Tag Archives: British Columbia

University of British Columbia (Canada) discovers the ‘organ-on-a-chip’ and plans to host a July 2014 workshop

My latest piece about an ‘organ-on-a-chip’ project was a July 26, 2012 posting titled Organ chips for DARPA (Defense Advanced Research Projects Agency) featuring the Wyss Institute (which pops up again in the latest news I have from the University of British Columbia [UBC; located in Vancouver, Canada)]). First, here’s more about that 2012 announcement,,

The Wyss Institute will receive up to  $37M US for a project that integrates ten different organ-on-a-chip projects into one system. From the July 24, 2012 news release on EurekAlert,

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented “human-on-a-chip” will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed “has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development.”

It’s nice to see that there’s interest in this area of research at UBC. From the Dec. 30, 2013 UBC news release by Gian-Paolo Mendoza which describes James Feng’s (professor in biological and chemical engineering) interest in the future possibilities offered by ‘organ-on-a-chip’ research,

“The potential is tremendous,” says Feng. “The main impact of organs grown this way will be on the design of drugs; the understanding of the pathological processes.”

Dr. Feng’s group carries out research in three broad areas: mechanics of biological cells and tissues, interfacial fluid dynamics, and mechanics and rheology of complex fluids.

The group has an inter-disciplinary flavour–crosscutting applied mathematics, cell biology, soft-matter physics and chemical and biomedical engineering—that is well-suited for exploring this burgeoning technology.

Feng cites a Harvard study [Ed. Note: This is the work being done at the Wyss Institute] using a small silicon device that holds a thin layer of real cell membranes capable of producing motion similar to the heaving and breathing of a lung.

Organ models designed this way have the potential to be more accurate in drug and treatment trials, says Feng, as they can better mimic the functions of human organs, as opposed to animal models which are the current research standard.

“It’s more controlled and you can simplify the process much faster,” said Feng.

“Harvard researchers also injected drugs into their chip model to see how it changed its behaviour and to see the tissue’s reaction to mechanical or chemical disturbance,” he added.

“It’s very important for drug design and discovery and the pharmaceutical industry would be tremendously interested in that.”

In addition, organs on a chip present a less controversial option for organ model testing compared to stem cell research. According to Feng, this is because their ultimate goals are very different from each other.

“The research that tried to grow organs directly from stem cells is aiming for eventually implantable organs,” he said. “The idea of making the chip is to work toward replacing animal models, so as to be more accurate and realistic like human organs. While the ability to replicate a complex human organ function remains far off, the direction appeals to anyone who is hoping to reduce the use of animals in research.”

Here’s the ‘lung-on-a-chip’ video the Wyss Institute has produced,

By contrast with ‘organ-on-a-chip’, the ‘lab-on-a-chip’ does not simulate the action of organs responding to various experimental therapeutic measures but makes standard testing and diagnostic procedures, such as blood tests, much faster, cheaper, and, in some cases, much less invasive as per my February 15, 2011 posting  which included some information about a local (Vancouver, Canada) project, the PROOF.(Prevention of Organ Failure) Centre.

The ‘organ-on-a-chip’ will help make clinical trials easier and faster according to Feng (from the news release),

Feng says this kind of organ testing offers the possibility of greatly reducing cost and time required for clinical trials.

“By using computer simulations we can generate results and insights, and run virtual tests much more easily and quickly,” he says.

“We can test maybe hundreds or thousands of designs of organ chips to be able to tell you whether you should try those ten designs instead of the hundreds one by one.”

Feng, who has a background in aerospace engineering, says this new bio-technology has the potential to transform the development of artificial organs and drugs the way computer simulations have replaced the use of wind tunnels for designing aircrafts.

“That used to be the dominant mode of designing crafts,” he said, “but that’s being replaced by online computer simulations because we understand the principles of aerodynamics so well.”

There’s also recognition that UBC is a little late to the ‘party’,

While UBC’s efforts in the field are in the early stages, Feng is reaching out to researchers from other backgrounds. He will be inviting leading scientists to UBC in July 2014 for a workshop that will centre on the growth of artificial organs and computer simulations. He is also exploring ideas of his own.

“I have a collaboration with an engineering colleague on how to use the microfluidic chip, the technology used to emulate the lung in the Harvard study, as a way of measuring malaria-infected red cells,” he said, suggesting that this is just one of the countless ways this new technology could be used to fuel future innovation.

And since it’s Friday (Jan. 3, 2014), I thought it was time for a music video, and Pink’s ‘Let’s get the party started’ seems to fit the bill,,

Have a good first weekend of the year 2014!

Naimor: innovative nanostructured material for water remediation and oil recovery (crowdfunding project)

The NAIMOR crowdfunding project on indiegogo might be of particular interest to those of us on the West Coast of Canada where there is much talk about a project to create twin pipelines (Enbridge Northern Gateway Pipelines) between the provinces of  Alberta and British Columbia to export oil and import natural gas. The oil will be shipped to Asia by tanker and presumably so will the natural gas. In all the discussion about possible environmental disasters, I haven’t seen any substantive mention of remediation efforts or research to improve the technologies associated with environmental cleanups (remediation of water, soil, and/or air). At any rate, all this talk about the pipelines and oil tankers along Canada’s West Coast brought to mind the BP oil spill, aka the Deepwater Horizon oil spill, from the Wikipedia essay (Note: Links have been removed),

The Deepwater Horizon oil spill (also referred to as the BP oil spill, the BP oil disaster, the Gulf of Mexico oil spill, and the Macondo blowout) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. It claimed eleven lives[5][6][7][8] and is considered the largest accidental marine oil spill in the history of the petroleum industry, an estimated 8% to 31% larger in volume than the previously largest, the Ixtoc I oil spill. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.[7][9] The total discharge has been estimated at 4.9 million barrels (210 million US gal; 780,000 m3).[3]

