Tag Archives: Denmark

Apply for media travel grant to attend EuroScience Open Forum (ESOF) 2014

The deadline for applications is Friday March 14, 2014 at 13:00 CET. For those who like a little more information or are unfamiliar with the EuroScience Open Forum, here’s a description from the ESOF hub homepage along with a description of the parent organization, EuroScience,

ESOF – EuroScience Open Forum – is the biennial pan-European meeting dedicated to scientific research and innovation. At ESOF meetings leading scientists, researchers, young researchers, business people, entrepreneurs and innovators, policy makers, science and technology communicators and the general public from all over Europe discuss new discoveries and debate the direction that research is taking in the sciences, humanities and social sciences.

EuroScience (ES) is a European non-profit grassroots association open to research professionals, teachers, students, science administrators, policy-makers, etc. and generally to any citizen interested in science and technology and its links with society. EuroScience represents not only European scientists of all ages, disciplines and nationalities but also from the business sector and public institutions such as universities and research institutes.

The 2014 ESOF is being held in Copenhagen, Denmark from June 21 – 26, 2014 with the general theme of ‘Science Building Bridges’ and following on that theme there are eight scientific themes (from the Scientific Themes page),

The Healthy Society

In recent years, scientific and technological developments have contributed to major progress in the health of individuals and for societies at large. What are the future roads to increased health in the world? How will science, technology and innovation contribute to this development? Where are the major challenges and possibilities?

Possible issues: Epidemology; Holistic Medicine; Healthy Workforces and Public Budgets; Ageing; Personalized Medicine; Telemedicine; Obesity; The Globalization of Disease; Diet, Physical Activity and
Health; Biomarkers; Gene Therapy; etc.

A Revolution of the Mind

Brain research and cognitive neuroscience have opened our understanding of the human mind. What should we use the knowledge for? What are the consequences for thinking and practice in academic, political and commercial life? And should new knowledge of the brain change our conception of human beings?

Possible issues: Neurobiology of Disease; Therapeutic Interventions; Mental Health; Arts and Pleasure; Behaviour and Marketing; Cognition and Computation; Animal Modelling; Ageing; Degeneration and
Regeneration; Physical Exercise and Mind; Development of Brain and Learning; etc.

Global Resource Management

Natural resources are essential for sustaining basic human welfare, e.g. drinking water and food. Moreover, for most industries some natural resources are necessary to manufacture products, e.g. metals, rare earths, water and bio-materials. The need for resources is stressing ecosystems and economic development. How can scientific and technological developments secure an effective and timely response for the global need for resources? How can resilience be built in?

Possible issues: Deep Sea Mining; Food Security; Geopolitics; Recycling; Oceanography; Environmental Administration; Ecosystem Services; Space Informatics; Geology; Water Management; Global Engineering; Global Justice; Efficient transport; Etc.

Learning in the 21st Century

Well-educated and knowledgeable citizens are essential for inclusive and vibrant societies. But what are the skills and knowledge needed in the future? And how should we learn them – are the days of national,
educational systems over and does science and technology offer ways to improve our ways of learning?

Possible themes: Early Childhood Learning; Life Long Learning; Assessment and Evaluation; Educational Organization and Leadership; Literacies; Science, Mathematics and Technology; Informal Learning; Mass education; Globalization; Higher Education; New Devices for Learning; Brain Development and Learning; Epigenetics and Learning; etc.

Green Economy

According to key parameters, the climate system is already moving beyond the patterns of natural variability. Many researchers, politicians, businesses and interest groups have responded with a call for a green economy that bridges continued economy growth and a sustainable, global ecosystem. Can science and technology deliver on this transition?

Possible themes: Fossil-based Energy; Forecasting; Future Energy Solutions; Economic Modelling; Renewable Energy; Transportation; Climate change; Climate Adaptation; Public-driven Transformation;
Eco-building; etc.

Material and Virtual World

The fundamental understanding of materials has shifted the borders of engineering and production. Moreover, the breakthroughs in information and communication technologies have altered our perceptions of what constitutes reality. Where will the next scientific breakthroughs take us?

