Monthly Archives: December 2012

DNA-marked valuables in London

It seems like an odd Christmas eve announcement but the Dec. 24, 2012 news item on Azonano highlights a new initiative from the UK Metropolitan Police Service (MPS),

Applied DNA Sciences, Inc., (Twitter: @APDN), a provider of DNA-based anti-counterfeiting technology and product authentication solutions, announced today that the UK Metropolitan Police Service (MPS) will be using its proprietary DNANet™ property marking kits as part of a major initiative to reduce crime in targeted London neighborhoods.

… The unequaled forensic merit of DNANet markers empower municipalities to apprehend and convict criminals. In the long term, crime deterrence rises from enhanced policing and prosecution power. [emphasis mine] Street and home signage announcing the use of DNANet markers will place potential offenders on alert, offering additional deterrence value.

Chief Inspector Robyn Williams, who is responsible for Neighbourhood Policing and Partnership in Lambeth, said: “The response from Lambeth residents to this Burglary crime prevention and reduction scheme has been extremely positive with an almost 100% take up rate of addresses visited to date. Police in Lambeth will continue to adopt and utilise innovative tactics including DNANet property marking that will support us in keeping our residents safe.”

Enhanced policing and prosecution power will deter crime? Intriguingly, the movie version of Les Misérables opened Dec. 25, 2012 and. as I recall the story, the lead’s (Jean Valjean) criminal past is due to extreme poverty. Perhaps the elimination of poverty would help alleviate some crime? In any event, people who steal from your home aren’t usually the biggest criminals and DNA marking will not lead to arrests of corrupt stock traders, bankers, and others of that ilk who not only ‘steal’ but have also, in the not so recent past, helped to bring down econ0mies.

From a technical perspective, the Applied DNA Sciences website (the company is based in the US) doesn’t offer a great deal of detail about their DNA marking products although there is a description of covert marking (from the Law Enforcement product page),

An item is marked with a stealth DNA marker – not detectable by offenders. Upon item recovery, a surface swab sample is taken and evaluated in the Applied DNA Sciences technology center. Additionally, surface swabs of offender hands and clothing are analyzed. Presence of the marker provides forensic evidence/offender linkage to crimes. Perfect for ransom recovery and narcotics operations.

An overt marking description follows on that page.

500 phases of matter take us beyond solid, liquid, and gas

A Dec. 22, 2012 news item on Nanowerk touts a major reclassification and expansion of the states of matter,

Forget solid, liquid, and gas: there are in fact more than 500 phases of matter. In a major paper in Science, Perimeter [Institute] Faculty member Xiao-Gang Wen reveals a modern reclassification of all of them.

Using modern mathematics, Wen and collaborators reveal a new system which can, at last, successfully classify symmetry-protected phases of matter. Their new classification system will provide insight about these quantum phases of matter, which may in turn increase our ability to design states of matter for use in superconductors or quantum computers.

The Perimeter Institute for Theoretical Physics, where this work was done, is located in Waterloo, Ontario (Canada). More information about Wen’s latest publication can be found in this Dec. 21, 2012 press release on the Institute website (there are also links to more explanations about condensed matter and other related topics),

Condensed matter physics – the branch of physics responsible for discovering and describing most of these phases – has traditionally classified phases by the way their fundamental building blocks – usually atoms – are arranged. The key is something called symmetry.

To understand symmetry, imagine flying through liquid water in an impossibly tiny ship: the atoms would swirl randomly around you and every direction – whether up, down, or sideways – would be the same. The technical term for this is “symmetry” – and liquids are highly symmetric. Crystal ice, another phase of water, is less symmetric. If you flew through ice in the same way, you would see the straight rows of crystalline structures passing as regularly as the girders of an unfinished skyscraper. Certain angles would give you different views. Certain paths would be blocked, others wide open. Ice has many symmetries – every “floor” and every “room” would look the same, for instance – but physicists would say that the high symmetry of liquid water is broken.

