Monthly Archives: February 2017

Synthesized nanoparticles with the complexity of protein molecules

Caption: The structure of the largest gold nanoparticle to-date, Au246(SR)80, was resolved using x-ray crystallography. Credit: Carnegie Mellon University

Carnegie Mellon University (CMU) researchers synthesized a self-assembled nanoparticle of gold as they built on their 2015 work described in my April 14, 2015 posting (Nature’s patterns reflected in gold nanoparticles). Here’s the latest from the team in a Jan. 23, 2017 news item on phys.org,

Chemists at Carnegie Mellon University have demonstrated that synthetic nanoparticles can achieve the same level of structural complexity, hierarchy and accuracy as their natural counterparts – biomolecules. The study, published in Science, also reveals the atomic-level mechanisms behind nanoparticle self-assembly.

The findings from the lab of Chemistry Professor Rongchao Jin provide researchers with an important window into how nanoparticles form, and will help guide the construction of nanoparticles, including those that can be used in the fabrication of computer chips, creation of new materials, and development of new drugs and drug delivery devices.

Caption: By resolving the structure of Au246, Carnegie Mellon researchers were able to visualize its hierarchical assembly into artificial solid. Credit: Carnegie Mellon University

A Jan.  23, 2017 CMU news release on EurekAlert, which originated the news item, expands on the theme,

“Most people think that nanoparticles are simple things, because they are so small. But when we look at nanoparticles at the atomic level, we found that they are full of wonders,” said Jin.

Nanoparticles are typically between 1 and 100 nanometers in size. Particles on the larger end of the nanoscale are harder to create precisely. Jin has been at the forefront of creating precise gold nanoparticles for a decade, first establishing the structure of an ultra-small Au25 nanocluster and then working on larger and larger ones. In 2015, his lab used X-ray crystallography to establish the structure of an Au133 nanoparticle and found that it contained complex, self-organized patterns that mirrored patterns found in nature.

In the current study, they sought to find out the mechanisms that caused these patterns to form. The researchers, led by graduate student Chenjie Zeng, established the structure of Au246, one of the largest and most complex nanoparticles created by scientists to-date and the largest gold nanoparticle to have its structure determined by X-ray crystallography. Au246 turned out to be an ideal candidate for deciphering the complex rules of self- assembly because it contains an ideal number of atoms and surface ligands and is about the same size and weight as a protein molecule.

Analysis of Au246’s structure revealed that the particles had much more in common with biomolecules than size. They found that the ligands in the nanoparticles self-assembled into rotational and parallel patterns that are strikingly similar to the patterns found in proteins’ secondary structure. This could indicate that nanoparticles of this size could easily interact with biological systems, providing new avenues for drug discovery.

The researchers also found that Au246 particles form by following two rules. First, they maximize the interactions between atoms, a mechanism that had been theorized but not yet seen. Second the nanoparticles match symmetric surface patterns, a mechanism that had not been considered previously. The matching, which is similar to puzzle pieces coming together, shows that the components of the particle can recognize each other by their patterns and spontaneously assemble into the highly ordered structure of a nanoparticle.

“Self-assembly is an important way of construction in the nanoworld. Understanding the rules of self-assembly is critical to designing and building up complex nanoparticles with a wide-range of functionalities,” said Zeng, the study’s lead author.

In future studies, Jin hopes to push the crystallization limits of nanoparticles even farther to larger and larger particles. He also plans to explore the particles’ electronic and catalytic power.

Here’s a link to and a citation for the paper,

Emergence of hierarchical structural complexities in nanoparticles and their assembly by Chenjie Zeng, Yuxiang Chen, Kristin Kirschbaum, Kelly J. Lambright, Rongchao Jin. Science  23 Dec 2016: Vol. 354, Issue 6319, pp. 1580-1584 DOI: 10.1126/science.aak9750

This paper is behind a paywall.

New design strategy for synthesizing metal-organic frameworks (MOFs)

A Jan. 24, 2017 news item on Nanowerk announces new research from South Korea,

The accurate interpretation of particle sizes and shapes in nanoporus materials is essential to understanding and optimizing the performance of porous materials used in many important existing and potentially new applications. However, only a few experimental techniques have been developed for this purpose.

A team of researchers, led by Professor Wonyoung Choe of Natural Science and Professor Ja Hun Kwak of Energy and Chemical Engineering [ at Ulsan National Institute of Science and Technology {UNIST}] has recently developed a novel design strategy for synthesizing various forms of functional materials, especially for metal-organic materials (MOMs).

The research team expects that this synthetic approach might open up a new direction for the development of diverse forms in MOMs, with highly advanced areas such as sequential drug delivery/release and heterogeneous cascade catalysis targeted in the foreseeable future.

A Jan. 6, 2017 UNIST press release, which originated the news item, provides more detail,

In the last decades, much research has been developed to the synthesis and design of functional materials, but only a few of them could control the walls of the interior of the particles within the nanoporous materials.

In the study, Professor Choe and his team denomstrated sequential self-assembly strategy for synthesizing various forms of MOM crystals, including double-shell hollow MOMs, based on single-crystal to single-crystal transformation from MOP to MOF.

Schematic representation of various forms of micro-/nanostructures. From left are Solid, core-shell, hollow, matryoshka, yolk-shell and multi-shell hollow structures.

Porous materials are highly utilized as catalysts or gas capture materials because they supply abundant surface active sites for chemical reaction. Although materials, like Zeolites, which can be obtained from nature, have the ability to act as catalysts for chemical reactions, they suffer from the difficulty of controlling pore sizes and shapes.