Possible themes: Engineering; Surveillance, Nanotechnologies; Quantum computation; Industrial Virtual Reality; Simulation; Industrial Technologies; Manufacturing, Robotics; Human Enhancement; etc.

Urbanization, Design and Liveability

Forecasts claim that the future will be urbanized. So the grand challenges need to be faced in an urban setting. Moreover, the cities need to sustain and enhance urban areas as a place of vitality, liveability and accessibility – how can science, technology and innovation support the design of solutions?

Possible themes: Migration; Governance; Economic Growth; Rural-urban Transformations; Healthy Cities; Liveability; Demography; Water Management; Urban Planning, Security; Transportation, Welfare Design; Poverty; Regionalization; Waste Management; Sharing Economy; etc.

Science, Democracy & Citizenship

Science and scientists can facilitate, interrupt or enrich democratic decision making. When should science be the privileged provider of knowledge and when are scientists citizens? What should be the division of labour between facts and norms; between science and democracy?

Possible themes: Ethics; GMOs; Knowledge Society; Evidence-based Policy; Policy for Science; Climate Change; Authority; Social Choice; Deliberative Democracy; Trust; Institutionalism; Democratization; etc.

The ESOF 2014 website is easy to navigate and you can find out who has already signed up as a participant and/or speaker, as well as, many other details.

Getting back to the media travel grants,

1. – Purpose

The organisers of Europe’s largest general science event, EuroScience Open Forum, invite journalists from around the world to apply for media travel grants. It is expected that 250 media representatives will be at the science forum in Copenhagen from 21-26 June 2014.

The slogan of EuroScience Open Forum 2014 in Copenhagen (ESOF2014) is ‘Science Building Bridges’. One of the main objectives of the event is to build links between the media and the research community by providing a platform where journalists can discuss and report on the latest scientific developments.

To secure that journalists from a broad range of news organisations take part, EuroScience Open Forum 2014 in Copenhagen has announced its Media Travel Grant Scheme.

2. – The scheme

The ESOF2014 Secretariat offers a lump sum of €750 to help cover the costs of travel and accommodation for journalists who wish to report from ESOF2014.

Please note that all expenses covered must be in accordance with the travel guidelines issued by the Danish Agency for Science and Innovation. This means that all travel must be on economy class only and that accommodation expenses must not exceed €135 per night (February 2014).

3. – Who can apply?

Journalists irrespective of their gender, age, nationality, place of residence and media (newspaper, news agency, magazine, radio, TV or New Media) are welcome to apply. [emphasis mine]

4. – Application procedure

To submit an application, please follow the application procedure here

On submitting the application form for the travel grant, you agree to the full acceptance of the rules and to the decisions taken by the ESOF2014 Media Travel Grant Selection Committee.

The deadline for submitting an application is Friday 14 March 2014 at 13:00 CET.

5. – Selection Committee and decision

The Selection Committee is composed of members of the ESOF2014 Secretariat and the ESOF2014 International Media and Marketing Committee.

The selection of candidates will be based on the applicant’s CV and motivation statement. The Selection Committee will also strive to secure that various countries and types of media are represented in the group of successful applicants.

An e-mail with the decision will be sent in early April 2014 to all applicants stating whether or not their application has been successful.

6. – Payment conditions

Money will be transferred to the grantees after ESOF2014, subject to:

  • Mandatory participation at EuroScience Open Forum 2014 in Copenhagen.
  • Provision of documentation for travel and accommodation expenses up to a total of €750*
  • Completion of a feedback questionnaire regarding the scheme.

Good luck and one final comment. The ‘building bridges’ theme reminded me of an Oct. 21, 2010 posting where I was discussing Copenhagen, creativity, and science within the context of then recent research into what makes some cities attractive to scientists,

When the Øresund bridge connecting Copenhagen, Denmark, with Malmö, Sweden, opened in 2000, both sides had much to gain. Sweden would get a physical connection to the rest of mainland Europe; residents of Copenhagen would have access to cheaper homes close to the city; and economic cooperation would increase. But Christian Matthiessen, a geographer at the University of Copenhagen, saw another benefit — the joining of two burgeoning research areas. “Everyone was talking about the transport of goods and business connections,” he says, “and we argued that another benefit would be to establish links between researchers.”

