Monthly Archives: November 2022

Fluorine-based nanostructures for desalination

A May 16, 2022 article by Qamariya Nasrullah for cosmosmagazine.com describes research from Japan on desalination (Note: A link has been removed),

Water supply is a growing global issue, especially with climate change bringing on more droughts. Seawater desalination is used worldwide to filter up to 97.4 million cubic metres per day. Two methods – thermal and reverse osmosis – predominate; both have huge energy costs.

In a pioneering study published in Science, researchers have used a fluorine-based nanostructure to successfully filter salt from water faster and more efficiently than other current technologies. But how does it work?

A May 12, 2022 University of Tokyo press release (also on EurekAlert), which originated the news item, provides the answer to Nasrullah’s question,

If you’ve ever cooked with a nonstick Teflon-coated frying pan, then you’ve probably seen the way that wet ingredients slide around it easily. This happens because the key component of Teflon is fluorine, a lightweight element that is naturally water repelling, or hydrophobic. Teflon can also be used to line pipes to improve the flow of water. Such behavior caught the attention of Associate Professor Yoshimitsu Itoh from the Department of Chemistry and Biotechnology at the University of Tokyo and his team. It inspired them to explore how pipes or channels made from fluorine might operate on a very different scale, the nanoscale.

“We were curious to see how effective a fluorous nanochannel might be at selectively filtering different compounds, in particular, water and salt. And, after running some complex computer simulations, we decided it was worth the time and effort to create a working sample,” said Itoh. “There are two main ways to desalinate water currently: thermally, using heat to evaporate seawater so it condenses as pure water, or by reverse osmosis, which uses pressure to force water through a membrane that blocks salt. Both methods require a lot of energy, but our tests suggest fluorous nanochannels require little energy, and have other benefits too.”

The team created test filtration membranes by chemically synthesizing nanoscopic fluorine rings, which were stacked and embedded in an otherwise impermeable lipid layer, similar to the organic molecules that make up cell walls. They created several test samples with nanorings between about 1 and 2 nanometers. For reference, a human hair is almost 100,000 nanometers wide. To test the effectiveness of their membranes, Itoh and the team measured the presence of chlorine ions, one of the major components of salt — the other being sodium — on either side of the test membrane.

“It was very exciting to see the results firsthand. The smaller of our test channels perfectly rejected incoming salt molecules, and the larger channels too were still an improvement over other desalination techniques and even cutting-edge carbon nanotube filters,” said Itoh. “The real surprise to me was how fast the process occurred. Our sample worked around several thousand times faster than typical industrial devices, and around 2,400 times faster than experimental carbon nanotube-based desalination devices.”

As fluorine is electrically negative, it repels negative ions such as the chlorine found in salt. But an added bonus of this negativity is that it also breaks down what are known as water clusters, essentially loosely bound groups of water molecules, so that they pass through the channels quicker. The team’s fluorine-based water desalination membranes are more effective, faster, require less energy to operate and are made to be very simple to use as well, so what’s the catch?

“At present, the way we synthesize our materials is relatively energy-intensive itself; however, this is something we hope to improve upon in upcoming research. And, given the longevity of the membranes and their low operational costs, the overall energy costs will be much lower than with current methods,” said Itoh. “Other steps we wish to take are of course scaling this up. Our test samples were single nanochannels, but with the help of other specialists, we hope to create a membrane around 1 meter across in several years. In parallel with these manufacturing concerns, we’re also exploring whether similar membranes could be used to reduce carbon dioxide or other undesirable waste products released by industry.”

Here’s a link to and a citation for the paper,

Ultrafast water permeation through nanochannels with a densely fluorous interior surface by Yoshimitsu Itoh, Shuo Chen, Jyota Hirahara, Takeshi Konda, Tsubasa Aoki, Takumi Ueda, Ichio Shimada, James J. Cannon, Cheng Shao, Junichiro Shiomi, Kazuhito V. Tabata, Hiroyuki Noji, Kohei Sato, and Takuzo Aida. Science • 12 May 2022 • Vol 376, Issue 6594 • pp. 738-743 • DOI: 10.1126/science.abd0966

This paper is behind a paywall.

September 2023: Auckland, Aotearoa New Zealand set to welcome women in STEM (science, technology, engineering, and mathematics)

An October 31, 2022 Association for Women in the Sciences (AWIS) press release on EurekAlert announces a meeting for women in STEM being held in September 2023,

In September next year [2023], Aotearoa New Zealand will welcome women from across the globe to discuss how science, engineering and technology can help create a better, more equitable world.

The 19th International Conference of Women Engineers and Scientists (ICWES19) will take place in Auckland, Aotearoa New Zealand’s largest city, 3-6 September 2023. The conference theme – Shaping the Future – will offer examples of and insights for women studying and working in STEM (science, technology, engineering and mathematics), and their advocates, and showcase the potential of science and engineering to change the world for the better.

Women from around the world are invited to submit their work – from fundamental research projects to examples of how science and engineering is being applied in the real world – to be considered for the programme. Abstract submission is open until December 2022, with the full programme confirmed in early 2023.

Organisations are encouraged to support their teams’ personal and professional development by challenging their female staff to submit an abstract on a recent project or piece of research, and by providing opportunities for them to attend the conference in person.

The conference programme will focus on nine areas of STEM:

  • Protecting and restoring the natural environment
  • Enhancing liveability through urban transformation
  • Improving transportation by revolutionising mobility
  • Transitioning to clean energy
  • Improving health and healthcare
  • Providing food security
  • Advancing technology
  • Protecting people from natural hazards and other threats
  • Ensuring STEM diversity and equality.