As one solution, scientists have developed self-assembled porous materials using organic molecules and metals. Metal-Organic Frameworks (MOFs) and Metal-Organic Polyhedral (MOPs) are notable examples and they both have holes all over their surfaces. MOPs dissolve easily in chemical solvent, while MOFs are practically insoluble.

“MOFs take the form of three-dimensional (3D) structure, linking metals with organic molecules, while MOPs agglomerate together to form larger clusters,” says Jiyoung Lee, the first contributor of the study and a graduate student in the combined master-doctoral program from Chemistry department.

Schematic illustration of form evolution.

Schematic illustration of form evolution.

According to the research team, this synthetic strategy also yields other forms, such as solid, core-shell, double and triple matryoshka, and single-shell hollow MOMs, thereby exhibiting form evolution in MOMs.

“The best feature of this technique is that it allows two very different substances to coexist within a single crystal,” says Professor Choe. “This technique also permits greater control over size and shape of the pore, which can be then used to regulate the entrance and exit of molecules.”

This particular synthetic approach also has the potential to generate new type of porous materials containing micropores with diameters less than 2nm, macropores with diameters between 20 to 50nm, as well as pores of larger than 50 nm. Such hierarchical pore structure plays a critical role during catalysis, adsorption, and separation processes.

Here’s a link to and a citation for the paper,

Evolution of form in metal–organic frameworks by Jiyoung Lee, Ja Hun Kwak & Wonyoung Choe. Nature Communications 8, Article number: 14070 (2017) doi:10.1038/ncomms14070 Published online: 04 January 2017

This is an open access paper.

Wars (such as they are) on science

I hinted in a Jan. 27, 2017 posting (scroll down abotu 15% of the way) that advice from Canadians with regard to an ‘American war on science’ might not be such a good idea. It seems that John Dupuis (mentioned in the Jan. 27, 2017 posting) has yet more advice for our neighbours to the south in his Feb. 5, 2017 posting (on the Confessions of a Science Librarian blog; Note: A link has been removed),

My advice? Don’t bring a test tube to a Bunsen burner fight. Mobilize, protest, form partnerships, wrote op-eds and blog posts and books and articles, speak about science at every public event you get a chance, run for office, help out someone who’s a science supporter run for office.

Don’t want your science to be seen as political or for your “objectivity” to be compromised? Too late, the other side made it political while you weren’t looking. And you’re the only one that thinks you’re objective. What difference will it make?

Don’t worry about changing the other side’s mind. Worry about mobilizing and energizing your side so they’ll turn out to protest and vote and send letters and all those other good things.

Worried that you will ruin your reputation and that when the good guys come back into power your “objectivity” will be forever compromised? Worry first about getting the good guys back in power. They will understand what you went through and why you had to mobilize. And they never thought your were “objective” to begin with.

Proof? The Canadian experience. After all, even the Guardian wants to talk about How science helped to swing the Canadian election? Two or four years from now, you want them to be writing articles about how science swung the US mid-term or presidential elections.

Dupuis goes on to offer a good set of links to articles about the Canadian experience written for media outlets from across the world.

The thing is, Stephen Harper is not Donald Trump. So, all this Canadian experience may not be as helpful as we or our neighbours to the south might like.

This Feb . 6, 2017 article by Daniel Engber for Slate.com gives a perspective that I think has been missed in this ‘Canadian’ discussion about the latest US ‘war on science’ (Note: Link have been removed),

An army of advocates for science will march on Washington, D.C. on April 22, according to a press release out last Thursday. The show of force aims to “draw attention to dangerous trends in the politicization of science,” the organizers say, citing “threats to the scientific community” and the need to “safeguard” researchers from a menacing regime. If Donald Trump plans to escalate his apparent assault on scientific values, then let him be on notice: Science will fight back.

We’ve been through this before. Casting opposition to a sitting president as resistance to a “war on science” likely helped progressives 10 or 15 years ago, when George W. Bush alienated voters with his apparent disrespect for climate science and embryonic stem-cell research (among other fields of study). The Bush administration’s meddling in research and disregard for expertise turned out to be a weakness, as the historian Daniel Sarewitz described in an insightful essay from 2009. Who could really argue with the free pursuit of knowledge? Democratic challengers made a weapon of their support for scientific progress: “Americans deserve a president who believes in science,” said John Kerry during the 2004 campaign. “We will end the Bush administration’s war on science, restore scientific integrity and return to evidence-based decision-making,” the Democratic Party platform stated four years later.

But what had been a sharp-edged political strategy may now have lost its edge. I don’t mean to say that the broad appeal of science has been on the wane; overall, Americans are about as sanguine on the value of our scientific institutions as they were before. Rather, the electorate has reorganized itself, or has been reorganized by Trump, in such a way that fighting on behalf of science no longer cuts across party lines, and it doesn’t influence as many votes beyond the Democratic base.

The War on Science works for Trump because it’s always had more to do with social class than politics. A glance at data from the National Science Foundation shows how support for science tracks reliably with socioeconomic status. As of 2014, 50 percent of Americans in the highest income quartile and more than 55 percent of those with college degrees reported having great confidence in the nation’s scientific leaders. Among those in the lowest income bracket or with very little education, that support drops to 33 percent or less. Meanwhile, about five-sixths of rich or college-educated people—compared to less than half of poor people or those who never finished high school—say they believe that the benefits of science outweigh the potential harms. To put this in crude, horse-race terms, the institution of scientific research consistently polls about 30 points higher among the elites than it does among the uneducated working class.

