Category Archives: agriculture

Rubbery lettuce is a good thing

The lettuce we eat was cultivated from prickly lettuce, which is now considered a weed. That status may change if scientists at Washington State University (WSU) are successful with their research into the plant’s ability to produce rubber. From an April 6, 2014 WSU news release by Sylvia Kantor (also on EurekAlert),

Prickly lettuce, a common weed that has long vexed farmers, has potential as a new cash crop providing raw material for rubber production, according to Washington State University scientists.

Writing in the Journal of Agricultural and Food Chemistry, they describe regions in the plant’s genetic code linked to rubber production. The findings open the way for breeding for desired traits and developing a new crop source for rubber in the Pacific Northwest.

“I think there’s interest in developing a temperate-climate source of natural rubber,” said Ian Burke, a weed scientist at WSU and a study author. “It would be really great if prickly lettuce could become one of those crops.”

Here’s what prickly lettuce looks like,

Prickly lettuce, the wild relative of cultivated lettuce, is a potential source for the production of natural rubber. (Photo by Flickr user Jim Kennedy)

Prickly lettuce, the wild relative of cultivated lettuce, is a potential source for the production of natural rubber. (Photo by Flickr user Jim Kennedy)

Here’s a close-up of a prickly lettuce stem with sap,

The milky sap, or latex, of the plant could be used to produce rubber. (Photo by Jared Bell, WSU)

The milky sap, or latex, of the plant could be used to produce rubber. (Photo by Jared Bell, WSU)

Getting back to the prickly lettuce news release,

When the lettuce we eat and grow in our gardens bolts, a milky white sap bleeds from the stem. In prickly lettuce, the wild relative and ancestor of cultivated lettuce, this same substance could prove to be an economically viable source of natural rubber and help alleviate a worldwide threat to rubber production.

Natural rubber is the main ingredient for many everyday products, from boots to condoms to surgical gloves. Roughly 70 percent of the global supply of rubber is used in tires.

But more than half of rubber products are made from synthetic rubber derived from petrochemical sources. And the largest source of natural rubber, the Brazilian rubber tree, is threatened by disease.

Burke has reviewed many studies of prickly lettuce and its cultivated cousins, but one in particular gave him an idea. A study published in 2006 found that the latex in prickly lettuce was very similar to the polymers found in natural rubber.

“It occurred to me that we could grow the heck out of prickly lettuce in eastern Washington,” he said.

Genetic markers for desired traits

He knew that to develop a viable new crop for rubber production, he had to start by understanding the genetics of rubber production in the plant.

Burke, doctoral student Jared Bell and molecular plant scientist Michael Neff began their studies with two distinct samples of prickly lettuce collected from eastern Washington. These differed in their rubber content, leaf shape and tendency to bolt. The scientists were able to identify genetic markers not only for rubber content but for the way the plants grow, including the number of stems produced and bolting.

Sought-after traits in cultivated lettuce – like abundant leaves, a single stem and delayed bolting – are the exact opposite of traits desired for rubber production. Early bolting plants with multiple stems would allow for multiple harvests over the season and potentially maximize rubber yields.

Burke said that selecting for other traits, like water use efficiency, could allow prickly lettuce to be grown with minimal rainfall, meaning it could be grown in rotation with other crops.

Here’s a link to and a citation for the paper,

Genetic and Biochemical Evaluation of Natural Rubber from Eastern Washington Prickly Lettuce (Lactuca serriola L.) by Jared L. Bell, Ian C. Burke, and Michael M. Neff. J. Agric. Food Chem., 2015, 63 (2), pp 593–602 DOI: 10.1021/jf503934v Publication Date (Web): December 16, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Since graduating, Bell has become  associated with Dow Agrosciences.

Citrus canker, Florida, and Zinkicide

Found in Florida orchards in 2005, a citrus canker, citrus greening, poses a serious threat to the US state’s fruit industry. An April 2, 2105 news item on phys.org describes a possible solution to the problem,

Since it was discovered in South Florida in 2005, the plague of citrus greening has spread to nearly every grove in the state, stoking fears among growers that the $10.7 billion-a-year industry may someday disappear.

Now the U.S. Department of Agriculture has awarded the University of Florida a $4.6 million grant aimed at testing a potential new weapon in the fight against citrus greening: Zinkicide, a bactericide invented by a nanoparticle researcher at the University of Central Florida.

An April 2, 2015 University of Central Florida news release by Mark Schlueb (also on EurekAlert), which originated the news item, describes the problem and the solution (Zinkicide),

Citrus greening – also known by its Chinese name, Huanglongbing, or HLB – causes orange, grapefruit and other citrus trees to produce small, bitter fruit that drop prematurely and is unsuitable for sale or juice. Eventually, infected trees die. Florida has lost tens of thousands of acres to the disease.

“It’s a hundred-year-old disease, but to date there is no cure. It’s a killer, a true killer for the citrus industry,” said Swadeshmukul Santra, associate professor in the NanoScience Technology Center at UCF.

The bacteria that causes HLB is carried by the Asian citrus psyllid, a tiny insect that  feeds on leaves and stems of infected citrus trees, then carries the bacteria to healthy trees.