The programme will also feature keynote speakers from Aotearoa New Zealand and around the world, panel discussions, interactive workshops, and opportunities for networking with like-minded individuals. Following the conference, attendees are invited to join field trips to see Aotearoa New Zealand STEM in action.

“Women are still under-represented in many areas of science and engineering, particularly at more senior levels,” says Emma Timewell, co-Chair of ICWES19 on behalf of the Association for Women in the Sciences (AWIS). “Being able to bring women together to discuss not only the amazing work that they do, but also to find ways to improve the global engagement of women in STEM, is a privilege.”

“Aotearoa New Zealand is a country built on innovation in science and engineering,” says Bryony Lane, co-Chair on behalf of Engineering New Zealand. “We’re excited to be able to showcase Aotearoa New Zealand to the rest of the world.”

ICWES is the flagship triennial conference of the International Network of Women Engineers and Scientists (INWES). ICWES19 is being hosted by the New Zealand Association for Women in the Sciences (AWIS) and Engineering New Zealand.

For more information on the conference, including details for abstract submission or sponsoring the conference, go to icwes19.com or follow @icwes19 on Facebook or Twitter.

In addition to the AWIS website here, there’s an AWIS New Zealand website.

The Call for Abstracts (from the ICWES 19 conference website), includes this,

Abstracts for all three formats (15 minute oral, 30 minute oral or electronic posters) must be clearly written in English and be a maximum of 300 words excluding the title and authors.

Title (maximum 30 words)

Which programme theme(s) best suits your abstract?

Author(s) FAMILY/SURNAMES should be in capitals, no qualifications, or titles. Note the presenting author(s) should be bold and underlined

Affiliations and city/town

Summary of your presentation

The exact length of oral presentations will be made clear to you at the time of acceptance and will depend upon the number of accepted oral presentations. Detailed instructions on how electronic posters should be presented will also be provided at the time of abstract acceptance.

Key dates

Submissions open: Thursday 1 September 2022

Submission closes: Friday 9 December 2022 [emphasis mine]

Notification of acceptance: Friday 31 March 2023

Good luck!

Philosophy and science in Tokyo, Japan from Dec. 1-2, 2022

I have not seen a more timely and à propos overview for a meeting/conference/congress that this one for Tokyo Forum 2022 (hosted by the University of Tokyo and South Korea’s Chey Institute for Advanced Studies),

Dialogue between Philosophy and Science: In a World Facing War, Pandemic, and Climate Change

In the face of war, a pandemic, and climate change, we cannot repeat the history of the last century, in which our ancestors headed down the road to division, global conflict, and environmental destruction.

How can we live more fully and how do we find a new common understanding about what our society should be? Tokyo Forum 2022 will tackle these questions through a series of in-depth dialogues between philosophy and science. The dialogues will weave together the latest findings and deep contemplation, and explore paths that could lead us to viable answers and solutions.

Philosophy of the 21st century must contribute to the construction of a new universality based on locality and diversity. It should be a universality that is open to co-existing with other non-human elements, such as ecosystems and nature, while severely criticizing the understanding of history that unreflectively identifies anthropocentrism with universality.

Science in the 21st century also needs to dispense with its overarching aura of supremacy and lack of self-criticism. There is a need for scientists to make efforts to demarcate their own limits. This also means reexamining what ethics means for science.

Tokyo Forum 2022 will offer multifaceted dialogues between philosophers, scientists, and scholars from various fields of study on the state and humanity in the 21st century, with a view to imagining and proposing a vision of the society we need.

Here are some details about the hybrid event from a November 4, 2022 University of Tokyo press release on EurekAlert,

The University of Tokyo and South Korea’s Chey Institute for Advanced Studies will host Tokyo Forum 2022 from Dec. 1-2, 2022. Under this year’s theme “Dialogue between Philosophy and Science,” the annual symposium will bring together philosophers, scientists and scholars in various fields from around the world for multifaceted dialogues on humanity and the state in the 21st century, while envisioning the society we need.

The event is free and open to the public, and will be held both on site at Yasuda Auditorium of the University of Tokyo and online via livestream. [emphases mine]

Keynote speakers lined up for the first day of the two-day symposium are former U.N. Secretary-General Ban Ki-moon, University of Chicago President Paul Alivisatos and Mariko Hasegawa, president of the Graduate University for Advanced Studies in Japan.

Other featured speakers on the event’s opening day include renowned modern thinker and author Professor Markus Gabriel of the University of Bonn, and physicist Hirosi Ooguri, director of the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo and professor at the California Institute of Technology, who are scheduled to participate in the high-level discussion on the dialogue between philosophy and science.

Columbia University Professor Jeffrey Sachs will take part in a panel discussion, also on Day 1, on tackling global environmental issues with stewardship of the global commons — the stable and resilient Earth system that sustains our lives — as a global common value.

The four panel discussions slated for Day 2 will cover the role of world philosophy in addressing the problems of a globalized world; transformative change for a sustainable future by understanding the diverse values of nature and its contributions to people; the current and future impacts of autonomous robots on society; and finding collective solutions and universal values to pursue equitable and sustainable futures for humanity by looking at interconnections among various fields of inquiry.

Opening remarks will be delivered by University of Tokyo President Teruo Fujii and South Korea’s SK Group Chairman Chey Tae-won, on Day 1. Fujii and Chey Institute President Park In-kook will make closing remarks following the wrap-up session on the second and final day.

Tokyo Forum with its overarching theme “Shaping the Future” is held annually since 2019 to stimulate discussions on finding the best ideas for shaping the world and humanity in the face of complex situations where the conventional wisdom can no longer provide answers.