Ten years ago, that distinction didn’t matter quite so much for politics. …

… with the battle lines redrawn, the same approach to activism now seems as though it could have the opposite effect. In the same way that fighting the War on Journalism delegitimizes the press by making it seem partisan and petty, so might the present fight against the War on Science sap scientific credibility. By confronting it directly, science activists may end up helping to consolidate Trump’s support among his most ardent, science-skeptical constituency. If they’re not careful where and how they step, the science march could turn into an ambush.

I think Engber is making an important point and the strategies and tactics being employed need to be carefully reviewed.

As for the Canadian situation, things are indeed better now but my experience is that while we rarely duplicate the situation in the US, we often find ourselves echoing their cries, albeit years later and more faintly. The current leadership race for the Conservative party has at least one Trump admirer (Kelly Leitch see the section titled: Controversy) fashioning her campaign in light of his perceived successes. Our next so called ‘war on science’ could echo in some ways the current situation in the US and we’d best keep that in mind.

Faster diagnostics with nanoparticles and magnetic phenomenon discovered 170 years ago

A Jan. 19, 2017 news item on ScienceDaily announces some new research from the University of Central Florida (UCF),

A UCF researcher has combined cutting-edge nanoscience with a magnetic phenomenon discovered more than 170 years ago to create a method for speedy medical tests.

The discovery, if commercialized, could lead to faster test results for HIV, Lyme disease, syphilis, rotavirus and other infectious conditions.

“I see no reason why a variation of this technique couldn’t be in every hospital throughout the world,” said Shawn Putnam, an assistant professor in the University of Central Florida’s College of Engineering & Computer Science.

A Jan. 19, 2017 UCF news release by Mark Schlueb, which originated the news item,  provides more technical detail,

At the core of the research recently published in the academic journal Small are nanoparticles – tiny particles that are one-billionth of a meter. Putnam’s team coated nanoparticles with the antibody to BSA, or bovine serum albumin, which is commonly used as the basis of a variety of diagnostic tests.

By mixing the nanoparticles in a test solution – such as one used for a blood test – the BSA proteins preferentially bind with the antibodies that coat the nanoparticles, like a lock and key.

That reaction was already well known. But Putnam’s team came up with a novel way of measuring the quantity of proteins present. He used nanoparticles with an iron core and applied a magnetic field to the solution, causing the particles to align in a particular formation. As proteins bind to the antibody-coated particles, the rotation of the particles becomes sluggish, which is easy to detect with laser optics.

The interaction of a magnetic field and light is known as Faraday rotation, a principle discovered by scientist Michael Faraday in 1845. Putnam adapted it for biological use.

“It’s an old theory, but no one has actually applied this aspect of it,” he said.

Other antigens and their unique antibodies could be substituted for the BSA protein used in the research, allowing medical tests for a wide array of infectious diseases.

The proof of concept shows the method could be used to produce biochemical immunology test results in as little as 15 minutes, compared to several hours for ELISA, or enzyme-linked immunosorbent assay, which is currently a standard approach for biomolecule detection.

Here’s a link to and a citation for the paper,

High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy by Richard J. Murdock, Shawn A. Putnam, Soumen Das, Ankur Gupta, Elyse D. Z. Chase, and Sudipta Seal. Small DOI: 10.1002/smll.201602862 Version of Record online: 16 JAN 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

#BCTECH: preview of Summit 2017

The 2017 (2nd annual) version of the BC (British Columvai) Tech Summit will take place March 14 -15, 2017 in Vancouver, BC,  Canada. A Nov. 25, 2016 BC Innovation Council (BCIC), one of the producing partners, news release made the announcement,

Technology is transforming key industries in B.C. and around the globe at an unprecedented pace.

 From natural resources and agriculture to health and digital media, the second #BCTECH Summit returns with Microsoft as title sponsor, and will explore how tech is impacting every part of B.C.’s economy and changing lives.

Presented by the Province and the BC Innovation Council, B.C.͛s largest tech event will arm attendees with the tools to propel their companies to the next level, establish valuable business connections and inspire students to pursue careers in technology. From innovations in precision health, autonomous vehicles and customer experience, to emerging ideas in cleantech, agritech and aerospace, the #BCTECH Summit will showcase high-tech solutions to important local and global challenges.

New to the summit this year is the Future Realities Room, presented by Microsoft. It will be a dedicated space for B.C. companies to showcase their innovative augmented reality, virtual reality and mixed reality applications. From artificial intelligence to the internet-of-things, emerging technologies are disrupting industries and reshaping the path for future generations.

What attendees can expect at #BCTECH Summit 2017:

  •  Keynotes from thought leaders including Shahrzad Rafati of BroadbandTV, Ben Parr, author of Captivology, Microsoft and IBM.
  • Sector-specific deep dives from experts exploring the innovations transforming their industries and every part of B.C’s economy.
  • Opportunities to connect with tech buyers, scouts and investors through B2B meetings and the Investment Showcase.
  • Expanded Marketplace, Technology Showcase including Startup Square and Research Runway, and the Future Realities Room presented by Microsoft.
  • Youth Innovation Day to expose grades 10-12 students to diverse career paths in the technology sector.
  • Evening networking receptions and Techfest by Techvibes, a recruiting event that connects hiring companies with tech talent.

