Tag Archives: commercialization

CelluForce finalist in Global Cleantech Cluster Association (GCCA) 2013 Later Stage Awards

The Global Cleantech Cluster Association (GCCA) is a cluster of cleantech cluster associations. In other words, if you lead a cleantech association whose membership includes cleantech businesses and ventures, you might call your organization a cleantech cluster and that organization could be eligible for membership in the global association (or cluster of clusters), the GCCA.

CelluForce, a Québec-based company, has emerged as one of 30 finalists in the GCCA’s 2013 Later Stage Awards. From the Nov. 11, 2013 CelluForce news release,

CelluForce, the world leader in the commercial development of Cellulose Nanocrystals (CNC), also referred to as NanoCrystalline Cellulose (CelluForce NCC™), is pleased to be recognized among the Global Top 30 in the prestigious Global Cleantech Cluster Association (GCCA) 2013 Later Stage Awards and the top three finalists in the lighting and energy efficiency category.

Each company was evaluated based on their merits in technological innovation and business acumen using the Keystone Compact Method. The Global Top 10 winners will be announced at the Corporate Cleantech Venture Day in Lathi, Finland on November 20th, 2013.

“The 2013 Global Top 30 demonstrate investability, strong product differentiation, scalable business models and have secured solid market traction in their various clean technology sectors,” said Dr. Peter Adriaens, Head Judge of the GCCA Later Stage Awards and developer of the Keystone Compact™ and associated scoring method.

“Narrowing down the nominations from 160 to 30 follows a detailed and robust process and analytics. The 2013 Global Top 30 some of the world’s most sought after equity

investable cleantech companies based on value capture potential in their CleanTech industry sectors.” An interview of Dr. Adriaens is available at http://www.globalcleantech.org/awards/criteria-and-eligibility/

“It is an honor to be part of this prestigious list of the world’s top Cleantech companies” said Jean Moreau, CelluForce President and CEO. “This honor is a reflection of the hard work and resilience demonstrated by the CelluForce team and its partners in developing commercial applications for CNC”, added Moreau. CelluForce is a member of Cleantech cluster Écotech Québec, a founding member of the Global Cleantech Cluster Association.

About CelluForce Inc.

CelluForce Inc. is the world leader in the commercial development of Cellulose Nanocrystals (CNC), also referred to as NanoCrystalline Cellulose (CelluForce NCC™).

The company is a joint venture of Domtar Inc. and FPInnovations. CelluForce manufactures NCC/CNC in the world’s first demonstration plant of its kind, located in Windsor, Québec, develops new applications for NCC/CNC, markets and sells it. The company’s head office is in Montreal. www.celluforce.com

About the Global Cleantech Cluster Association

The Global Cleantech Cluster Association (GCCA) is a network of 49 cleantech clusters, representing over 10,000 companies. It creates conduits for companies to

harness the tremendous benefits of international cleantech cluster collaboration in an efficient, affordable, and structured network. The GCCA provides a gateway for established and emerging cleantech companies to gain exposure to potential investors, new markets, influential networks, innovative technologies and best practices. GCCA was founded by swisscleantech, the Finnish Cleantech Cluster, and Watershed Capital, and Technica Communications. For more information about the GCCA, please visit www.globalcleantech.org.

I was not able to find either the source of GCCA funds, presumably they derive their income from memberships, or information about the prizes. There is this about the judging crriteria, from the GCCA’s Criteria and Eligibility webpage (Note: Links have been removed)

Judging Criteria
Companies must fit into one of the following categories:

Biofuels/BioEnergy
CleanWeb/Sustainable IT
Energy Storage/Smart Grid
Green Building
Lighting/Energy Efficiency
Smart Cities (products & services)
Solar & Wind Energy
Transportation
Waste Management
Water (Resource recovery, energy, treatment, etc)

Renowned experts of the global Cleantech investment community (VC’s, PE, etc.) and award category experts are forming the judging panel, coordinated by GCCA.

The following are areas that Award nominees will be judged on:

Clarity of the business strategy: does a viable business with significant markets exist?
The BIG Idea: why is it BIG in terms of breakthrough in innovation, concept and commercial potential?
Core team – profile & tenure: is there a relevant mix of requisite expertise and experience?
Funding: what are current and future sources?
ROI and/or exit strategy: is the business plan reasonable?
Sustainability: what is the positive impact on the environment?