A massive response ensued to protect beaches, wetlands and estuaries from the spreading oil utilizing skimmer ships, floating booms, controlled burns and 1.84 million US gallons (7,000 m3) of Corexit oil dispersant.[10] After several failed efforts to contain the flow, the well was declared sealed on 19 September 2010.[11] Some reports indicate the well site continues to leak.[12][13] Due to the months-long spill, along with adverse effects from the response and cleanup activities, extensive damage to marine and wildlife habitats, fishing and tourism industries, and human health problems have continued through 2013.[14][15] Three years after the spill, tar balls could still be found on the Mississippi coast.[16] In July 2013, the discovery of a 40,000 pound tar mat near East Grand Terre, Louisiana prompted the closure of waters to commercial fishing.[17][18]

While Canada’s Northern Gateway project does not include any plans for ocean oil rigs, there is still the potential for massive spills either from the tankers or the pipelines. For those old enough to remember or those interested in history, this latest project raises the spectre of the Exxon Valdes oil spill, from the Wikipedia essay (Note: Links have been removed),

The Exxon Valdez oil spill occurred in Prince William Sound, Alaska, on March 24, 1989, when Exxon Valdez, an oil tanker bound for Long Beach, California, struck Prince William Sound’s Bligh Reef at 12:04 a.m.[1] local time and spilled 260,000 to 750,000 barrels (41,000 to 119,000 m3) of crude oil[2][3] over the next few days. It is considered to be one of the most devastating human-caused environmental disasters.[4] The Valdez spill was the largest ever in US waters until the 2010 Deepwater Horizon oil spill, in terms of volume released.[5]  [emphasis mine] However, Prince William Sound’s remote location, accessible only by helicopter, plane, or boat, made government and industry response efforts difficult and severely taxed existing plans for response. The region is a habitat for salmon, sea otters, seals and seabirds. The oil, originally extracted at the Prudhoe Bay oil field, eventually covered 1,300 miles (2,100 km) of coastline,[6] and 11,000 square miles (28,000 km2) of ocean.[7] Exxon’s CEO, Lawrence Rawl, shaped the company’s response.[8]

Some of that ‘difficult to reach’ coastline and habitat was Canadian (province of British Columbia). Astonishingly, given the 20 year gap between the Exxon Valdes spill and the Deepwater Horizon spill, the technology for remediation and cleanup had not changed much, although it seems that the measures* used to stop the oil spill were even older, from my June 4, 2010 posting,

I found a couple more comments relating to the BP oil spill  in the Gulf. Pasco Phronesis offers this May 30, 2010 blog post, Cleaning With Old Technology, where the blogger, Dave Bruggeman, asks why there haven’t been any substantive improvements to the technology used for clean up,

The relatively ineffective measures have changed little since the last major Gulf of Mexico spill, the Ixtoc spill in 1979. While BP has solicited for other solutions to the problem (Ixtoc was eventually sealed with cement and relief wells after nine months), they appear to have been slow to use them.

It is a bit puzzling to me why extraction technology has improved but cleanup technology has not.

An excellent question.

I commented a while back (here) about another piece of nano reporting from* Andrew Schneider. Since then, Dexter Johnson at Nanoclast has offered some additional thoughts (independent of reading Andrew Maynard’s 2020 Science post) about the Schneider report regarding ‘nanodispersants’ in the Gulf. From Dexter’s post,

Now as to the efficacy or dangers of the dispersant, I have to concur that it [nanodispersant] has not been tested. But it seems that the studies on the 118 oil-controlling products that have been approved for use by the EPA are lacking in some details as well. These chemicals were approved so long ago in some cases that the EPA has not been able to verify the accuracy of their toxicity data, and so far BP has dropped over a million gallons of this stuff into the Gulf.

Point well taken.

In looking at this website: gatewayfacts.ca, it seems the proponents for the Enbridge Northern Gateway project have supplied some additional information. Here’s what they’ve supplied regarding the project’s spill response (from the Gateway Facts environmental-responsibility/marine-protection page),

A spill response capacity 3x better than required

Emergency response equipment, crews and training staff will be stationed at key points and communities along the marine routes.

I did find a bit more on the website’s What if? page,

Marine response in action

Our spill response capacity will be more than 3x the current Canadian regulation. In addition, tanker escort tugs will carry emergency response and firefighting equipment to be able to respond immediately.

I don’t feel that any real concerns have been addressed by this minimalist approach to communication. Here are some of my questions,

  • What does 3x the current Canadian regulation mean in practical terms and how does this compare with the best safety regulations from an international perspective? Will there be efforts at continuous improvement?
  • Are there going to be any audits by outside parties of the company’s emergency response during the life of the project?
  • How will those audits be conducted? i.e., Will there be notice or are inspectors likely to spring the occasional surprise inspection?
  • What technologies are the proponents planning to use for the cleanup?
  • Is there any research being conducted on new remediation and cleanup technologies?
  • How much money is being devoted to this research and where is it being conducted (university labs, company labs, which countries)?

In light of concerns about environmental remediation technologies, it’s heartening to see this project on indiegogo which according to a Dec. 27, 2013 news item on Nanowerk focuses on an improved approach to remediation for water contaminated by oil,,

Environmental oil spill disasters such as BP’s Deepwater Horizon oil rig in the Gulf of Mexico have enormous environmental consequences, leading to the killing of marine creatures and contamination of natural water streams, storm water systems or even drinking water supplies. Emergency management organizations must be ready to confront such turbulences with effective and eco-friendly solutions to minimize the short term or long term issues.

There are many ineffective and costly conventional technologies for the remedy of oil spills like using of dispersants, oil skimmers, sand barrier berms, oil containment booms, by controlled burning of surface oil, bioremediation and natural degradation.

NAIMOR® – NAnostructure Innovative Material for Oil Recovery – is a three dimensional, nanostructure carbon material that can be produced in different shapes, dimensions. It is highly hydrophobic and can absorb a quantity of oil around 150 times its weight. Light, strong, and flexible, the material can be reused many times without losing its absorption capacity.

I’m not familiar with the researcher who’s making this proposal so I can’t comment on the legitimacy of the project but this does look promising (I have heard of other similar research using carbon-based materials), from the Naimor campaign on indiegogo,

Ivano Aglietto, an Italian engineer with a PhD in Environmental Engineering has devoted his profession for the production of most advanced and innovative nanostructure carbon materials and the industrial development of their proper use in applications for the environmental remediation.

His first invention was RECAM® (REactive Carbon Material), a revolutionary solution for oil spill recovery which had shown extraordinary results but with limitations of usage.

