subject to certain conditions, RUSNANO has signed a ground breaking Memorandum of Understanding committing to be a very significant lead order and partner in this new Nano Fund. Final corporate approvals are expected prior to the end of 2010, allowing this Fund to be operational in 2011.

Richard Blackwell writing for the Globe & Mail newspaper notes (from his Sept. 13, 2010 article),

VentureLink managing partner John Varghese said Rusano is searching the world for advances in the field – a rapidly advancing technology that engineers materials at the atomic and molecular scale to create new products for medicine, electronics and energy production – and will provide most of the fund’s initial capital.

High net worth individuals in Canada will also be approached to invest, and the goal is to create a fund in the $100-million to $200-million range, Mr. Varghese said.

The advantage for Canadian companies in the sector is that Rusnano will help them find markets for their products in Russia.

According to the Nanowerk news item, Professor Roman Maev, at the University of Windsor (Ontario), was instrumental in developing this partnership. From Dr. Maev’s University of Windsor web page,

Dr. Roman Maev is the Chairholder of the NSERC/Chrysler/University of Windsor Industrial Research Chair in Applied Solid State Physics and Material Characterization. He came to Canada in 1994, through Inter-Governmental Canada-Russia technology exchange program. One year later Dr. Maev was appointed as a Full Faculty Professor in the School of Physical Sciences at University of Windsor and in 1997 he established the Center of Imaging Research and Advanced Material Characterization at University of Windsor.

In addition to some federal support, there appears to be substantive support from the province of Ontario (from the Sept. 13, 2010 news item on Azonano),

During their visit, RUSNANO also met with the Honourable Sandra Pupatello, Minister of Economic Development and Trade and with senior officials of the Ministry of Research and Innovation, to discuss this new initiative supporting the development of technology transfer partnerships between RUSNANO and Canadian companies. …

Those activities will be based upon regular consultations and coordination with various departments and agencies within the Federal and Provincial Government, including the Ontario Ministry of Economic Development & Trade and the Ministry of Research and Innovation.

“During our meetings, Minister Pupatello stated that Canada wants to go global. Well, Russia also wants to go global, thus we have a good platform to be partners. A partner that shares similar goals allows for unification of efforts. Political will, combined with the appropriate business environment and the right team makes this the ideal time to start this initiative” proudly stated Losyukov.

I was a little surprised that I found no mention of this development on the Nano, Nanotechnology Network of Ontario website as it seems quite a feather in the province’s, if not the organization’s, cap.

University of Alberta, research money, nanotechnology, and those recent Chairs of Excellence

While I’m well aware of their work in nanotechnology research, I did not realize that the University of Alberta was becoming “one of Canada’s powerhouse  research centres.” Here’s more from the Globe & Mail article by Josh Wingrove,

It started last week, with Industry Minister Tony Clement flying in, making a joke about football, announcing $500,000 in funding for nanotechnology research, and promptly leaving. [mentioned in my Aug. 17, 2010 posting]

A week later, a prestigious gathering of 50 delegates from leading Chinese and Canadian research institutions arrived, as well as an announcement Thursday of $200-million in federal research money.

It would be a busy two weeks for any school. But the delegates didn’t attend McGill University, the University of Toronto or the University of British Columbia, typically regarded as Canada’s top-ranked institutions.

Instead, they came to Edmonton’s University of Alberta, which has quickly become one of Canada’s powerhouse research centres. The U of A ranks second in total research funding, behind only U of T and up from fifth in 2006. This year, the U of A will spend $514-million on research, more than double its total from a decade ago.

The university has decided to spend more on research at a time when other departments on campus are experiencing budget cutbacks.

“From a societal point of view of course, research is increasingly conducted as applied research. It’s meant to solve problems,” she [Britta Baron, vice-provost] said. “The more selfish answer from the point of view of the individual university is your prestige, your ranking, depends mostly on the quality of your research. If you want to push yourself up, you need to invest in your research.”

