Tag Archives: wearable technologies

A solar, self-charging supercapacitor for wearable technology

Ravinder Dahiya, Carlos García Núñez, and their colleagues at the University of Glasgow (Scotland) strike again (see my May 10, 2017 posting for their first ‘solar-powered graphene skin’ research announcement). Last time it was all about robots and prosthetics, this time they’ve focused on wearable technology according to a July 18, 2018 news item on phys.org,

A new form of solar-powered supercapacitor could help make future wearable technologies lighter and more energy-efficient, scientists say.

In a paper published in the journal Nano Energy, researchers from the University of Glasgow’s Bendable Electronics and Sensing Technologies (BEST) group describe how they have developed a promising new type of graphene supercapacitor, which could be used in the next generation of wearable health sensors.

A July 18, 2018 University of Glasgow press release, which originated the news item, explains further,

Currently, wearable systems generally rely on relatively heavy, inflexible batteries, which can be uncomfortable for long-term users. The BEST team, led by Professor Ravinder Dahiya, have built on their previous success in developing flexible sensors by developing a supercapacitor which could power health sensors capable of conforming to wearer’s bodies, offering more comfort and a more consistent contact with skin to better collect health data.

Their new supercapacitor uses layers of flexible, three-dimensional porous foam formed from graphene and silver to produce a device capable of storing and releasing around three times more power than any similar flexible supercapacitor. The team demonstrated the durability of the supercapacitor, showing that it provided power consistently across 25,000 charging and discharging cycles.

They have also found a way to charge the system by integrating it with flexible solar powered skin already developed by the BEST group, effectively creating an entirely self-charging system, as well as a pH sensor which uses wearer’s sweat to monitor their health.

Professor Dahiya said: “We’re very pleased by the progress this new form of solar-powered supercapacitor represents. A flexible, wearable health monitoring system which only requires exposure to sunlight to charge has a lot of obvious commercial appeal, but the underlying technology has a great deal of additional potential.

“This research could take the wearable systems for health monitoring to remote parts of the world where solar power is often the most reliable source of energy, and it could also increase the efficiency of hybrid electric vehicles. We’re already looking at further integrating the technology into flexible synthetic skin which we’re developing for use in advanced prosthetics.” [emphasis mine]

In addition to the team’s work on robots, prosthetics, and graphene ‘skin’ mentioned in the May 10, 2017 posting the team is working on a synthetic ‘brainy’ skin for which they have just received £1.5m funding from the Engineering and Physical Science Research Council (EPSRC).

Brainy skin

A July 3, 2018 University of Glasgow press release discusses the proposed work in more detail,

A robotic hand covered in ‘brainy skin’ that mimics the human sense of touch is being developed by scientists.

University of Glasgow’s Professor Ravinder Dahiya has plans to develop ultra-flexible, synthetic Brainy Skin that ‘thinks for itself’.

The super-flexible, hypersensitive skin may one day be used to make more responsive prosthetics for amputees, or to build robots with a sense of touch.

Brainy Skin reacts like human skin, which has its own neurons that respond immediately to touch rather than having to relay the whole message to the brain.

This electronic ‘thinking skin’ is made from silicon based printed neural transistors and graphene – an ultra-thin form of carbon that is only an atom thick, but stronger than steel.

The new version is more powerful, less cumbersome and would work better than earlier prototypes, also developed by Professor Dahiya and his Bendable Electronics and Sensing Technologies (BEST) team at the University’s School of Engineering.

His futuristic research, called neuPRINTSKIN (Neuromorphic Printed Tactile Skin), has just received another £1.5m funding from the Engineering and Physical Science Research Council (EPSRC).

Professor Dahiya said: “Human skin is an incredibly complex system capable of detecting pressure, temperature and texture through an array of neural sensors that carry signals from the skin to the brain.

“Inspired by real skin, this project will harness the technological advances in electronic engineering to mimic some features of human skin, such as softness, bendability and now, also sense of touch. This skin will not just mimic the morphology of the skin but also its functionality.

“Brainy Skin is critical for the autonomy of robots and for a safe human-robot interaction to meet emerging societal needs such as helping the elderly.”

Synthetic ‘Brainy Skin’ with sense of touch gets £1.5m funding. Photo of Professor Ravinder Dahiya

This latest advance means tactile data is gathered over large areas by the synthetic skin’s computing system rather than sent to the brain for interpretation.