RECAM® is inert, non toxic, regenerable, reusable, eco friendly material and can absorb oil 90 times its weight. It is ferromagnetic in nature and can be recovered from water using magnetic field. The hydrocarbons absorbed can be burnt inorder to reuse the material and no toxic gases are released because of its inert and non-flammable nature. Their is also possibility of extracting the absorbed oil by squeezing the material or by vacuum filtration. Oil recovered does not contain any water because of the hydrophobic behaviour of RECAM®. Recovered oil can be reused as resource and the RECAM® for recovering oil. RECAM® is used for oil spill remediation and successfully passed the Artemia test.

RECAM® is being replaced with his new innovative nanostructure material, NAIMOR®.

NAIMOR® (NAnostructure Innovative Material for Oil Recovery) is a nanostructure material that can be produced in different shapes and dimensions with an incredible efficiency for oil recovery.

Main Characteristics and Properties

Can absorb quantity of oil 150 times its weight.
Inert, made of pure carbon, environmental friendly and no chemicals involved.
Highly hydrophobic and the absorbed oil does not contain any water.
Regenerable and can be used several times without producing any wastes.
It is a three dimensional nanostructure and can be produced in different shapes, dimensions [carpets, booms, sheets’.
Capable of recovering gallons of oil depending on the shape and dimensions of the carpet.

This indiegogo campaign is almost the antithesis of the gatewayfacts.ca website offering a wealth of information and detail including a discussion about the weaknesses associated with the various cleanup technologies that represent the ‘state of the art’. Here’s an image from the Naimor campaign page,

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

I believe this is a pelican somewhere on the Gulf of Mexico coastline where it was affected by the 2010 Deepwater Horizon oil spill. As for Aglietto’s project, you can find the NAIMOR website here.

* Changed ‘measure’ to ‘measures’ and ‘form’ to ‘from’ May 6, 2014.

Canuck amongst Google Science Fair 2013 winners (which include a Yank, an Aussie, and a Turk)

I imagine 15-year old, Ann Makosinski, of Victoria, BC (Canada) has been excited for the last few months as her science idea has progressed from a submission to a semi-finalist to a finalist and, now, winner in her age category in the 2013 Google Science Fair online. A Sept. 24, 2013 news item on the CBC News online website gives details,

Ann Makosinski, 15, a student at St. Michaels University School in Victoria, claimed a trophy made of Lego for the 15-16 age category, at an awards gala Monday night for the international science fair, Google announced. Her prizes are a $25,000 scholarship and a “once-in-a-lifetime experience” from either CERN (the European Organization for Nuclear Research), LEGO or Google.

The flashlight contains devices called Peltier tiles that produce electricity when heated on one side and cooled on the other. Makosinski’s flashlight is hollow, allowing one side of the tiles to be cooled by the surrounding air. The tiles are heated on the other side by the heat from the hand of the person holding the flashlight. That generates enough power to maintain a steady beam of light for 20 minutes.

Here’s a picture of the winners with their ‘Lego’ trophies,

Australian Viney Kumar, Canadian Ann Makosinski of Victoria, B.C., Elif Bilgin of Turkey and American Eric Chen, left to right, took home trophies at the Google Science Fair's gala award ceremony Monday night in California.  Courtesy Google

Australian Viney Kumar, Canadian Ann Makosinski of Victoria, B.C., Elif Bilgin of Turkey and American Eric Chen, left to right, took home trophies at the Google Science Fair’s gala award ceremony Monday night in California. Courtesy Google

The Sept. 23, 2013 posting by Clare Conway on Google’s official blog provides more details about this year’s contest and the other winners,

The top 15 projects were selected from thousands of entries submitted by talented young scientists from more than 120 countries around the world. These projects were impressive and represented a vast range of scientific ingenuity—from a multi-step system created for early diagnosis of melanoma cancers to the invention of a metallic exoskeleton glove that assists, supports and enhances the movement of the human palm to help people who suffer from upper hand disabilities.

It was a tough decision, but we’re proud to name the three winners of this year’s Google Science Fair:

The fourth winner, Elif Bilgin of  Turkey, won the Scientific American (SA magazine) award, from the SA June 27, 2013 press release,

On Thursday, June 27, Elif Bilgin, 16, from Turkey, was declared the winner of the second annual Scientific American Science in Action Award, powered by the Google Science Fair. Bilgin won for her project, Going Bananas! Using Banana Peels in the Production of Bio-Plastic as a Replacement for Traditional Petroleum-Based Plastic. In addition to the $50,000 prize, Bilgin will have access to a year’s mentorship and is invited to Google’s California headquarters in September to compete in the 15-to-16-year-old age category in the overall Google Science Fair.

According to Conway’s posting on the official blog, Bilgin also won the Voter’s Choice award.

Congratulations to all of the entrants!

University of Victoria’s (Canada) microscope, world’s most powerful, unveiled

This new microscope at the University of Victoria (UVic) was supposed to be unveiled in 2011 according to my July 28, 2009 posting about the purchase,

In other BC news, the University of Victoria (Canada) will be getting a new microscope which senses at subatomic levels. (From the media release on Azonano),

The new microscope-called a Scanning Transmission Electron Holography Microscope (STEHM) — will use an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution as small as one-fiftieth the size of an atom.

This is being done in collaboration with Hitachi High-Technologies which is building the microscope in Japan and installing it at U Vic in late 2010. The microscope will be located in a specially adapted room where work to prepare and calibrate it will continue until it becomes operational sometime in 2011.

I had been wondering if I’d ever hear of the microscope again, so finding a June 18, 2013 news item on Nanowerk announcing the world’s most powerful microscope at the University of Victoria (British Columbia, Canada) answered the question for me (Note: A link has been removed),

The world’s most powerful microscope, which resides in a specially constructed room at the University of Victoria, has now been fully assembled and tested, and has a lineup of scientists and businesses eager to use it.

The seven-tonne, 4.5-metre tall Scanning Transmission Electron Holography Microscope (STEHM), the first such microscope of its type in the world, came to the university in parts last year,. A team from Hitachi, which constructed the ultra high-resolution, ultra-stable instrument, spent one year painstakingly assembling the STEHM in a carefully controlled lab in the basement of the Bob Wright Centre.