Classifying the phases of matter by describing their symmetries and where and how those symmetries break is known as the Landau paradigm. More than simply a way of arranging the phases of matter into a chart, Landau’s theory is a powerful tool which both guides scientists in discovering new phases of matter and helps them grapple with the behaviours of the known phases. Physicists were so pleased with Landau’s theory that for a long time they believed that all phases of matter could be described by symmetries. That’s why it was such an eye-opening experience when they discovered a handful of phases that Landau couldn’t describe.

Beginning in the 1980s, condensed matter researchers, including Xiao-Gang Wen – now a faculty member at Perimeter Institute – investigated new quantum systems where numerous ground states existed with the same symmetry. Wen pointed out that those new states contain a new kind of order: topological order. Topological order is a quantum mechanical phenomenon: it is not related to the symmetry of the ground state, but instead to the global properties of the ground state’s wave function. Therefore, it transcends the Landau paradigm, which is based on classical physics concepts.

Topological order is a more general understanding of quantum phases and the transitions between them. In the new framework, the phases of matter were described not by the patterns of symmetry in the ground state, but by the patterns of a decidedly quantum property – entanglement.

Wen’s new work has been published in latest issue of Science,

Symmetry-Protected Topological Orders in Interacting Bosonic Systems by Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, Xiao-Gang Wen in Science 21 December 2012: Vol. 338 no. 6114 pp. 1604-1606 DOI: 10.1126/science.1227224

The article is behind a paywall.

Surprisingly, there aren’t any visualizations of the 500 states similar to chemistry’s periodic table to elements; at least, they aren’t included in the press materials on the Institute’s website.

Synaptic electronics

There’s been a lot about the memristor, being developed at HP Labs, at the University of Michigan, and elsewhere, on this blog and significantly less on other approaches to creating nanodevices with neuromorphic properties by researchers in Japan and in the US. The Dec. 20, 2012 news item on ScienceDaily notes,

Researchers in Japan and the US propose a nanoionic device with a range of neuromorphic and electrical multifunctions that may allow the fabrication of on-demand configurable circuits, analog memories and digital-neural fused networks in one device architecture.

… Now Rui Yang, Kazuya Terabe and colleagues at the National Institute for Materials Science in Japan and the University of California, Los Angeles, in the US have developed two-, three-terminal WO3-x-based nanoionic devices capable of a broad range of neuromorphic and electrical functions.

The originating Dec. 20, 2012 news release from Japan’s International Center for Materials draws a parallel between the device’s properties and neural behaviour,  explains the ‘why’ of the process, and mentions what applications the researchers believe could be developed,

The researchers draw similarities between the device properties — volatile and non-volatile states and the current fading process following positive voltage pulses — with models for neural behaviour —that is, short- and long-term memory and forgetting processes. They explain the behaviour as the result of oxygen ions migrating within the device in response to the voltage sweeps. Accumulation of the oxygen ions at the electrode leads to Schottky-like potential barriers and the resulting changes in resistance and rectifying characteristics. The stable bipolar switching behaviour at the Pt/WO3-x interface is attributed to the formation of the electric conductive filament and oxygen absorbability of the Pt electrode.

As the researchers conclude, “These capabilities open a new avenue for circuits, analog memories, and artificially fused digital neural networks using on-demand programming by input pulse polarity, magnitude, and repetition history.”

For those who wish to delve more deeply, here’s the citation (from the ScienceDaily news item),

Rui Yang, Kazuya Terabe, Guangqiang Liu, Tohru Tsuruoka, Tsuyoshi Hasegawa, James K. Gimzewski, Masakazu Aono. On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano, 2012; 6 (11): 9515 DOI: 10.1021/nn302510e

The news release does not state explicitly why this would be considered an on-demand device. The article is behind a paywall.

There was a recent attempt to mimic brain processing not based in nanoelectronics but on mimicking brain activity by creating virtual neurons. A Canadian team at the University of Waterloo led by Chris Eliasmith made a sensation  with SPAUN (Semantic Pointer Architecture Unified Network) in late Nov. 2012 (mentioned in my Nov. 29, 2012 posting).