With additional EPSRC funding, which extends Professor Dahiya’s fellowship by another three years, he plans to introduce tactile skin with neuron-like processing. This breakthrough in the tactile sensing research will lead to the first neuromorphic tactile skin, or ‘brainy skin.’

To achieve this, Professor Dahiya will add a new neural layer to the e-skin that he has already developed using printing silicon nanowires.

Professor Dahiya added: “By adding a neural layer underneath the current tactile skin, neuPRINTSKIN will add significant new perspective to the e-skin research, and trigger transformations in several areas such as robotics, prosthetics, artificial intelligence, wearable systems, next-generation computing, and flexible and printed electronics.”

The Engineering and Physical Sciences Research Council (EPSRC) is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.

EPSRC is the main funding body for engineering and physical sciences research in the UK. By investing in research and postgraduate training, the EPSRC is building the knowledge and skills base needed to address the scientific and technological challenges facing the nation.

Its portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research funded by EPSRC has impact across all sectors. It provides a platform for future UK prosperity by contributing to a healthy, connected, resilient, productive nation.

It’s fascinating to note how these pieces of research fit together for wearable technology and health monitoring and creating more responsive robot ‘skin’ and, possibly, prosthetic devices that would allow someone to feel again.

The latest research paper

Getting back the solar-charging supercapacitors mentioned in the opening, here’s a link to and a citation for the team’s latest research paper,

Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes by Libu Manjakka, Carlos García Núñez, Wenting Dang, Ravinder Dahiya. Nano Energy Volume 51, September 2018, Pages 604-612 DOI: https://doi.org/10.1016/j.nanoen.2018.06.072

This paper is open access.

Terahertz imagers at your fingertips

It seems to me that I stumbled across quite a few carbon nanotube (CNT) stories in 2018. This one comes courtesy of Japan (from a June 28, 2018 news item on Nanowerk),

Researchers at Tokyo Tech have developed flexible terahertz imagers based on chemically “tunable” carbon nanotube materials. The findings expand the scope of terahertz applications to include wrap-around, wearable technologies as well as large-area photonic devices.

Here’s a peek at an imager,

Figure 1. The CNT-based flexible THz imager (a) Resting on a fingertip, the CNT THz imager can easily wrap around curved surfaces. (b) Just by inserting and rotating a flexible THz imager attached to the fingertip, damage to a pipe was clearly detected. Courtesy Tokyo Tech

A June 28, 2018 Tokyo Tech Institute press release (also on Eurekalert), which originated the news item, provides more detail,

Carbon nanotubes (CNTs) are beginning to take the electronics world by storm, and now their use in terahertz (THz) technologies has taken a big step forward.

Due to their excellent conductivity and unique physical properties, CNTs are an attractive option for next-generation electronic devices. One of the most promising developments is their application in THz devices. Increasingly, THz imagers are emerging as a safe and viable alternative to conventional imaging systems across a wide range of applications, from airport security, food inspection and art authentication to medical and environmental sensing technologies.

The demand for THz detectors that can deliver real-time imaging for a broad range of industrial applications has spurred research into low-cost, flexible THz imaging systems. Yukio Kawano of the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Tech, is a world-renowned expert in this field. In 2016, for example, he announced the development of wearable terahertz technologies based on multiarrayed carbon nanotubes.

Kawano and his team have since been investigating THz detection performance for various types of CNT materials, in recognition of the fact that there is plenty of room for improvement to meet the needs of industrial-scale applications.

Now, they report the development of flexible THz imagers for CNT films that can be fine-tuned to maximize THz detector performance.

Publishing their findings in ACS Applied Nano Materials, the new THz imagers are based on chemically adjustable semiconducting CNT films.

By making use of a technology known as ionic liquid gating1, the researchers demonstrated that they could obtain a high degree of control over key factors related to THz detector performance for a CNT film with a thickness of 30 micrometers. This level of thickness was important to ensure that the imagers would maintain their free-standing shape and flexibility, as shown in Figure 1 [see above].

“Additionally,” the team says, “we developed gate-free Fermi-level2 tuning based on variable-concentration dopant solutions and fabricated a Fermi-level-tuned p-n junction3 CNT THz imager.” In experiments using this new type of imager, the researchers achieved successful visualization of a metal paper clip inside a standard envelope (see Figure 2.)

