Tag Archives: Ireland

Monitoring health with graphene rubber bands

An Aug. 20, 2014 news item on Azonano highlights graphene research from the University of Surrey (UK) and Trinity College Dublin (Ireland),

Although body motion sensors already exist in different forms, they have not been widely used due to their complexity and cost of production.

Now researchers from the University of Surrey and Trinity College Dublin have for the first time treated common elastic bands with graphene, to create a flexible sensor that is sensitive enough for medical use and can be made cheaply.

An Aug. 15, 2014 University of Surrey press release (also on EurekAlert), which originated the news item, describes the innovation (Note: A link has been removed),

Once treated, the rubber bands remain highly pliable. By fusing this material with graphene – which imparts an electromechanical response on movement – the material can be used as a sensor to measure a patient’s breathing, heart rate or movement, alerting doctors to any irregularities.

“Until now, no such sensor has been produced that meets these needs,” said Surrey’s Dr Alan Dalton. “It sounds like a simple concept, but our graphene-infused rubber bands could really help to revolutionise remote healthcare – and they’re very cheap to manufacture.”

“These sensors are extraordinarily cheap compared to existing technologies. Each device would probably cost pennies instead of pounds, making it ideal technology for use in developing countries where there are not enough medically trained staff to effectively monitor and treat patients quickly.” [commented corresponding author, Professor Jonathan Coleman from Trinity College, Dublin]

Trinity College Dublin issued an Aug. 20, 2014 press release, which provides a little more technical detail and clarifies who led the team for anyone who may been curious about the matter,

The team – led by Professor of Chemical Physics at Trinity, Jonathan Coleman, one of the world’s leading nanoscientists – infused rubber bands with graphene, a nano-material derived from pencil lead which is 10,000 times smaller than the width of a human hair. This process is simple and compatible with normal manufacturing techniques. While rubber does not normally conduct electricity, the addition of graphene made the rubber bands electrically conductive without degrading the mechanical properties of the rubber. Tests showed that any electrical current flowing through the graphene-infused rubber bands was very strongly affected if the band was stretched. As a result, if the band is attached to clothing, the tiniest movements such as breath and pulse can be sensed.

The discovery opens up a host of possibilities for the development of wearable sensors from rubber, which could be used to monitor blood pressure, joint movement and respiration. Other applications of rubber-graphene sensors could be in the automotive industry (to develop sensitive airbags); in robotics, in medical device development (to monitor bodily motion), as early warning systems for cot death in babies or sleep apnoea in adults. They could also be woven into clothing to monitor athletes’ movement or for patients undergoing physical rehabilitation.

Professor Coleman said: “Sensors are becoming extremely important in medicine, wellness and exercise, medical device manufacturing, car manufacturing and robotics, among other areas. Biosensors, which are worn on or implanted into the skin, must be made of durable, flexible and stretchable materials that respond to the motion of the wearer. By implanting graphene into rubber, a flexible natural material, we are able to completely change its properties to make it electrically conductive, to develop a completely new type of sensor. Because rubber is available widely and cheaply, this unique discovery will open up major possibilities in sensor manufacturing worldwide.”

Here’s a link to and a citation for the paper,

Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites by Conor S. Boland, Umar Khan, Claudia Backes, Arlene O’Neill, Joe McCauley, Shane Duane, Ravi Shanker, Yang Liu, Izabela Jurewicz, Alan B. Dalton, and Jonathan N. Coleman. ACS Nano, Article ASAP DOI: 10.1021/nn503454h Publication Date (Web): August 6, 2014

Copyright © 2014 American Chemical Society

This paper is open access (I was able to open the HTML version this morning, Aug. 20, 2014). As well the researchers have made this image illustrating their work available,

[downloaded from http://pubs.acs.org/doi/full/10.1021/nn503454h]

[downloaded from http://pubs.acs.org/doi/full/10.1021/nn503454h]

Things falling apart: both a Nigerian novel and research at the Massachusetts Intitute of Technology

First the Nigerian novel ‘Things Fall Apart‘ (from its Wikipedia entry; Note: Links have been removed),

Things Fall Apart is an English-language novel by Nigerian author Chinua Achebe published in 1958 by William Heinemann Ltd in the UK; in 1962, it was also the first work published in Heinemann’s African Writers Series. Things Fall Apart is seen as the archetypal modern African novel in English, one of the first to receive global critical acclaim. It is a staple book in schools throughout Africa and is widely read and studied in English-speaking countries around the world. The title of the novel comes from William Butler Yeats’ poem “The Second Coming”.[1]

For those unfamiliar with the Yeats poem, this is the relevant passage (from Wikipedia entry for The Second Coming),

Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere
The ceremony of innocence is drowned;
The best lack all conviction, while the worst
Are full of passionate intensity.

The other ‘Things fall apart’ item, although it’s an investigation into ‘how things fall apart’, is mentioned in an Aug. 4, 2014 news item on Nanowerk,

Materials that are firmly bonded together with epoxy and other tough adhesives are ubiquitous in modern life — from crowns on teeth to modern composites used in construction. Yet it has proved remarkably difficult to study how these bonds fracture and fail, and how to make them more resistant to such failures.