Cement and concrete festival

Over the last week or so there’ve been a number of articles and publications about cement and concrete and nanotechnology. The Dec. 17, 2012 Nanowerk Spotlight article by (Mohammed) Shakeel Iqbal and Yashwant Mahajan for India’s Centre for Knowledge Management of Nanoscience & Technology (CKMNT, an ARCI [International Advanced Research Centre for Powder Metallurgy and New Materials] project, Dept.of Science & Technology) seemed to kick off the trend with a patent analysis of nanotechnology-enabled cement innovations,

China is the world leader of patent filings, their 154 patent applications contributing 41% of overall filings, representing the major and active R&D player in the area of nano-based cementitious materials. South Korea is the second leading country with 55 patents (15% of patent filings) on nano-enabled cement, closely followed by United States with 51 patents. Russia, Germany, Japan, France and India are the other leading patent filing countries with 37, 18, 11, 9 and 5 patents respectively, while the remaining patents represent a minor contribution from rest of the world.

….

Dagestan State University (Russia) is the leading assignee with 15-patents to its credit, which are mainly focussed on the development of heat resistant and high compression strength concrete materials. Halliburton Energy Services Inc (USA) comes second with 14-patents that are directed towards well bore cementing for the gas, oil or water wells using nano-cementitious materials.

This is another teaser article from the CKMNT (see my Dec. 13, 2012 posting about their bio-pharmaceutical teaser article) that highlights the findings from a forthcoming report,

A comprehensive Market Research Report on “Nanotechnology in Cement Industry” is proposed to be released by CKMNT in the near future. Interested readers may please contact Dr. Y. R. Mahajan, Technical Adviser and Editor, Nanotech Insights or Mr. H. Purushotham, Team Leader purushotham@ckmnt.com.

Regardless of one’s feelings about patents and patent systems, the article also provides a  good technology overview of the various nanomaterials used as fillers in cement, courtesy of the information in the filed patents.

A December 20, 2012 news item on Azonano points to at least of the reasons cement is occasioning research interest,

Cement production is responsible for 5% of carbon dioxide emissions. If we are to invent a “green” cement, we need to understand in more detail the legendary qualities of traditional Portland cement. A research group partly financed by the Swiss National Science Foundation (SNSF) is tackling this task.

The Dec. 20, 2012 Swiss National Science Foundation (SNSF) news release, which originated the news item on Azonano, goes on to describe the research into exactly how Portland cement’s qualities are derived,

The researchers first developed a packing model of hydrated calcium silicate nanoparticles. They then devised a method for observing their precipitation based on numerical simulations. This approach has proven successful (*). “We were able to show that the different densities on the nano scale can be explained by the packing of nanoparticles of varying sizes. At this crucial level, the result is greater material hardness than if the particles were of the same size and it corresponds to the established knowledge that, at macroscopic level, aggregates of different sizes form a harder concrete.” [said Emanuela Del Gado, SNSF professor at the Institute for Building Materials of the ETH Zurich]

Until today, all attempts to reduce or partially replace burnt calcium carbonate in the production of cement have resulted in less material hardness. By gaining a better understanding of the mechanisms at the nano level, it is possible to identify physical and chemical parameters and to improve the carbon footprint of concrete without reducing its hardness.

For those of a more technical turn of mind, here’s a citation for the paper (from the SNSF press release),

E. Masoero, E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S. Yip (2012). Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing. Physical Review Letters. DOI: 10.1103/PhysRevLett.109.155503

Meanwhile, there’s a technical group in Spain working on ‘biological’ concrete. From the Dec. 20, 2012 news item on ScienceDaily,

In studying this concrete, the researchers at the Structural Technology Group of the Universitat Politècnica de Catalunya • BarcelonaTech (UPC) have focused on two cement-based materials. The first of these is conventional carbonated concrete (based on Portland cement), with which they can obtain a material with a pH of around 8. The second material is manufactured with a magnesium phosphate cement (MPC), a hydraulic conglomerate that does not require any treatment to reduce its pH, since it is slightly acidic.