Ten years later, those links seem to be strong. The bridge encouraged the establishment of the ‘Øresund region’, a loose confederation of nine universities, 165,000 students and 12,000 researchers. Co-authorship between Copenhagen and the southernmost province of Sweden has doubled, says Matthiessen. The collaborations have attracted multinational funds from the European Union. And the European Spallation Source, a €1.4-billion (US$2-billion) neutron facility, is on track to begin construction in Lund, Sweden, in 2013.

The region’s promoters claim that it is emerging as a research hub of northern Europe, aided in part by construction of the bridge. For Matthiessen, the bridge also inspired the start of a unique research project — to catalogue the growth and connections of geographical clusters of scientific productivity all over the world. [emphases mine]

You can find the Nature article by Richard Van Noorden describing research about cities and why they are or aren’t attractive to scientists here.

Agriculture and nano in Ireland and at Stanford University (California)

I have two news items one of which concerns the countries of  Ireland and Northern Ireland and a recent workshop on agriculture and nanotechnology held in Belfast, Northern Ireland . The papers presented at the workshop have now been made available for downloading according to a Jan. 25, 2014 news item on Nanowerk,

On January 9, 2014, safefood, the Institute for Global Food Security, Queen’s University Belfast, and Teagasc Food Research Centre organized a workshop Nanotechnology in the agri-food industry: Applications, opportunities and challenges. The presentations from this event are now availabled as downloadable pdf files …

According to its hompage, Teagasc “is the agriculture and food development authority in Ireland. Its mission is to support science-based innovation in the agri-food sector and the broader bioeconomy that will underpin profitability, competitiveness and sustainability.”

The full list of presentations and access to them can be found on Nanowerk or on this Teagasc publications page,

Presentations

My next item is also focused on agriculture although not wholly. From a Jan. 26, 2014 news item on Nanowerk,

University researchers from two continents have engineered an efficient and environmentally friendly catalyst for the production of molecular hydrogen (H2), a compound used extensively in modern industry to manufacture fertilizer and refine crude oil into gasoline.

The Stanford University School of Engineering news release (dated Jan. 27, 2014) by Tom Abate, which originated the news item, (Note: Links have been removed) describes the work,

Although hydrogen is an abundant element, it is generally not found as the pure gas H2 but is generally bound to oxygen in water (H2O) or to carbon in methane (CH4), the primary component in natural gas. At present, industrial hydrogen is produced from natural gas using a process that consumes a great deal of energy while also releasing carbon into the atmosphere, thus contributing to global carbon emissions.

In an article published today in Nature Chemistry, nanotechnology experts from Stanford Engineering and from Denmark’s Aarhus University explain how to liberate hydrogen from water on an industrial scale by using electrolysis.

In electrolysis, electrical current flows through a metallic electrode immersed in water. This electron flow induces a chemical reaction that breaks the bonds between hydrogen and oxygen atoms. The electrode serves as a catalyst, a material that can spur one reaction after another without ever being used up. Platinum is the best catalyst for electrolysis. If cost were no object, platinum might be used to produce hydrogen from water today.

But money matters. The world consumes about 55 billion kilograms of hydrogen a year. It now costs about $1 to $2 per kilogram to produce hydrogen from methane. So any competing process, even if it’s greener, must hit that production cost, which rules out electrolysis based on platinum.

In their Nature Chemistry paper, the researchers describe how they re-engineered the atomic structure of a cheap and common industrial material to make it nearly as efficient at electrolysis as platinum – a finding that has the potential to revolutionize industrial hydrogen production.

The project was conceived by Jakob Kibsgaard, a post-doctoral researcher with Thomas Jaramillo, an assistant professor of chemical engineering at Stanford. Kibsgaard started this project while working with Flemming Besenbacher, a professor at the Interdisciplinary Nanoscience Center (iNANO) at Aarhus.

There’s more about about the history of electrolysis and hydrogen production and about how the scientists developed their technique in the news release but this time I want to focus on the issue of scalability,. From the news release,

But in chemical engineering, success in a beaker is only the beginning.

The larger questions were: could this technology scale to the 55 billion kilograms per year global demand for hydrogen, and at what finished cost per kilogram?