Now researchers at MIT [Massachusetts Institute of Technology] have found a way to study these bonding failures directly, revealing the crucial role of moisture in setting the stage for failure. Their findings are published in the journal Proceedings of the National Academy of Science in a paper by MIT professors of civil and environmental engineering Oral Buyukozturk and Markus Buehler; research associate Kurt Broderick of MIT’s Microsystems Technology Laboratories; and doctoral student Denvid Lau, who has since joined the faculty at the City University of Hong Kong.

An Aug. 4, 2014 MIT news release written by David Chandler (also on EurekAlert), which originated the news item, provides an unexpectedly fascinating discussion of bonding, interfaces, and infrastructure,

“The bonding problem is a general problem that is encountered in many disciplines, especially in medicine and dentistry,” says Buyukozturk, whose research has focused on infrastructure, where such problems are also of great importance. “The interface between a base material and epoxy, for example, really controls the properties. If the interface is weak, you lose the entire system.”

“The composite may be made of a strong and durable material bonded to another strong and durable material,” Buyukozturk adds, “but where you bond them doesn’t necessarily have to be strong and durable.”

Besides dental implants and joint replacements, such bonding is also critical in construction materials such as fiber-reinforced polymers and reinforced concrete. But while such materials are widespread, understanding how they fail is not simple.

There are standard methods for testing the strength of materials and how they may fail structurally, but bonded surfaces are more difficult to model. “When we are concerned with deterioration of this interface when it is degraded by moisture, classical methods can’t handle that,” Buyukozturk says. “The way to approach it is to look at the molecular level.”

When such systems are exposed to moisture, “it initiates new molecules at the interface,” Buyukozturk says, “and that interferes with the bonding mechanism. How do you assess how weak the interface becomes when it is affected? We came up with an innovative method to assess the interface weakening as a result of exposure to environmental effects.”

The team used a combination of molecular simulations and laboratory tests in its assessment. The modeling was based on fundamental principles of molecular interactions, not on empirical data, Buyukozturk says.

In the laboratory tests, Buyukozturk and his colleagues controlled the residual stresses in a metal layer that was bonded and then forcibly removed. “We validated the method, and showed that moisture has a degrading effect,” he says.

The findings could lead to exploration of new ways to prevent moisture from reaching into the bonded layer, perhaps using better sealants. “Moisture is the No. 1 enemy,” Buyukozturk says.

“I think this is going to be an important step toward assessment of the bonding, and enable us to design more durable composites,” he adds. “It gives a quantitative knowledge of the interface” — for example, predicting that under specific conditions, a given bonded material will lose 30 percent of its strength.

Interface problems are universal, Buyukozturk says, occurring in many areas besides biomedicine and construction. “They occur in mechanical devices, in aircraft, electrical equipment, in the packaging of electronic components,” he says. “We feel this will have very broad applications.”

Bonded composite materials are beginning to be widely used in airplane manufacturing; often these composites are then bonded to traditional materials, like aluminum. “We have not had enough experience to prove the durability of these composite systems is going to be there after 20 years,” Buyukozturk says.

Here’s a link to and a citation for the research paper,

A robust nanoscale experimental quantification of fracture energy in a bilayer material system by Denvid Lau, Kurt Broderick, Markus J. Buehler, and Oral Büyüköztürk. PNAS, doi: 10.1073/pnas.1402893111 published August 5, 2014

This paper is behind a paywall.

‘Llam’ me lend you some antibodies—antibody particles extracted from camels and llamas

Sometimes the urge for wordplay overwhelms me as it did this morning (June 12, 2014) when I saw llamas mentioned in a news item. For anyone unfamiliar with how Canadian English (and I can safely include American English here but am not sure about any other Englishes) is spoken, we leave out consonants in some phrases. For example, ‘let me’ becomes ‘lemme’, which when you’re playing with ‘llama,’ becomes ‘llam’me. As for the verb ‘lend’, I used it for its alliterative quality and used more accurate verb ‘extracted’ later in the headline.

Getting on to the antibodies and the camels and llamas, here’s more from a June 12, 2014 news item on Nanowerk (Note: A link has been removed),

The use of nanoparticles in cancer research is considered as a promising approach in detecting and fighting tumour cells. The method has, however, often failed because the human immune system recognizes the particles as foreign objects and rejects them before they can fulfil their function. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and at University College Dublin [UCD[ in Ireland have, along with other partners, developed nanoparticles that not only bypass the body’s defence system, but also find their way to the diseased cells (“Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies”). This procedure uses fragments from a particular type of antibody that only occurs in camels and llamas. The small particles were even successful under conditions which are very similar to the situation within potential patients’ bodies.

A June 12, 2014 HZDR press release, which originated the news item, supplies a quote from one of the researchers where he explains the problems he and his colleagues were attempting to address,

Describing the current state of research, Dr. Kristof Zarschler of the Helmholtz Virtual Institute NanoTracking at the HZDR explains, “At the moment we must overcome three challenges. First, we need to produce the smallest possible nanoparticles. We then need to modify their surface in a way that the proteins in the human bodies do not envelop them, which would thus render them ineffective. In order to ensure, that the particles do their job, we must also somehow program them to find the diseased cells.” Therefore, the Dresden [HZDR is in Dresden] and Dublin researchers combined expertise to develop nanoparticles made of silicon dioxide with fragments of camel antibodies.