For more information about the program and speakers of Tokyo Forum 2022, visit the event website and social media accounts:

Website: https://www.tokyoforum.tc.u-tokyo.ac.jp/en/index.html

Twitter: https://twitter.com/UTokyo_forum

Facebook: https://www.facebook.com/UTokyo.tokyo.forum/

To register, fill out the registration form on the Tokyo Forum 2022 website (registration is free but required [emphasis mine] to attend the event): https://www.tokyo-forum-form.com/apply/audiences/en

I’m not sure how they are handling languages. I’m guessing that people are speaking in the language they choose and translations (subtitles or dubbing) are available. For anyone who may have difficulty attending due to timezone issues, there are archives for previous Tokyo Forums. Presumably 2022 will be added at some point in the future.

The physics of the multiverse of madness

The Dr. Strange movie (Dr. Strange in the Multiverse of Madness released May 6, 2022) has inspired an essay on physics. From a May 9, 2022 news item on phys.org

If you’re a fan of science fiction films, you’ll likely be familiar with the idea of alternate universes—hypothetical planes of existence with different versions of ourselves. As far from reality as it sounds, it is a question that scientists have contemplated. So just how well does the fiction stack up with the science?

The many-worlds interpretation is one idea in physics that supports the concept of multiple universes existing. It stems from the way we comprehend quantum mechanics, which defy the rules of our regular world. While it’s impossible to test and is considered an interpretation rather than a scientific theory, many physicists think it could be possible.

“When you look at the regular world, things are measurable and predictable—if you drop a ball off a roof, it will fall to the ground. But when you look on a very small scale in quantum mechanics, the rules stop applying. Instead of being predictable, it becomes about probabilities,” says Sarah Martell, Associate Professor at the School of Physics, UNSW Science.

A May 9, 2022 University of New South Wales (UNSW; Australia) press release originated the news item,

The fundamental quantum equation – called a wave function – shows a particle inhabiting many possible positions, with different probabilities assigned to each. If you were to attempt to observe the particle to determine its position – known in physics as ‘collapsing’ the wave function – you’ll find it in just one place. But the particle actually inhabits all the positions allowed by the wave function.

This interpretation of quantum mechanics is important, as it helps explain some of the quantum paradoxes that logic can’t answer, like why a particle can be in two places at once. While it might seem impossible to us, since we experience time and space as fixed, mathematically it adds up.

“When you make a measurement in quantum physics, you’re only measuring one of the possibilities. We can work with that mathematically, but it’s philosophically uncomfortable that the world stops being predictable,” A/Prof. Martell says.

“If you don’t get hung up on the philosophy, you simply move on with your physics. But what if the other possibility were true? That’s where this idea of the multiverse comes in.”

The quantum multiverse

Like it is depicted in many science fiction films, the many-worlds interpretation suggests our reality is just one of many. The universe supposedly splits or branches into other universes any time we take action – whether it’s a molecule moving, what you decide to eat or your choice of career. 

In physics, this is best explained through the thought experiment of Schrodinger’s cat. In the many-worlds interpretation, when the box is opened, the observer and the possibly alive cat split into an observer looking at a box with a deceased cat and one looking at a box with a live cat.

“A version of you measures one result, and a version of you measures the other result. That way, you don’t have to explain why a particular probability resulted. It’s just everything that could happen, does happen, somewhere,” A/Prof. Martell says.

“This is the logic often depicted in science fiction, like Spider-Man: Into the Spider-Verse, where five different Spider-Man exist in different universes based on the idea there was a different event that set up each one’s progress and timeline.”

This interpretation suggests that our decisions in this universe have implications for other versions of ourselves living in parallel worlds. But what about the possibility of interacting with these hypothetical alternate universes?

According to the many-worlds interpretation, humans wouldn’t be able to interact with parallel universes as they do in films – although science fiction has creative licence to do so.

“It’s a device used all the time in comic books, but it’s not something that physics would have anything to say about,” A/Prof. Martell says. “But I love science fiction for the creativity and the way that little science facts can become the motivation for a character or the essential crisis in a story with characters like Doctor Strange.”

“If for nothing else, science fiction can help make science more accessible, and the more we get people talking about science, the better,” A/Prof. Martell says.

“I think we do ourselves a lot of good by putting hooks out there that people can grab. So, if we can get people interested in science through popular culture, they’ll be more interested in the science we do.” 

The university also offers a course as this October 6, 2020 UNSW press release reveals,

From the morality plays in Star Trek, to the grim futures in Black Mirror, fiction can help explore our hopes – and fears – of the role science might play in our futures.

But sci-fi can be more than just a source of entertainment. When fiction gets the science right (or right enough), sci-fi can also be used to make science accessible to broader audiences. 

“Sci-fi can help relate science and technology to the lived human experience,” says Dr Maria Cunningham, a radio astronomer and senior lecturer in UNSW Science’s School of Physics. 

“Storytelling can make complex theories easier to visualise, understand and remember.”

Dr Cunningham – a sci-fi fan herself – convenes ‘Brave New World’: a course on science fact and fiction aimed at students from a non-scientific background. The course explores the relationship between literature, science, and society, using case studies like Futurama and MacGyver.

She says her own interest in sci-fi long predates her career in science.

“Fiction can help get people interested in science – sometimes without them even knowing it,” says Dr Cunningham.

“Sci-fi has the potential to increase the science literacy of the general population.”

Here, Dr Cunningham shares three tricky physics concepts best explained through science fiction (spoilers ahead).

Cunningham goes on to discuss the Universal Speed Limit, Time Dilation, and, yes, the Many Worlds Interpretation.