Zinkicide, developed by Santra, is designed to kill the bacteria.

The $4.6 million grant is the largest of five totaling $23 million that were recently announced by the USDA’s National Institute of Food and Agriculture.

The evaluation of Zinkicide is a multi-institute project involving 13 investigators from six institutions. Evan Johnson of UF’s [University of Florida] Citrus Research and Education Center at Lake Alfred is the project director, and there are a dozen co-principal investigators from UF, UCF, Oak Ridge National Laboratory (ORNL), Auburn University, New Mexico State University and The Ohio State University.

”Managing systemic diseases like HLB is a difficult challenge that has faced plant pathologists for many years,” said Johnson “It is a privilege to work with an excellent team of researchers from many different disciplines with the goal of developing new tools that are both effective and safe.”

A portion of the grant money, $1.4 million, flows to UCF, where Santra leads a team that also includes Andre Gesquiere, Laurene Tetard and the Oak Ridge National Laboratory collaborator, Loukas Petridis.

HLB control is difficult because current bactericidal sprays, such as copper, simply leave a protective film on the outside of a plant. The insect-transmitted bacteria bypasses that barrier and lives inside a tree’s fruit, stems and roots, in the vascular tissue known as the phloem. There, it deprives the tree of carbohydrate and nutrients, causing root loss and ultimately death. For a bactericide to be effective against HLB, it must be able to move within the plant, too.

Zinkicide is a nanoparticle smaller than a single microscopic cell, and researchers are cautiously optimistic it will be able to move systemically from cell to cell to kill the bacteria that cause HLB.

“The bacteria hide inside the plant in the phloem region,” Santra said. “If you spray and your compound doesn’t travel to the phloem region, then you cannot treat HLB.”

Zinkicide is derived from ingredients which are found in plants, and is designed to break down and be metabolized after its job is done. [emphasis mine]

It’s the first step in a years-long process to bring a treatment to market. UF will lead five years of greenhouse and field trials on grapefruit and sweet orange to determine the effectiveness of Zinkicide and the best method and timing of application.

The project also includes research to study where the nanoparticles travel within the plant, understand how they interact with plant tissue and how long they remain before breaking down. [emphasis mine]

If effective, the bactericide could have a substantial role in combatting HLB in Florida, and in other citrus-producing states and countries. It would also likely be useful for control of other bacterial pathogens infecting other crops.

The Zinkicide project builds as a spinoff from previous collaborations between Santra and UF’s Jim Graham, at the Citrus Research and Education Center to develop alternatives to copper for citrus canker control.

The previous Citrus Research and Education Foundation (CRDF)-funded Zinkicide project has issued three reports, for June 30, 2014, Sept. 30, 2014, and Dec. 31, 2014. This project’s completion date is May 2015. The reports which are remarkably succinct, consisting of two paragraphs, can be found here.

Oddly, the UCF news release doesn’t mention that Zinkicide (although it can be inferred) is a zinc particulate (I’m guessing they mean zinc nanoparticle) as noted on the CRDF project webpage. Happily, they are researching what happens after the bactericide has done its work on the infection. It’s good to see a life cycle approach to this research.

2014 food and nanotechnologies report from the European Food Safety Authority

A Feb. 27, 2015 news item on Nanowerk announced the latest annual report on food and nanotechnologies from the European Food Safety Authority (EFSA),

In accordance with European Food Safety Authority (EFSA)’s strategy for cooperation and networking with Member States, a Network for Risk Assessment of Nanotechnologies in Food and Feed was established in 2010. The overall goals of this Network are to facilitate harmonisation of assessment practices and methodologies; to enhance exchange of information and data between EFSA and MS; and to achieve synergies in risk assessment activities. The Annual reports of the Network inform the public and the EFSA Advisory Forum about its specific activities and achievements.

The summary for the EFSA Scientific Network of Risk Assessment of Nanotechnologies in Food and Feed1 for 2014 Technical Report offers more details (Note: A link has been removed),

The Network is composed of representatives from 21 Member States and Norway. In addition, observers to this Network represent the Former Yugoslav Republic of Macedonia, Turkey and Montenegro. There is also representation from the European Commission (DGSANTE and JRC), from the EFSA Scientific Committee and the relevant Units/Panels.

During 2014, the Network followed-up on its priority areas and contributed to the making of inventory lists of applications of Nanomaterials already present in the food/feed chain.

At its 2014 meeting the Network focussed again on updates of research results from toxicological studies relevant for the oral route of exposure. Member States representatives presented relevant studies. The type of nanomaterials that are now occurring in the food/feed chain are mainly Titanium dioxide (TiO2) and Synthetic Amorphous Silica (SAS). The evidence bases for oral toxicity and for conducting comprehensive risk assessments of these two materials is building up, but more research remains needed. Challenges to draw firm risk assessment conclusions reside in (1) the intake estimation (2) the possible worst-case absorption and the dose-dependence of absorption (3) the potential irrelevance of high dose oral toxicity studies for risk assessment (4) the extrapolation of kinetic data from rat to man (5) the nanoparticle determination in tissues, and (6) the many differences between the types of nanoforms of one nanomaterial (e.g. in kinetics and toxicity). Some differences in behaviour of different nanoforms have been observed, but there is no clear overview. A new issue of concern is that absorption is not linear with dose: high dose studies are often used for tox testing for estimation of safe dose, while the high dose may result in aggregation, agglomeration, gelation and as a consequence dose-dependent absorption.