Last year, Jaramillo and a dozen co-authors studied four factory-scale production schemes in an article for The Royal Society of Chemistry’s journal of Energy and Environmental Science.

They concluded that it could be feasible to produce hydrogen in factory-scale electrolysis facilities at costs ranging from $1.60 to $10.40 per kilogram – competitive at the low end with current practices based on methane – though some of their assumptions were based on new plant designs and materials.

“There are many pieces of the puzzle still needed to make this work and much effort ahead to realize them,” Jaramillo said. “However, we can get huge returns by moving from carbon-intensive resources to renewable, sustainable technologies to produce the chemicals we need for food and energy.”

Here’s a link to and a citation for the researchers’ paper,

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters by Jakob Kibsgaard, Thomas F. Jaramillo, & Flemming Besenbacher. Nature Chemistry (2014) doi:10.1038/nchem.1853 Published online 26 January 2014

This article is behind a paywall.

Anatase and rutile titanium dioxide and nanosunscreens

The American Chemical Society (ACS) features some research into nanoscreens and the anatase form of titanium dioxide in a Sept. 25, 2013 news release,,

Using a particular type of titanium dioxide — a common ingredient in cosmetics, food products, toothpaste and sunscreen — could reduce the potential health risks associated with the widely used compound. The report on the substance, produced by the millions of tons every year for the global market, appears in the ACS journal Chemical Research in Toxicology.
Francesco Turci and colleagues explain that titanium dioxide (TiO2) is generally considered a safe ingredient in commercially available skin products because it doesn’t penetrate healthy skin. But there’s a catch. Research has shown that TiO2 can cause potentially toxic effects when exposed to ultraviolet light, which is in the sun’s rays and is the same kind of light that the compound is supposed to offer protection against. To design a safer TiO2 for human use, the researchers set out to test different forms of the compound, each with its own architecture.

They tested titanium dioxide powders on pig skin (which often substitutes for human skin in these kinds of tests) with indoor lighting, which has very little ultraviolet light in it. They discovered that one of the two most commonly used crystalline forms of TiO2, called rutile, easily washes off and has little effect on skin. Anatase, the other commonly used form, however, was difficult to wash off and damaged the outermost layer of skin — even in low ultraviolet light. It appears to do so via “free radicals,” which are associated with skin aging. “The present findings strongly encourage the use of the less reactive, negatively charged rutile to produce safer TiO2-based cosmetic and pharmaceutical products,” the researchers conclude.

It should be noted that the researchers used pig skin, i.e., the skin was not on a pig and, therefore, not part of a living organism with its various biological systems coming into play. As well, the testing was done indoors not under direct sunlight which is the condition under which most of us use sunscreen. This research points to problems  with using anatase nanoscale titanium dioxide in sunscreens but it doesn’t provide unequivocal proof.

The Danish Environmental Protection Agency report (this Oct. 3, 2013 posting of mine) on the state of the art of research into nanomateial dermal absorption does refer to research in this area, although it does not include Turci’s work (Note: The numbers n the excerpted text are reference numbers for the bibliography)),

When looking at bulk composition and the level of dermal penetration noted in studies using a specific material type, there appears to be very little pattern between bulk composition and penetration depth. Taking for example TiO2 as one of the most widely studied nanoparticles, we see reports of penetration no further than the SC [subcutaneous skin layer] 78, 86, 91 but also several studies suggesting deeper penetration (basal cell layer) and even penetration into the dermis 63, 84 although this is often reported as being a very small fraction/infrequent. Another compositional issue in relation to nanoparticles and in particular TiO2 is the crystalline structure. TiO2 is often used in either its anatase or rutile form or as mixture of both. Within the literature, there are studies using both the anatase form 86, 94, the rutile form 91, 114 or a mixture 84, 114 although we were unable to find any studies which appear to systematically evaluate the role of crystal form in TiO2 absorption into the skin. [emphasis mine] (p. 44 of this report: Dermal Absorption of Nanomaterials Part of the ”Better control of nano” initiative 2012 – 2015 Environmental Project No. 1504, 2013).