The course, “Brave New World: Science Fiction, Science Fact and the Future – GENS4015” is still offered but do check the link to make sure it takes you to the latest version (I found 2023). One more thing, it is offered wholly on the internet.

Era of ‘optical computers’ approaching fast

More energy and faster, that’s a very short description for the future of computing according this May 2, 2022 news item on Nanowerk which announces research that could help make that happen (Note: A link has been removed),

The demand is explosively increasing for computers that can quickly calculate and process large amounts of information recently, as artificial intelligence, self-driving cars, drones, and metaverse technologies are drawing attention as core industries of the future.

However, electronic semiconductor logic gates, which serve as the brains of computers today, have limited capacities in high-speed data calculation and processing and have disadvantages in that they consume a lot of energy and generate considerable heat.

Korea Institute of Science and Technology (KIST) and Gwangju Institute of Science and Technology (GIST) announced that their research teams, led by Dr. Yusin Pak at the Sensor System Research Center (KIST) and Professor Gun Young Jung at the School of Materials Science and Engineering (GIST), have developed an ultra-high-speed, high-efficiency optoelectronic logic gates (OELGs) by using organic-inorganic perovskite photodiodes (Nature Communications, “Perovskite Multifunctional Logic Gates via Bipolar Photoresponse of Single Photodetector”).

A May 2, 2022 (Korea) National Research Council of Science & Technology press release on EurekAlert, which originated the news item, provides more technical detail,

The optoelectronic logic gate has high-speed and high-efficiency characteristics; it uses light as an input signal which demonstrates low energy loss physically and can operate only with light energy without electrical power supply. The research teams implemented a stacked perovskite optoelectronic logic gate. Two layers of perovskite thin films are vertically stacked like a sandwich and proved that the desired binary logic operation is possible by inputting two lights of different wavelengths and intensities.

As the perovskite optoelectronic logic gate can freely change the photocurrent polarity using light, executing more than one logic gate operation result for the same input value is possible. Therefore, compared to the existing logic gate that can only perform one logical operation on one device, the newly developed one can implement all five different basic logic operations such as AND, OR, NAND, NOR, and NOT. It enables the development of optical processors with high spatial efficiency and integration, as one logic gate can function like five logic gates.

Dr. Pak (KIST) said, “Perovskite optoelectronic logic gates that execute multiple logic operations in response to optical input are expected to be used for ultra-small and low-power universal optical sensor platforms in the future.” Prof. Jung (GIST) expected that “The optoelectronic logic gate developed through this research is an outcome of optical computing R&D that realizes five basic logic operations into one device, and will greatly contribute to next-generation optical communication, optical network, and healthcare R&D”.

Here’s a link to and a citation for the paper,

Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector by Woochul Kim, Hyeonghun Kim, Tae Jin Yoo, Jun Young Lee, Ji Young Jo, Byoung Hun Lee, Assa Aravindh Sasikala, Gun Young Jung & Yusin Pak. Nature Communications volume 13, Article number: 720 (2022) DOI: https://doi.org/10.1038/s41467-022-28374-w Published 07 February 2022

This paper is open access.

Tiny nanomagnets interact like neurons in the brain for low energy artificial intelligence (brainlike) computing

Saving energy is one of the main drivers for the current race to make neuromorphic (brainlike) computers as this May 5, 2022 news item on Nanowerk comments, Note: Links have been removed,

Researchers have shown it is possible to perform artificial intelligence using tiny nanomagnets that interact like neurons in the brain.

The new method, developed by a team led by Imperial College London researchers, could slash the energy cost of artificial intelligence (AI), which is currently doubling globally every 3.5 months. [emphasis mine]

In a paper published in Nature Nanotechnology (“Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting”), the international team have produced the first proof that networks of nanomagnets can be used to perform AI-like processing. The researchers showed nanomagnets can be used for ‘time-series prediction’ tasks, such as predicting and regulating insulin levels in diabetic patients.

A May 5, 2022 Imperial College London (ICL) press release (also on EurekAlert) by Hayley Dunning, which originated the news item delves further into the research,

Artificial intelligence that uses ‘neural networks’ aims to replicate the way parts of the brain work, where neurons talk to each other to process and retain information. A lot of the maths used to power neural networks was originally invented by physicists to describe the way magnets interact, but at the time it was too difficult to use magnets directly as researchers didn’t know how to put data in and get information out.

Instead, software run on traditional silicon-based computers was used to simulate the magnet interactions, in turn simulating the brain. Now, the team have been able to use the magnets themselves to process and store data – cutting out the middleman of the software simulation and potentially offering enormous energy savings.

Nanomagnetic states

Nanomagnets can come in various ‘states’, depending on their direction. Applying a magnetic field to a network of nanomagnets changes the state of the magnets based on the properties of the input field, but also on the states of surrounding magnets.

The team, led by Imperial Department of Physics researchers, were then able to design a technique to count the number of magnets in each state once the field has passed through, giving the ‘answer’.

Co-first author of the study Dr Jack Gartside said: “We’ve been trying to crack the problem of how to input data, ask a question, and get an answer out of magnetic computing for a long time. Now we’ve proven it can be done, it paves the way for getting rid of the computer software that does the energy-intensive simulation.”

Co-first author Kilian Stenning added: “How the magnets interact gives us all the information we need; the laws of physics themselves become the computer.”

Team leader Dr Will Branford said: “It has been a long-term goal to realise computer hardware inspired by the software algorithms of Sherrington and Kirkpatrick. It was not possible using the spins on atoms in conventional magnets, but by scaling up the spins into nanopatterned arrays we have been able to achieve the necessary control and readout.”