Challenges also remain to exist regarding the technical aspects for considering a material as a nanomaterial (NM) for the regulatory purpose of food labelling. The NanoDefine project (FP7) is expected to deliver by 2017 an implementable test-scheme for regulatory purposes to distinguish nano from non-nano.

The Network agreed that regardless the current challenges and regardless the % of nanoforms in the bulk material (particle size% or mass%), EFSA should assess the nano-fraction, no matter how small. Food law, as being implemented by the EFSA Panels is covering nanomaterials. Nanomaterials are addressed mainly by cross-referring to the Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain (EFSA Scientific Committee, 2011 http://www.efsa.europa.eu/en/efsajournal/doc/2140.pdf). (p. 2 print & PDF versions)

For anyone curious about the European Food and Safety Authority, you can go here.

Canada’s Green Earth Nano Science expands into the European Union

It’s nice to learn of another Canadian ‘nanotechnology’ company. According to a Feb. 6, 2015 news item on Nanotechnology Now, Toronto-based Green Earth Nano Science has recently received some very good business news,

Green Earth Nano Science has signed an Exclusive Distribution Agreement with CleanShield Denmark to bring GENS NANO and SOLARSTUCCO self-cleaning coatings, and AGRIHIT biodegradable cleaners, organic plant based disinfectants, and sanitizers into Denmark, Sweden, Norway and German markets.

A Feb. 1, 2015 Green Earth Nano Science news release, which originated the news item, describes the deal in more detail,

Green Earth Nano Science, Inc., (GENS) from Toronto, Canada is one of the first of the new class of global companies specializing in investment, commercialization, manufacturing, and distribution of new sustainable green environmental technologies. GENS have recently expanded its marketplace to Denmark, Sweden, Norway and Germany through Danish company CleanShield by signing Exclusive License Distribution Agreement for distribution and application of its Gens Nano & SolarStucco branded self-cleaning, anti-bacterial coatings, and AgriHit branded organic disinfectants & sanitizers, natural bio degradable cleaners, natural foliar fertilizers & plant growth & health enhancers.

CleanShield, a Denmark Company, is a growing corporation with an existing applicator and sales networks with customers in key Denmark industrial and hospitality segments. CleanShield has strong capabilities to develop sales distribution and application networks through their connection and relationships with many local businesses, government, health care and hospitality facilities plus building maintenance companies. Green technology products portfolio offered by Green Earth Nano Science, Inc. focuses on constant improvements through commercialization of path breaking technologies that benefit the environment as well as people. Many industries benefit from GENS natural products and environmental solutions, including farming, food, health care, hospitality, commercial and residential industries.

Miroslaw Chrzaniecki, VP from Green Earth Nano Science, Inc. stated: “We are energized with opportunity to serve and expend in Denmark, Sweden, Norway and German territories. Looking just at Denmark, it is one of the World’s richest countries, home to various types of industries including big agricultural production companies making it an ideal frontier for expansion. To add to this fact, Denmark’s principal exports: machinery, instruments, food products, industrial machinery, chemical products, furniture, pharmaceuticals, and canned ham and pork can all benefit GENS’s Green 3D Shield bio security system that works wonders by utilizing herbal natural cleaning technologies. Local farmers as mentioned by Mr. Chrzaniecki can also take advantage of the revolutionary AgriHit Plant Growth & Health Enhancer, made from plant extracts when applied diluted with water on the plant leafs help plants to fight off diseases, repel small insects, fungi attacks. [emphasis mine] Other products we introduce in Denmark, Sweden, Norway and Germany are our natural cleaners, organic sanitizers; natural self-cleaning and self-sanitizing antibacterial coatings will benefit many businesses and even home clients as well. For example e-coil, salmonella and other potential devastating outbreaks within food manufactures can be prevented or reduced by application of GENS NANO self sanitizing coating. Hotels and office building and homes can be made as allergy free by treating A/C systems and regular use of food safe, long lasting AgriHit organic disinfectants and by using our plant based antibacterial cleaners in daily cleaning routines. I can talk for hours about many different benefits that together with our exclusive license partners we will introduce in Europe.” opines Miroslaw Chrzaniecki, VP of Green Earth Nano Science, Inc.

On the other hand, Mr. Thomas Gregersen Bowmann, Director of CleanShield shares the same enthusiasm and excitement saying “Now by signing Exclusive Territory Licensing agreement with Canadian company Green Earth Nano Science Inc. we are on the forefront of green revolution in Denmark. With a professional team ready to happily serve and offer these green infection control solutions using GENS’s reliable green-products such as SolarStucco, AgriHit and 3D Shield bio security systems can help sustain our loyal clients’ needs to achieve great savings and reducing outbreak problems while protecting the environment. Crews are experienced and well trained and we are very happy to be able to offer green infection control solutions and implement Green 3D Shield bio security system in their facilities. With the introduction of environment friendly, natural products, we will help our clients to achieve great savings for the whole different industries and also reduce problems associated with outbreaks at the same time. We will be implementing an aggressive marketing strategy to explore all business opportunities in Denmark.”