Learn more about the The KeyStone Method™ and review the Keystone Score Brief.

Eligibility

To participate in the GCCA Later Stage Award, Cleantech clusters can nominate any later stage Cleantech company that is member of a cleantech cluster associated with GCCA.

Later stage companies are defined as companies with a proven track record (revenue) in their home market and the strategic goal to expand internationally, and/or a scalable technology or service with international growth potential (pre-revenue, but proven in pilot and demonstration projects).

Nominees may be disqualified if the GCCA jury (at their sole discretion) considers the nominee not eligible to participate.

Please send questions or comments about the GCCA Later Stage Award to award@globalcleantech.org

**All prizes are awarded at the discretion of the judging panel and all judging decisions are final and not subject to appeal.

You can find out more about the Keystone Compact here and Keystone Score here. Good luck to the folks at CelluForce on Nov. 20, 2013 (when they announce the winner in Finland). CelluForce’s two competitors at this stage are: SELC (Ireland) and ThinkEco (US)..

University of Virginia (US) moving bioinspired materials closer to commercialization

An Aug. 19, 2013 news item on Nanowerk highlights an early-stage commercialization bioinspired project at the University of Virginia,

Mool Gupta, Langley Distinguished Professor in the university’s department of electrical and computer engineering, and director of the National Science Foundation’s (NSF) Industry/University Cooperative Research Center for Lasers and Plasmas, has developed a method using high-powered lasers and nanotechnology to create a similar texture (to lotus leaves] that repels water, captures sunlight and prevents the buildup of ice.

These textured materials can be used over large areas and potentially could have important applications in products where ice poses a danger, for example, in aviation, the automobile industry, the military, in protecting communication towers, blades that generate wind energy, bridges, roofs, ships, satellite dishes, and even snowboards.

The Aug. 19, 2013 US National Science Foundation news release by Marlene Cimons, which originated the news item,  gives more detail about the technical aspects of  this project,

Gupta and his research team first made a piece of textured metal that serves as a mold to mass-produce many pieces of plastic with the same micro-texture. The replication process is similar to the one used in manufacturing compact discs. The difference, of course, is that the CD master mold contains specific information, like a voice, whereas, “in our case we are not writing any information, we are creating a micro-texture,” Gupta says.

“You create one piece of metal that has the texture,” Gupta adds. “For multiple pieces of plastic with the texture, you use the one master made of metal to stamp out multiple pieces. Thus, whatever features are in your master are replicated in the special plastic. Once we create that texture, if you put a drop of water on the texture, the water rolls down and doesn’t stick to it, just like a lotus leaf. We have created a human-made structure that repels water, just like the lotus leaf.”

The process of making the metal with the special texture works like this: the scientists take high-powered lasers, with energy beams 20 million times higher than that of a laser pointer, for example, and focus the beams on a metal surface. The metal absorbs the laser light and heats to a melting temperature of about 1200 degrees Centigrade, or higher, a process that rearranges the surface material to form a microtexture.

“All of this happens in less than 0.1 millionth of a second,” Gupta says. “The microtexture is self-organized. By scanning the focused laser beam, we achieve a large area of microtexture. The produced microtexture is used as a stamper to replicate microtexture in polymers. The stamper can be used many, many times, allowing a low cost manufacturing process. The generated microtextured polymer surface shows very high water repellency.”

The news release next describes the commercialization efforts,

In the fall of 2011, Gupta was among the first group of scientists to receive a $50,000 NSF Innovation Corps (I-Corps) award, which supports a set of activities and programs that prepare scientists and engineers to extend their focus beyond the laboratory into the commercial world.

Such results may be translated through I-Corps into technologies with near-term benefits for the economy and society. It is a public-private partnership program that teaches grantees to identify valuable product opportunities that can emerge from academic research, and offers entrepreneurship training to faculty and student participants.

The other project members are Paul Caffrey, a doctoral candidate under Gupta’s supervision, and Martin Skelly of Charleston, S.C., a veteran of banking in the former Soviet Union who serves as business mentor and is involved in new business investments.

The team participated in a three-day entrepreneurship workshop at Stanford University run by entrepreneurs from Silicon Valley. “We are still pursuing the commercial potential,” Gupta says. “The idea is to look at what market can use this technology, how big the market is, and how long it will take to get into it.”