The two-day event is attracting regional, national and international attendees seeking solutions for their business, investment opportunities and talent in the province. The summit builds on the success of the inaugural summit this past January, which attracted global attention and exceeded its goal of 1,000 attendees with more than 3,500 people in attendance.

There is a special deal at the moment where you can save $300 off your $899 registration.  According to the site, the deal expires on Feb. 14, 2017. For the undecided, here’s a listing of a few of the speakers (from the #BCTECH Summit speakers page),

Thomas Tannert
BC Leadership Chair in Tall Wood Construction
University of Northern British Columbia

Thomas joined the University of Northern British Columbia in 2016 as BC Leadership Chair in Tall Wood Construction. He received his PhD from the University of British Columbia in Vancouver, a Master’s degree in Wood Science and Technology from the University of Bio-Bio in Chile, and a Civil Engineering degree from the Bauhaus-University Weimar in Germany.

Before coming to UNBC, Thomas worked on multi-disciplinary teams in Germany, Chile, and Switzerland and was Associate Chair in Wood Building Design and Construction at UBC. He is an expert in the development of design methods for timber joints and structures and the assessment and monitoring of timber structures.

Thomas is actively involved in fostering collaboration among timber design experts in industry and academia, and is a member on multiple international committees as well as the Canadian Standard Association technical committee CSA-O86 “Engineering design in wood”.

Sarah Applebaum
Director, Pangea Spark
Pangea Ventures

Sarah Applebaum is the Director of Pangaea Spark at Pangaea Ventures. Sarah is a member of the Young Private Capitalist Committee of the CVCA, advisory board member for the CIX Cleantech Conference, start up showcase review board for SXSW Eco and mentor to the Singularity University Labs Accelerator. She is the co-founder of TNT Events, a Vancouver-based organization that strives to create a more interconnected and multi-disciplinary innovation ecosystem.

Sarah holds an MBA from the Schulich School of Business and a BSc. from Dalhousie University.

Natalie Cartwright
Co-founder
Finn.ai

Nat is a co-founder of Finn.ai, a white-label virtual banking assistance, powered by artificial intelligence. Nat holds a Master of Public Health from Lund University and a Masters of Business Administration from IE Business School.

Before founding Finn.ai in 2014, Nat worked at the Global Fund, the largest global financing institution for HIV, tuberculosis and malaria programs, where she managed $250 million USD in investment to countries like Djibouti, South Sudan and Tajikistan.

Whether working in international development or in financial technology, Nat likes to act on the potential she sees for improvement and innovation.

Martin Monkman
Provincial Statistician & Director, BC Stats
Province of British Columbia

Since first joining BC Stats (British Columbia’s statistics bureau) in 1993, Martin has built a wide range of experience using data science to support evidence-based policy and business management decisions. Now the Provincial Statistician & Director at BC Stats, Martin leads a dynamic and innovative team of professional researchers in analyzing statistical information about the economic and social conditions of British Columbia and measuring public sector organizational performance.

Martin holds Bachelor of Science and Master of Arts degrees in Geography from the University of Victoria. He is a member of the Statistical Analysis Committee of the Society for American Baseball Research (SABR), and blogs about baseball statistics and data science using the statistical software R at bayesball.blogspot.com.

Loc Dao
Chief Digital Officer
National Film Board of Canada

Loc is a Canadian digital media creator and co-founder of the groundbreaking NFB Digital and CBC Radio 3 studios and their industry shifting bodies of work.

Loc recently became the chief digital officer (CDO) of the National Film Board of Canada, after serving as executive producer and creative technologist for the NFB Digital Studio in Vancouver since 2011. His NFB credits include the interactive documentaries Bear 71, Welcome to Pine Point, Circa 1948, Waterlife, The Last Hunt and Cardboard Crash VR which have been credited with inventing the new form of the interactive documentary.

In December 2011, Loc was named Canada’s Top Digital Producer for 2011 at the Digi Awards in Toronto. In addition, his CBC Radio 3 was one of the world’s first cross media success stories combining the award-winning CBC Radio 3 web magazine, terrestrial and satellite radio, podcasts and 3 user generated content sites that preceded MySpace and YouTube.

Janice Cheam
Co-founder, President & CEO
Neurio Technology Inc.

Janice is an entrepreneurial executive whose vision, commitment, and passion has been the driving force behind Neurio. Coming from over 7 years of utility experience, as the CEO of Neurio Technology, Janice has been working to help businesses promote energy efficiency and engagement among users for over a decade. Having seen a huge unmet need in the smart home market, she and her co-founders answered it by creating Neurio, a smart energy monitoring platform used by over 100,000 homes.

George Rubin
Vice-President, Business Development
General Fusion

George is the Vice-President of Business Development at General Fusion, a company transforming the world’s energy supply by developing the world’s first fusion power plant based on commercially viable technology.

Previously, George was a co-founder, Vice-President and subsequently President of Day4 Energy Inc., where he was instrumental to developing the solar company’s strategic vision and was directly responsible for execution of the corporate development plan. Following his time at Day4, George founded Pacific Surf Partners and served as its Managing Director. In 2016 he joined General Fusion to develop and coordinate relationships in the business and research communities.

A graduate of Moscow State University with a Masters Degree in Quantum Radio Physics, and a British Columbia Institute of Technology graduate with a Diploma in Financial Management and a Bachelor Degree in Accounting, George combines his knowledge of science and business with the experience of over a decade in the cleantech industry.