The AgriHit product, the part about “repel small insects, fungi attacks,” reminds me of Vive Crop Protection (another Toronto-based ‘nano’ company) and its product line. I last mentioned that company in a Nov. 21, 2014 post about the expansion of its manufacturing capabilities.

Getting back to the matter at hand, congratulations to Green Earth Nano Science! You can find out more about CleanShield here, provided you have Danish language skills. For anyone particularly interested in AgriHit (the Green Earth Nano Science [GENS] product), it has its own website here. One comment, I found the GENS website organization a little confusing. I advise checking both the Solutions tab and the Products tab if you’re interested in learning more about their products, as well as, visiting the AgriHit website.

From monitoring glucose in kidneys to climate change in trees

That headline is almost poetic but I admit It’s a bit of a stretch rhymewise, kidneys/trees. In any event, a Feb. 6, 2015 news item on Azonano describes research into monitoring the effects of climate change on trees,

Serving as a testament to the far-reaching impact of Governor Andrew M. Cuomo’s commitment to maintaining New York State’s global leadership in nanotechnology innovation, SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) today announced the National Science Foundation (NSF) has awarded $837,000 to support development of a first of its kind nanoscale sensor to monitor the effects of climate change on trees.

A Feb. 5, 2015 SUNY Poly CNSE news release, which originated the news item, provides more details including information about the sensor’s link to measuring glucose in kidneys,

The NSF grant was generated through the Instrument Development for Biological Research (IDBR) program, which provides funds to develop new classes of devices for bio-related research. The NANAPHID, a novel aphid-like nanosensor, will provide real-time measurements of carbohydrates in live plant tissue. Carbohydrate levels in trees are directly connected to plant productivity, such as maple sap production and survival. The NANAPHID will enable researchers to determine the effects of a variety of environmental changes including temperature, precipitation, carbon dioxide, soil acidity, pests and pathogens. The nanosensor can also provide real-time monitoring of sugar concentration levels, which are of signficant importance in maple syrup production and apple and grape farming.

“The technology for the NANAPHID is rooted in a nanoscale sensor SUNY Poly CNSE developed to monitor glucose levels in human kidneys being prepared for transplant. Our team determined that certain adjustments would enable the sensor to provide similar monitoring for plants, and provide a critical insight to the effects of climate change on the environment,” said Dr. James Castracane, professor and head of the Nanobioscience Constellation at SUNY Polytechnic Institute. “This is a perfect example of the cycle of innovation made possible through the ongoing nanotechnology research and development at SUNY Poly CNSE’s NanoTech Complex.”

“This new sensor will be used in several field experiments on measuring sensitivity of boreal forest to climate warming. Questions about forest response to rising air and soil temperatures are extremely important for forecasting future atmospheric carbon dioxide levels, climate change and forest health,” said Dr. Andrei Lapenas, principal investigator and associate professor of climatology at the University at Albany. “At the same time, we already see some potential commercial application for NANAPHID-type sensors in agriculture, food industry and other fields. Our collaboration with SUNY Poly CNSE has been extremely productive and I look forward to continuing our work together.”

The NANAPHID project began in 2014 with a $135,000 SUNY Research Foundation Network of Excellence grant. SUNY Poly CNSE will receive $400,000 of the NSF award for the manufacturing aspects of the sensor array development and testing. The remaining funds will be shared between Dr. Lapenas and researchers Dr. Ruth Yanai (ESF), Dr. Thomas Horton (ESF), and Dr. Pamela Templer (Boston University) for data collection and analysis.

“With current technology, analyzing carbohydrates in plant tissues requires hours in the lab or more than $100 a sample if you want to send them out. And you can’t sample the same tissue twice, the sample is destroyed in the analysis,” said Dr. Yanai. “The implantable device will be cheap to produce and will provide continuous monitoring of sugar concentrations, which is orders of magnitude better in both cost and in the information provided. Research questions we never dreamed of asking before will become possible, like tracking changes in photosynthate over the course of a day or along the stem of a plant, because it’s a nondestructive assay.”

“I see incredible promise for the NANAPHID device in plant ecology. We can use the sensors at the root tip where plants give sugars to symbiotic fungi in exchange for soil nutrients,” said Dr. Horton. “Some fungi are believed to be significant carbon sinks because they produce extensive fungal networks in soils and we can use the sensors to compare the allocation of photosynthate to roots colonized by these fungi versus the allocation to less carbon demanding fungi. Further, the vast majority of these symbiotic fungi cannot be cultured in lab. These sensors will provide valuable insights into plant-microbe interactions under field conditions.”

“The creation of this new sensor will make understanding the effects of a variety of environmental changes, including climate change, on the health and productivity of forests much easier to measure,” said Dr. Templer. “For the first time, we will be able to measure concentrations of carbohydrates in living trees continuously and in real-time, expanding our ability to examine controls on photosynthesis, sap flow, carbon sequestration and other processes in forest ecosystems.”

Fascinating, eh? I wonder who made the connection between human kidneys and plants and how that person made the connection.