The press release and Zarschler go on to explain the advantages of camel and llama antibodies,

In contrast to conventional antibodies, which consist of two light and two heavy protein chains, those taken from camels and llamas are less complex and are made up of only two heavy chains. “Due to this simplified structure, they are easier to produce than normal antibodies,” explains Zarschler. “We also only need one particular fragment – the portion of the molecule that binds to certain cancer cells – which makes the production of much smaller nanoparticles possible.” By modifying the surface of the nanoparticle, it also gets more difficult for the immune system to recognize the foreign material, which allows the nanoparticles to actually reach their target.

The ultra-small particles should then detect the so-called epidermal growth factor receptor (EGFR) in the human body. In various types of tumours, this molecule is overexpressed and/or exists in a mutated form, which allows the cells to grow and multiply uncontrollably. The Dresden researchers could demonstrate in experiments that nanoparticles that have been combined with the camel antibody fragments can more firmly bind to the cancer cells. “The EGFR is a virtual lock to which our antibody fits like a key,” explains Zarschler.

Most exciting are the experiments the researchers performed with human blood (from the press release),

They even obtained the same results in experiments involving human blood serum – a biologically relevant environment the scientists point out: “This means that we carried out the tests under conditions that are very similar to the reality of the human body,” explains Dr. Holger Stephan, who leads the project. “The problem with many current studies is that artificial conditions are chosen where no disruptive factors exist. While this provides good results, it is ultimately useless because the nanoparticles fail finally in experiments conducted under more complex conditions. In our case, we could at least reduce this error source.”

There are no immediate plans for clinical trials according to the press release,

However, more time is required before the nanoparticles can be utilized in diagnosing human tumours. “The successful tests have brought us one step further,” explains Stephan. “The road, however, to its clinical use is long.” The next aim is to reduce the size of the nanoparticles, which are now approximately fifty nanometres in diameter, to less than ten nanometres. “That would be optimal,” according to Zarschler. “Then they would only remain in the human body for a short period – just long enough to detect the tumour.”

Here’s a link to and a citation for the paper,

Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies by K. Zarschler, K. Prapainop, E. Mahon, L. Rocks,  M. Bramini, P. M. Kelly, H. Stephan, and K. A. Dawson. Nanoscale, 2014,6, 6046-6056 DOI: 10.1039/C4NR00595C
First published online 16 Apr 2014

This paper is in an open access journal.

The researchers have provided an illustration of the new antibody particles,

 Title Bild Nanopartikel Copyright 	CBNI, UCD


Title Bild Nanopartikel
With help of proteins, nanoparticles can be produced, which bind specifically to cancer cells, thus making it possible to detect tumours. Copyright CBNI, UCD

The Irish mix up some graphene

There was a lot of excitement (one might almost call it giddiness) earlier this week about a new technique from Irish researchers for producing graphene. From an April 20, 2014 article by Jacob Aron for New Scientist (Note: A link has been removed),

First, pour some graphite powder into a blender. Add water and dishwashing liquid, and mix at high speed. Congratulations, you just made the wonder material graphene.

This surprisingly simple recipe is now the easiest way to mass-produce pure graphene – sheets of carbon just one atom thick. The material has been predicted to revolutionise the electronics industry, based on its unusual electrical and thermal properties. But until now, manufacturing high-quality graphene in large quantities has proved difficult – the best lab techniques manage less than half a gram per hour.

“There are companies producing graphene at much higher rates, but the quality is not exceptional,” says Jonathan Coleman of Trinity College Dublin in Ireland.

Coleman’s team was contracted by Thomas Swan, a chemicals firm based in Consett, UK, to come up with something better. From previous work they knew that it is possible to shear graphene from graphite, the form of carbon found in pencil lead. Graphite is essentially made from sheets of graphene stacked together like a deck of cards, and sliding it in the right way can separate the layers.

Rachel Courtland chimes in with her April 21,2014 post for the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]) website (Note: A link has been removed),

The first graphene was made by pulling layers off of graphite using Scotch tape. Now, in keeping with the low-tech origins of the material, a team at Trinity College Dublin has found that it should be possible to make large quantities of the stuff by mixing up some graphite and stabilizing detergent with a blender.

The graphene produced in this manner isn’t anything like the wafer-scale sheets of single-layer graphene that are being grown by Samsung, IBM and others for high-performance electronics. Instead, the blender-made variety consists of small flakes that are exfoliated off of bits of graphite and then separated out by centrifuge. But small-scale graphene has its place, the researchers say. …

An April 22, 2014 CRANN (the Centre for Research on Adaptive Nanostructures and Nanodevices) at Trinity College Dublin news release (also on Nanowerk as an April 20, 2014 news item) provides more details about the new technique and about the private/public partnership behind it,

Research team led by Prof Jonathan Coleman discovers new research method to produce large volumes of high quality graphene.

Researchers in AMBER, the Science Foundation Ireland funded materials science centre headquartered at CRANN, Trinity College Dublin have, for the first time, developed a new method of producing industrial quantities of high quality graphene. …

The discovery will change the way many consumer and industrial products are manufactured. The materials will have a multitude of potential applications including advanced food packaging; high strength plastics; foldable touch screens for mobile phones and laptops; super-protective coatings for wind turbines and ships; faster broadband and batteries with dramatically higher capacity than anything available today.

Thomas Swan Ltd. has worked with the AMBER research team for two years and has signed a license agreement to scale up production and make the high quality graphene available to industry globally. The company has already announced two new products as a result of the research discovery (Elicarb®Graphene Powder and Elicarb® Graphene Dispersion).