On account of its quick setting properties, magnesium phosphate cement has been used in the past as a repair material. It has also been employed as a biocement in the field of medicine and dentistry, indicating that it does not have an additional environmental impact.

The innovative feature of this new (vertical multilayer) concrete is that it acts as a natural biological support for the growth and development of certain biological organisms, to be specific, certain families of microalgae, fungi, lichens and mosses.

Here’s a description of the ‘biological’ concrete and its layers,

In order to obtain the biological concrete, besides the pH, other parameters that influence the bioreceptivity of the material have been modified, such as porosity and surface roughness. The result obtained is a multilayer element in the form of a panel which, in addition to a structural layer, consists of three other layers: the first of these is a waterproofing layer situated on top of the structural layer, protecting the latter from possible damage caused by water seeping through.

The next layer is the biological layer, which supports colonisation and allows water to accumulate inside it. It acts as an internal microstructure, aiding retention and expelling moisture; since it has the capacity to capture and store rainwater, this layer facilitates the development of biological organisms.

The final layer is a discontinuous coating layer with a reverse waterproofing function. [emphasis mine] This layer permits the entry of rainwater and prevents it from escaping; in this way, the outflow of water is redirected to where it is aimed to obtain biological growth

This work is designed for a Mediterranean climate and definitely not for rain forests such as the Pacific Northwest which, climatologically, is a temperate rainforest.

The ScienceDaily news item ends with this information about future research and commercialization,

The research has led to a doctoral thesis, which Sandra Manso is writing. At present, the experimental campaign corresponding to the phase of biological growth is being conducted, and this will be completed at the UPC and the University of Ghent (Belgium). This research has received support from Antonio Gómez Bolea, a lecturer in the Faculty of Biology at the University of Barcelona, who has made contributions in the field of biological growth on construction materials.

At present, a patent is in the process of being obtained for this innovative product, and the Catalan company ESCOFET 1886 S.A., a manufacturer of concrete panels for architectural and urban furniture purposes, has already shown an interest in commercialising the material.

Almost at the same time, the US Transport Research Board (a division of the US National Research Council) released this Dec. 19, 2012 announcement about their latest circular,

TRB Transportation Research Circular E-C170: Nanotechnology in Concrete Materials: A Synopsis explore promising new research and innovations using nanotechnology that have the potential to result in improved mechanical properties, volume change properties, durability, and sustainability in concrete materials.

The report is 44 pp (PDF version) and provides an in-depth look (featuring some case studies) at the research not just of nanomaterials but also nanoelectronics and sensors as features in nanotechoology-enabled concrete and cement products.

There you have it, a festival of cement and concrete.

Gold Light jewellery courtesy of gold nanoparticles and designers in Spain

Nanowerk is featuring a Dec. 21, 2012 news item about a jewellery project from the Institut Català de Nanotecnologia (ICN) Note: Links have been removed,

The Centre for NanoBioSafety and Sustainability (CNBSS) organised the premiere of Gold Light, the first quantum jewellery product, last week at the Hotel Mercer, in Barcelona [Spain]. Gold Light is the fruit of a collaboration that combines Barcelona’s long artisanal tradition with Nanotechnology developed by Institut Català de Nanotecnologia (ICN)’s Inorganic Nanoparticles Group. Gold Light is an extraordinary jewellery product, unique for both its innovation and its aesthetics.