Non-contact, non-destructive visualization

Figure 2. Non-contact, non-destructive visualization

The CNT THz imager enabled clear, non-destructive visualization of a metal paper clip inside an envelope.

The bendability of the new THz imager and the possibility of even further fine-tuning will expand the range of CNT-based devices that could be developed in the near future.

Moreover, low-cost fabrication methods such as inkjet coating could make large-area THz imaging devices more readily available.

1 Ionic liquid gating

A technique used to modulate a material’s charge carrier properties.

2 Fermi level

A measure of the electrochemical potential for electrons, which is important for determining the electrical and thermal properties of solids. The term is named after the Italian–American physicist Enrico Fermi.

3 p-n junction

Refers to the interface between positive (p-type) and negative (n-type) semiconducting materials. These junctions form the basis of semiconductor electronic devices.

Here’s a link to and a citation for the paper,

Fermi-Level-Controlled Semiconducting-Separated Carbon Nanotube Films for Flexible Terahertz Imagers by Daichi Suzuki, Yuki Ochiai, Yota Nakagawa, Yuki Kuwahara, Takeshi Saito, and Yukio Kawano. ACS Appl. Nano Mater., 2018, 1 (6), pp 2469–2475 DOI: 10.1021/acsanm.8b00421 Publication Date (Web): June 6, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

The joys of an electronic ‘pill’: Could Canadian Olympic athletes’ training be hacked?

Lori Ewing (Canadian Press) in an  August 3, 2018 article on the Canadian Broadcasting Corporation news website, heralds a new technology intended for the 2020 Olympics in Tokyo (Japan) but being tested now for the 2018 North American, Central American and Caribbean Athletics Association (NACAC) Track & Field Championships, known as Toronto 2018: Track & Field in the 6ix (Aug. 10-12, 2018) competition.

It’s described as a ‘computerized pill’ that will allow athletes to regulate their body temperature during competition or training workouts, from the August 3, 2018 article,

“We can take someone like Evan [Dunfee, a race walker], have him swallow the little pill, do a full four-hour workout, and then come back and download the whole thing, so we get from data core temperature every 30 seconds through that whole workout,” said Trent Stellingwerff, a sport scientist who works with Canada’s Olympic athletes.

“The two biggest factors of core temperature are obviously the outdoor humidex, heat and humidity, but also exercise intensity.”

Bluetooth technology allows Stellingwerff to gather immediate data with a handheld device — think a tricorder in “Star Trek.” The ingestible device also stores measurements for up to 16 hours when away from the monitor which can be wirelessly transmitted when back in range.

“That pill is going to change the way that we understand how the body responds to heat, because we just get so much information that wasn’t possible before,” Dunfee said. “Swallow a pill, after the race or after the training session, Trent will come up, and just hold the phone [emphasis mine] to your stomach and download all the information. It’s pretty crazy.”

First off, it’s probably not a pill or tablet but a gelcap and it sounds like the device is a wireless biosensor. As Ewing notes, the device collects data and transmits it.

Here’s how the French company, BodyCap, supplying the technology describes their product, from the company’s e-Celsius Performance webpage, (assuming this is the product being used),

Continuous core body temperature measurement

Main applications are:

Risk reduction for people in extreme situations, such as elite athletes. During exercise in a hot environment, thermal stress is amplified by the external temperature and the environment’s humidity. The saturation of the body’s thermoregulation mechanism can quickly cause hyperthermia to levels that may cause nausea, fainting or death.

Performance optimisation for elite athletes.This ingestible pill leaves the user fully mobile. The device keeps a continuous record of temperature during training session, competition and during the recovery phase. The data can then be used to correlate thermoregulation with performances. This enable the development of customised training protocols for each athlete.

e-Celsius Performance® can be used for all sports, including water sports. Its application is best suited to sports that are physically intensive like football, rugby, cycling, long distance running, tennis or those that take place in environments with extreme temperature conditions, like diving or skiing.

e-Celsius Performance®, is a miniaturised ingestible electronic pill that wirelessly transmits a continuous measurement of gastrointestinal temperature. [emphasis mine]

The data are stored on a monitor called e-Viewer Performance®. This device [emphases mine] shows alerts if the measurement is outside the desired range. The activation box is used to turn the pill on from standby mode and connect the e-Celsius Performance pill with the monitor for data collection in either real time or by recovery from the internal memory of e-Celsius Performance®. Each monitor can be used with up to three pills at once to enable extended use.