The race to commercialize graphene as per the University of Manchester (UK)

The University of Manchester (UK) has a particular interest in graphene as the material was isolated by future Nobel Prize winners, Andre Gheim and Kostya (Konstantin) Novoselov in the university’s laboratories. There’s a Feb. 18, 2013 news item on Nanowerk highlighting the university’s past and future role in the development of graphene on the heels of the recent research bonanza,

The European Commission has announced that it is providing 1bn euros over 10 years for research and development into graphene – the ‘wonder material’ isolated at The University of Manchester by Nobel Prize winners Professors Andre Geim and Kostya Novoselov.

The University is very active in technology transfer and has an excellent track-record of spinning out technology, but some think that the University has taken a different view when it comes to patenting and commercialising graphene. Others have expressed a broader concern about British Industry lagging behind in the graphene ‘race’, based upon international ‘league tables’ of numbers of graphene patents.

A recent interview with Clive Rowland (CEO of the University’s Innovation Group) addresses the assumptions about the University’s approach and reflects more generally about graphene patenting and about industry up-take of graphene. The interview is summarised below.

Question: Has the University set up any commercial graphene activities?

Answer: The University owns a company, called 2-DTech Limited, which makes and supplies two-dimensional materials and has an interest in another, Graphene Industries Limited, which sells graphene made by a different technique to 2-DTech.

Question: Is the University falling behind in graphene?

Answer: The University is the world’s leading university for graphene research and publications. It led the charge for UK investment into the field and has been awarded The National Graphene Institute, which will be a £61m state-of-the art centre. This Institute will act as a focus for all sorts of commercial graphene activity in Manchester, from industrial research and development laboratories locating “alongside” the Institute, developing new processes and products, to start-up companies. The University championed the major flagship research funding programmes that have been initiated in the UK and Europe and has been awarded a number of prestigious grants. Graphene is still a science-driven research field and not yet a commercialised technology.

The rest of the summary can be found either at Nanowerk or in this University of Manchester Feb. 18, 2013 news release.

The University of Manchester Innovation Group (aka UMI3) mentioned in connection with Clive Rowland hosts the complete interview (12 pp), which, read from the beginning, provides an enhanced perspective on the university’s graphene commercialization goals,

Graphene – The University of Manchester and Intellectual Property. Dan Cochlin talks to Clive Rowland – The University’s InnovationGroup CEO —‐ about the launch of a new grapheme company at the University, 2–‐DTech Ltd, And grapheme patents and commercialisation.

What is grapheme and why is there so much interest in it?

Graphene is a revolutionary nano material which was first isolated at The University of Manchester By Professors Andre Geim And Konstantin Novoselov. They received the Nobel Prize in 2010 For their ingenious work on graphene. People are excited about it because it has the potential to transform a vast range of products due to its very superior capabilities compared to existing materials.

So what’s the new company about?

It makes and sells CVD graphene, grapheme platelets, grapheme oxide and other advanced materials with amazing properties, which are being called 2–‐D – two dimensional – due to  their single atomic layer thickness. In other words, they’re so thin it’s as if they only have length and breadth dimensions. It will soon have an e–‐commerce site too, where customers can shop on–‐line. The Company will create and develop intellectual property, especially by engaging in interesting assignments such as collaborating with firms on design projects. It will also provide consulting services ,in the field, either directly or by sub–‐contracting to our relevant academic colleagues here at the University. We’re already an international team – with Antiguan, British and Italian people actively involved in the business and a fast developing business agency network in the Far East and the USA.

What’s CVD?

It’s one of the techniques for making grapheme that 2-DTech uses –‐ chemical vapour deposition –‐ which allows us to grow grapheme on foils and films in quite large area sizes for various potential uses, particularly information technology and communications because of graphene’s high quality and unique electronic transport, flexibility and other astounding attributes.

Well why have you only just set this up when others have been doing so for a while now?

The University’s researchers in physics and materials science have been able to make enough grapheme for their own needs until lately, but not any longer. Besides, there has been an expansion of interest across the University in the potential of the material, including from areas such as health and bio–‐sciences. Hence we want to make sure that the University has a regular supply for those colleagues who cannot continue to make it in sufficient quantities or who aren’t familiar with the material.