Slashing energy cost

AI is now used in a range of contexts, from voice recognition to self-driving cars. But training AI to do even relatively simple tasks can take huge amounts of energy. For example, training AI to solve a Rubik’s cube took the energy equivalent of two nuclear power stations running for an hour.

Much of the energy used to achieve this in conventional, silicon-chip computers is wasted in inefficient transport of electrons during processing and memory storage. Nanomagnets however don’t rely on the physical transport of particles like electrons, but instead process and transfer information in the form of a ‘magnon’ wave, where each magnet affects the state of neighbouring magnets.

This means much less energy is lost, and that the processing and storage of information can be done together, rather than being separate processes as in conventional computers. This innovation could make nanomagnetic computing up to 100,000 times more efficient than conventional computing.

AI at the edge

The team will next teach the system using real-world data, such as ECG signals, and hope to make it into a real computing device. Eventually, magnetic systems could be integrated into conventional computers to improve energy efficiency for intense processing tasks.

Their energy efficiency also means they could feasibly be powered by renewable energy, and used to do ‘AI at the edge’ – processing the data where it is being collected, such as weather stations in Antarctica, rather than sending it back to large data centres.

It also means they could be used on wearable devices to process biometric data on the body, such as predicting and regulating insulin levels for diabetic people or detecting abnormal heartbeats.

Here’s a link to and a citation for the paper,

Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting by Jack C. Gartside, Kilian D. Stenning, Alex Vanstone, Holly H. Holder, Daan M. Arroo, Troy Dion, Francesco Caravelli, Hidekazu Kurebayashi & Will R. Branford. Nature Nanotechnology (2022) DOI: https://doi.org/10.1038/s41565-022-01091-7 Published 05 May 2022

This paper is behind a paywall.

Wearable devices for plants

For those with a taste for text, a May 4, 2022 news item on ScienceDaily announces wearable technology for plants,

Plants can’t speak up when they are thirsty. And visual signs, such as shriveling or browning leaves, don’t start until most of their water is gone. To detect water loss earlier, researchers reporting in ACS Applied Materials & Interfaces have created a wearable sensor for plant leaves. The system wirelessly transmits data to a smartphone app, allowing for remote management of drought stress in gardens and crops.

A May 4, 2022 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item,

Newer wearable devices are more than simple step-counters. Some smart watches now monitor the electrical activity of the wearer’s heart with electrodes that sit against the skin. And because many devices can wirelessly share the data that are collected, physicians can monitor and assess their patients’ health from a distance. Similarly, plant-wearable devices could help farmers and gardeners remotely monitor their plants’ health, including leaf water content — the key marker of metabolism and drought stress. Previously, researchers had developed metal electrodes for this purpose, but the electrodes had problems staying attached, which reduced the accuracy of the data. So, Renato Lima and colleagues wanted to identify an electrode design that was reliable for long-term monitoring of plants’ water stress, while also staying put.

The researchers created two types of electrodes: one made of nickel deposited in a narrow, squiggly pattern, and the other cut from partially burnt paper that was coated with a waxy film. When the team affixed both electrodes to detached soybean leaves with clear adhesive tape, the nickel-based electrodes performed better, producing larger signals as the leaves dried out. The metal ones also adhered more strongly in the wind, which was likely because the thin squiggly design of the metallic film allowed more of the tape to connect with the leaf surface. Next, the researchers created a plant-wearable device with the metal electrodes and attached it to a living plant in a greenhouse. The device wirelessly shared data to a smartphone app and website, and a simple, fast machine learning technique successfully converted these data to the percent of water content lost. The researchers say that monitoring water content on leaves can indirectly provide information on exposure to pests and toxic agents. Because the plant-wearable device provides reliable data indoors, they now plan to test the devices in outdoor gardens and crops to determine when plants need to be watered, potentially saving resources and increasing yields.

The authors acknowledge support from the São Paulo Research Foundation and the Brazilian Synchrotron Light Laboratory. Two of the study’s authors are listed on a patent filing application for the technology.

..

Here’s a link to and a citation for the paper,

Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants by Júlia A. Barbosa, Vitoria M. S. Freitas, Lourenço H. B. Vidotto, Gabriel R. Schleder, Ricardo A. G. de Oliveira, Jaqueline F. da Rocha, Lauro T. Kubota, Luis C. S. Vieira, Hélio C. N. Tolentino, Itamar T. Neckel, Angelo L. Gobbi, Murilo Santhiago, and Renato S. Lima. ACS Appl. Mater. Interfaces 2022, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsami.2c02943 Publication Date:March 21, 2022 © 2022 American Chemical Society

This paper is behind a paywall.

Nanoplastic particles are attracted to each other

Plastic waste is of rising concern as researchers report finding it in the Arctic (April 5 2022 ScienceDaily news item), as well as, in human blood (March 25, 2022 article by Margaret Osborne for the Smithsonian Magazine).

This post is highlighting research into how a particular form of plastic degrades in the environment, from an April 27, 2022 news item on ScienceDaily,

Polyethylene, a plastic that is both cheap and easy to process, accounts for nearly one-third of the world’s plastic waste. An interdisciplinary team from the University of Bayreuth has investigated the progressive degradation of polyethylene in the environment for the first time. Although the degradation process leads to fragmentation into ever smaller particles, isolated nanoplastic particles are rarely found in the environment. The reason is that such decay products do not like to remain on their own, but rather attach rapidly to larger colloidal systems that occur naturally in the environment. The researchers have now presented their findings in the journal Science of the Total Environment.