Until now, researchers have been unable to produce graphene of high quality in large enough quantities. The subject of on-going international research, the research undertaken by AMBER is the first to perfect a large-scale production of pristine graphene materials and has been highlighted by the highly prestigious Nature Materials publication as a global breakthrough. Professor Coleman and his team used a simple method for transforming flakes of graphite into defect-free graphene using commercially available tools, such as high-shear mixers. They demonstrated that not only could graphene-containing liquids be produced in standard lab-scale quantities of a few 100 millilitres, but the process could be scaled up to produce 100s of litres and beyond.

Minister for Research and Innovation Sean Sherlock, TD commented; “Professor Coleman’s discovery shows that Ireland has won the worldwide race on the production of this ‘miracle material’. This is something that USA, China, Australia, UK, Germany and other leading nations have all been striving for and have not yet achieved. This announcement shows how the Irish Government’s strategy of focusing investment in science with impact, as well as encouraging industry and academic collaboration, is working.”

Here’s a link to and a citation for the researchers’ paper,

Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids by Keith R. Paton, Eswaraiah Varrla, Claudia Backes, Ronan J. Smith, Umar Khan, Arlene O’Neill, Conor Boland, Mustafa Lotya, Oana M. Istrate, Paul King, Tom Higgins, Sebastian Barwich, Peter May, Pawel Puczkarski, Iftikhar Ahmed, Matthias Moebius, Henrik Pettersson, Edmund Long, João Coelho, Sean E. O’Brien, Eva K. McGuire, Beatriz Mendoza Sanchez, Georg S. Duesberg, Niall McEvoy, Timothy J. Pennycook, et al. Nature Materials (2014) doi:10.1038/nmat3944 Published online 20 April 2014

This article is mostly behind a paywall but there is a free preview available through ReadCube Access.

For anyone who’s curious about AMBER, here’s more from the About Us page on the CRANN website (Note: A link has been removed),

In October 2013, a new Science Foundation Ireland funded research centre, AMBER (Advanced Materials and BioEngineering Research) was launched. AMBER is jointly hosted in TCD [Trinity College Dublin] by CRANN and the Trinity Centre for Bioenineering, and works in collaboration with the Royal College of Surgeons in Ireland and UCC. The centre provides a partnership between leading researchers in materials science and industry and will deliver internationally leading research that will be industrially and clinically informed with outputs including new discoveries and devices in ICT, medical device and industrial technology sectors.

Finally, Thomas Swan Ltd. can be found here.

CurTran and its plan to take over the world by replacing copper wire with LiteWire (carbon nanotubes)

This story is about carbon nanotubes and commercialization if I read Molly Ryan’s April 14, 2014 article for the Upstart Business Journal correctly,

CurTran LLC just signed its first customer contract with oilfield service Weatherford International Ltd. (NYSE: WFT) in a deal valued at more than $350 million per year.

To say the least, this is a pretty big step forward for the Houston-based nanotechnology materials company, especially since Gary Rome, CurTran’s CEO, said the entire length of the contract is valued at more than $7 billion. But when looking at the grand scheme of CurTran’s plans, this $7 billion contract is a baby step.

“We want to replace copper wire,” Rome said. “Globally, copper is used everywhere and it is a huge market. … We (have a product) that is substantially stronger than copper, and our electrical properties are in common.”

Rice University professor Richard Smalley began researching what would eventually become CurTran’s LiteWire product more than nine years ago, and CurTran officially formed in 2011.

CurTran, which is based in Houston, Texas, describes its LiteWire product this way,

Copper is a better conductor than Aluminum and Steel, and silver is too expensive to use in most applications.  So LiteWire is benchmarked against the dominant conductor in the market, copper.

So how does LiteWire match up against copper wire and cable?

Electrically, in established power transmission wiring standards and frequency, LiteWire has the same properties as copper conductors.  Resistivity, impedance, loading, sizing, etc, copper and LiteWire are the same at 60HZ.  This was intentional by our engineering department, ease adoption of LiteWire.  No need to change wire coating, cable winding, or wire processing equipment or processes, just change over to LiteWire and go.  Every electrician can work with LiteWire utilizing the same tools, standards and instruments.

So what is different between Copper Wire and LiteWire?

It’s Carbon.  LiteWire is an aligned structure double wall carbon nano-tube’s in wire form.  It is a 99.9% carbon structure that takes advantage of the free electrons available in carbon, while limiting the ability of the carbon to form new molecules, such as COx.  The outer electrons of carbon are loosely bound and easily conduced to move from atom to atom.

It is light.  LiteWire is 1/5th the weight of copper conductors.  A 40lb spool of 10ga 3-wire copper wire has 200 feet of wire.  A 40lb spool of 10ga 3-wire LiteWire has 800 feet of wire.  Aluminum wire is ½ the weight of copper, yet requires a 50% larger diameter wire for the same conductive properties, LiteWire sizing is exactly the same as copper.

It is strong.  LiteWire is stronger than steel, 20 times stronger than copper, and stronger than 8000 series Aluminum cable.  Span greater distances between towers, pull higher tension, reduce installation costs and maintenance.

It doesn’t creep.  LiteWire expands and contracts 1/3 less than copper and its aluminum equivalents.  Connection points are secure year round and year after year.  Less sagging of power lines in hot temperatures, less opportunity for grounding of power lines and power outages.