The monitor’s interface allows the user to download data to a PC/ Mac for storage. The pill is safe, non-invasive and easy to use, leaving the gastric system after one or two days, [emphasis mine] depending on individual transit time.

I found Dunfee’s description mildly confusing but that can be traced to his mention of wireless transmission to a phone. Ewing describes a handheld device which is consistent with the company’s product description. There is no mention of the potential for hacking but I would hope Athletics Canada and BodyCap are keeping up with current concerns over hacking and interference (e.g., Facebook/Cambridge Analytica, Russians and the 2016 US election, Roberto Rocha’s Aug. 3, 2018 article for CBC titled: Data sheds light on how Russian Twitter trolls targeted Canadians, etc.).

Moving on, this type of technology was first featured here in a February 11, 2014 posting (scroll down to the gif where an electronic circuit dissolves in water) and again in a November 23, 2015 posting about wearable and ingestible technologies but this is the first real life application I’ve seen for it.

Coincidentally, an August 2, 2018 Frontiers [Publishing] news release on EurekAlert announced this piece of research (published in June 2018) questioning whether we need this much data and whether these devices work as promoted,

Wearable [and, in the future, ingestible?] devices are increasingly bought to track and measure health and sports performance: [emphasis mine] from the number of steps walked each day to a person’s metabolic efficiency, from the quality of brain function to the quantity of oxygen inhaled while asleep. But the truth is we know very little about how well these sensors and machines work [emphasis mine]– let alone whether they deliver useful information, according to a new review published in Frontiers in Physiology.

“Despite the fact that we live in an era of ‘big data,’ we know surprisingly little about the suitability or effectiveness of these devices,” says lead author Dr Jonathan Peake of the School of Biomedical Sciences and Institute of Health and Biomedical Innovation at the Queensland University of Technology in Australia. “Only five percent of these devices have been formally validated.”

The authors reviewed information on devices used both by everyday people desiring to keep track of their physical and psychological health and by athletes training to achieve certain performance levels. [emphases mine] The devices — ranging from so-called wrist trackers to smart garments and body sensors [emphasis mine] designed to track our body’s vital signs and responses to stress and environmental influences — fall into six categories:

  • devices for monitoring hydration status and metabolism
  • devices, garments and mobile applications for monitoring physical and psychological stress
  • wearable devices that provide physical biofeedback (e.g., muscle stimulation, haptic feedback)
  • devices that provide cognitive feedback and training
  • devices and applications for monitoring and promoting sleep
  • devices and applications for evaluating concussion

The authors investigated key issues, such as: what the technology claims to do; whether the technology has been independently validated against some recognized standards; whether the technology is reliable and what, if any, calibration is needed; and finally, whether the item is commercially available or still under development.

The authors say that technology developed for research purposes generally seems to be more credible than devices created purely for commercial reasons.

“What is critical to understand here is that while most of these technologies are not labeled as ‘medical devices’ per se, their very existence, let alone the accompanying marketing, conveys a sensibility that they can be used to measure a standard of health,” says Peake. “There are ethical issues with this assumption that need to be addressed.” [emphases mine]

For example, self-diagnosis based on self-gathered data could be inconsistent with clinical analysis based on a medical professional’s assessment. And just as body mass index charts of the past really only provided general guidelines and didn’t take into account a person’s genetic predisposition or athletic build, today’s technology is similarly limited.

The authors are particularly concerned about those technologies that seek to confirm or correlate whether someone has sustained or recovered from a concussion, whether from sports or military service.

“We have to be very careful here because there is so much variability,” says Peake. “The technology could be quite useful, but it can’t and should never replace assessment by a trained medical professional.”

Speaking generally again now, Peake says it is important to establish whether using wearable devices affects people’s knowledge and attitude about their own health and whether paying such close attention to our bodies could in fact create a harmful obsession with personal health, either for individuals using the devices, or for family members. Still, self-monitoring may reveal undiagnosed health problems, said Peake, although population data is more likely to point to false positives.