In addition many of the companies in contact with the University’s Researchers are in a similarly constrained position. So we feel the need to have a University Facility to handle this which is free of the normal academic duties and interests. At the same time we see an international business opportunity.

There’s a strong market demand for high quality grapheme of a consistent nature and a growing interest in other 2–‐D crystals. A number of researchers, especially our CTO Dr Branson Belle, who had been researching 2–‐D Materials and making grapheme for a long time became interested in the business side. …

Thank you Clive Rowland and the University of Manchester for insight into the graphene commercialization efforts on the part of at least one university.  Meanwhile, the comment about producing enough graphene for research reminds me of the queries I get from entrepreneurs about getting access to nanocrystalline cellulose (NCC) or cellulose nanocrystals (CNC). To my knowledge, no one outside the research community has gotten access to the materials. I wonder if despite the fact there are two manufacturing facilities whether this may be due to an inability to produce enough CNC or NCC.

Care to commercialize graphene in the UK?

The UK’s Engineering and Physical Sciences Research Council (EPSRC) has announced a call for proposals for research that is directly linked to commercializing graphene. From the Feb. 28, 2012 news item on Nanowerk,

The aim of the call, where there will be up to £20 million of funding available, is to focus research on manufacturing processes and technologies linked to graphene in order to accelerate the development and generation of novel devices, applications technologies and systems.

In 2010 the Nobel Prize for Physics was awarded to UK researchers Andre Geim and Kostya Novoselov from the University of Manchester, who demonstrated graphene in 2004. EPSRC has funded their work for over a decade.

The call is divided into two parts: research programmes and equipment bids. EPSRC is committing £10 million to the call, with up to £10 million more available by the Department for Business, Innovation and Skills (BIS) to fund the capital equipment as part of either research programmes or for equipment-only bids.

Proposals for research programmes should range between £1.5 million and £3 million and should seek to understand how to commercialise and enhance the ‘manufacturability’ of graphene as the material of choice. Programmes should have an emphasis on applications, strongly align with industry needs and foster an environment of collaboration across the UK. The programmes of research should also focus on developing people to stimulate the future sustainability of UK graphene engineering research and future commercialisation opportunities across a variety of sectors.

Proposals for equipment are to allow groups with existing capability in graphene research to help researchers advance the commercialisation of graphene and improve the emphasis on applications.

There’s a 10 pp. PDF description for the call, which includes gems like this, as well as, details about the call,

Recognising this opportunity, on 3 October 2011, the Chancellor (George Osborne, UK’s Chancellor of the Exchequer [roughly equivalent to a Minister of Finance]) pledged a £50M investment to establish the UK as a graphene research and technology ‘hub’ with the aim to capture the commercial benefits of graphene (http://www.epsrc.ac.uk/newsevents/news/2012/Pages/graphenehub.aspx). The chancellor stated “We will fund a national research programme that will take this Nobel prize-winning discovery from the British laboratory to the British factory floor…” “We’re going to get Britain making things again.” (p. 2)

There’s a six-page PDF called an Expression of Interest for interested parties to fill out. For anyone who experiences difficulties filling out PDF forms and/or submitting them, there is a set of guidelines.

Frankly, I found the description for eligibility in the EPSRC Funding Guide a little confusing but it seems a fairly safe guess that pretty much everyone involved in the proposed project, investigators, postdoctoral students, and research assistants must be resident in the UK.

It’s fascinating to track this graphene effort, which seems designed to lift the UK from its economic doldrums, from afar. It seems there’s some sort of announcement on this front on a weekly basis, at least (my most recent posting about these efforts is Feb. 21, 2012).

My experience with these kinds of announcements is that they are often recycled. For example, an announcement is made in Oct. 2011 about government funding for graphene research then months later, a research funding agency announces a call for proposals with references to the amount of research money available. Next on the agenda will be an announcement of the recipients for the grants. This practice can make it seem as if the second and third announcement are for new funds when it is money that was promised months before.