Gareth Manderson
General Manager, BC Works
Rio Tinto

Gareth is the General Manager of Rio Tinto’s  BC Works. In this role, he leads Rio Tinto Aluminium’s business in British Columbia, incorporating the operations of the Kitimat Smelter, Kemano Power Generation Facility and the Nechako Watershed. Prior to this, he led the Weipa Bauxite Business in Australia comprising of two mining operations, a port and the local town of Weipa.

Gareth has lived and worked in Australia, Canada, the USA and Italy, and completed assignments in a number of other countries. He has held accountability for business and operational leadership, consulting services, administrative and function support, and taken part in strategy development and due diligence work.

Gareth lives in Kitimat, British Columbia, with his wife and two children. He holds an Engineering Degree, a Master of Business Administration and is a Graduate of the Australian Institute of Company Directors.

Stephanie Simmons
Canada Research Chair in Quantum Nanoelectronics & Assistant Professor
Simon Fraser University

Stephanie is an assistant professor in the Department of Physics at Simon Fraser University (SFU), where she leads the Silicon Quantum Technology research group. Stephanie earned a Ph.D. in Materials Science at Oxford University in 2011 as a Clarendon Scholar and a B.Math (Pure Mathematics and Mathematical Physics) from the University of Waterloo. She was a Postdoctoral Research Fellow of the Electrical Engineering Department at UNSW, Australia, and completed her Junior Research Fellowship from St. John’s College, Oxford University.

Stephanie joined SFU as a Canada Research Chair in Quantum Nanoelectronics in fall 2015 and is working to build a silicon-based quantum computer. Her work on silicon quantum technologies was awarded a Physics World Top Ten Breakthrough of the Year of 2013 and again in 2015, and has been covered by the New York Times, CBC, BBC, Scientific American, the New Scientist, and others.

I recently had the pleasure of hearing Simmons speak at the SFU President’s Faculty Lecture on Nov. 30, 2016. You can watch her talk here (the talk is approximately 1 hr. in length).

Getting back to #BCTECH Summit 2017, I’ve provided a small sample of the speakers. By my count there are 103 in total. BTW, kudos to the organizers’ skills and commitment as approximately 35% of the speakers are women. Yes, it could be better but compared to a lot of the meetings I’ve mentioned here, this statistic is a significant improvement. As for diversity, it seems to me that they could probably do a bit better there too.

Drive to operationalize transistors that outperform silicon gets a boost

Dexter Johnson has written a Jan. 19, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]) about work which could lead to supplanting silicon-based transistors with carbon nanotube-based transistors in the future (Note: Links have been removed),

The end appears nigh for scaling down silicon-based complimentary metal-oxide semiconductor (CMOS) transistors, with some experts seeing the cutoff date as early as 2020.

While carbon nanotubes (CNTs) have long been among the nanomaterials investigated to serve as replacement for silicon in CMOS field-effect transistors (FETs) in a post-silicon future, they have always been bogged down by some frustrating technical problems. But, with some of the main technical showstoppers having been largely addressed—like sorting between metallic and semiconducting carbon nanotubes—the stage has been set for CNTs to start making their presence felt a bit more urgently in the chip industry.

Peking University scientists in China have now developed carbon nanotube field-effect transistors (CNT FETs) having a critical dimension—the gate length—of just five nanometers that would outperform silicon-based CMOS FETs at the same scale. The researchers claim in the journal Science that this marks the first time that sub-10 nanometer CNT CMOS FETs have been reported.

More importantly than just being the first, the Peking group showed that their CNT-based FETs can operate faster and at a lower supply voltage than their silicon-based counterparts.

A Jan. 20, 2017 article by Bob Yirka for phys.org provides more insight into the work at Peking University,

One of the most promising candidates is carbon nanotubes—due to their unique properties, transistors based on them could be smaller, faster and more efficient. Unfortunately, the difficulty in growing carbon nanotubes and their sometimes persnickety nature means that a way to make them and mass produce them has not been found. In this new effort, the researchers report on a method of creating carbon nanotube transistors that are suitable for testing, but not mass production.

To create the transistors, the researchers took a novel approach—instead of growing carbon nanotubes that had certain desired properties, they grew some and put them randomly on a silicon surface and then added electronics that would work with the properties they had—clearly not a strategy that would work for mass production, but one that allowed for building a carbon nanotube transistor that could be tested to see if it would verify theories about its performance. Realizing there would still be scaling problems using traditional electrodes, the researchers built a new kind by etching very tiny sheets of graphene. The result was a very tiny transistor, the team reports, capable of moving more current than a standard CMOS transistor using just half of the normal amount of voltage. It was also faster due to a much shorter switch delay, courtesy of a gate capacitance of just 70 femtoseconds.

Peking University has published an edited and more comprehensive version of the phys.org article first reported by Lisa Zyga and edited by Arthars,

Now in a new paper published in Nano Letters, researchers Tian Pei, et al., at Peking University in Beijing, China, have developed a modular method for constructing complicated integrated circuits (ICs) made from many FETs on individual CNTs. To demonstrate, they constructed an 8-bits BUS system–a circuit that is widely used for transferring data in computers–that contains 46 FETs on six CNTs. This is the most complicated CNT IC fabricated to date, and the fabrication process is expected to lead to even more complex circuits.