The ICN’s Dec. 13, 2012 news release provides more detail (which originated the news item on Nanowerk),

A multidisciplinary team, including jewellery designer Roberto Carrascosa, artist Joan Peris, production designer Francesc Oliveras, and art business manager Jose Luis Fettolini, developed Gold Light over the course of a year, based on specialist knowledge from the Inorganic Nanoparticles Group. The final product exploits the aesthetic potential of noble-metal nanoparticles and their special interaction with light. Jewellers traditionally work with precious metals, which in their smallest form exist as nanoparticles(at smaller sizes, metal particles lose their metallic properties). Gold Light, composed of gold nanoparticles, represents the advent of quantum jewellery, where quantum is used in the literal sense. Their work on Gold Light has also served as a case model for the CNBSS to evaluate the regulatory mechanisms and corporate obligations for the development and marketing of a product that contains nanoparticles. For the CNBSS, the venture served as a study in the safety-by-design of a nanoproduct, through advice from attorney Ignasi Gispert.

Here’s what one of the pieces looks like,

The distinctive colours of Gold Light jewellery derive from different types of gold nanoparticles.

The distinctive colours of Gold Light jewellery derive from different types of gold nanoparticles.

You can see more on the Gold Light jewellery website but you won’t find any technical information about the colour differences or information about how to purchase.

Dragonflies: beautiful and smart according to Adelaide University (Australia) researchers

[downloaded from http://en.wikipedia.org/wiki/File:Tiffany_dragonfly_hg.jpg] Attribution: pendant Dragonfly - replica from the lamp by Louis Comfort Tiffany (50 cm diameter, 20 cm hight, about 400 glass pieces), Own work, Hannes Grobe 19:33, 20 June 2007 (UTC) Permission Own work, share alike, attribution required (Creative Commons CC-BY-SA-2.5)

[downloaded from http://en.wikipedia.org/wiki/File:Tiffany_dragonfly_hg.jpg] Attribution: pendant Dragonfly – replica from the lamp by Louis Comfort Tiffany (50 cm diameter, 20 cm hight, about 400 glass pieces), Own work, Hannes Grobe 19:33, 20 June 2007 (UTC) Permission Own work, share alike, attribution required (Creative Commons CC-BY-SA-2.5)

Long a subject of inspiration for artists, dragonflies have now been observed to exhibit signs of selective intelligence similar to human selective intelligence. From the Dec. 20, 2012 news release on EurekAlert,

In a discovery that may prove important for cognitive science, our understanding of nature and applications for robot vision, researchers at the University of Adelaide have found evidence that the dragonfly is capable of higher-level thought processes when hunting its prey.

The discovery, to be published online today in the journal Current Biology [link to article which behind a paywall], is the first evidence that an invertebrate animal has brain cells for selective attention, which has so far only been demonstrated in primates.

Here’s how the researchers made the observation (from the EurekAlert news release),

Using a tiny glass probe with a tip that is only 60 nanometers wide – 1500 times smaller than the width of a human hair – the researchers have discovered neuron activity in the dragonfly’s brain that enables this selective attention.

They found that when presented with more than one visual target, the dragonfly brain cell ‘locks on’ to one target and behaves as if the other targets don’t exist.

“Selective attention is fundamental to humans’ ability to select and respond to one sensory stimulus in the presence of distractions,” Dr Wiederman [Dr. Steven Wiederman, University of Adelaide] says.

Wiederman’s research partner suggests this observation has the potential for a number of widespread applications,

“Recent studies reveal similar mechanisms at work in the primate brain, but you might expect it there. We weren’t expecting to find something so sophisticated in lowly insects from a group that’s been around for 325 million years.

“We believe our work will appeal to neuroscientists and engineers alike. For example, it could be used as a model system for robotic vision. Because the insect brain is simple and accessible, future work may allow us to fully understand the underlying network of neurons and copy it into intelligent robots,” he [Associate Professor David O’Carroll, University of Adelaide] says.

You can find more information including pictures and a video in the Dec. 21, 2012 University of Adelaide news release.

It really is a nanoscale window into the biological world

The researchers at Virginia Tech Carilion Research Institute (VTC Research Institute) have sandwiched together a couple of chips, each with a hole (window) in the middle giving themselves a peek into biological processes as they occur, they hope. Here’s a more technical explanation from the Dec. 20, 2012 news release on EurekAlert,

Investigators at the Virginia Tech Carilion Research Institute have invented a way to directly image biological structures at their most fundamental level and in their natural habitats. The technique is a major advancement toward the ultimate goal of imaging biological processes in action at the atomic level.