More mangoes thanks to an Indian-Sri Lankan-Canadian nanotechnologyresearch project

I’ve been wondering what happened since I posted about this ‘mango’ project some years ago (my June 21, 2012 posting and my Nov. 1, 2012 posting) so, it’s nice to get an update from this Fresh Fruit Portal Feb. 4, 2015 posting,

Developed by Canadian, Indian and Sri Lankan researchers in a collaborative project funded by the International Development Research Centre (IDRC), the nanotech mango boxes are said to improve the fruit’s resilience and therefore boost quality over long shipping distances.

The project – which also includes the Tamil Nadu Agricultural University, India and the Industrial Technical Institute, Sri Lanka – has tested the use of the bio-compound hexanal, an artificially synthesized version of a natural substance produced by injured plants to reduce post-harvest losses.

The nanotech boxes could be particularly significant for India as a world leader in mango production, as well as Sri Lanka where approximately 90,000 metric tons (MT) are produced annually.

The IDRC report says although South Asian fruit production is globally competitive, the region only meets around half of its demand due to poor processing and preservation facilities. Waste can be as high as 35% and amounts to billions of dollars in annual losses.

Historically, the Indian mango sector has suffered severe post-harvest loses due to the lack of cold chain supply infrastructure across the country, and developing a smart packing system like nanotech boxes could therefore be one way to address such challenges.

“Special boxes have been designed to reduce losses during transport. The boxes are sturdy, and can be stacked without risking damage to the fruit, and this alone can reduce post-harvest losses by 10-15%,” the IDRC report continues.

“In order to further improve the storage life of fruits during transport, the project has made a pioneering attempt to develop ‘nano-matrices’ using banana fibers to regulate the release of hexanal.

I wasn’t able to find much more about the project which ended in August 2014 but there is new work being funded as per a Jan. 23, 2015 IDRC news release,

Canada’s International Development Research Centre (IDRC) and Foreign Affairs, Trade and Development Canada (DFATD) today announced three new projects to be supported under the Canadian International Food Security Research Fund (CIFSRF). The projects will help prevent livestock diseases and post-harvest fruit losses that affect millions of farmers around the world, and build on the successful research carried out during CIFSRF’s first phase. [emphasis mine]

  • Researchers from the University of Guelph, Canada, Tamil Nadu Agricultural University, India, and the Industrial Technical Institute, Sri Lanka, have shown that a natural compound known as hexanal delays the ripening of mangos. Using nanotechnology, the team will continue to develop hexanal-impregnated packaging and biowax coatings to improve the fruit’s resilience during handling and shipping for use in Asia, Africa, and the Caribbean. It will also expand its research to include other fruit and look at ways to commercialize the technologies.

New funding will allow the research teams to further develop the new technologies and involve partners who can bring them to market to reach greater numbers of small-holder farmers.

It seems this new round of funding will help bring these nanotechnology-enabled products to market.

Detecting Ochratoxin A in agricultural products with gold nanoparticles

Iranian researchers have developed a fast, inexpensive way to test for a cancer-causing toxicant found in some agricultural products. From a Jan. 5, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers from Isfahan University of Technology used gold nanoparticles in the production of a detection kit to find cancerous toxicant in agricultural products (“Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products”).

The use of the kit increases speed, sensitivity and ease of application.

A Jan. 5, 2015 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, describes Ochratoxin A and the kit,

Humans and animals are always threatened by various toxicants naturally produced in different food products. Ochratoxin A is a type of toxicant that is produced by some types of fungi, which has been classified in human cancerous materials (Group B2) by the International Agency for Research on Cancer (IARC).

There are many methods to detect this toxicant, but in addition to high costs, these methods are time-consuming and require skillful and expert people to carry out the tests. The fact is that in many places where the detection of ochratoxin A is a necessity, there is no equipment and the detection process fails.

Increasing the detection speed, ease of application, and reducing costs are among the advantages of the method proposed by the researchers. Obtaining technical knowledge for the production of various detection kits based on this method for different materials is another achievement of the researchers.

In this research, a fast and ultra-sensitive detection kit has been produced based on immunochromatography method. To this end, test tapes have been designed and produced by using gold nanoparticles markers, and the results are obtained by placing the sample on the tape after 15 minutes. Gold nanoparticles create red color after combining with the toxicant and the color is visible by naked eye too.

Here’s a link to and a citation for the published research,

Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products by Marjan Majdinasab, Mahmoud Sheikh-Zeinoddin, Sabihe Soleimanian-Zad, Peiwu Li, Qi Zhang, Xin Li, and Xiaoqian Tang. Journal of Chromatography B Volume 974, 1 January 2015, Pages 147–154. doi:10.1016/j.jchromb.2014.10.034

This paper is behind a paywall.

Congratulations to Vive Crop on its new manufacturing capability

Here’s the latest news from Vive Crop (from the Nov.20, 2014 announcement,

Toronto, ON – Nov 20, 2014 – Vive Crop Protection, Inc. is pleased to announce the opening of its new manufacturing plant to enable commercial production of its advanced product formulations. These technologies leverage Vive’s patented Allosperse® delivery system, providing enhanced agronomic performance and new application opportunities for farmers.