SEM image of an eight-transistor (8-T) unit that was fabricated on two CNTs (marked with two white dotted lines). The scale bar is 100 μm. (Copyright: 2014 American Chemical Society)

Ever since the first CNT FET was fabricated in 1998, researchers have been working to improve CNT-based electronics. As the scientists explain in their paper, semiconducting CNTs are promising candidates for replacing silicon wires because they are thinner, which offers better scaling-down potential, and also because they have a higher carrier mobility, resulting in higher operating speeds.

Yet CNT-based electronics still face challenges. One of the most significant challenges is obtaining arrays of semiconducting CNTs while removing the less-suitable metallic CNTs. Although scientists have devised a variety of ways to separate semiconducting and metallic CNTs, these methods almost always result in damaged semiconducting CNTs with degraded performance.

To get around this problem, researchers usually build ICs on single CNTs, which can be individually selected based on their condition. It’s difficult to use more than one CNT because no two are alike: they each have slightly different diameters and properties that affect performance. However, using just one CNT limits the complexity of these devices to simple logic and arithmetical gates.

The 8-T unit can be used as the basic building block of a variety of ICs other than BUS systems, making this modular method a universal and efficient way to construct large-scale CNT ICs. Building on their previous research, the scientists hope to explore these possibilities in the future.

“In our earlier work, we showed that a carbon nanotube based field-effect transistor is about five (n-type FET) to ten (p-type FET) times faster than its silicon counterparts, but uses much less energy, about a few percent of that of similar sized silicon transistors,” Peng said.

“In the future, we plan to construct large-scale integrated circuits that outperform silicon-based systems. These circuits are faster, smaller, and consume much less power. They can also work at extremely low temperatures (e.g., in space) and moderately high temperatures (potentially no cooling system required), on flexible and transparent substrates, and potentially be bio-compatible.”

Here’s a link to and a citation for the paper,

Scaling carbon nanotube complementary transistors to 5-nm gate lengths by Chenguang Qiu, Zhiyong Zhang, Mengmeng Xiao, Yingjun Yang, Donglai Zhong, Lian-Mao Peng. Science  20 Jan 2017: Vol. 355, Issue 6322, pp. 271-276 DOI: 10.1126/science.aaj1628

This paper is behind a paywall.

New electrical contact technology to exploit nanoscale catalytic effects

A Jan. 20,, 2017 news item on Nanotechnology Now announces research into nanoscale electrical contact technology,

Research by scientists at Swansea University [UK] is helping to meet the challenge of incorporating nanoscale structures into future semiconductor devices that will create new technologies and impact on all aspects of everyday life.

Dr Alex Lord and Professor Steve Wilks from the Centre for Nanohealth led the collaborative research published in Nano Letters. The research team looked at ways to engineer electrical contact technology on minute scales with simple and effective modifications to nanowires that can be used to develop enhanced devices based on the nanomaterials. Well-defined electrical contacts are essential for any electrical circuit and electronic device because they control the flow of electricity that is fundamental to the operational capability.

Everyday materials that are being scaled down to the size of nanometres (one million times smaller than a millimetre on a standard ruler) by scientists on a global scale are seen as the future of electronic devices. The scientific and engineering advances are leading to new technologies such as energy producing clothing to power our personal gadgets and sensors to monitor our health and the surrounding environment.

Over the coming years this will make a massive contribution to the explosion that is the Internet of Things connecting everything from our homes to our cars into a web of communication. All of these new technologies require similar advances in electrical circuits and especially electrical contacts that allow the devices to work correctly with electricity.

A Jan. 19, 2017 Swansea University press release (also on EurekAlert), which originated the news item, explains in greater detail,

Professor Steve Wilks said: “Nanotechnology has delivered new materials and new technologies and the applications of nanotechnology will continue to expand over the coming decades with much of its usefulness stemming from effects that occur at the atomic- or nano-scale. With the advent of nanotechnology, new technologies have emerged such as chemical and biological sensors, quantum computing, energy harvesting, lasers, and environmental and photon-detectors, but there is a pressing need to develop new electrical contact preparation techniques to ensure these devices become an everyday reality.”

“Traditional methods of engineering electrical contacts have been applied to nanomaterials but often neglect the nanoscale effects that nanoscientists have worked so hard to uncover.  Currently, there isn’t a design toolbox to make electrical contacts of chosen properties to nanomaterials and in some respects the research is lagging behind our potential application of the enhanced materials.”

The Swansea research team1 used specialist experimental equipment and collaborated with Professor Quentin Ramasse of the SuperSTEM Laboratory, Science and Facilities Technology Council.  The scientists were able to physically interact with the nanostructures and measure how the nanoscale modifications affected the electrical performance.

Their experiments found for the first time, that simple changes to the catalyst edge can turn-on or turn-off the dominant electrical conduction and most importantly reveal a powerful technique that will allow nanoengineers to select the properties of manufacturable nanowire devices.

Dr Lord said: “The experiments had a simple premise but were challenging to optimise and allow atomic-scale imaging of the interfaces. However, it was essential to this study and will allow many more materials to be investigated in a similar way.”

“This research now gives us an understanding of these new effects and will allow engineers in the future to reliably produce electrical contacts to these nanomaterials which is essential for the materials to be used in the technologies of tomorrow.

“In the near future this work can help enhance current nanotechnology devices such as biosensors and also lead to new technologies such as Transient Electronics that are devices that diminish and vanish without a trace which is an essential property when they are applied as diagnostic tools inside the human body.”