UK rolls dice on glamourous graphene

These days, graphene is the glamourpuss (a US slang term from the 1940s for which I have great affection) of the nanoscience/nanotechnology research world and is an international ‘object of desire’. For example, the UK government just announced a GBP 50 M investment in graphene research. From the Feb. 2, 2012 news item on Nanowerk,

Minister for Universities and Science, David Willetts, said: “This significant investment in graphene will drive growth and innovation, create high-tech jobs and keep the UK at the very forefront of this rapidly evolving area of science. With a Nobel Prize and hundreds of published papers under their belts, scientists in the UK have already demonstrated that we have real strengths in this area. The graphene hub will build on this by taking this research through to commercial success.”

A key element of the graphene hub will be a national institute of graphene research and commercialisation activities. The University of Manchester has been confirmed as the single supplier invited to submit a proposal for funding a new £45 million national institute, £38 million of which will be provided by the UK Government. This world-class shared facility for graphene research and commercialisation activities will be accessible by both researchers and business.

I’d never really heard about graphene until 2010 when Andre Geim and Konstantin Novoselov at the University of Manchester won the Nobel Prize in Physics for their work in graphene. (In 2012, both scientists were knighted and I could have referred to them as Sir Geim and Sir Novoselov.) Since that time money has been flowing towards graphene research. As far as I can tell this GBP 50 M is the tip of the iceberg.

The University of Manchester and other institutions in the UK are part of an international consortium competing for a 1 billion Euro research prize through the European Union’s Future and Emerging Technologies (FET) programme. (I have a bit more about the FET competition in my June 13, 2011 posting.)

There does seem to be some jockeying for position. First, the graphene consortium is currently competing for the FET money as the Graphene Flagship. Only two of six competing flagships will receive money for further research. Should the consortium’s flagship be successful, there will be six member countries competing for a share of that 1 billion Euro prize. The UK is represented by three research institutions (University of Manchester, Lancaster University, and the University of Cambridge) while every other country in the graphene consortium is represented by one research institution.

The decision as to which two FET flagship projects receive the funding will be made public in late 2012. Meanwhile, the UK not only announces this latest funding but last fall also launched a big graphene exhibition, anchored by the three UK universities in the consortium,  in Warsaw. I wrote about that development in my Nov. 25, 2011 posting and questioned the communication strategy. It’s taken me a while but I’m beginning to realize that this was likely part of a larger political machination designed to ensure UK dominance in graphene research and, I imagine they dearly hope this will be true, commercialization.

ETA Feb. 6, 2012: Dexter Johnson at the Nanoclast blog (on the Institute of Electrical and Electronics Engineers [IEEE] website) noted this about the UK and commercializing graphene in the electronics industry in his Feb. 3, 2012 posting,

The press release emphasizes how “The graphene hub will build on this [investment] by taking this research through to commercial success.” So I was wondering if there would be any discussion of how they intended to build up an electronics industry that it never really had in the first place to exploit the material.

D-Wave Systems, a Vancouver (Canada) area company gets one step closer to quantum computing

It takes a great deal of nerve to found a startup company for any emerging technology; I’m not sure what it takes to found a startup company that produces quantum computers.

D-Wave Systems: the quantum computing company (based in the Vancouver area) recently announced they were able to employ an 84-qubit calculation in a demonstration calculating what Dexter Johnson at the Nanoclast blog for the IEEE (Institute of Electrical and Electronics Engineers) called ‘notoriously difficult’ Ramsey numbers.

Here’s a brief description of the demonstration (excerpted from the Jan. 12, 2012 article by Bob Yirka for phsyorg.com),

In the research at D-Wave, those involved worked to run a just recently discovered quantum algorithm on an actual quantum computer; in this case, to solve for a two-color Ramsey number, R(m,2), where m= 4, 5, 6, 7 and 8, also known as the “Party Problem” because it’s use can be explained by posing a problem experienced by many party planners, i.e. how to invite the minimum number of guests where one group knows a certain number of others, and another group doesn’t, forcing just the right amount of mingling. Because increasing the number of different kinds of guests increases the difficulty of finding the answer, modern computers aren’t able to find R(5,5) much less anything higher. …

Quantum algorithms take advantage of such facilities [ability to take advantage of quantum mechanics capabilities which allow superconducting circuits to recognize 1 or 0 as current traveling in opposite directions or the existence of both states simultaneously] and allow for the execution of “instructions” far faster than conventional computers ever could. In the demonstration by the D-Wave team, the computer solved for a R(8,2) Ramsey number in just 270 milliseconds using 84 qubits, though just 28 of them were used in actual computation as the rest were delegated to correcting errors. Also, for those that are curious, the answer is 8.