The wait was worth it, says Rodney Herring, a professor of mechanical engineering and director of UVic’s Advanced Microscopy Facility. [emphasis mine]

The June 17, 2013 University of Victoria news release, which originated the news item, doesn’t address the two year delay directly as Herring’s quote seems to be in reference to the one-year assembly period. The news release goes on to describe the microscope’s resolution,

Herring viewed gold atoms through the microscope at a resolution of 35 picometres. One picometre is a trillionth of a metre. This resolution is much better than the previous best image with 49-picometre resolution taken at the Lawrence Berkley National Laboratory in California, and is about 20 million times human sight.

The STEHM allows researchers to see the atoms in a manner never before possible. It has full analytical capabilities that can determine the types and number or elements present, and high-resolution cameras for collecting data.

It will be used by researchers of many science and engineering disciplines for projects requiring knowledge of small atomic scale structures (nanoscience) and nanotechnology. Dr. Vincenzo Grillo from the Istituto Nanoscienze Consiglio Nazionale Delle Ricerche in Modena [Italy] will be the first visiting researcher later this month.

A line-up seems to have formed (from the news release),

Local scientists and businesses are also eager to use it. Ned Djilali, a UVic professor of mechanical engineering, is working with the National Research Council, Ballard Power Systems in Vancouver and Mercedes-Benz on fuel cell research. The STEHM “opens up entirely new possibilities” in fuel cell technology, says Djilali.

Redlen Technologies, a local company that manufactures high resolution semiconductor radiation detectors that are used for such things as nuclear cardiology, CT scanning, baggage scanning and dirty bomb detection, has been waiting for the STEHM to open for the company’s research and development.

If you are curious but don’t have any special influence, you can find out about the microscope (and perhaps view it?) later this week (from the news release),

Herring will give details of the results at a microscopy conference this week at UVic, as well as during a talk Thursday, June 20, that is open to the public. [emphasis mine] It is from 4:30 to 5 p.m. at the Bob Wright Centre, in Flury Hall, room B150.

I don’t usually include funding information but since I am from British Columbia, I have more of an interest than usual (from the news release),

The STEHM microscope is supported by $9.2 million in funding from the government of Canada through the Canadian Foundation for Innovation, the BC Knowledge Development Fund and UVic, as well as significant in-kind support from Hitachi.

Since microscopes and big equipment (in general) are weirdly fascinating to me, here are some details from UVic’s STEHM backgrounder,

The Scanning Transmission Electron Holography Microscope (STEHM) is the highest resolution microscope ever built and the only one of its kind in the world. It’s arrival makes the University of Victoria a global leader in the competitive field of advanced microscopy.

Unlike conventional microscopes, which use light to peer at specimens, the STEHM uses an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution smaller than the size of an atom.

The STEHM will see materials beyond the nanoscale to the picoscale. A nanometer is one-billionth of a metre, while a picometre is one-trillionth of a metre. Atoms are typically between 62 and 520 picometres in diameter.

The STEHM will not only see individual atoms, but it will indicate what type of atoms they are. It also features an electron vortex beam, which researchers can use like tweezers to manipulate individual atoms in a specimen.

The microscope itself is a 4.5-metre tall cylinder encased in metal shielding to block magnetic fields. It has a footprint of six square metres and weighs seven tonnes.

The microscope is so huge that researchers will climb a stepladder to insert their specimens through a tiny airlock into the vacuum of the column. They’ll then leave the room, wait for the air currents in the room to calm, and then operate the microscope remotely from an adjoining room.

The microscope is so sensitive that its image could be affected by little more than a passing cloud. …

I don’t know how many times the public will have any access to this microscope given its extreme sensitivity so you might want to make a point of attending the public talk on Thursday, June 20, 2013 at the University of Victoria.

One final comment, I find it a bit disconcerting that the only ‘academic’ research mentioned seems to be Italian and that the ‘Canadian’ research is primarily commercial. It’s very nice that Dr. Herring saw a gold nanoparticle but are there any local or Canadian publicly funded academic researchers using this microscope, which seems to have been paid for by taxpayers? Hopefully, this is a case where excitement took over and the writer who almost always focuses on local, academic research got carried away with the international involvement and big name companies (Mercedes Benz).

Lomiko Metals, batteries, graphite/graphene, and a strategic alliance with the Research Foundation of Stony Brook University and Graphene Laboratories, Inc.

Lomiko Metals, a Vancouver-based (Canada)  company, has been mentioned here with respect to a property in Québec (Quatre Milles) containing graphite flakes in an April 17, 2013 posting, which also mentioned the company’s strategic alliance with Graphene Laboratories Inc.

Building on that previous announcement Lomiko Metals has announced a new member to the strategic alliance in a May 30, 2013 news item on Azonano,

LOMIKO METALS INC. (the “Company”) announces that the Research Foundation of Stony Brook University (RF), Graphene Laboratories, Inc. (Graphene Labs) and Lomiko Metals, Inc. have agreed to investigate novel, energy-focused applications for graphene.

“This new agreement with Stony Brook University’s researchers means Lomiko is participating in the development of the technology graphene makes possible,” commented Paul Gill, CEO of Lomiko. “Using graphene to achieve very high energy densities in super capacitors and batteries is a transfomative technology. Strategically, Lomiko needs to be participating in this vital research to achieve the goal of creating a vertically integrated graphite and graphene business.”

The May 29, 2013 Lomiko Metals news release, which originated the news item, has more details,

Under its Strategic Alliance Agreement with Lomiko, Graphene Labs — a leading graphene manufacturer — will process graphite samples from Lomiko’s Quatre Milles property into graphene. The Research Foundation, through Stony Brook University’s Advanced Energy Research and Technology Center (AERTC) and the Center for Advanced Sensor Technology (Sensor CAT), will then examine the most efficient methods of using this graphene for energy storage applications. There is no certainty the roposed [sic]  operaton [sic] will be economically viable.

For all parties involved, the goal of this collaboration is to map commercially viable routes for the fabrication of graphene-based energy storage devices. By participating in these projects, the partners will address the cost of graphene production, as well as how best to integrate the material into commercial energy storage devices.