“What we do know is that we need to start studying these devices and the trends they are creating,” says Peake. “This is a booming industry.”

In fact, a March 2018 study by P&S Market Research indicates the wearable market is expected to generate $48.2 billion in revenue by 2023. That’s a mere five years into the future.”

The authors highlight a number of areas for investigation in order to develop reasonable consumer policies around this growing industry. These include how rigorously the device/technology has been evaluated and the strength of evidence that the device/technology actually produces the desired outcomes.

“And I’ll add a final question: Is wearing a device that continuously tracks your body’s actions, your brain activity, and your metabolic function — then wirelessly transmits that data to either a cloud-based databank or some other storage — safe, for users? Will it help us improve our health?” asked Peake. “We need to ask these questions and research the answers.”

The authors were not examining ingestible biosensors nor were they examining any issues related to data about core temperatures but it would seem that some of the same issues could apply especially if and when this technology is brought to the consumer market.

Here’s a link to the and a citation for the paper,

Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations by Jonathan M. Peake, Graham Kerr, and John P. Sullivan. Front. Physiol., 28 June 2018 | https://doi.org/10.3389/fphys.2018.00743

This paper is open access.

Science, technology, engineering, arts, and mathematics (STEAM) for the Canada Science and Technology Museums Corporation gala on May 17, 2017

The Canada National Science and Technology Museums Corporation (CSTMC) gala is known officially as the National Science and Innovation Gala according to a May 11, 2017 announcement (received via email),

FULL STEAM AHEAD TO THE NATIONAL SCIENCE AND INNOVATION GALA

LET’S TALK STEAM
Demonstrating Canada’s commitment to a vibrant, national science
culture, the evening’s panel brings together influencers from the
private and public sectors to discuss the importance of education in the
STEAM (science, technology, engineering, arts, mathematics) fields.

FAMILIAR FACES
Experience a whimsical and wonderful evening hosted by CBC News
Network’s Heather Hiscox. Join her for the presentation of the first
ever STEAM Horizon Awards.

APPETITE FOR INNOVATION
From virtual reality to wearable technologies, the innovation is so real
you can taste it.  Chef Michael Blackie’s culinary creations will
underscore the spirit of ingenuity with a refined but approachable menu.
Prepare your taste buds to savour food and beverages that will fuel your
body and mind.

TIME IS RUNNING OUT. BUY YOUR TICKETS TODAY! [3]

[4]

À TOUTE VAPEUR VERS LE GALA NATIONAL DES SCIENCES ET DE L’INNOVATION

PARLONS STIAM
Témoignant de l’engagement du Canada à créer une culture
scientifique dynamique à l’échelle du pays, le groupe d’experts
invité rassemblera des gens d’influence issus des secteurs privé et
public, afin qu’ils discutent de l’importance de l’éducation dans
les domaines des STIAM (sciences, technologies, ingénierie, arts et
mathématiques).

VISAGES FAMILIERS
Venez vivre l’expérience d’une soirée empreinte de fantaisie et de
merveilleux qu’animera Heather Hiscox, lectrice de nouvelles au
réseau CBC News Network. Assistez à la remise des tout premiers prix
Horizon STIAM.

LE GOÛT DE L’INNOVATION
De la réalité virtuelle aux technologies portables, l’innovation est
si réelle qu’on peut même y goûter. Les créations culinaires du
chef Michael Blackie illustrent cet esprit d’ingéniosité dans un
menu raffiné et invitant. Préparez vos papilles à savourer mets et
boissons qui nourriront votre corps et votre esprit.

LE TEMPS COMMENCE À MANQUER! ACHETEZ VOS BILLETS DÈS MAINTENANT! [5]

THANK YOU TO OUR SPONSORS
MERCI À NOS COMMANDITAIRES

Logistics (from the CSTMC’s gala event page),

WHAT DO YOU NEED TO KNOW?

  • Date: May 17, 2017
  • Time: Doors open at 5:30 p.m.
  • Location: Canada Aviation and Space Museum
  • Dress Code: Semi-formal. Guests are encouraged to add a Steampunk twist to their outfits.

Your ticket includes gourmet food, one drink ticket, entertainment, music performed by a Steampunk DJ, coat check and parking.

Tickets: $150 per person, $1250 for a group of 10.

The email didn’t quite convey the flavour of the gala,

What can you expect?