“This plant is the result of the dedicated effort of all our employees and the support of our partners. Completion of our manufacturing plant is a momentous milestone that significantly accelerates our company’s growth,” said Vive CEO Keith Thomas. “Vive’s innovative employees are rapidly developing a strong pipeline of effective crop protection products for our partners and growers.”

Vive’s products have been commercialized from fundamental research conducted at the University of Toronto and funded by the Natural Sciences and Engineering Council of Canada (NSERC) I2I program and Ontario Centres of Excellence. Ongoing support has been provided by private investors as well as the Government of Canada through Sustainable Development Technology Canada and FedDev Ontario as well as the Government of Ontario through the Innovation Demonstration Fund and Ontario Capital Growth Corporation. Vive’s plant is located at Halltech Inc., a Canadian manufacturer of polymer emulsions.

About Vive Crop Protection: Vive Crop Protection makes products that better protect crops from pests. The company has won a number of awards and was highly commended for Best Formulation Innovation at the 2012 Agrow Awards. Vive’s patented Allosperse delivery system has the ability to coat plants more evenly, which provides better crop protection and can lead to increased yields. Vive is working with partners across the globe that share its vision of bringing safer, more effective crop protection products to growers everywhere. For more information, see www.vivecrop.com.

Congratulations to everyone at Vive Crop!

For anyone unfamiliar with the company, there’s this description from the Vive Crop website’s homepage,

At Vive, our aim is to develop effective crop protection products, giving farmers better tools to protect their crops.

We use our patented Allosperse® delivery system in formulations that have new, exciting properties that growers care about. Allosperse is a water-dispersible delivery system, meaning that our formulations are made without solvents.

We are looking for partners across the globe that share our vision of bringing effective crop protection products to growers everywhere.

Crop protection sounds like work on pesticides and insecticides to me and given that Vive Crop has won at least one ‘cleantech’ award, I assume that this is a relatively ‘green’ product. I last wrote about Vive Crop in a Dec. 31, 2013 post.

Finally, I was a little puzzled by the mention of Vive Crop’s manufacturing plant as being located at Halltech Inc., a Canadian manufacturer of polymer emulsions located in Scarborough, Ontario. Perhaps they’re sharing space? In any event, you can find Halltech here.

FOE, nano, and food: part three of three (final guidance)

The first part of this food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

The second part of this series focused largely on a couple of  research efforts (a June 11, 2014 news item on Nanowerk highlights a Franco-German research project, SolNanoTox) and in the US (a  June 19, 2014 news item on Azonano about research from the University of Arizona focusing on nanoscale additives for dietary supplement drinks) and noted another activist group’s (As You Sow) initiative with Dunkin’ Donuts (a July 11, 2014 article by Sarah Shemkus in a sponsored section in the UK’s Guardian newspaper0).

This final part in the series highlights the US Food and Drug Administration’s (FDA) final guidance document on nanomaterials and food issued some five weeks after the FOE’s report and an essay by a Canadian academic on the topic of nano and food.

A July 9, 2014 news item on Bloomberg BNA sums up the FDA situation,

The Food and Drug Administration June 24 [2014] announced new guidance to provide greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products, including drugs, devices, cosmetics and food.

In this final guidance, the agency said that nanotechnology “can be used in a broad array of FDA-regulated products, including medical products (e.g., to increase bioavailability of a drug), foods (e.g., to improve food packaging) and cosmetics (e.g., to affect the look and feel of cosmetics).”

Also on the agency website, the FDA said it “does not make a categorical judgment that nanotechnology is inherently safe or harmful. We intend our regulatory approach to be adaptive and flexible and to take into consideration the specific characteristics and the effects of nanomaterials in the particular biological context of each product and its intended use.”

This July 18, 2014 posting by Jeannie Perron, Miriam Guggenheimm and Allan J. Topol of Covington & Burling LLP on the National Law Review blog provides a better summary and additional insight,

On June 24, 2014, the Food and Drug Administration (FDA) released three final guidance documents addressing the agency’s general approach to nanotechnology and its use by the food and cosmetics industries, as well as a draft guidance on the use of nanomaterials in food for animals.

These guidance documents reflect FDA’s understanding of nanomaterials as an emerging technology of major importance with the potential to be used in novel ways across the entire spectrum of FDA- regulated products.

The documents suggest that FDA plans to approach nanotechnology-related issues cautiously, through an evolving regulatory structure that adapts to manufacturers’ changing uses of this technology. FDA has not established regulatory definitions of “nanotechnology,” “nanomaterial,” “nanoscale,” or other related terms. …

The notion of an “evolving regulatory structure” is very appealing in situations with emerging technologies with high levels of uncertainty. It’s surprising that more of the activist groups don’t see an opportunity with this approach. An organization that hasn’t devised a rigid regulatory structure has no investment in defending it. Activist groups can make the same arguments, albeit from a different perspective, about an emerging technology as the companies do and, theoretically, the FDA has become a neutral party with the power to require a company to prove its products’ safety.

You can find the FDA final guidance and other relevant documents here.

Finally, Sylvain Charlebois, associate dean at the College of Business and Economics at the University of Guelph, offers a rather provocative (and not from the perspective you might expect given his credentials) opinion on the topic of ‘nano and food’  in a July 18, 2014 article for TheRecord.com,

Nanotechnology and nanoparticles have been around for quite some time. In fact, consumers have been eating nanoparticles for years without being aware they are in their food.