The U of A is home to four of the nation’s 19 Canada Excellence Chairs announced three months ago, more than any other university. [emphasis mine]

I did post about the Canada Excellence Chairs May 20, 2010 when they were first announced and was recently alerted (thanks to Joel Burford of Alberta Innovates Technology Futures) to a youtube interview with one of the new U of A Canada Excellence Chairs, Thomas Thundat. His area of interest is  oil sands molecular engineering,

I’m not really sure what to make of all this other than the fact that competition amongst the universities in Canada seems to be heating up. I recall there was some outcry after a 2009 article by Paul Wells for MacLean’s where representatives from the ‘big five’ Canadian universities claimed they should get the lion’s share of funding for science research and postgraduates while Canada’s other universities should focus on undergraduate education. About 10 days later the other universities replied in an article by Cathy Gulli for MacLean’s. (Rob Annan at Don’t leave Canada behind commented on the controversy here and here.)

I would imagine these latest developments are a matter of some satisfaction for the folks at the U of A. It’ll be interesting to see how this all shakes out especially if there should be a federal election. Let’s not forget that Canada’s Prime Minister, Stephen Harper is from Alberta.

The Jensen Project, researching, and the disappearing Canadian census long form

I couldn’t watch The Jensen Project (Friday, July 16, 2010) for more than about 3 or 4 minutes at a time as I had to keep channel surfing away from this bizarre ‘nanotechnology-themed’ tv movie. It was an awful fascination that kept me coming back.

I gather the writers did their science research by watching Agent Cody Banks (a 2003 Disney movie). They updated the concept so that the nanobots weren’t simple metal-munchers (the nanobots once unleashed would grab atoms to replicate themselves; they seem to particularly metal in the Agent Cody Banks movie. Now the nanobots (sometimes referred to as computers) were injectable (maybe they watched the Bionic Woman reboot?) into hapless victims whose biological processes could then be controlled by a phone app. That’s right. The nanobots could manipulate your hormones, your neurotransmitters and any number of other bodily systems so that you could be cured or killed at the touch of a fingertip by whoever was holding the phone/controller.

My favourite part was where the ‘evil ones’ had to procure a molecular assembler. There are only three or four in the world according to the story. Naturally, the evil chief scientist dashes off to pick one up and returns with it tucked under his arm. Yes, you wouldn’t worry about dropping it. After all, there’d be at least another two or three left in the world.

By comparison with The Jensen Project, Agent Cody Banks was a model of storytelling and scientific accuracy. The Disney movie correctly identified a fullerene (even if the actor was having trouble with the terminology). At least some of the character behaviour made sense and the story had a ‘tongue-in-cheek’ approach so the viewer could make allowances for the flights of fancy.

I searched for information about The Jensen Project as I was curious about any science consultation that might have taken place. Nada, there was no listing for a science consultant and, as far as I can tell, the writers have minimal writing experience (one or two writing credits including The Jensen Project) with some experience in production and none seems to have had a science background of any kind.

Regardless of how much experience you have, research is always important as we’re finding out if the discussion about the prospect that the Canadian long census form is about to disappear is any indication.

As Beth at The Black Hole noted,

All of this brings up questions about politicians’ understanding of the importance of data and evidence-informed practice, not to mention their ignoring the scientific experts on the matter – in this case, the statisticians at Stats Canada.

Beth did a little more investigating using Twitter,

This lead me to check out Clement’s [Tony Clement is the Cabinet Minister responsible for Statistics Canada] Twitter stream, where he referred to having a mandatory (as opposed to voluntary) long form as “state coercion” – I guess it’s fine to have the state “coerce” you to complete the short form – or, you know, obey any of our other laws – but they draw the line at the long form?

In response to a commenter who asked how the census discussion was relevant to science trainees (The Black Hole’s focus) and described the posting as ‘tory-bashing’,

… to call this random Tory bashing is pretty unfair. The census data is a tool that many scientists and social scientists use daily in their research. While it might not be directly relevant to whichever field of science you are in or thinking of when making this comment, it has a huge effect on trainees in epidemiology, public health, civil engineering, and even industry bound trainees. [emphases mine]

This blog is on issues affecting science trainees and a move like this which strips information from the public domain and many researchers is something we definitely see as having an effect.