As I find the various business/academic partnerships interesting, I’m including the About section of the news release,

About Graphene Laboratories Inc.

Graphene Laboratories, Inc. primary focus is to apply fundamental science and technology to bring functional advanced materials and devices to market.
Graphene Laboratories Inc. operates the Graphene Supermarket® (www.graphene-supermarket.com), and is a leading supplier of advanced 2D materials to customers around the globe. In addition to the retail offering of advanced 2D materials, it offers analytical services, prototype development and consulting.

Located in Calverton NY, Graphene Labs benefits from the unique high tech community on Long Island. Efforts by Graphene Laboratories are supported by Brookhaven National Laboratory, Stony Brook Business Incubator, and the Clean Energy Business Incubator Program (CEBIP), hosted by the New York State Energy Research and Development Authority (NYSERDA).

For more information on Graphene Laboratories, Inc, visit www.graphenelabs.com or contact them at (516)-382-8649 or via email at info@graphenelabs.com

About AERTC

Located in the Research and Development Park on the campus of Stony Brook University, the Advanced Energy Incubator is space that is home to companies within the Advanced Energy Center. The Advanced Energy Center (www.aertc.org) is a true partnership of academic institutions, research institutions, energy providers and companies. Its mission is innovative energy research, education and technology deployment with a focus on efficiency, conservation,renewable energy and nanotechnology applications for new and novel sources of energy.

About Sensor CAT

The New York State Center for Advanced Technology at Stony Brook University provides intellectual, logistical, and material resources for the development of new product technologies – by facilitating R&D partnerships between New York companies with an in-state footprint and university researchers. The important outcomes are new jobs, new patents, training of students in company product matters, and improved competitiveness for New York State businesses.

About Lomiko Metals Inc.

Lomiko Metals Inc. is a Canadian based exploration-stage company. Its mineral properties include the Quatre Milles Graphite Property and the Vines Lake property which both have had recent major discoveries. On October 22 and November, 13 2012, Lomiko Metals Inc. announced 11 drill holes had intercepted high grade graphite at the 3,780 Ha Quatre Milles Property. On March 15, 2013 Lomiko reported 75.3% of graphite tested was >200 mesh and classified as graphite flake with 38.36% in the >80 mesh, large flake category. 85.3% of test results higher than the 94% carbon purity considered high carbon content, with the median test result being 98.35%.

The highlight of Lomiko’s testing was nine (9) sieve samples which captured flakes of varying sizes which tested 100.00% carbon. Both fine and flake material may be amenable to graphene conversion by Lomiko Metals Inc. partner Graphene Laboratories.

The project is located 175 km north of the Port of Montreal and 26 km from a major highway on a well-maintained gravel road.

For more information on Lomiko Metals Inc., review the website at www.lomiko.com or contact A. Paul Gill at 604-729-5312 or email: info@lomiko.com

On Behalf of the Board

“A. Paul Gill” Chief Executive Officer

We seek safe harbor. Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

I couldn’t resist that last bit either. As I understand it, this means ‘caveat emptor’ or buyer beware. In short do your research.

A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite

Focus Graphite, a Canadian company with the tag line ‘Think Graphite today, Think Graphene tomorrow’, is making a bit of splash this month (April 2013) with its announcement of three deals (two joint ventures and the commissioning of their pilot plant) and it’s only April 17.

The most recent is the pilot plant announcement, from Focus Graphite’s Apr. 17, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) (“Focus” or the “Company”) is pleased to report the commissioning of its pilot plant and the start-up of circuit testing for the production of high-grade graphite concentrates from the Company’s wholly-owned Lac Knife, Québec graphite project.

The principal objectives of the pilot plant testwork are to confirm the results from Phase II bench scale Locked Cycle Tests (LCT)*; to assess the technical viability and operational performance of the processing plant design; to generate tailings for environmental testing, and; to produce a range of graphite raw materials for customer assessments and for further upgrading.

The Lac Knife project pilot plant was designed and built and is being operated by SGS Canada Inc. (“SGS”) in Lakefield, Ontario. The testing is expected to last 4-6 weeks.

….

The highlights of those tests conducted by SGS confirmed:-       The average amount of graphite flake recovered from the core samples in the Phase II LCT increased to 92.2% compared with a recovery of 84.7% graphite flake in the Phase I LCT;

–       The proportion of large flakes (+80 mesh) in the graphite concentrates ranged between 35% and 58%;

–       The carbon content of graphite concentrates produced from the four (4) composites averaged 96.6 %C, including the fine flake fraction (-200 mesh), a 4.6% increase over Phase I LCT completed in mid-2012.

Final results for Phase II LCT including for the two composite drill core samples of massive graphite mineralisation are pending.

* A locked cycle test is a repetitive batch flotation test conducted to assess flow sheet design. It is the preferred method for arriving at a metallurgical projection from laboratory testing. The final cycles of the test are designed to simulate a continuous, stable flotation circuit.

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Gary Economo, President and CEO of Focus Graphite Inc. and Grafoid Inc., said the objective of the agreement is to research and develop patentable applications using Grafoid’s unique investment which derives graphene from raw, graphite ore to target specialty high value graphene derivatives ranging from sulfur graphene to nanoporous graphene foam.

“Today’s announcement marks Grafoid’s fifth publicly declared graphene development project with a major academic or corporate institution, and the third related directly to a next generation green technology or renewable energy development project,” Mr. Economo said.

It follows R&D partnering projects announced with Rutgers University’s AMIPP, CVD Equipment Corporation, with Hydro-Quebec’s research institute, IREQ, and with British Columbia-based CapTherm Systems, an advanced thermal management technologies developer and producer.

Focus Graphite’s Apr. 16, 2013 press release, which originated the news item on Azonano, provides some context for the intense worldwide interest in graphene and the business imperatives,

Alternative Energy & Graphene:

The quest for alternative energy sources is one of the most important and exciting challenges facing science and technology in the 21st century. Environmentally-friendly, efficient and sustainable energy generation and usage have become large efforts for advancing human societal needs.  Graphene is a pure form of carbon with powerful characteristics which can bring about success in portable, stationary and transportation applications in high energy demanding areas in which electrochemical energy storage and conversion devices such as batteries, fuel cells and electrochemical supercapacitors  are the necessary devices.