More power, less loss.  LiteWire is equal to copper wire at 60HA, and highly efficient at higher frequencies, voltages and amperes.  More electrical energy can be transmitted with lower losses in the system.  Less wasted energy in the line, means less power needs to be produced.

A longer life.  LiteWire is noncorrosive in all naturally occurring environments, from deep sea to outer space. No issue with dissimilar metals at connection points.  LiteWire is inert and does not degrade over time.

Can you hear me now.  Litewire is the perfect signal conducting wire.  LiteWire is superior at higher frequencies, losses are lower and signal clarity is greater.  Networks can carry more bandwidth and signal separation is cleaner.

Never wet.  LiteWire is hydrophobic by nature.  Water beads up and is shed, even if the water freezes, it does so in bead form and falls away.  No more powerline failures from ice buildup and breaking or shorting due to line sag.

How much does it cost.  LiteWire costs the same as copper wire of equal length and size.  As the price of copper continues to rise and as new LiteWire facilities come on line, the cost of LiteWire will decrease. Projecting out ten years, LiteWire will be half the cost of copper wire and cable.

Never fatigues.  LiteWire has a very long fatigue life, we are still looking for it.  LiteWire is not susceptible to fatigue failure.  LiteWire’s bonds are at the atomic level, when that bond is broken, the failure occurs.  Repeated cycles to near the breaking point do not degrade LiteWire’s integrity.  Metal conductors fatigue under repeated bending, reducing their load carrying capabilities and subsequent failure.

There is a table of specific technical properties on the LiteWire product webpage.

CurTran’s CEO has big plans (from the Ryan article),

With a multibillion-dollar contract under its belt only a few years after its founding, Rome intends for CurTran to have blockbuster years for the next five years. According to the company’s website, it plans to hire 3,600 new employees around the world in this time frame.

“We also plan to open a new production facility every six months for the next five years,” Rome said. “We’ve already identified the first four locations.”

For Weatherford’s perspective on this deal, there’s the company’s April 7, 2014 news release,

Weatherford International Ltd. today [April 7, 2014] announced that it has entered into an agreement with CurTran LLC to use, sell, and distribute LiteWire, the first commercial scale production of a carbon nanotube technology in wire and cable form.

“With LiteWire products, we gain exclusivity to a revolutionary technology that will greatly add value to our business,” said Dharmesh Mehta, chief operating officer for Weatherford. “The use of LiteWire products allows us to provide safer, faster, and more economic solutions for our customers.”

In addition to using LiteWire in its global operations, Weatherford will be the exclusive distributor of this product in the oil and gas industry.

Interestingly, Weatherford seems to be in a highly transitional state. From an April 3, 2014 article by Jordan Blum for Houston Business Journal (Note: Links have been removed),

Weatherford International Ltd. (NYSE: WFT) plans to move its corporate headquarters from Switzerland to Ireland largely because of changes to Swiss corporate executive laws and potential uncertainties.

Weatherford, which has its operational headquarters in Houston, is  undergoing a global downsizing as it relocates its corporate offices.

Weatherford President and CEO Bernard Duroc-Danner said the move will help the company “quickly and efficiently execute and move forward on our transformational path.”

The downsizing and move put a different complexion on Weatherford’s deal with CurTran. It seems Weatherford is taking a big gamble on its future. I’m basing that comment on the fact that there is, to my knowledge, no other deployment of a similar scope of a ‘carbon nanotube’ wire such as LightWire.

It would appear from CurTran’s Overview that LightWire’s deployment is an inevitability,

CurTran LLC was formed for one purpose.  To industrialize the production of Double Wall Carbon Nanotubes in wire form to be a direct replacement for metallic conductors in wire and cable applications.

That rhetoric is worthy of a 19th century capitalist. Of course, those guys did change the world.

There’s a bit more about the company’s history and activities from the Overview page,

CurTran was formed in 2011 by industrial manufacturing, engineering and research organizations.  An industrialization plan was defined, customer and industry partners engaged, the intellectual property consolidated and operations launched.

Operations are based in the following areas:

  • Corporate Headquarters, located in Houston Texas
  • Test Facility, located in Houston Texas and operated by NanoRidge and Rice University researchers.
  • Pilot Plant located in Eastern Europe
  • Production facilities are to be located in various global markets.  Production facilities will be fully operational in 2014 producing in excess of 50,000 tonnes per facility annually.

CurTran manufactures the LiteWire conductor in many forms.  We do not manufacture insulated products at this time.  We rely on our Joint Venture Partners to deliver a completed wire/cable product to their existing customer base.

CurTran provides engineering services to Partners and Customers that seek to optimize their products to the full capabilities of LiteWire.

CurTran supports ongoing research and development activities in applied material science, chemical/mechanical/thermo/fluid production processes, industrial equipment design, and  application sciences.

Getting back to Weatherford, I imagine there is celebration in Ireland although I can’t help wondering if the Swiss, in a last minute solution, might not find a way to keep Weatherford’s headquarters right where they are. I haven’t been able to find a date for Weatherford’s move to Ireland.