References
1. Lord, A. M., Ramasse, Q. M., Kepaptsoglou, D. M., Evans, J. E., Davies, P. R., Ward, M. B. & Wilks, S. P. 2016 Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Lett. (doi:10.1021/acs.nanolett.6b03699). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03699
2 .Lord, A. M. et al. 2015 Controlling the electrical transport properties of nanocontacts to nanowires. Nano Lett. 15, 4248–4254. (doi:10.1021/nl503743t) http://pubs.acs.org/doi/abs/10.1021/nl503743t

Both papers are open access.

500-year history of robots exhibition at London’s (UK) Science Museum

Thanks to a Feb.7, 2017 article by Benjamin Wheelock for Salon.com for the heads up regarding the ‘Robots’ exhibit at the UK’s Science Museum in London.

Prior to the exhibition’s opening on Feb. 8, 2017, The Guardian has published a preview (more about that in a minute), a photo essay, and this video about the show,

I find the robot baby to be endlessly fascinating.

The Science Museum announced its then upcoming Feb. 8  – Sept. 3, 2017 exhibition on robots in a May ?, 2016 press release,

8 February – 3 September 2017, Science Museum, London
Admission: £15 adults, £13 concessions (Free entry for under 7s; family tickets available)
Tickets available in the Museum or via sciencemuseum.org.uk/robots
Supported by the Heritage Lottery Fund


Throughout history, artists and scientists have sought to understand what it means to be human. The Science Museum’s new Robots exhibition, opening in February 2017, will explore this very human obsession to recreate ourselves, revealing the remarkable 500-year story of humanoid robots.

Featuring a unique collection of over 100 robots, from a 16th-century mechanical monk to robots from science fiction and modern-day research labs, this exhibition will enable visitors to discover the cultural, historical and technological context of humanoid robots. Visitors will be able to interact with some of the 12 working robots on display. Among many other highlights will be an articulated iron manikin from the 1500s, Cygan, a 2.4m tall 1950s robot with a glamorous past, and one of the first walking bipedal robots.

Robots have been at the heart of popular culture since the word ‘robot’ was first used in 1920, but their fascinating story dates back many centuries. Set in five different periods and places, this exhibition will explore how robots and society have been shaped by religious belief, the industrial revolution, 20th century popular culture and dreams about the future.

The quest to build ever more complex robots has transformed our understanding of the human body, and today robots are becoming increasingly human, learning from mistakes and expressing emotions. In the exhibition, visitors will go behind the scenes to glimpse recent developments from robotics research, exploring how roboticists are building robots that resemble us and interact in human-like ways. The exhibition will end by asking visitors to imagine what a shared future with robots might be like. Robots has been generously supported by the Heritage Lottery Fund, with a £100,000 grant from the Collecting Cultures programme.

Ian Blatchford, Director of the Science Museum Group said: ‘This exhibition explores the uniquely human obsession of recreating ourselves, not through paint or marble but in metal. Seeing robots through the eyes of those who built or gazed in awe at them reveals much about humanity’s hopes, fears and dreams.’

‘The latest in our series of ambitious, blockbuster exhibitions, Robots explores the wondrously rich culture, history and technology of humanoid robotics. Last year we moved gigantic spacecraft from Moscow to the Museum, but this year we will bring a robot back to life.’

Today [May ?, 2016] the Science Museum launched a Kickstarter campaign to rebuild Eric, the UK’s first robot. Originally built in 1928 by Captain Richards & A.H. Reffell, Eric was one of the world’s first robots. Built less than a decade after the word robot was first used, he travelled the globe with his makers and amazed crowds in the UK, US and Europe, before disappearing forever.

[The campaign was successful.]

You can find out more about Eric on the museum’s ‘Eric: The UK’s first robot’ webpage,

Getting back to the exhibition, the Guardian’s Ian Sample has written up a Feb. 7, 2017 preview (Note: Links have been removed),

Eric the robot wowed the crowds. He stood and bowed and answered questions as blue sparks shot from his metallic teeth. The British creation was such a hit he went on tour around the world. When he arrived in New York, in 1929, a theatre nightwatchman was so alarmed he pulled out a gun and shot at him.

The curators at London’s Science Museum hope for a less extreme reaction when they open Robots, their latest exhibition, on Wednesday [Feb. 8, 2016]. The collection of more than 100 objects is a treasure trove of delights: a miniature iron man with moving joints; a robotic swan that enthralled Mark Twain; a tiny metal woman with a wager cup who is propelled by a mechanism hidden up her skirt.

The pieces are striking and must have dazzled in their day. Ben Russell, the lead curator, points out that most people would not have seen a clock when they first clapped eyes on one exhibit, a 16th century automaton of a monk [emphasis mine], who trundled along, moved his lips, and beat his chest in contrition. It was surely mesmerising to the audiences of 1560. “Arthur C Clarke once said that any sufficiently advanced technology is indistinguishable from magic,” Russell says. “Well, this is where it all started.”

In every chapter of the 500-year story, robots have held a mirror to human society. Some of the earliest devices brought the Bible to life. One model of Christ on the cross rolls his head and oozes wooden blood from his side as four figures reach up. The mechanisation of faith must have drawn the congregations as much as any sermon.

But faith was not the only focus. Through clockwork animals and human figurines, model makers explored whether humans were simply conscious machines. They brought order to the universe with orreries and astrolabes. The machines became more lighthearted in the enlightened 18th century, when automatons of a flute player, a writer, and a defecating duck all made an appearance. A century later, the style was downright rowdy, with drunken aristocrats, preening dandies and the disturbing life of a sausage from farm to mouth all being recreated as automata.