The technique involves taking two silicon-nitride microchips with windows etched in their centers and pressing them together until only a 150-nanometer space between them remains. The researchers then fill this pocket with a liquid resembling the natural environment of the biological structure to be imaged, creating a microfluidic chamber.

Then, because free-floating structures yield images with poor resolution, the researchers coat the microchip’s interior surface with a layer of natural biological tethers, such as antibodies, which naturally grab onto a virus and hold it in place.

The lead researcher describes the difference between the usual imaging techniques and their newly developed technique (from the EurekAlert news release),

“It’s sort of like the difference between seeing Han Solo frozen in carbonite and watching him walk around blasting stormtroopers,” said Deborah Kelly, an assistant professor at the VTC Research Institute and a lead author on the paper describing the first successful test of the new technique. “Seeing viruses, for example, in action in their natural environment is invaluable.”

Ken Kingery’s Dec. ??, 2012 Virginia Tech Carilion Research Institute article, which originated the news release, describes the specific virus the researchers used the ‘window’ to spy on,

Rotavirus is the most common cause of severe diarrhea among infants and children. By the age of five, nearly every child in the world has been infected at least once. And although the disease tends to be easily managed in the developed world, in developing countries rotavirus kills more than 450,000 children a year.

At the second step in the pathogen’s life cycle, rotavirus sheds its outer layer, which allows it to enter a cell, and becomes what is called a double-layered particle. Once its second layer is exposed, the virus is ready to begin using the cell’s own infrastructure to produce more viruses. It was the viral structure at this stage that the researchers imaged in the new study.

Kelly and McDonald [Sarah McDonald, an assistant professor at the VTC Research Institute] coated the interior window of the microchip with antibodies to the virus. The antibodies, in turn, latched onto the rotaviruses that were injected into the microfluidic chamber and held them in place. The researchers then used a transmission electron microscope to image the prepared slide.

The technique worked perfectly.

The experiment gave results that resembled those achieved using traditional freezing methods to prepare rotavirus for electron microscopy, proving that the new technique can deliver accurate results. “It’s the first time scientists have imaged anything on this scale in liquid,” said Kelly.

There’s more to work to be done of course as the researchers refine the technique and try to ‘spy’ on more of the processes. In the meantime, the paper about this latest imaging research will be published in print in 2013 or it can be viewed online now (this is a open access article in a journal published by the Royal Society of Chemistry [RSC], you will need to sign up but this too is free),

Visualizing viral assemblies in a nanoscale biosphere
Brian L. Gilmore ,  Shannon P. Showalter ,  Madeline J. Dukes ,  Justin R. Tanner ,  Andrew C. Demmert ,  Sarah M. McDonald and Deborah F. Kelly

Lab Chip, 2013,13, 216-219

DOI: 10.1039/C2LC41008G Received 15 Jun 2012, Accepted 13 Nov 2012 First published on the web 19 Nov 201

 

Protein cages, viruses, and nanoparticles

The Dec. 19, 2012 news release on EurekAlert about a study published by researchers at Aalto University (Finland) describes a project where virus particles are combined with nanoparticles to create new metamaterials,

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

… biohybrid superlattices of nanoparticles and proteins would allow the best features of both particle types to be combined. They would comprise the versatility of synthetic nanoparticles and the highly controlled assembly properties of biomolecules.

The gold nanoparticles and viruses adopt a special kind of crystal structure. It does not correspond to any known atomic or molecular crystal structure and it has previously not been observed with nano-sized particles.

Virus particles – the old foes of mankind – can do much more than infect living organisms. Evolution has rendered them with the capability of highly controlled self-assembly properties. Ultimately, by utilising their building blocks we can bring multiple functions to hybrid materials that consist of both living and synthetic matter, Kostiainen [Mauri A. Kostiainen, postdoctoral researcher] trusts.