Electrochemical Supercapacitors:

Supercapacitors, a zero-emission energy storage system, have a number of high-impact characteristics, such as fast charging, long charge-discharge cycles and broad operating temperature ranges, currently used or heavily researched in hybrid or electrical vehicles, electronics, aircrafts, and smart grids for energy storage. The US Department of Energy has assigned the same importance to supercapacitors and batteries. There is much research looking at combining electrochemical supercapacitors with battery systems or fuel cells.

Fuel Cells:

A fuel cell is a zero-emission source of power, and the only byproduct of a fuel cell is water. Some fuel cells use natural gas or hydrocarbons as fuel, but even those produce far less emissions than conventional sources. As a result, fuel cells eliminate or at least vastly reduce the pollution and greenhouse gas emissions caused by burning fossil fuels, and since they are also quiet in operation, they also reduce noise pollution. Fuel cells are more efficient than combustion engines as they generate electricity electrochemically. Since they can produce electricity onsite, the waste heat produced can also be used for heating purposes. Small fuel cells are already replacing batteries in portable products.

Toyota is planning to launch fuel cell cars in 2015, and has licensed its fuel cell vehicle technology to Germany’s BMW AG. BMW will use the technology to build a prototype vehicle by 2015, with plans for a market release around 2020.

By 2020, market penetration could rise as high as 1.2 million fuel cell vehicles, which would represent 7.6% of the total U.S. automotive market. Other fuel cell end users are fork lift and mining industries which continuously add profits to this growing industry.

Proton or polymer exchange membranes (PEM) have become the dominant fuel cell technology in the automotive market.

The U.S. Department of Energy has set fuel cell performance standards for 2015. As of today, no technologies under development have been able to meet the DOE’s  targets for performance and cost.

As I am from British Columbia and it was where* the first joint venture deal signed in April, here’s a bit more from Focus Graphite’s Apr. 9, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) on behalf of Grafoid Inc., announced today Grafoid’s joint venture development agreement with Coquitlam, British Columbia-based CapTherm Systems Inc. to develop and commercialize next generation, multiphase thermal management systems for electric vehicle (EV) battery and light emitting diode (LED) technologies.

CapTherm Systems Inc – Progressive Thermal Management is a thermal management/cooling company specializing in personal computer, server, LED, and electric vehicle cooling systems. It develops and commercializes proprietary, next-generation high-power electronics cooling technologies.

Its multiphase cooling technologies represent the core of its products that harness the power of latent heat from vaporization.

Under the terms of the agreement, Grafoid Inc., a company invested in the production of high-energy graphene and the development of graphene industrial applications will supply both materials and its science for adapting graphene to CapTherm’s existing EV and LED cooling systems.

Focus Graphite is a Canadian company, you can find more information on their website and the same for Grafoid and SGS Canada, and CapTherm Systems.

I have previously mentioned Focus Graphite in a Nov. 27, 2012 posting about their deal with Hydro Québec’s research institute, IREQ. I have also mentioned graphite mining in Canada with regard to the Northern Graphite Corporation and its Bissett Creek mine (my July 25, 2011 posting and my Feb. 6, 2012 posting). Apparently, Canada has high quality, large graphic flakes.

* ‘where’ added to sentence on Feb. 23, 2015.

A couple of nanoscientists and the Canada Research Chair (CRC) programme

The announcements about Canada’s latest round of Canada Research Chairs were made on Friday, Mar. 15, 2013 (that’s when I received a news release from Simon Fraser University [Vancouver, Canada] about their bonanza). The Canada Research Chairs programme has issued a Mar. 15, 2012 news release but it has no details as to which chairs have been awarded, so I can only offer information from the two agencies touting their nanotechnology chairs.

Simon Fraser University (SFU) had this to say about its latest financial windfall (from the SFU Mar. 15, 2013 news release),

Four Simon Fraser University researchers will gain nearly $2.9 million to continue their research fellowships as Canada Research Chairs in areas as diverse as climate change, marine conservation, children’s health, and nanotechnology.

The funds are part of a $90.6 million injection by the federal government into the Canada Research Chair program, supporting 120 newly awarded and renewed chairs across the country.

Here’s the information about the nanotechnology/materials science chair (from the SFU news release),

Chemistry professor Neil Branda of Chemistry has begun his second seven-year term as SFU’s Tier 1 Canada Research Chair in Materials Science.  Operating at the crossroads of organic chemistry, materials science, and nanotechnology, his research program involves the design and synthesis of photo-responsive compounds and their integration with nanosystems.

Branda, a recognized leader in materials science and co-founder of SFU’s 4D LABS, heads the Prometheus Project, a collaboration of BC’s research universities that will bring global attention to B.C.’s rich capabilities in this industry-relevant field.

I highlighted some information about Branda and the Canada Foundation for Innovation, which had just announced its funding for the Prometheus Project, in a Jan. 15, 2013 posting,

The Federal Government of Canada in the guise of the Canada Foundation for Innovation has just awarded $7.7M to Simon Fraser University (SFU) and its partners for a global innovation hub. From the Jan. 15, 2013 Canada Foundation for Innovation news release,

British Columbia’s research-intensive universities are coming together to create a global hub for materials science and engineering. Simon Fraser University, the University of Victoria, the University of British Columbia and the British Columbia Institute of Technology have received $7.7 million in funding from the Canada Foundation of Innovation to create the Prometheus Project — a research hub for materials science and engineering innovation and commercialization.

“Our goal with the Prometheus Project is to turn our world-class research capacity into jobs and growth for the people of British Columbia,” said Neil Branda, Canada Research Chair in Materials Science at Simon Fraser University and leader of the Prometheus Project. [emphasis added for Mar. 18, 2013 posting]

According to the Mar. 16, 2013 news item on Azonano there was also an announcement in the province of Alberta,

The Honourable Laurie Hawn, Member of Parliament for Edmonton Centre, today announced an investment of $5.8 million to support eight Canada Research Chairs in Alberta as part of the national announcement made by the Honourable Gary Goodyear, Minister of State (Science and Technology).