That reference to an automaton of a monk reminded me of a July 22, 2009 posting where I excerpted a passage (from another blog) about a robot priest and a robot monk,

Since 1993 Robo-Priest has been on call 24-hours a day at Yokohama Central Cemetery. The bearded robot is programmed to perform funerary rites for several Buddhist sects, as well as for Protestants and Catholics. Meanwhile, Robo-Monk chants sutras, beats a religious drum and welcomes the faithful to Hotoku-ji, a Buddhist temple in Kakogawa city, Hyogo Prefecture. More recently, in 2005, a robot dressed in full samurai armour received blessings at a Shinto shrine on the Japanese island of Kyushu. Kiyomori, named after a famous 12th-century military general, prayed for the souls of all robots in the world before walking quietly out of Munakata Shrine.

Sample’s preview takes the reader up to our own age and contemporary robots. And, there is another Guardian article which offering a behind-the-scenes look at the then upcoming exhibition, a Jan. 28, 2016 piece by Jonathan Jones, ,

An android toddler lies on a pallet, its doll-like face staring at the ceiling. On a shelf rests a much more grisly creation that mixes imitation human bones and muscles, with wires instead of arteries and microchips in place of organs. It has no lower body, and a single Cyclopean eye. This store room is an eerie place, then it gets more creepy, as I glimpse behind the anatomical robot a hulking thing staring at me with glowing red eyes. Its plastic skin has been burned off to reveal a metal skeleton with pistons and plates of merciless strength. It is the Terminator, sent back in time by the machines who will rule the future to ensure humanity’s doom.

Backstage at the Science Museum, London, where these real experiments and a full-scale model from the Terminator films are gathered to be installed in the exhibition Robots, it occurs to me that our fascination with mechanical replacements for ourselves is so intense that science struggles to match it. We think of robots as artificial humans that can not only walk and talk but possess digital personalities, even a moral code. In short we accord them agency. Today, the real age of robots is coming, and yet even as these machines promise to transform work or make it obsolete, few possess anything like the charisma of the androids of our dreams and nightmares.

That’s why, although the robotic toddler sleeping in the store room is an impressive piece of tech, my heart leaps in another way at the sight of the Terminator. For this is a bad robot, a scary robot, a robot of remorseless malevolence. It has character, in other words. Its programmed persona (which in later films becomes much more helpful and supportive) is just one of those frightening, funny or touching personalities that science fiction has imagined for robots.

Can the real life – well, real simulated life – robots in the Science Museum’s new exhibition live up to these characters? The most impressively interactive robot in the show will be RoboThespian, who acts as compere for its final gallery displaying the latest advances in robotics. He stands at human height, with a white plastic face and metal arms and legs, and can answer questions about the value of pi and the nature of free will. “I’m a very clever robot,” RoboThespian claims, plausibly, if a little obnoxiously.

Except not quite as clever as all that. A human operator at a computer screen connected with Robothespian by wifi is looking through its video camera eyes and speaking with its digital voice. The result is huge fun – the droid moves in very lifelike ways as it speaks, and its interactions don’t need a live operator as they can be preprogrammed. But a freethinking, free-acting robot with a mind and personality of its own, Robothespian is not.

Our fascination with synthetic humans goes back to the human urge to recreate life itself – to reproduce the mystery of our origins. Artists have aspired to simulate human life since ancient times. The ancient Greek myth of Pygmalion, who made a statue so beautiful he fell in love with it and prayed for it to come to life, is a mythic version of Greek artists such as Pheidias and Praxiteles whose statues, with their superb imitation of muscles and movement, seem vividly alive. The sculptures of centaurs carved for the Parthenon in Athens still possess that uncanny lifelike power.

Most of the finest Greek statues were bronze, and mythology tells of metal robots that sound very much like statues come to life, including the bronze giant Talos, who was to become one of cinema’s greatest robotic monsters thanks to the special effects genius of Ray Harryhausen in Jason and the Argonauts.

Renaissance art took the quest to simulate life to new heights, with awed admirers of Michelangelo’s David claiming it even seemed to breathe (as it really does almost appear to when soft daylight casts mobile shadow on superbly sculpted ribs). So it is oddly inevitable that one of the first recorded inventors of robots was Leonardo da Vinci, consummate artist and pioneering engineer. Leonardo apparently made, or at least designed, a robot knight to amuse the court of Milan. It worked with pulleys and was capable of simple movements. Documents of this invention are frustratingly sparse, but there is a reliable eyewitness account of another of Leonardo’s automata. In 1515 he delighted Francois I, king of France, with a robot lion that walked forward towards the monarch, then released a bunch of lilies, the royal flower, from a panel that opened in its back.

One of the most uncanny androids in the Science Museum show is from Japan, a freakily lifelike female robot called Kodomoroid, the world’s first robot newscaster. With her modest downcast gaze and fine artificial complexion, she has the same fetishised femininity you might see in a Manga comic and appears to reflect a specific social construction of gender. Whether you read that as vulnerability or subservience, presumably the idea is to make us feel we are encountering a robot with real personhood. Here is a robot that combines engineering and art just as Da Vinci dreamed – it has the mechanical genius of his knight and the synthetic humanity of his perfect portrait.

Here’s a link to the Science Museum’s ‘Robots’ exhibition webspace and a link to a Guardian ‘Robots’ photo essay.

All this makes me wish I had plans to visit London, UK in the next few months.