The article which has been published in Nature Nanotechnology is free,

Electrostatic assembly of binary nanoparticle superlattices using protein cages by Mauri A. Kostiainen, Panu Hiekkataipale, Ari Laiho, Vincent Lemieux, Jani Seitsonen, Janne Ruokolainen & Pierpaolo Ceci in Nature Nanotechnology (2012) doi:10.1038/nnano.2012.220  Published online 16 December 2012

There’s a video demonstrating the assembly,

From the YouTube page, here’s a description of what the video is demonstrating,

Aalto University-led research group shows that CCMV virus or ferritin protein cages can be used to guide the assembly of RNA molecules or iron oxide nanoparticles into three-dimensional binary superlattices. The lattices are formed through tuneable electrostatic interactions with charged gold nanoparticles.

Bravo and thank  you to  Kostiainen who seems to have written the news release and prepared all of the additional materials (image and video). There are university press offices that could take lessons from Kostiainen’s efforts to communicate about the work.

American National Standards Institute’s (ANSI) nanotechnology standards panel to meet in Februrary 2013 and one more standard

The American National Standards Institute’s (ANSI) Nanotechnology Standards Panel (NSP) was scheduled to meet in Oct. 2012 but Hurricane Sandy, which hit the eastern part of the continent at that time, necessitated rescheduling to Feb. 4, 2013 as per the Dec. 20, 2012 posting on Thomas.net,

Originally scheduled for October 30, 2012, ANSI’s Nanotechnology Standards Panel meeting was postponed as a result of Hurricane Sandy and will now be held on February 4, 2013. Meeting will examine how current nanotechnology standards are being utilized and how standards activities meet existing stakeholder needs. Benefits of participating in nanotechnology standardization and the possibilities for greater collaboration between stakeholders in this area will also be discussed.

The Dec. 14, 2012 ANSI news release provides more details about the Feb. 4, 2012 meeting to be held in Washington, DC,

The half-day meeting will examine how current nanotechnology standards are being utilized and how standards activities meet existing stakeholder needs. The benefits for companies, organizations, and other groups to participate in nanotechnology standardization and the possibilities for greater collaboration between stakeholders in this area will also be discussed.

Formed in 2004, ANSI’s NSP serves as the cross-sector coordinating body for the facilitation of standards development in the area of nanotechnology. Shaun Clancy, Ph.D., the director of product regulatory services for the Evonik Degussa Corporation, and Ajit Jilavenkatesa, Ph.D., the senior standards policy advisor for the National Institute of Science and Technology (NIST) of the U.S. Department of Commerce (DoC), serve as the ANSI-NSP’s co-chairs.

… The ANSI-NSP works to provide a forum for standards developing organizations (SDOs), government entities, academia, and industry to identify needs and establish recommendations for the creation or updating of standards related to nanotechnology and nanomaterials. In addition, the ANSI-NSP solicits participation from nanotechnology-related groups that have not traditionally been involved in the voluntary consensus standards system, while also promoting cross-sector collaborative efforts.

Attendance at the February meeting is free. All attendees are required to register here for the meeting; individuals who registered for the October 2012 event must register again. [emphasis mine] For more information, visit the ANSI-NSP webpage or contact Heather Benko (hbenko@ansi.org), ANSI senior manager, nanotechnology standardization activities.

Standardization is one of the topics highlighted in Michael Berger’s Dec. 20, 2012 Nanowerk Spotlight article about environmental health and safety and a high-throughput screening (HTS) platform developed at the University of California’s Center for Environmental Implications of Nanotechnology (CEIN) that can perform toxicity screening of 24 metal oxide nanoparticles simultaneously,

According to the team, the HTS platform that has been demonstrated in this study could easily be adapted to study other nanomaterials of interest. The capability of HTS would also allow researchers to analyze multiple samples at different concentrations, time points, as well as varying experimental parameters – all in one setup. The standardization of the whole screening process by this HTS platform also minimizes human intervention and errors during the experiment.

I guess it’s the season for standardization. Ho, ho, ho!