Some varieties of Dentyne gum and Jell-O, M&M’s, Betty Crocker whipped cream frosting, Kool-Aid, Pop-Tarts, you name it, contain them. Even food packaging, such as plastic containers and beer bottles, have nanoparticles.

While consumers and interest groups alike are registering their concerns about genetically modified organisms, the growing role of nanotechnology in food and agriculture is impressive. When considering the socio-economic and ethical implications of nanotechnology, comparisons to the genetic modification debate are unavoidable.

The big picture is this. For years, capitalism has demonstrated its ability to create wealth while relying on consumers’ willingness to intrinsically trust what is being offered to them. With trans fats, genetically modified organisms and now nanoparticles, our food industry is literally playing with fire. [emphasis mine]

Most consumers may not have the knowledge to fully comprehend the essence of what nanotechnology is or what it can do. However, in an era where data access in almost constant real-time is king, the industry should at least give public education a shot.

In the end and despite their tactics, the activist groups do have a point. The food and agricultural industries need to be more frank about what they’re doing with our food. As Charlebois notes, they might want to invest in some public education, perhaps taking a leaf out of the Irish Food Board’s book and presenting the public with information both flattering and nonflattering about their efforts with our food.

Part one (an FOE report is published)

Part two (the problem with research)

ETA Aug. 22, 2014: Coincidentally, Michael Berger has written an Aug. 22, 2014 Nanowerk Spotlight article titled: How to identify nanomaterials in food.

ETA Sept. 1, 2014: Even more coincidentally, Michael Berger has written a 2nd Nanowerk Spotlight (dated Aug. 25, 2014) on the food and nano topic titled, ‘Nanotechnology in Agriculture’ based on the European Union’s Joint Research Centre’s ‘Workshop on Nanotechnology for the agricultural sector: from research to the field”, held on November 21-22 2013′.

FOE, nano, and food: part two of three (the problem with research)

The first part of this roughly six week food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

Coincidentally or not, there were a couple of news items about ‘nano and food’ research efforts during the ‘debate’. A June 11, 2014 news item on Nanowerk highlights a Franco-German research project into the effects that nanomaterials have on the liver and the intestines while noting the scope of the task researchers face,

What mode of action do nanomaterials ingested via food have in liver and intestine? Which factors determine their toxicity? Due to the large number of different nanomaterials, it is hardly possible to test every one for its toxic properties. [emphasis mine] For this reason, specific properties for the classification of nanomaterials are to be examined within the scope of the Franco-German research project “SolNanoTox”, which began on 1 March 2014. The [German] Federal Institute for Risk Assessment (BfR) requires data on bioavailability for its assessment work, in particular on whether the solubility of nanomaterials has an influence on uptake and accumulation in certain organs, such as liver and intestine. “We want to find out in our tests whether the criterion ‘soluble or insoluble’ is a determining factor for uptake and toxicity of nanomaterials,” says BfR President Professor Dr. Andreas Hensel.

A June 13, 2014 German Federal Institute for Risk Assessment (BfR) press release, which originated the news item, details the research and the participating agencies,

A risk assessment of nanomaterials is hardly possible at the moment and involves a very high degree of uncertainty, as important toxicological data on their behaviour in tissue and cells are still missing. [emphasis mine] The German-French SolNanoTox research project examines which role the solubility of nanomaterials plays with regard to their accumulation and potential toxic properties. The project is to run for three and a half years during which the BfR will work closely with its French sister organisation ANSES. Other partners are the Institut des Sciences Chimiques de Rennes and Universität Leipzig. The German Research Foundation and French Agence Nationale de la Recherche (ANR) are funding the project.

The tasks of the BfR include in vitro tests (e.g. the investigation of the influence of the human gastrointestinal system) and analysis of biological samples with regard to the possible accumulation of nanomaterials. In addition to this, the BfR uses modern methods of mass spectrometry imaging to find out whether nanoparticles alter the structure of biomolecules, e.g. the structure of the lipids of the cellular membrane. So far, these important tests, which are necessary for assessing possible changes in DNA or cellular structures caused by nanomaterials in food, have not been conducted.

Metallic nanoparticles are to be studied (from the press release),

In the project, two fundamentally different types of nanoparticles are examined as representatives for others of their type: titanium dioxide as representative of water insoluble nanoparticles and aluminium as an example of nanomaterials which show a certain degree of water solubility after oxidation. [emphases mine] It is examined whether the degree of solubility influences the distribution of the nanomaterials in the body and whether soluble materials may possibly accumulate more in other organs than insoluble ones. The object is to establish whether there is a direct toxic effect of insoluble nanomaterials in general after oral uptake due to their small size.