Today’s event featured Dr. Tian Tang, Canada Research Chair in Nano-biomolecular Hybrid Materials at the University of Alberta. Dr. Tang and her team are working to better understand how nano-sized organic and inorganic materials interact. Their research will help future scientists and innovators develop nano-sized machines that could be useful in electronics, computing, manufacturing and health care. This research will help establish Canada’s leadership in this field, which is expected to be one of the most commercially important and fastest-growing areas of health care and engineering in the 21st century.

Congratulations to all the researchers!

Nanoscale book ‘Teeny Ted from Turnip Town’ in* Guinness World Records

Professor Karen Kavanagh (Simon Fraser University [SFU] in Vancouver, Canada) and Robert Chaplin, a self-styled artist and publisher, have announced that their nanoscale book title  ‘Teeny Ted from Turnip Town’ has just been declared the world’s smallest book by Guinness World Records. From the SFU Oct. 9, 2012 news release,

Teeny Ted from Turnip Town is officially the world’s tiniest reproduction of a printed book. Produced in Simon Fraser University’s Nano Imaging lab and measuring a mere 0.07 X0.10 millimeters, the 30-micro-tablet book has been added to the Guinness Book of World Records.

The book’s publisher, Robert Chaplin, created the nano book in 2007, after being trained to use a focused gallium ion beam (FIB) by the SFU lab’s managers Li Yang and Karen Kavanagh.

Chaplin designed and carved each page of the book into a polished piece of single crystalline silicon by sending the FIB system instructions about where to mill. The FIB has a gallium beam with a diameter of little more than seven nanometers, so each letter consisted of lines with 40 nm widths.

“Each letter takes a few seconds, so a whole book adds up in time to something probably not useful yet for commercial production,” says Kavanagh. “We need more beams moving in parallel – which is not impossible. Once scribed into silicon the book will last for a million years or more.”

Reading Teeny Ted from Turnip Town requires the use of a scanning electron microscope.

The book is a tinier read than the two smallest books formerly cited by Guinness: the New Testament of the King James Bible (5 X 5 mm, produced by MIT in 2001) and Chekhov’s Chameleon (0.9 X 0.9 mm, Palkovic, 2002). The head of a pin is about 2 mm.

A framed copy of the certificate from the Guinness folks hangs on the lab’s wall while the book, valued at around $15,000, is kept in a tiny box in a bank vault.

Kavanagh goes on to discuss the five-year wait to hear about their Guinness World Records application and Chaplin notes his future plans for ‘Teeny Ted’.

“Guinness has many requests and they take some time to weed out the good ones,” says Kavanagh of the near five-year wait. While there were plans to sell copies, only the one book was made.

Chaplin now has plans to make hardcopy versions of the nano book – a fable written by his brother about Teeny Ted’s victory in the turnip contest at the annual county fair – and is currently seeking investors via kickstarter.ca.

I have previously menti0ned ‘Teeny Ted’ both in a May 21, 2009 posting (scroll down to the final paragraph and then 1/2 way down the paragraph) and in my Nanotech Mysteries wiki here on the Scientists get literary page.

*’is’ changed to ‘in’ on March 20, 2023

Science and Technology Week in Canada starts today (Oct. 12, 2012)

I see the coordinators of Canada’s 2012 National Science and Technology Week (Oct. 12 – 21) have organized what they hope will be a record-breaking “Largest Practical Science Lesson,” from the event page,

This October join the Science.gc.ca team, its partners, and thousands of Canadians in establishing a new Guinness World Record for the Largest Practical Science Lesson at multiple locations.

The record-breaking event will take place on Friday, October 12, 2012 at exactly the same time across Canada,  …

For those of us on the West Coast, the time will be 10 am, today. What a shame this wasn’t on the website when I checked for National Science and Technology Week events for my Sept. 11, 2012 posting. Happily, the event list for BC has grown and it’s not too late to participate,

British Columbia

Shaw Ocean Discovery Centre

ShawTitle of Event: Floating Ideas Lecture Series; Playing with Giants: Enrichment of Giant Pacific Octopus in Captivity

Location: Shaw Ocean Discovery Centre

Date: October 18, 7:00pm (doors open at 6:30)

Description: Learn how the Aquarist Team at the SODC is putting the giant Pacific octopus to the test and researching how to enrich the time they spend within the Centre.

Kootenay Association for Science & Technology

KASTTitle of Event: RoboGames

Location: Nelson, BC

Date: Training Sessions – October 18th, 25th; November 1st, 8th Competition – November 10th

Description: Robotics circuit training (4 sessions) and team-based competition. Open to kids aged 11 – 18, in the West Kootenay region.

Telus World of Science

Telus World of ScienceTitle of Event: Grade 8-10 Practical Science for the Classroom

Location: Telus World of Science – Vancouver

Date: October 19th, 2012, 8:30am – 3:15pm

Description: A full day of Professional Development for Grade 8 – 10 Science Teachers. http://www.bcscta.ca/

Title of Event: SWEET presents On The Edge, an inside look at Parkour

Location: Telus World of Science – Vancouver

Date: October 12, 6:30 to 10pm

Description: Cost is $10 + HST, to purchase your tickets in advance please go to http://www.scienceworld.ca/teen(Tickets will also be available at the door)

Title of Event: Westport Innovations Connection weekend

Location: Telus World of Science – Vancouver

Date: Oct 20 & 21, 10am to 6pm

Description: Included with your general admission to Science World. Please go to http://www.scienceworld.ca/aroundthedomefor updated information.

Title of Event: TEDx Kids BC

Location: Telus World of Science – Vancouver

Date: Oct 20, 9am to 5pm

Description: An awesome mix of British Columbia’s finest youth speakers. Please go to http://www.tedxkidsbc.com/ for more information. Attendance for this event is fully booked.

Title of Event: Café Scientifique: Changing Landscapes, Science in Canada’s North

Location: Telus World of Science – Vancouver

Date: Oct 20, 6:30 to 9pm

Description: This is a free event with limited space. Please go to http://www.scienceworld.ca/specialprograms#cafeto RSVP

Title of Event: Opening the Door

Location: Telus World of Science – Vancouver

Date: Oct 12 2012, 3:30 p.m. – 5:30 p.m.

Description: A science career networking event for student’s grade 10 – 12. This is a free event but you must preregister.