Agriculture and nano in Ireland and at Stanford University (California)

I have two news items one of which concerns the countries of  Ireland and Northern Ireland and a recent workshop on agriculture and nanotechnology held in Belfast, Northern Ireland . The papers presented at the workshop have now been made available for downloading according to a Jan. 25, 2014 news item on Nanowerk,

On January 9, 2014, safefood, the Institute for Global Food Security, Queen’s University Belfast, and Teagasc Food Research Centre organized a workshop Nanotechnology in the agri-food industry: Applications, opportunities and challenges. The presentations from this event are now availabled as downloadable pdf files …

According to its hompage, Teagasc “is the agriculture and food development authority in Ireland. Its mission is to support science-based innovation in the agri-food sector and the broader bioeconomy that will underpin profitability, competitiveness and sustainability.”

The full list of presentations and access to them can be found on Nanowerk or on this Teagasc publications page,

Presentations

My next item is also focused on agriculture although not wholly. From a Jan. 26, 2014 news item on Nanowerk,

University researchers from two continents have engineered an efficient and environmentally friendly catalyst for the production of molecular hydrogen (H2), a compound used extensively in modern industry to manufacture fertilizer and refine crude oil into gasoline.

The Stanford University School of Engineering news release (dated Jan. 27, 2014) by Tom Abate, which originated the news item, (Note: Links have been removed) describes the work,

Although hydrogen is an abundant element, it is generally not found as the pure gas H2 but is generally bound to oxygen in water (H2O) or to carbon in methane (CH4), the primary component in natural gas. At present, industrial hydrogen is produced from natural gas using a process that consumes a great deal of energy while also releasing carbon into the atmosphere, thus contributing to global carbon emissions.

In an article published today in Nature Chemistry, nanotechnology experts from Stanford Engineering and from Denmark’s Aarhus University explain how to liberate hydrogen from water on an industrial scale by using electrolysis.

In electrolysis, electrical current flows through a metallic electrode immersed in water. This electron flow induces a chemical reaction that breaks the bonds between hydrogen and oxygen atoms. The electrode serves as a catalyst, a material that can spur one reaction after another without ever being used up. Platinum is the best catalyst for electrolysis. If cost were no object, platinum might be used to produce hydrogen from water today.

But money matters. The world consumes about 55 billion kilograms of hydrogen a year. It now costs about $1 to $2 per kilogram to produce hydrogen from methane. So any competing process, even if it’s greener, must hit that production cost, which rules out electrolysis based on platinum.

In their Nature Chemistry paper, the researchers describe how they re-engineered the atomic structure of a cheap and common industrial material to make it nearly as efficient at electrolysis as platinum – a finding that has the potential to revolutionize industrial hydrogen production.

The project was conceived by Jakob Kibsgaard, a post-doctoral researcher with Thomas Jaramillo, an assistant professor of chemical engineering at Stanford. Kibsgaard started this project while working with Flemming Besenbacher, a professor at the Interdisciplinary Nanoscience Center (iNANO) at Aarhus.

There’s more about about the history of electrolysis and hydrogen production and about how the scientists developed their technique in the news release but this time I want to focus on the issue of scalability,. From the news release,

But in chemical engineering, success in a beaker is only the beginning.

The larger questions were: could this technology scale to the 55 billion kilograms per year global demand for hydrogen, and at what finished cost per kilogram?

Last year, Jaramillo and a dozen co-authors studied four factory-scale production schemes in an article for The Royal Society of Chemistry’s journal of Energy and Environmental Science.

They concluded that it could be feasible to produce hydrogen in factory-scale electrolysis facilities at costs ranging from $1.60 to $10.40 per kilogram – competitive at the low end with current practices based on methane – though some of their assumptions were based on new plant designs and materials.

“There are many pieces of the puzzle still needed to make this work and much effort ahead to realize them,” Jaramillo said. “However, we can get huge returns by moving from carbon-intensive resources to renewable, sustainable technologies to produce the chemicals we need for food and energy.”

Here’s a link to and a citation for the researchers’ paper,

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters by Jakob Kibsgaard, Thomas F. Jaramillo, & Flemming Besenbacher. Nature Chemistry (2014) doi:10.1038/nchem.1853 Published online 26 January 2014

This article is behind a paywall.

Irish teach nanoscience, nanotechnology and new materials to 5th & 6th classes (grades)

Ireland’s CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices) located in Trinity College Dublin seems to be hosting both the AMBER (Advanced Materials and BioEngineering Research) Centre and the NanoWOW education initiative. A Nov. 12, 2013 news item on Nanowerk describes NanoWOW and AMBER in more detail,

Ireland’s new materials science research centre has announced the launch of their new NanoWOW lesson plans. Designed for 5th and 6th class pupils the plans will introduce Irish Primary students to the world of nanoscience, nanotechnology and materials science.

Linked to the existing Primary science and maths syllabus while also including environment, history and art, the new lessons will enable school children to understand how the properties of materials can change on the nanoscale and provide opportunities for them to work like scientists through discussion, investigations and activities.

The Nov. 12, 2013 AMBER/CRANN news release, which originated the news item, gives more details about how NanoWOW is being launched during Ireland’s Science Week,

To celebrate the launch of NanoWOW, St Patrick’s College, Drumcondra are using this year’s Science Week theme, “Exploring the XTRA-Ordinary” to find out more about nanoscience and materials science amongst their students and staff. They have organised a number of CPD workshops to introduce primary school teachers to the NanoWOW lessons and will have guest speakers from AMBER visiting during the week.