Different innovative analytical methods are combined in the project with the aim to elucidate the behaviour of nanomaterials in tissue and their uptake into the cell. The main focus is on effects which can trigger genotoxic damage and inflammation. At first, the effects of both materials are examined in human cultures of intestinal and liver cells in an artificial environment (in vitro). In the following, it has to be verified by animal experimentation whether the observed effects can also occur in humans. This modus operandi allows to draw conclusions on effects and mode of action of orally ingested nanomaterials with different properties. The goal is to group nanomaterials on the basis of specific properties and to allocate the corresponding toxicological properties to these groups. Motivation for the project is the enormous number of nanomaterials with large differences in physicochemical properties. Toxicological tests cannot be conducted for all materials.

In the meantime, a June 19, 2014 news item on Azonano (also on EurekAlert but dated June 18, 2014) features some research into metallic nanoparticles in dietary supplement drinks,

Robert Reed [University of Arizona] and colleagues note that food and drink manufacturers use nanoparticles in and on their products for many reasons. In packaging, they can provide strength, control how much air gets in and out, and keep unwanted microbes at bay. As additives to food and drinks, they can prevent caking, deliver nutrients and prevent bacterial growth. But as nanoparticles increase in use, so do concerns over their health and environmental effects. Consumers might absorb some of these materials through their skin, and inhale and ingest them. What doesn’t get digested is passed in urine and feces to the sewage system. A handful of initial studies on nanomaterials suggest that they could be harmful, but Reed’s team wanted to take a closer look.

They tested the effects of eight commercial drinks containing nano-size metal or metal-like particles on human intestinal cells in the lab. The drinks changed the normal organization and decreased the number of microvilli, finger-like projections on the cells that help digest food. In humans, if such an effect occurs as the drinks pass through the gastrointestinal tract, these materials could lead to poor digestion or diarrhea, they say. The researchers’ analysis of sewage waste containing these particles suggests that much of the nanomaterials from these products are likely making their way back into surface water, where they could potentially cause health problems for aquatic life.

This piece is interesting for two reasons. First, the researchers don’t claim that metallic nanoparticles cause digestion or diarrhea due to any action in the gastrointestinal tract. They studied the impact that metallic nanoparticles in supplementary drinks had on cells (in vitro testing) from the gastrointestinal tract. Based on what they observed in the laboratory, “… these materials could lead to poor digestion or diarrhea… .” The researchers also suggest a problem could occur as these materials enter surface water in increasing quantities.

Here’s a link to and a citation for the paper,

Supplement Drinks and Assessment of Their Potential Interactions after Ingestion by Robert B. Reed, James J. Faust, Yu Yang, Kyle Doudrick, David G. Capco, Kiril Hristovski, and Paul Westerhoff. ACS Sustainable Chem. Eng., 2014, 2 (7), pp 1616–1624 DOI: 10.1021/sc500108m Publication Date (Web): June 2, 2014

Copyright © 2014 American Chemical Society

With Paul Westerhoff as one of the authors and the reference to metallic nanoparticles entering water supplies, I’m guessing that this research is associated with the LCnano (lifecycle nano) project headquartered at Arizona State university (April 8, 2014 posting).

Getting back to the Franco-German SolNanoTox project, scientists do not know what happens when the cells in your intestines, liver, etc. encounter metallic or other nanoparticles, some of which may be naturally occurring. It should also be noted that we have likely been ingesting metallic nanoparticles for quite some time. After all, anyone who has used silver cutlery has ingested some silver nanoparticles.

There are many, many questions to be asked and answered with regard to nanomaterials in our foods.  Here are a few of mine:

  • How many metallic and other nanoparticles did we ingest before the advent of ‘nanomaterials in food’?
  • What is the biopersistence of naturally occurring and engineered metallic and other nanoparticles in the body?
  • Is there an acceptable dose versus a fatal dose? (Note: There’s naturally occurring formaldehyde in pears as per my May 19, 2014 post about doses, poisons, and the Sense about Science group’s campaign/book, Making Sense of Chemical Stories.)
  • What happens as the metallic and other engineered nanoparticles are added to food and drink and eventually enter our water, air, and soil?

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As You Sow is currently having 16 more foods tested. The result should be available later this summer, Fugere says.

I wonder if As You Sow will address the question of whether the nanoscale titanium dioxide they find indicates that nanoscale particles are being deliberately added or whether the particles are the inadvertent consequence of the production process. That said, I find it hard to believe no one in the food industry is using engineered nanoscale additives as they claim  (the other strategy is to offer a nonanswer) in Shemkus’ article (Note: Links have been removed).,

In a statement, Dunkin’ Donuts argues that the titanium dioxide identified by As You Sow does not qualify as a nanomaterial according to European Union rules or draft US Food and Drug Administration regulations. The company also points out that there is no agreed-upon standard method for identifying nanoparticles in food.

In 2008, As You Sow filed nanomaterial labeling resolutions with McDonald’s and Kraft Foods. In response, McDonald’s released a statement declaring that it does not support the use of nanomaterials in its food, packaging or toys. Kraft responded that it would make sure to address health and safety concerns before ever using nanomaterials in its products.

While Shemkus’ article appears in the Guardian’s Food Hub which is sponsored by the Irish Food Board, this article manages to avoid the pitfalls found in Philpott’s nonsponsored article.

Coming next: the US Food and Drug Administration Guidance issued five weeks after the FOE kicks off the ‘nano and food’ debate in May 2014 with its ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘ report.

Part one (an FOE report is published)

Part three (final guidance)