While Yirka goes on to applaud the accomplishment, he notes that it may not be very useful. I think that’s always an issue with the early stages of an emerging technology; it may not prove to have any practical applications now or in the future.

Dexter in his Jan. 12, 2012 blog posting about D-Wave Systems and their recent announcement speaks as someone with lengthy experience dealing with emerging technologies (he provides a little history first [I have removed links from the excerpt, please see the posting for those]),

After erring on the side of caution—if not doubt—when IEEE Spectrum [magazine] cited D-Wave Systems as one of its “Big Losers” two years ago,  it seems that there was a reversal of opinion within this publication back in June of last year when Spectrum covered D-Wave’s first big sale of a quantum computer with an article and then a podcast interview of the company’s CTO.

In the job of covering nanotechnology, one develops—sometimes—a bit more hopeful perspective on the potential of emerging technologies. Basic research that may lead to applications such as quantum computers get more easily pushed up in the development cycle than perhaps they should. So, I have been following the developments of D-Wave for at least the last seven years with a bit more credence than Spectrum had offered the company earlier.

While it may seem that D-Wave is on irreversible upward technological slope, one problem indicated … is that capital may be beginning to dry up.

If so, it would seem almost ironic that after years of not selling anything and attracting a lot of capital, D-Wave would make a $10-million sale and then not be able to get any more funding.

Here’s an excerpt from an interview that Brian Wang had with Geordie Rose, D-Wave’s Chief Technical Officer, for The Next Big Future blog (mentioned in Dexter’s piece) which brings the conundrum Dexter notes into high relief (from Wang’s Dec. 29, 2011 post),

The next 18 months will be a critical period for Dwave systems [sic]. Raising private money has become far more difficult in the current economic conditions. If Dwave were profitable, then they could IPO. If Dwave were not able to become profitable and IPO and could not raise private capital, then there would be the risk of having to shutdown.

According to Wang’s post, D-Wave managed the feat with the Ramsey number two years ago. There was no mention of what they are currently managing to do with their quantum computer.

This is the piece I mentioned yesterday (Jan. 18, 2012) in my posting about the recently released report, Science and Engineering Indicators 2012, from the US National Science Board (NSB) in the context of the government initiative, Startup America, and what I thought was a failure to address the issue of a startup trying to become profitable.

ETA Jan. 22, 2012: Dexter Johnson, Nanoclast blog at the IEEE (Institute of Electrical and Electronics Engineers) mentions the problem in a different context of a recent US initiative to support startup companies through a public/private partnership consortium called the Advanced Manufacturing Partnership (AMP), from his Jan. 20, 2012 posting,

My concern is that a small company that has spun itself out from a university, developed some advanced prototypes, lined up their market, and picked their management group still need by some estimates somewhere in the neighborhood of $10 to $30 million to scale up to being an industrial manufacturer of a product.

Dexter’s concern is that AMP funds available for disbursement will only support a limited number of companies as they scale up.

This contrasts with the Canadian situation where it almost none of our smaller companies can get sufficient funds to scale up when they most need it, e.g., D-Wave System’s current situation.

 

When commercializing nano, forget nano

The news out of Europe is that when commercializing a nanotechnology-enabled product, you don’t need to mention the ‘nano’.  From the Nov. 14, 2011 news item on Nanowerk,

Businesses in the nanotechnology field may even forget the word nano. To secure success they have to focus on solving customers’ problem and better communicate business opportunities that nanotechnologies may bring.

These are key insights from two EC funded initiatives, ProNano and NanoCom, which are joining their forces to tackle the issue of barriers to the commercialisation of European nanotechnologies. The two projects are different in scope, approach and methods. The former provides coaching and advise to research teams on their route to commercialisation, the latter will ultimately provide a roadmap and policy guidelines to support commercialisation of nanotechnology research.

But what does this actually mean for researchers in the nano field, who want to approach the market? We asked this question to Mr. Enzo Sisti from Veneto Nanotech, an organisation that manages the activities of the nanotechnology sector in the Veneto region in Italy.