Dr Cliona Murphy, Lecturer in Science Education, St Patrick’s College said “I think this is a wonderful initiative and we are very pleased to collaborate with AMBER on further developing the educational resources and bringing them to primary schools throughout Ireland.  The NanoWow investigations provide children with ample opportunities to work like scientists and to develop their scientific skills and knowledge.  Through engaging with the NanoWow activities the children are also provided with numerous opportunities to develop their language and thinking skills and to use a range of mathematical skills.  The NanoWow educational programme  provides children with first hand experience of the  ground breaking scientific research that is currently being conducted in Ireland and gives them an insight into careers that are potentially achievable for them.”

Prof. Stefano Sanvito, AMBER said, “The new NanoWOW lesson plans are designed to engage school children in a creative way that fosters their curiosity in nanoscience. We also want to develop their interest and understanding so they are aware of nanoscience as part of their everyday lives and the potential future career options that would be open to them.”

Prof. Sanvito went on to comment, “Ireland is currently ranked 6th worldwide for nanoscience research and 1st in the EU for European Research Council starting grants. With Nanoscience linked to €15 billion or 10% of Irish exports and 250,000 jobs in sectors like technology, biomedicine, pharmaceuticals, energy and more, the importance of making nanoscience relevant amongst school pupils is obvious for future development”.

The launch of the new NanoWOW lesson plans builds on the success of the “Nano in My Life” lesson plans for secondary schools which were launched by CRANN during Science Week 2011. Targeted at Transition Year students, the resource provides teachers with nanaoscience lesson plans free of charge. With nanonscience due to feature as part of the new Leaving Certificate, the NanoWOW lesson plans aim to build on this success and bring the subject to a wider audience.

Ireland’s Science Week is being held from Nov. 10 – 17, 2013, according to the 2013 Science Week theme webpage (on Ireland’s Science Week website),

Science Week 2013 – Exploring the XTRA-Ordinary

Every day we encounter XTRA-Ordinary processes that are behind the ordinary! From the water that comes out of our taps, to the grass that grows in our fields, to our body’s ability to heal itself and play sports – there are XTRA-Ordinary processes happening all around us. Science Week 2013 is calling on you to come and explore the XTRA-Ordinary too!

The objective of Science Week each year is to promote the relevance of science, technology, engineering and maths (STEM) in our everyday lives and to demonstrate their importance to the future of Irish society and to the economy.

This year we want to show everyone in Ireland that there are scientific processes behind everything around us, most of which are taken for granted every day. Exploring the XTRA-Ordinary invites you to stop, take note and explore the processes that are happening around you every day.

Co-ordinated by Science Foundation Ireland, Science Week 2013 runs from 10 to 17 November 2013 and is a collaboration of events run by colleges, schools, libraries, teachers, community groups, researchers and students throughout Ireland.

For anyone wanting to know more about the NanoWow initiative and the lessons on offer, go here. As for AMBER, that was launched in October 2013 according to an Oct. 24, 2013 CRANN news release,

Minister Bruton launches new €58 Million SFI Research Centre- AMBER

Advanced Materials and BioEngineering Research (AMBER) Centre positions Ireland as a global leader in the areas of materials and medical device development for industry.

More than 45% of multinational jobs wins are connected to SFI research.
Directly supporting 99 highly skilled jobs.
Investment of €23 million from 18 industry partners across diverse sectors.
Industry partners include Intel, DePuy, Medtronic, Merck Millipore and SAB Miller.
Research programme will translate science into new discoveries and devices for a range of sectors such as the development of the next generation computer chips and new medical implants and pharmaceuticals that will improve patirnt care.

The Minister for Jobs, Enterprise and Innovation, Richard Bruton TD, together with the Minister for Research & Innovation, Sean Sherlock TD, today (Thursday) launched the Advanced Materials and Bio-Engineering Research Centre (AMBER).

The Centre is funded by the Department of Jobs, Enterprise and Innovation through Science Foundation Ireland (SFI) in the amount of €35million. This funding is leveraged with an additional €23million from 18 industry partners.

AMBER will work to translate science into new discoveries and devices for a range of sectors, particularly ICT, medical devices and industrial technologies.

It’s very exciting to see what they’re doing in Ireland. And, until now, I’d completely forgotten about Canada’s annual Science and Technology week. This year’s was held from Oct. 18, – 27, 2013. While this celebration seems to have been winding down for a number of years,, perhaps 2013 marks a revitalized event,

Thousands of Canadians across the country joined together on Friday, October 18th [2013] to establish a World Record for the largest science lesson. [emphasis mine] Thank you to all of the organizers and all of the participants who made this inspiring event possible.

Over the next few weeks we’ll be collecting all the required evidence and forwarding it to Guinness for the final number to be calculated and an announcement to be made. As soon as the process is finished we will announce the results on Science.gc.ca.

Of course, Guinness World Records traces its roots back to Ireland, From the History webpage of the Guinness World Records website,

10 November 1951

Sir Hugh Beaver, Chairman of the Guinness Brewery, is out hunting game birds by the River Slaney in County Wexford, Ireland, when he misses a shot at a golden plover. Sir Hugh wonders if the plover is the fastest game bird in Europe but can’t find a reference book that answers the question.

I’m sure the Irish could rival Canadians for the size of the science lessons they might wish to hold. Perhaps Canadians should offer a friendly challenge?