For those who would like to read Turci’s research for themselves,

Crystalline Phase Modulates the Potency of Nanometric TiO2 to Adhere to and Perturb the Stratum Corneum of Porcine Skin under Indoor Light by Francesco Turci, Elena Peira, Ingrid Corazzari, Ivana Fenoglio, Michele Trotta, and Bice Fubini. Chem. Res. Toxicol., Article ASAP DOI: 10.1021/tx400285j Publication Date (Web): September 12, 2013
Copyright © 2013 American Chemical Society

This research is behind a paywall.

Danish evaluate research on absorption of nanomaterials through the skin

An Oct. 3, 2013 news item on Azonano announces a report produced by the Danish Environmental Protection Agency on the state of research into dermal absorption of nanomaterials  (Note: A link has been removed),

 A new report published by the Danish Environmental Protection Agency (EPA) provides a comprehensive evaluation of the knowledge base regarding the dermal absorption of nanomaterials.

The report is the final output of the project “Dermal absorption of Nanomaterials”, which forms part of the “Better Control of Nano” initiative 2012 – 2015 conducted by the Danish EPA with the aim of further clarifying possible risks to consumers and the environment from nanomaterials.

The overall objectives of the project – which was led by the Institute of Occupational Medicine (IOM) working with COWI A/S – were to:  i) gather and evaluate the existing knowledge concerning the dermal absorption of nanomaterials, ii) assess the need to generate new knowledge, and iii) develop recommendations for the most suitable skin models, measurement methods and relevant candidate nanomaterials for future experimental testing.

The report: Dermal Absorption of Nanomaterials Part of the ”Better control of nano” initiative 2012 – 2015 Environmental Project No. 1504, 2013 gives a good description of skin and a good technical overview of the literature and the state of the research which, for the interested reader, could supply the basis for a better understanding of how to read research papers on this topic.  The report does not offer consumer information about nano sunscreens, etc.

Here’ are some of the conclusions from the Executive Summary,

One of the key challenges in assessing the literature on the physicochemical properties influencing dermal penetration/absorption of nanomaterials is that it is difficult to draw conclusions due to either: i) limitations in the reporting of physicochemical data, and/or, ii) the alteration of multiple experimental parameters in a non-systematic way. The issue of a lack of information on nanoparticle physicochemical properties is common, yet the most challenging aspect is the alteration of multiple experimental parameters whereby multiple characteristics such as shape, charge, coating, size can all be changed. This means that little meaningful comparison of results can be made within a single experimental study, let alone between studies.

Despite such challenges, some key conclusions can be drawn. [emphasis mine] Whilst there are many conflicting results, on balance the literature seems to suggest that absorption of particles in the nano-range through the skin is possible although occurs to a very low degree and that the level of penetration, depending on chemistry and experimental conditions, may be greater than for larger particles. The role of size is considered a critical component of dermal absorption but this in itself does not seem to guarantee absorption or lack of as other properties can also influence dermal absorption markedly. In addition, particle size is not necessarily a constant parameter as agglomeration of particles can occur over time and also in relation to experimental conditions (e.g. presence of surfactants within particle vehicle formulation). However, whilst this issue of agglomeration has been suggested as being important (as well as an important experimental variable), agglomeration state is often not reported within studies.

Responsible innovation at the Center for Nanotechnology in Society’s (Arizona State University) Virtual Institute

The US National Science Foundation (NSF) has a funding program called Science Across Virtual Institutes (SAVI) which facilitates global communication for scientists, engineers, and educators. From the SAVI home page,

Science Across Virtual Institutes (SAVI) is a mechanism to foster and strengthen interaction among scientists, engineers and educators around the globe. It is based on the knowledge that excellence in STEM (science, technology, engineering and mathematics) research and education exists in many parts of the world, and that scientific advances can be accelerated by scientists and engineers working together across international borders.

According to a Sept. 24, 2013 news item on Nanowerk, the NSF’s SAVI program has funded a new virtual institute at Arizona State University’s (ASU)  Center for Nanotechnology in Societ6y (CNS), Note: Links have been removed,

The National Science Foundation recently announced a grant of nearly $500,000 to establish a new Virtual Institute for Responsible Innovation (VIRI) at the Center for Nanotechnology in Society at ASU (CNS-ASU). In a global marketplace that thrives on technological innovation, incorporating ethics, responsibility and sustainability into research and development is a critical priority.