According to Mr Sisti, the need to identify a proper business model is especially important whenever the outputs of nanotechnology research provide incremental improvement to existing products rather than create entirely new ones. If potential customers have a system or product that works, they can be reluctant to change, unless the benefits and value are clearly demonstrated. In such situations, nano businesses need to identify and propose a “window of acceptability”, based on technical parameters as well as on price competitiveness. Still too often, Sisti says, the focus of researchers is on technology only and not on problem solving in a customer’s perspective. It is, instead, important to provide sound and proved benchmarks on the cost/benefits that may incur form the adoption of innovation.

Sisti’s comments certainly suggest one approach to marketing but they imply that there’s nothing disruptive about adopting a new technology.

University of Toronto, KAUST, Pennsylvania State University and quantum colloidal dots

I’ve written about colloidal quantum dot solar cells and University of Toronto professor Ted Sargent’s work before (June 28, 2011). He and his team have been busy again. From the Sept. 18, 2011 news item on Nanowerk,

Researchers from the University of Toronto (U of T), King Abdullah University of Science & Technology (KAUST) and Pennsylvania State University (Penn State) have created the most efficient colloidal quantum dot (CQD) solar cell ever.

The discovery is reported in the latest issue of Nature Materials.

The first time (June 28)  I wrote about the colloidal quantum dot (CQD) solar cells, the team had made a breakthrough with the architecture of the solar cell by creating what they called a ‘graded recombination layer’ allowing infrared and visible light harvesters to be linked without compromising either layer. The next time I wrote about Sargent’s work  (July 11, 2011),  it concerned self-assembling quantum dots and DNA.

The very latest work is focussed on making the CQD solar cells more efficient by packing them closer together,

Until now, quantum dots have been capped with organic molecules that separate the nanoparticles by a nanometer. On the nanoscale, that is a long distance for electrons to travel.

To solve this problem, the researchers utilized inorganic ligands, sub-nanometer-sized atoms that bind to the surfaces of the quantum dots and take up less space. The combination of close packing and charge trap elimination enabled electrons to move rapidly and smoothly through the solar cells, thus providing record efficiency.

I gather this last breakthrough has made commercialization possible,

As a result of the potential of this research discovery, a technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will enable the global commercialization of this new technology.

Here’s the competitive advantage that a CQD solar cell offers,

Quantum dots are nanoscale semiconductors that capture light and convert it into electrical energy. Because of their small scale, the dots can be sprayed onto flexible surfaces, including plastics. This enables the production of solar cells that are less expensive than the existing silicon-based version.

Congratulations!

There are more details about this latest breakthrough both in the Nanowerk news item and in this University of Toronto Sept.19, 2011 news release credited to Liam Mitchell. For anyone who’s curious about MaRS, it’s located in Toronto, Ontario and seems to be some sort of technology company incubator or here’s how they describe themselves (from their How did MaRS get started page?),

A charitable organization could be created to better connect the worlds of science, business and government. A public-private partnership with a mission to remove the barriers between silos. Nurture a culture of innovation. And help create global enterprises that would contribute to Canada’s economic and social development.

Memristors and proteins

The memristor, a two-terminal circuit element joining the resistor, capacitor, and inductor, has until now been demonstrated using nonbiological materials such as metal oxides, carbon, etc. Researchers in Singapore have reported in a paper (in the Sept. 5, 2011 online edition of Small, Protein-Based Memristive Nanodevice)  that a memristive nanodevice can be based on a protein. From the Sept. 15, 2011 Spotlight article by Michael Berger on Nanowerk,

Memristors – the fourth fundamental two-terminal circuit element following the resistor, the capacitor, and the inductor – have attracted intensive attention owing to their potential applications for instance in nanoelectronic memories, computer logic, or neuromorphic computer architectures.

“Previous work on memristors were based on man-made inorganic/organic materials, so we asked the question whether it is possible to demonstrate memristors based on natural materials,” Xiaodong Chen, an assistant professor in the School of Materials Science & Engineering at Nanyang University, tells Nanowerk. “Many activities in life exhibit memory behavior and substantial research has focused on biomolecules serving as computing elements, hence, natural biomaterials may have potential to be exploited as electronic memristors.”

This work provides a direct proof that natural biomaterials, especially redox proteins, could be used to fabricate solid state devices with transport junctions, which have potential applications in functional nanocircuits.