CelluForce finalist in Global Cleantech Cluster Association (GCCA) 2013 Later Stage Awards

The Global Cleantech Cluster Association (GCCA) is a cluster of cleantech cluster associations. In other words, if you lead a cleantech association whose membership includes cleantech businesses and ventures, you might call your organization a cleantech cluster and that organization could be eligible for membership in the global association (or cluster of clusters), the GCCA.

CelluForce, a Québec-based company, has emerged as one of 30 finalists in the GCCA’s 2013 Later Stage Awards. From the Nov. 11, 2013 CelluForce news release,

CelluForce, the world leader in the commercial development of Cellulose Nanocrystals (CNC), also referred to as NanoCrystalline Cellulose (CelluForce NCC™), is pleased to be recognized among the Global Top 30 in the prestigious Global Cleantech Cluster Association (GCCA) 2013 Later Stage Awards and the top three finalists in the lighting and energy efficiency category.

Each company was evaluated based on their merits in technological innovation and business acumen using the Keystone Compact Method. The Global Top 10 winners will be announced at the Corporate Cleantech Venture Day in Lathi, Finland on November 20th, 2013.

“The 2013 Global Top 30 demonstrate investability, strong product differentiation, scalable business models and have secured solid market traction in their various clean technology sectors,” said Dr. Peter Adriaens, Head Judge of the GCCA Later Stage Awards and developer of the Keystone Compact™ and associated scoring method.

“Narrowing down the nominations from 160 to 30 follows a detailed and robust process and analytics. The 2013 Global Top 30 some of the world’s most sought after equity

investable cleantech companies based on value capture potential in their CleanTech industry sectors.” An interview of Dr. Adriaens is available at http://www.globalcleantech.org/awards/criteria-and-eligibility/

“It is an honor to be part of this prestigious list of the world’s top Cleantech companies” said Jean Moreau, CelluForce President and CEO. “This honor is a reflection of the hard work and resilience demonstrated by the CelluForce team and its partners in developing commercial applications for CNC”, added Moreau. CelluForce is a member of Cleantech cluster Écotech Québec, a founding member of the Global Cleantech Cluster Association.

About CelluForce Inc.

CelluForce Inc. is the world leader in the commercial development of Cellulose Nanocrystals (CNC), also referred to as NanoCrystalline Cellulose (CelluForce NCC™).

The company is a joint venture of Domtar Inc. and FPInnovations. CelluForce manufactures NCC/CNC in the world’s first demonstration plant of its kind, located in Windsor, Québec, develops new applications for NCC/CNC, markets and sells it. The company’s head office is in Montreal. www.celluforce.com

About the Global Cleantech Cluster Association

The Global Cleantech Cluster Association (GCCA) is a network of 49 cleantech clusters, representing over 10,000 companies. It creates conduits for companies to

harness the tremendous benefits of international cleantech cluster collaboration in an efficient, affordable, and structured network. The GCCA provides a gateway for established and emerging cleantech companies to gain exposure to potential investors, new markets, influential networks, innovative technologies and best practices. GCCA was founded by swisscleantech, the Finnish Cleantech Cluster, and Watershed Capital, and Technica Communications. For more information about the GCCA, please visit www.globalcleantech.org.

I was not able to find either the source of GCCA funds, presumably they derive their income from memberships, or information about the prizes. There is this about the judging crriteria, from the GCCA’s Criteria and Eligibility webpage (Note: Links have been removed)

Judging Criteria
Companies must fit into one of the following categories:

Biofuels/BioEnergy
CleanWeb/Sustainable IT
Energy Storage/Smart Grid
Green Building
Lighting/Energy Efficiency
Smart Cities (products & services)
Solar & Wind Energy
Transportation
Waste Management
Water (Resource recovery, energy, treatment, etc)

Renowned experts of the global Cleantech investment community (VC’s, PE, etc.) and award category experts are forming the judging panel, coordinated by GCCA.

The following are areas that Award nominees will be judged on:

Clarity of the business strategy: does a viable business with significant markets exist?
The BIG Idea: why is it BIG in terms of breakthrough in innovation, concept and commercial potential?
Core team – profile & tenure: is there a relevant mix of requisite expertise and experience?
Funding: what are current and future sources?
ROI and/or exit strategy: is the business plan reasonable?
Sustainability: what is the positive impact on the environment?

Learn more about the The KeyStone Method™ and review the Keystone Score Brief.

Eligibility

To participate in the GCCA Later Stage Award, Cleantech clusters can nominate any later stage Cleantech company that is member of a cleantech cluster associated with GCCA.

Later stage companies are defined as companies with a proven track record (revenue) in their home market and the strategic goal to expand internationally, and/or a scalable technology or service with international growth potential (pre-revenue, but proven in pilot and demonstration projects).

Nominees may be disqualified if the GCCA jury (at their sole discretion) considers the nominee not eligible to participate.

Please send questions or comments about the GCCA Later Stage Award to award@globalcleantech.org

**All prizes are awarded at the discretion of the judging panel and all judging decisions are final and not subject to appeal.

You can find out more about the Keystone Compact here and Keystone Score here. Good luck to the folks at CelluForce on Nov. 20, 2013 (when they announce the winner in Finland). CelluForce’s two competitors at this stage are: SELC (Ireland) and ThinkEco (US)..