Heather Hiscox

Familiar Faces

Experience a whimsical and wonderful evening hosted by CBC [Canadian Broadcasting Corporation] News Network’s Heather Hiscox. Join her for the presentation of the first ever STEAM Horizon Awards.

Let’s Talk STEAM

Demonstrating Canada’s commitment to a vibrant, national science culture, the evening’s panel brings together influencers from the private and public sectors [emphasis mine] to discuss the importance of education in the STEAM (science, technology, engineering, arts, mathematics) fields. The panel will exchange insights on a wide-range of topics, including Canadian youth, women and girls in STEAM, and the imperative for coming generations of Canadians to embrace the fields of science and technology.

Let's Talk STEAM
appetite for innovation

Appetite for Innovation

From virtual reality to wearable technologies, the innovation is so real you can taste it. Chef Michael Blackie’s culinary creations will underscore the spirit of ingenuity with a refined but approachable menu. Prepare your taste buds to savour food and beverages that will fuel your body and mind.

Steampunk Factory

Be dazzled by technological wonders spread over different zones as you explore interactive installations developed by leading-edge industry partners and teams from local universities and colleges. From virtual reality to wearable technologies, get a hands-on look at the technologies of tomorrow − steampunk style!

Steampunk Factory
Future-VR

Virtual Reality

Do you have what it takes to be a steampunk aviator or train engineer? Test your skills and open up your mind to new horizons in our aviation simulators and virtual reality environments. If art and design are more your style, our virtual art exhibit will give all new meaning to abstract.

Autonomous Vehicles

Race your drones to the finish line or try your hand at controlling a rover developed to withstand the rigours of Mars. You are no longer required to leave your seat in order to take to the skies or visit other planets!

Autonomous Vehicles
Flying Time Machine

Wonderful Flying Time Machine

Travel back in time aboard the Wonderful Flying Time Machine equipped with a photo booth to make sure you capture the moment in time!

STEAM Horizon Awards

Amidst the wonders and whimsy of the Steampunk soiree, the Gala will also be host to the first ever STEAM Horizon Awards. Funded by the Canada Science and Technology Museums Corporation Foundation and six founding partners, the awards celebrate the important contributions of Canada’s youth in the fields of science, technology, engineering, arts, and math (STEAM). The seven winners, hailing from across Canada, have been invited to the Gala where they will be recognized for their individual achievements and receive a $25 000 prize to go towards their post-secondary education.

STEAM Horizon Awards
robotics

Robotics

Get acquainted with young innovators and their robot inventions. From flying machines to robot dogs, these whimsical inventions offer a peek into the automated future.

Networking

Spend the night mingling with industry innovators and academics alike as we honour the achievements of young Canadians in science, technology, engineering, arts, and math. Take advantage of this opportunity to connect with influential Canadians in STEAM industries in business and government.

networking
Roving Steampunk Performers

Roving Steampunk Performers

From stilt walkers to illusionists, experience a steampunk spectacle like no other as larger than life entertainers present a magical escape from the modern world.

Wearable Technology Fashion Show

Lights, camera, fashion! Enjoy a unique wearable technology fashion show where innovation meets performance and theatre. A collaboration between a number of Canada’s leading wearable technology companies and young innovators, this fashion show will take you to another world − or era!

Wearable Tech
DJ and Dancing

Do the Robot

Let off some steam and dance the night away amid a unique scene of motion and sound as robotic dancers come to life powered by the music of our Steampunk DJ.

Take part in an unforgettable experience. Buy your tickets now! $150 per person, $1250 for a group of 10.

My compliments on the imagination they’ve put into organizing this event. Still, I am wondering about a few things. It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox. Also, the panel seems to be comprised of a set of furniture.. Are they planning something like those unconferences where attendees spontaneously volunteer to present. or in this case, to be a panelist?

If anyone who’s attending is inclined, please do leave comments after you’ve attended. I’d love to know how it all came together.

Cientifica’s “Wearables, Smart Textiles and Nanotechnology Applications Technologies and Markets” report

It’s been a long time since I’ve received notice of a report from Cientifica Research and I’m glad to see another one. This is titled, Wearables, Smart Textiles and Nanotechnologies and Markets, and has just been published according to the May 26,  2016 Cientifica announcement received by email.