My last posting about memristors was April 13, 2011, Blood, memristors, cyborgs plus brain-controlled computers, prosthetics, and art.

ETA Sept. 21, 2011: Dexter Johnson at Nanoclast (on the Institute of Electrical and Electronics Engineers website) offers another take on memristors in his Sept. 20,2011 posting, Memristors Go Biological. I particularly liked this bit,

It’s been just three years since the memristor was identified so if statistical norms of commercialization are in place we can expect another four years of waiting before we see this material in our smart phones. In fact, this timeline is pretty close to HP’s expectations of 2014 as a target date for its incorporation into electronic devices.

During this time researchers have not been and will not be sitting on their hands while engineers work out scalability and yields.

Nanotechnology regulatory framework for India

It looks like a wave of nanotechnology regulatory frameworks is developing. In mid-October 2010, India announced at a conference that a draft was in the works. From the news item on The Times of India website,

The two-day conference, titled Nanotechnology, materials and composites for frontier applications’, was inaugurated by Chavan at a city hotel. The conference is being hosted by the Bharati Vidyapeeth Deemed University, in association with the North Carolina A&T State University, Greensboro, US, Tuskegee University, Albama, US, and the Centre for Materials for Electronics Technology and the Department of Information Technology, Government of India.

Chavan said, “The nanotechnology field is very exciting, and tremendous impetus will be given for the R&D in this area. A regulatory framework will help in sorting out issues of ethics and copyrights, which are currently being faced by experts in the country.”

He said Rs 1,800 crore have been spent on nano mission and there are close to one thousand researchers working in nanotechnology across the country and a handful of discoveries have been made in the field. “Some potential discoveries from the Indian Institute of Science, Bangalore, Indian Institute of Technology, Delhi and the Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, have been successful and has been commercialised as well,” Chavan said.

“India spends about 1 per cent of gross domestic product on research and development (R&D), which is not very encouraging compared to other countries like the US, which spends 4 to 5 per cent on R&D. We are trying to double it, but at the same time, we would also like to see more participation from the public sector in this area. Of the 1 per cent about 75 to 76 per cent comes from the private sector which is exactly opposite in the western countries. The share of public sector is more there and so should happen in India,” Chavan said.

I find the focus on commercialization and intellectual property unexpected since the discussion on regulatory frameworks in Europe and the US tends to focus on environment, health, and safety issues. For an example about the latest on Europe and nanotechnology and regulatory frameworks, I found this in Tim Haper’s Sept. 29, 2010 posting on his TNTlog,

Plastics & Rubber Weekly reports that the Belgian Environment Minister, Paul Magnette proposed five elements that should be included in nanotechnology legislation, including

* A register of nanomaterials used within the EU is established, so regulators can trace the origin of any nanoparticles to their source if they cause health or environmental problems.

* Manufacturers and retailers inform consumers of the presence of nanomaterials in their products

* Regulations provide for risk evaluation and management of nanomaterials at an EU level

* Member states also draft integrated national strategies for nanotechnology risk management, information dissemination and monitoring

* Claims made on labels of products containing nanomaterials are controlled

What makes the contrast interesting for me is that Harper is the principal for the company, Cientifica (from the About page),

Cientfica is distinct from all other companies providing consulting and information services in its knowledge of both the science and business of emerging technologies. Cientifica employees are from a variety of backgrounds, but all are highly experienced technical project managers and familiar with the commercialization of technology and the transfer of science from the laboratory to the market place.

Cientifica’s numerous reports on commercial aspects of nanotechnology and other emerging technologies are well known for cutting through the hype and getting to the root of the issues. In the same way, Cientifica uses its experience in the reality of commercializing technologies and its wide network of international science and technology practitioners to provide down-to-earth and practical advice to companies, academics and governments.

Cientifica also provides advice to investors who are considering investment in emerging technology companies.

Through this experience Cientifica has a deep understanding of the drivers and associated risks associated with investment and management of cutting edge technology projects.

As you can see the company’s focus is on commercializing emerging technologies, including nanotechnology. By the way, I’m not trying to suggest that Harper doesn’t discuss regulatory frameworks with regard to commercializing nanotechnology. I’m pointing out my own unconscious expectations when the words ‘nanotechnology’,  ‘regulatory’, and ‘framework’ are put in the same sentence.