An April 25, 2022 Universität Bayreuth press release (also on EurekAlert but published on April 27, 2022), which originated the news item, gives more detail about the research,

Polyethylene is a plastic that occurs in various molecular structures. Low-density polyethylene (LDPE) is widely used for packaging everyday consumer goods, such as food, and is one of the most common polymers worldwide as a result of increasing demand. Until now, there have only been estimates as to how this widely used plastic degrades after it enters the environment as waste. A research team from the Collaborative Research Centre “Microplastics” at the University of Bayreuth has now systematically investigated this question for the first time. The scientists developed a novel, technically sophisticated experimental set-up for this purpose. This makes it possible to simulate two well-known and environmentally linked processes of plastic degradation independently in the laboratory: 1.) photo-oxidation, in which the long polyethylene chains gradually break down into smaller, more water-soluble molecules when exposed to light, and 2.) increasing fragmentation due to mechanical stress. On this basis, it was possible to gain detailed insights into the complex physical and chemical processes of LDPE degradation.

The final stage of LDPE degradation is of particular interest for studies addressing the potential impact of polyethylene on the environment. What the researchers discovered was that this degradation does not end with the decomposition of the packaging material released into the environment into many micro- and nanoplastic particles, which have a high degree of crystallinity. The reason is that these tiny particles have a strong tendency to aggregate: they attach rapidly to larger colloidal systems consisting of organic or inorganic molecules and are part of the material cycle in the environment. Examples of such colloidal systems include clay minerals, humic acids, polysaccharides, and biological particles from bacteria and fungi. “This process of aggregation prevents individual nanoparticles created by polyethylene degradation from being freely available in the environment and interacting with animals and plants. However, this is not an ‘all clear’ signal. Larger aggregates that participate in the material cycle in the environment and contain nanoplastics do often get ingested by living organisms. That is how nanoplastics can eventually enter the food chain,” says Teresa Menzel, one of the three lead authors of the new study and a doctoral researcher in the field of polymer materials.

To identify the degradation products formed when polyethylene decomposes, the researchers employed a method that has not been widely used in microplastics research: multi-cross-polarization in solid-state NMR spectroscopy. “This method even allows us to quantify the degradation products yielded by photooxidation,” says co-author Anika Mauel, a doctoral researcher in inorganic chemistry.

Bayreuth’s researchers have also discovered that the degradation and decomposition of polyethylene also leads to the formation of peroxides. “Peroxides have long been suspected of being cytotoxic, meaning they have a toxic effect on living cells. That is another way in which LDPE degradation poses a potential threat to natural ecosystems. These interrelationships need to be studied in more detail in the future,” adds co-author Nora Meides, a doctoral researcher in macromolecular chemistry.

The detailed analysis of the chemical and physical processes involved in the degradation of polyethylene would not have been possible without the interdisciplinary networking and coordinated use of state-of-the-art research technologies on the University of Bayreuth’s campus. In particular, these include scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC).

Here’s a link to and a citation for the paper,

Degradation of low-density polyethylene to nanoplastic particles by accelerated weathering by Teresa Menzel Nora Meides, Anika Mauel, Ulrich Mansfeld, Winfried Kretschmer, Meike Kuhn, Eva M.Herzig, Volker Altstädt, Peter Strohrieg, Jürgen Senker, Holger Ruckdäsche. Science of The Total Environment Volume 826, 20 June 2022, 154035 DOI: https://doi.org/10.1016/j.scitotenv.2022.154035

This paper is behind a paywall.

A spray-on dress with nanoparticles as the base?

Even a month after the fact, this is still fascinating. The magic is in watching the paint/textile get sprayed onto model, Bella Hadid’s body, and watching the liquid transform into a textile. (Note: Ms. Hadid has a minimal amount of clothing at the start),

Fashion designer/scientist, Manel Torres developed the technology, Fabrican, about 20 years ago according to an October 14, 2022 article by Gooseed for complex.com,

Coperni, the Parisian ready-to-wear brand founded by Sébastien Meyer and Arnaud Vaillant, has always focused on tailored minimalism since it launched in 2013. Yet it also strives to take an innovative approach to design that connects its collections with the current fashion moment and pay homage to the past.  

The finale of their Spring/Summer 2023 presentation for Paris Fashion Week, where model Bella Hadid walked onto stage half-naked to get sprayed with a white substance, gave the brand a viral moment. At first glance, most of us thought it was a performance. But after a few minutes, the white shell that appeared on Bella’s body looked like a dress solidified into a texture that almost resembled latex. It wasn’t a body painting, but an actual dress. Charlotte Raymond, Coperni’s Head of Design, even helped style the dress by cutting a slit into the garment and altering the straps to make it an off the shoulder silhouette. The rest is history. Videos of the dress blew up on social media and are now anchored in the digital ether.

The truth is that this magic behind the dress is not new. It has been around for almost two decades.

The innovative technology behind Hadid’s Coperni dress was created by Manel Torres, a Spanish fashion designer turned scientist. Torres has been nicknamed “The Chemist Tailor” because of Fabrican, a liquid tissue made up of polymers, additives, and fiber that turns into a solid nonwoven material when it comes into contact with air. That’s why Fabrican can come out of a spray can to instantly create something like Bella’s Coperni dress. It can also be used to create protective covering for furniture or car interiors. Torres founded his business in 2003 and has been researching the possibility of creating clothes, chairs, and medical patches with just one spray for over 20 years and counting.

His journey started first at the La Escuela de Artes y Técnicas de la Moda in Barcelona, where Torres studied arts with a specialty in fashion design. He then enrolled at the Royal College of Art in London where he graduated with an MA in womenswear. He went on to graduate with a PhD from the Royal College of Art in 2001 by publishing a thesis centered on spray-on fabrics from an aerosol can. It was a collaborative thesis between his school’s fashion department and the chemical engineering department at the Imperial College of London. Torres then started creating his own collections with the first versions of Fabrican fabric. Before Coperni, he presented Fabrican at several runway shows like Science in Style in 2010 and during Moscow Fashion Week in 2011.