Here’s more from the report’s order page on the Cientifica site,

Wearables, Smart Textiles and Nanotechnology: Applications, Technologies and Markets

Price GBP 1995 / USD 2995

The past few years have seen the introduction of a number of wearable technologies, from fitness trackers to “smart watches” but with the increasing use of smart textiles wearables are set to become ‘disappearables’ as the devices merge with textiles.

The textile industry will experience a growing demand for high-tech materials driven largely by both technical textiles and the increasing integration of smart textiles to create wearable devices based on sensors.  This will enable the transition of the wearable market away from one dominated by discrete hardware based on MEMS accelerometers and smartphones. Unlike today’s ‘wearables’ tomorrow’s devices will be fully integrated into the the garment through the use of conductive fibres, multilayer 3D printed structures and two dimensional materials such as graphene.

Largely driven by the use of nanotechnologies, this sector will be one of the largest end users of nano- and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022. Products utilizing two dimensional materials such as graphene inks will be integral to the growth of wearables, representing a multi-billion dollar opportunity by 2022.

This represents significant opportunities for both existing smart textiles companies and new entrants to create and grow niche markets in sectors currently dominated by hardware manufacturers such Apple and Samsung.

The market for wearables using smart textiles is forecast to grow at a CAGR [compound annual growth rate] of 132% between 2016 and 2022 representing a $70 billion market. Largely driven by the use of nanotechnologies, this sector has the potential to be one of the largest end users of nano and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022.

“Wearables, Smart Textiles and Nanotechnologies: Applications, Technologies and Markets” looks at the technologies involved from antibacterial silver nanoparticles to electrospun graphene fibers, the companies applying them, and the impact on sectors including wearables, apparel, home, military, technical, and medical textiles.

This report is based on an extensive research study of the smart textile market backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2022, along with an analysis of the key opportunities, and illustrated with 120 figures and 15 tables.

I always love to view the table of contents (from the report’s order page),

Table of Contents      

Executive Summary  

Why Wearable Technologies Need More than Silicon + Software

The Solution Is in Your Closet

The Shift To Higher Value Textiles

Nanomaterials Add Functionality and Value

Introduction   

Objectives of the Report

World Textiles and Clothing

Overview of Nanotechnology Applications in the EU Textile Industry

Overview of Nanotechnology Applications in the US Textile Industry

Overview of Nanotechnology Applications in the Chinese Textile Industry

Overview of Nanotechnology Applications in the Indian Textile Industry

Overview of Nanotechnology Applications in the Japanese Textile Industry

Overview of Nanotechnology Applications in the Korean Textile Industry

Textiles in the Rest of the World

Macro and Micro Value Chain of Textiles Industry

Common Textiles Industry Classifications

End Markets and Value Chain Actors

Why Textiles Adopt Nanotechnologies        

Nanotechnology in Textiles

Examples of Nanotechnology in Textiles

Nanotechnology in Some Textile-related Categories

Technical & Smart Textiles

Multifunctional Textiles

High Performance Textiles

Smart/Intelligent Textiles

Nanotechnology Hype

Current Applications of Nanotechnology in Textile Production       

Nanotechnology in Fibers and Yarns

Nano-Structured Composite Fibers

Nanotechnology in Textile Finishing, Dyeing and Coating

Nanotechnology In Textile Printing

Green Technology—Nanotechnology In Textile Production Energy Saving

Electronic Textiles and Wearables   

Nanotechnology in Electronic Textiles

Concept

Markets and Impacts

Conductive Materials

Carbon Nanotube Composite Conductive Fibers

Carbon Nanotube Yarns

Nano-Treatment for Conductive Fiber/Sensors

Textile-Based Wearable Electronics

Conductive Coatings On Fibers For Electronic Textiles

Stretchable  Electronics

Memory-Storing Fiber

Transistor Cotton for Smart Clothing

Embedding Transparent, Flexible Graphene Electrodes Into Fibers

Organic Electronic Fibers

‘Temperature Regulating Smart Fabric’

Digital System Built Directly on a Fiber

Sensors    

Shirt Button Sensors

An integrated textile heart monitoring solution

OmSignal’s  Smart Bra

Printed sensors to track movement

Textile Gas Sensors

Smart Seats To Curtail Fatigued Driving.