Title of Event: Community Science Celebration – NSTW Western Canadian Launch

Location: Telus World of Science – Vancouver

Date: Oct 13 & 14, 10 a.m. – 6:00 p.m.

Description: This is the first event of its kind at TELUS World of Science, and we want you to be there. Let’s celebrate the science all around us at the Vancouver Community Science Celebration! Included with your general admission to Science World. http://www.scienceworld.ca/aroundthedome

BIG Little Science Centre

BLSCTitle of Event: Fun Hands on Science at the BIG Little Science Centre

Location: The BIG Little Science Centre. 985 Holt Street, Kamloops BC.

Date: We are open year round Tuesday to Saturday. Closed Sundays, Mondays and Holidays.10 a.m. – 4 p.m.

Description: Everyone is invited to visit the BIG Little Science Centre for interactive FUN science! Vistit our website www.blscs.org for more information.

Title of Event: Fantastic Kite Day

Location: BIG Little Science Centre

Date: Saturday October 13, 2012, 10am to 4pm

Description: BIG Little Science Centre’s FANTASTIC KITE DAY! Fly your old kite, build a new one, experiment with Bernoulli’s principles of lift and learn about the physics of kite flying. Hands on colour and excitement on the ground and in the air.

Perimeter Institute [emphasis mine]

Perimeter InstituteTitle of Event: 2012 CBC Massey Lectures – What Banged?

Location: Vancouver, British Columbia

Date: October 16, 2012, 8:00 p.m.

Description: Neil Turok, Director of Canada’s Perimeter Institute, delivers the 2012 CBC Massey Lectures in five locations across Canada. Turok explores how the human mind can unlock the universe and transform the future. Please order Massey Lecture tickets directly from each lecture venue. Find a list of venues here.

Gairdner Foundation

Title of Event: Gairdner Foundation High School Outreach Program Lecture at the University of British Columbia

Location: University of British Columbia

Date: 22-Oct-12

Description: Science can be intimidating for teenage students. This is why the Gairdner Foundation’s laureates travel throughout Canada, sharing their personal stories about pursuing a career in research with students from over 120 schools. Today, the University of British Columbia will host a group of high school students for a lecture by Dr. William Kaelin Jr. and Dr. Jeffrey V. Ravetch.

Simon Fraser University

Title of Event: Saturday Morning Lecture Series

Location: SFU Surrey

Date: Saturday October 13, 2012, 10:00 a.m.

Description: TRIUMF, UBC, and SFU are proud to present the 2012-2013 Saturday Morning Lecture series. The lectures will be at a level appropriate for high school students and the general public. Event is free, however please register for tickets so that we can make sure we accomodate everyone. Everyone welcome.

The Exploration Place

Title of Event: National Science and Technology Demonstrations at The Exploration Place!

Location: The Exploration Place, Prince George, BC

Date: October 17th, 18th, 19th

Description: Have some fun with us as we celebrate National Science and Technology Week. Enjoy exciting hands-on activities, interactive daily demos, visit with our critters and tour the galleries.

Let’s Talk Science

Title of Event: Brighouse Science Bash

Location: Richmond, British Columbia

Date: October 19, 11 am to 3 pm

Description: In partnership with Genome BC and Richmond Public Library the 6th annual Science Bash takes place from 11am to 3 pm and will include interactive displays, fun experiments and other hands-on activities.

I’d like to note that the Perimeter Institute/CBC Massey Lectures is running a contest for  tickets to the various talks, books, and a grand prize of a trip to the Perimeter Institute and the Large Hadron Collider at CERN (European Particle Physics Laboratory). Here’s more about the contest and about the book by Neil Turok which forms the basis for this Massey Lectures series, the CBC Massey Lectures page,

ENTER TO WIN tickets to the Massey Lectures, books and a grand prize trip to the Perimeter Institute in Ontario, Canada and the Large Hadron Collider at CERN in Geneva, Switzerland!

Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come.

In this personal, visionary, and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries – from classical mechanics, to the nature of light, to the bizarre world of the quantum and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed and shared, and opening access to the vast, untapped pools of intellectual talent in the developing world.

Elegantly written, deeply provocative and highly inspirational, The Universe Within is, above all, about the future –  of science, society and ourselves.

The Universe Within: From Quantum  to Cosmos will air on Ideas November 12 – 16.

Good luck with the contest and enjoy this wealth of  science events.

Math Out Loud—the math musical—on tour in British Columbia (Canada)

Mathematics as a performing art (music, dance, and theatre) and all of it framed with stunning set designs incorporating MC Escher’s art, fractals, and other mathematically-based visual art demonstrates how pervasive mathematics is throughout society both now and in the past.

Following up on its December 2011 première, Math Out Loud is about to embark on a Fall 2012 tour. From the Tour webpage on the Math Out Loud website,

Experience Math Out Loud, an acclaimed, trailblazing stage production featuring a superb cast, original music, choreography, animations and a high tech set. This fall, Math Out Loud will tour three cities [Vancouver, Sidney, and Surrey] in British Columbia with weekday performances for schools and weekend matinees for the general public. The 75 minute show combines mathy ideas and musical comedy and is intended for audiences ages 13 and up. Parents, join your kids in a learning experience that is fun for all.

The school shows are free . In Vancouver, school shows run from Sept. 24 – 28, 2012 (three of the shows are fully booked) and shows for the public are scheduled for Sept. 29, 2012. All of the Vancouver shows are being held at the Norman Rothstein Theatre in the Jewish Community Centre at 41st and Oak St.

In Sidney, the school shows run from Oct. 1 – 5, 2012 and the shows for the public are Oct. 6, 2012. All the shows are being held at the Charlie White Theatre located in the Mary Winspear Centre at 2243 Beacon Avenue.

In Surrey, the school shows run from Oct. 23 – 26, 2012 and the shows for the public are Oct. 27 – 28, 2012. All the shows are being held at the Surrey Arts Centre (SAC mainstage) at 13750 88th Avenue.

You can find out more about the show (there’s a 15 min. video) and book your school class or buy a ticket for the Fall 2012 tour at the Math Out Loud website.

I first mentioned this math musical which is being produced by MITACS (Mathematics of Information Technology and Complex Systems, a not-for-profit research organization) in my Jan. 9, 2012 posting.