Despite Torres’ fashion background, he mostly works with clients within the automobile, medical, and sportswear industry. “I’m a fashion guy so my wish is that this industry starts to invest more in technology and not rely so much on branding,” says Torres when sharing his views on the fashion industry a couple days after the Coperni moment.

Torres’ drive to push Fabrican into the fashion business has also garnered the interest of other industries outside of apparel. He says it has made him realize that there are possibilities for new production models in all aspects of design. “This is completely a new idea so it requires a completely new approach. That in an industry like fashion, and in any industry in general, is going to take some time,” says Torres. He is patient and persistent about achieving his number one goal, which is to make Fabrican available for everybody.

Additionally, since Fabrican is plant-based and composed of natural fibers, it can be used as an alternative to animal-derived leathers. The fabric can also be washed and reused and sprayed on to again to extend the garment. Torres hopes to grow Fabrican to an industrial scale with the help of a robotic arm spray system that could quickly create complex forms in a very precise way and operate 24 hours a day, which could significantly reduce human labor and product costs associated with garment production. The durability of the fabric is also something that Torres assures to be “very similar to the clothes we use daily but needs to be improved.” He reveals that he’s currently working with the German government to apply Fabrican technology to produce uniforms.

…  

For the curious, there are more images and videos embedded, as well as, the links I’ve have eliminated from the excerpts, in Gooseed’s October 14, 2022 article.

Eglė Radžiūtė’s October 3 (?), 2022 article for boredpanda.com fills out the fashion commentary with a bit more detail about the science, Note: Links have been removed,

In about 9 minutes, Bella’s body was engulfed in a light layer of fabric. Once the fabric had a second to settle, Coperni’s Head of Design Charlotte Raymond came up to wipe off the excess and shape the dress into its final form. Lowering the shoulder straps, cutting the bottom to mid-calf length, and adding a slit on Bella’s left leg, Charlotte completed something that was out of this world.

The segment was not previously rehearsed with Bella due to her Paris Fashion Week schedule, adding to the magic, as well as showing off the professionalism of the dress’s engineers, the designers, and Bella herself. The night before the show, a model stood in for Bella, but she couldn’t control her shivering on the chilly runway as the cold material hit her skin.

“I was so nervous,” Bella said backstage, as it would have been her first experience being sprayed. But she didn’t let it show. She was steely and delicate, occasionally raising her arms above her head with an elegant flair, or offering a little smile at the people working on her. “I kind of just became the character, whoever she is.”

Wasn’t it cold up there? “Honey, cold is an understatement,” Bella said, as reported by the NYTimes. “I really blacked out.” Yet as soon as she left the runway, she felt like the performance had been a “pinnacle moment” in her career.

Let’s dive into the science behind the dress. Partnering with Doctor Manel Torres, Founder and Managing Director of Fabrican Ltd, they utilized a spray-on fabric that, once sprayed, dries to create a wearable, non-woven textile. It can be made using different types of fibers: from natural to synthetic, including wool, cotton, nylon, cellulose, and carbon nanofibers. [emphasis mine]

Based in London [UK], at the London Bioscience Innovation Center, Doctor Torres has been working on this multifaceted piece of technology since 2003. A liquid suspension—a finely distributed solid in a liquid, which is not dissolved—is applied via spray gun or aerosol to a surface, creating a fabric. The cross-linking of fibers, which adhere to one another, creates an instant non-woven fabric.

The future-forward invention may be used for more than just creating intricate fashion; they believe it can revolutionize multiple industries. As stated on BBC’s The Imagineers, the fabric is sterile and thus can be made into bandages. It can be made to set hard and, thus, could be used as a cast for broken bones. But perhaps most crucially, the fabric absorbs oil, and so it could be used to clean up after oil tanker disasters.

Whilst in pictures the dress looked to be made of a kind of silk or cotton, those who got close enough to touch it discovered that it felt soft but elastic, bumpy like a sponge. According to Arnaud, the dress was taken off like any other tight, slightly stretchy one: a process of peeling off and shimmying out. It can be hung and washed, or put back into the bottle of its original solution to regenerate.

Coperni is an ultra-modern Parisian ready-to-wear and accessories brand designed by Sébastien Meyer and Arnaud Vaillant. Established in 2013, the pair have been on a mission to find the intersection between fashion and technology, “marrying exhaustive origami-like technique with a neat, ‘sportif’ silhouette.”

You can better see the dress’s texture in this image,

Image credits: bellahadid [downloaded from https://www.boredpanda.com/bella-hadid-coperni-spray-on-dress/?utm_source=duckduckgo&utm_medium=referral&utm_campaign=organic]

Health concerns

Do read the comments at the end of Eglė Radžiūtė’s October 3 (?), 2022 article. Most are admiring but there is a cautionary note from a construction painter noting that no one wore any “respiratory protective devices.” An ‘industrial hygienist’ seconded the the painter’s concern “that stuff is in their lungs,” as would anyone concerned with lung health.

The science of a spray-on textile

You can glean some information from his patent filings (where you’ll find mention of nanosilica but not of the carbon nanofibers mentioned in Radžiūtė’s article), Non-woven fabric Patent number: 8124549; Non-woven fabric Patent number: 8088315; Non-Woven Fabric Publication number: 20100286583; Non-Woven Fabric Publication number: 20090036014; and Non-woven fabric Publication number: 20050222320 on justia.com. The full list of Torres’ patents is here.