Hope this helps explain a little why we found it important to post.

Dave [Note: Beth and Dave run the blog]

Interestingly, Tony Clement the minister defending this move fought against it according to Jeffrey Simpson in his July 17, 2010 column for the Globe and Mail,

Last fall, Prime Minister Stephen Harper decided his government would oppose the mandatory long-form census. Since then, nothing has changed his mind. His right-wing ideology and political instinct combined to make a policy that’s being denounced by almost every leading institution and commentator in Canada.

His decision was also opposed inside the government by Finance Minister Jim Flaherty and by Industry Minister Tony Clement, who’s responsible for Statistics Canada, the agency that administers the census.

Both wrote to the Prime Minister, underscoring the importance of the mandatory long-form census to compile the most accurate statistics on which so much public policy and private-sector decision-making depends. [emphases mine]

Dave Bruggeman at Pasco Phronesis has also weighed in with some telling points (and sardonic humour which I haven’t reproduced here but do go and enjoy),

To the north, Canada is preparing for a census in 2011 (it does so every five years compared to ten for the U.S.), but is dealing with a very different methodological debate. The Conservative government, expressing a concern over the privacy of its citizens, has opted to make the census long form (distributed to twenty percent of the population, the remainder receive a short form asking for very basic information) voluntary. (Much like in the United States, you can be fined for not answering census questions.) However, the national privacy commissioner has received all of three complaints about the census since 2001, and Statistics Canada takes stringent measures to maintain confidentiality of census data (much like the U.S. Census Bureau), not releasing detailed census information for decades, if ever.

So the publicized rationale for the change does not reflect a statistically significant analysis of public opinion, but the anecdotes of a few people who caught the attention of Members of Parliament. [emphases mine]

Simpson goes on to suggest Harper’s possible  motivation,

What’s the point of all this, politically? There hasn’t been a hue and cry in years past about the fact that a fifth of Canadians have been required to fill out the long-form census. Past governments of both political stripes, like governments throughout the Western world, do something like this, and it’s one of the reasons why Statistics Canada is regarded internationally as one of the very best statistical agencies in the world.

… this sprang from Mr. Harper’s ideological core conviction about Big Government and, more important, a tactical political sense that here was an issue that could activate his party’s populist base – that could galvanize the core with bogus but potent arguments about the perils of the “nanny state,” the “elites,” the “bureaucrats,” the same sort of people who connive to take away your guns, raise your taxes and threaten your liberties, against whom only the Harper government stands resolute.

Personally, I’m wondering if this census storm isn’t simply a diversionary tactic.

A teeny, tiny invisibility cloak and some thoughts about science funding in Canada

Scientists at the University of California (UC) Berkeley have developed a ‘carpet cloak’ which conceals an object underneath it from view. Of course, it’s a very small object measuring 3.8 microns by 400 nanometres. So, don’t get ready for your invisibility cloak yet. If you’re interested there’s a more detailed article, accompanied by a video, here.

There was an essay in the Saturday, May 2, 2009 issue of the Globe and Mail about Canada’s priorities for research and development funding. Written by Harvey Weingarten, president and vice-chancellor at the University of Calgary, the essay made some good points and it made me uneasy. Yes, infrastructure is important and Canadians can get better at commercializing their discoveries so I had no serious disagreement with anything in the essay.

I am, however, uncomfortable with the phrase ‘curiosity-driven’ research to describe research that does not have a commercial application either in the near future or shortly after that. My sense is that the phrase is becoming mildly pejorative. There’s an implication that it’s a waste of time (idle curiousity). To give Weinstein his due, he doesn’t dismiss curiosity-driven research out of hand, he simply drives forward towards his thesis, that Canada needs to learn how to better engage the private sector and to focus its funding efforts on areas where there is already expertise or where it can easily be established. He does mention balance with regard to his aims but I have a suspicion that his notion of balance is different than mine.

It seems like the Gobe and Mail has taken on a campaign to support the sciences. The May 2, 2009 issue had this essay and an extended piece on students pursuing science education and careers or, rather, how students are not pursuing them.