Wireless Brain and Heart Monitors

Chain Mail Fabric for Smart Textiles

Graphene-Based Woven Fabric

Anti-Counterfeiting and Drug Delivery Nanofiber

Batteries and Energy Storage

Flexible Batteries

Cable Batteries

Flexible Supercapacitors

Energy Harvesting Textiles

Light Emitting Textiles  

Data Transmission 

Future and Challenges of Electronic Textiles and Wearables

Market Forecast

Smart Textiles, Nanotechnology and Apparel          

Nano-Antibacterial Clothing Textiles

Nanosilver Safety Concerns

UV/Sun/Radiation Protective

Hassle-free Clothing: Stain/Oil/Water Repellence, Anti-Static, Anti-Wrinkle

Anti-Fade

Comfort Issues: Perspiration Control, Moisture Management

Creative Appearance and Scent for High Street Fashions

Nanobarcodes for Clothing Combats Counterfeiting

High Strength, Abrasion-Resistant Fabric Using Carbon Nanotube

Nanotechnology For Home Laundry

Current Adopters of Nanotechnology in Clothing/Apparel Textiles

Products and Markets

Market Forecast

Nanotechnology in Home Textiles   

Summary of Nanotechnology Applications in Home Textiles

Current Applications of Nanotechnology in Home Textiles

Current Adopters of Nanotechnology in Home Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Military/Defence Textiles

Summary of Nanotechnology Applications in Military/Defence Textiles

Military Textiles

Current Applications of Nanotechnology in Military/Defence Textiles

Current Adopters of Nanotechnology in Military/Defence Textiles

Light Weight, Multifunctional Nanostructured Fibers and Materials

Costs and Benefits

Market Forecast

Nanotechnology Applications in Medical Textiles   

Summary of Nanotechnology Applications in Medical Textiles

Current Applications of Nanotechnology in Medical Textiles

Current Adopters of Nanotechnology in Medical Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Sports/Outdoor Textiles   

Summary of Nanotechnology Applications in Sports/Outdoor Textiles

Current Applications of Nanotechnology in Sports/Outdoor Textiles

Current Adopters of Nanotechnology in Sports/Outdoor Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Technical Textiles 

Summary of Nanotechnology Applications in Technical and smart textiles

Current Applications of Nanotechnology in Technical Textiles

Current Adopters of Nanotechnology in Technical and smart textiles

Products and Markets

Costs and Benefits

Market Forecast

APPENDIX I: Companies/Research Institutes Applying Nanotechnologies to the Textile Industry

Companies Working on Nanofiber Applications

Companies Working on Nanofabric Applications

Companies Working on Nano Finishing, Coating, Dyeing and Printing Applications

Companies Working on Green Nanotechnology In Textile Production Energy Saving Applications

Companies Working on E-textile Applications

Companies Working on Nano Applications in Clothing/Apparel Textiles

Companies Working on Nano Applications in Home Textiles

Companies Working on Nano Applications in Sports/Outdoor Textile

Companies Working on Nano Applications in Military/Defence Textiles

Companies Working on Nano Applications in Technical Textiles

APPENDIX II: Selected Company Profiles     

APPENDIX III: Companies Mentioned in This Report 

The report’s order page has a form you can fill out to get more information but, as far as I can tell, there is no purchase button or link to a shopping cart for purchase.

Afterthought

Recently, there was an email in my inbox touting a Canadian-based company’s underclothing made with the founder’s Sweat-Secret fabric technology (I have not been able to find any details about the technology). As this has some of the qualities being claimed for the nanotechnology-enabled textiles described in the report and the name for the company amuses me, Noody Patooty, I’m including it in this posting (from the homepage),

Organic Bamboo Fabric
The soft, breathable and thermoregulation benefits of organic bamboo fabric keep you comfortable throughout all your busy days.

Sweat-Secret™ Technology
The high performance fabric in the underarm wicks day-to-day sweat and moisture from the body preventing sweat and odour stains.

Made in Canada
From fabric to finished garment our entire collection is made in Canada using sustainable and ethical manufacturing processes.

This is not an endorsement of the Noody Patooty undershirts. I’ve never tried one.

As for the report, Tim Harper who founded Cientifica Research has in my experience always been knowledgeable and well-informed (although I don’t always agree with him). Presumably, he’s still with the company but I’m not entirely certain.