I’m guessing there’s more than one kind of engineered nanomaterial to be found in Torres’ mixtures but he’s pretty careful about spilling too much information. Charlotte Hu in her October 4, 2022 article for Popular Science helps to decode further the information in the patents (Note: Links have been removed),

This instantaneously materialized dress is not a magic trick, but a testament to innovations in material science more than two decades in the making. The man behind the creation is Manel Torres, who in 2003 created the substance used on Hadid, Fabrican (presumably a portmanteau of the phrase “fabric in a can”). His inspiration? Silly string and spiderwebs. His idea was to elevate the coarse cords of the silly string into a finer fabric that could be dispersed through a mist. Torres explained in a 2013 Ted Talk that when this spray-on fabric comes in contact with air, it turns into a solid material that’s stretchy and feels like suede. 

What exactly is in Fabrican? According to the patents granted to the company, the liquid fabric is made up of a suspension of liquid polymers (large molecules bonded together), additives, binders like natural latex, cross-linked natural and synthetic fibers, and a fast-evaporating solvent like acetone. The fibers can be polyester, polypropylene, cotton, linen, or wool. 

Torres added that they can easily form the material around 3D molds or patterns and tweak the textures, so they can get something that’s fleece-like, paper-like, lace-like, or rubber-like. He imagined that people could go into a booth, customize their dress, and instantly have it 3D printed onto their bodies. The spray could even be used for spot repairs on existing clothing.  

… Fabrican states on its website that it uses “fibres recycled from discarded clothes and other fabrics. The technology can also utilise biodegradable fibres and binders in place of fossil-based polymers to reduce the carbon footprint of material and manufacturing.” Additionally, the company said that “at the end of their useful life, sprayed fabrics can be re-dissolved and sprayed anew.”  

For the curious, here’s the Fabrican Ltd. website, the Coperni website, and a Wikipedia entry for Silly String.

I have another story about producing something in midair in a May 17, 2016 posting titled: Printing in midair. That was about 3D printing metallic devices in midair.

H/t to the Celebrity Social Media October 3, 2022 posting (keep scrolling down about 75% of the way down) on Laineygossip.com and to Rosemary Hurst because her comments about the dress led me to Charlotte Hu’s article. *ETA: November 4, 2022 at 1550 PT: Rosemary compared to a process for handmaking paper.*

A unique design for harvesting biomechanical motion

Researchers have discovered a new technique for doing this according to an April 25, 2022 news item on ScienceDaily,

Harvesting energy from the day-to-day movements of the human body and turning it into useful electrical energy, is the focus of a new piece of research involving a Northumbria University Professor.

Academics from Northwestern Polytechnical University in China, supported by Professor Richard Fu from Northumbria, have developed a unique design for sensors capable of using human movements — such as bending, twisting and stretching — to power wearable technology devices including smart watches and fitness trackers.

An April 25, 2022 Northumbria University press release (also on EurekAlert), which originated the news item, delves further into the topic (Note: Links have been removed),

Self-powered pressure sensors are one of the key components used in these smart electronic devices which are growing in popularity today. The sensors can operate without the need for external power supplies.

Detecting health conditions and measuring performance in sport are among the potential uses for these types of sensors. As a result, they are the focus of extensive research and development, but remain challenging to produce with the performance sensing, flexibility, and sufficient level of power needed for wearable technology.

A new research paper published in the prestigious international scientific journal, Advanced Science, describes how the team led by Professor Weizheng Yuan, Professor Honglong Chang and Associate Professor Kai Tao from Northwestern Polytechnical University (NPU), has worked with Professor Fu to develop a solution.

Their novel method involves using sophisticated materials with pre-patterned pyramid shapes to create friction against the silicone polymer known as polydimethylsiloxane or PDMS. This friction generates a self-powering effect, or triboelectricity, which can significantly enhance the energy available to power a wearable device. 

Professor Tao from NPU explained: “This results in a self-powered tactile sensor with wide environmental tolerance and excellent sensing performance, and it can detect subtle pressure changes by measuring the variations of triboelectric output signal without an external power supply. The sensor design has been tested an is capable of controlling electrical appliances and robotic hands by simulating human finger gestures, confirming its potential for use in wearable technology.”

Professor Fu added: “This self-powered sensor based on hydrogels has a simple fabrication process, but with a superb flexibility, good transparency, fast response and high stability.”

Professor Honglong Chang, Dean of School of Mechanical Engineering at NPU, said Northumbria University is one of their most important international partners.

“One of our important tasks this year is to further promote the cooperative relationship with Northumbria University,” he explained. “We are organising NU-NPU bilateral academic forums this year, and we look forward to establishing strong collaborations in various research areas with Northumbria University.”

Professor Jon Reast, Pro Vice-Chancellor (International) at Northumbria University, said he was delighted with the success of the partnership with NPU. “It’s fantastic that this research collaboration is proving successful and producing such ground-breaking work.

“We work closely with more than 500 partner universities, colleges and schools across the world. Within these, NPU is one of a set of extremely high-quality research-led university partners. The relationship with NPU includes researchers within smart materials engineering as well as smart design and is producing some truly excellent, impactful, research in both areas.”

Here’s a link to and a citation for the paper,

Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human–Machine Interfaces by Kai Tao, Zhensheng Chen, Jiahao Yu, Haozhe Zeng, Jin Wu, Zixuan Wu, Qingyan Jia, Peng Li, Yongqing Fu, Honglong Chang, Weizheng Yuan. Advanced Science Volume 9, Issue 10 April 5, 2022 2104168 DOI: https://doi.org/10.1002/advs.202104168 First published: 31 January 2022

This paper is open access.