VIRI’s goal is to enable an international community of students and scholars who can help establish a common understanding of responsible innovation in research, training and outreach. By doing so, VIRI aims to contribute to the governance of emerging technologies that are dominated by market uncertainty and difficult questions of how well they reflect societal values.

VIRI founding institutional partners are University of Exeter (UK), Durham University (UK), University of Sussex (UK), Maastricht University (Netherlands), University of Copenhagen (Denmark), Karlsruhe Institute of Technology (Germany), University of Waterloo (Canada), Oslo and Akershus University College of Applied Sciences (Norway), and State University of Campinas (Brazil).

VIRI founding institutional affiliates are the US National Academy of Engineering’s Center for Engineering, Ethics and Society, IEEE Spectrum Online and Fondazione Giannino Bassetti.

Interesting cast of characters.

The Sept. 23, 2013 ASU news release, which originated the news item, offers some insight into the time required to create this new virtual institute,

Led by ASU faculty members David Guston and Erik Fisher, VIRI will bring a social and ethical lens to research and development practices that do not always focus on the broader implications of their research and products. Guston, director of CNS-ASU, co-director of the Consortium of Science, Policy and Outcomes, and professor in the School of Politics and Global Studies, has been pushing for the establishment of academic units that focus on responsible innovation for years.

“We are thrilled that NSF has chosen to advance responsible innovation through this unique, international collaboration,” Guston said. “It will give ASU the opportunity to help focus the field and ensure that people start thinking about the broader implications of knowledge-based innovation.”

Fisher, assistant professor in the School for Politics and Global Studies, has long been involved in integrating social considerations into science research laboratories through his NSF-funded Socio-Technical Integration Research (STIR) project, an affiliated project of CNS-ASU.

“Using the insights we’ve gained in the labs that have participated in the STIR project, we expect to be able to get VIRI off the ground and make progress very quickly,” Fisher said.

The VIRI appears to be an invite-only affair and it’s early days yet so there’s not much information on the website but the VIRI home page looks promising,

“Responsible innovation” (RI) is an emerging term in science and innovation policy fields across the globe. Its precise definition has been at the center of numerous meetings, research council decisions, and other activities in recent years. But today there is neither a clear, unified vision of what responsible innovation is, what it requires in order to be effective, nor what it can accomplish.
The Virtual Institute for Responsible Innovation (VIRI)

The Virtual Institute for Responsible Innovation (VIRI) was created to accelerate the formation of a community of scholars and practitioners who, despite divides in geography and political culture, will create a common concept of responsible innovation for research, training and outreach – and in doing so contribute to the governance of emerging technologies under conditions dominated by high uncertainty, high stakes, and challenging questions of novelty.
Mission

VIRI’s mission in pursuit of this vision is to develop and disseminate a sophisticated conceptual and operational understanding of RI by facilitating collaborative research, training and outreach activities among a broad partnership of academic and non-academic institutions.
Activities

VIRI will:

  • perform interlinked empirical, reflexive and normative research in a collaborative and comparative mode to explore and develop key concepts in RI;
  • develop curricular material and support educational exchanges of graduate students, post-doctoral fellows, and faculty;
  •  create a dynamic online community to represent the breadth of the institute and its multi-lateral activities;
  •  disseminate outputs from across the institute through its own and partner channels and will encourage broad sharing of its research and educational findings.

VIRI will pursue these activities with founding academic partners in the US, the UK, the Netherlands, Germany, Denmark, Norway, Brazil and Canada.

The site does offer links to  relevant blogs here.

I was a bit surprised to see Canada’s University of Waterloo rather than the University of Alberta (home of Canada’s National Institute of Nanotechnology)  as one of the partners.

Danish Chinese collaboration on graphene project could lead to smaller, faster, greener electronic devices

A mixed team of Danish and Chinese scientists have made a transistor from a single molecular monolayer that works on a computer chip according to a June 19, 2013 University of Copenhagen news release,

The molecular integrated circuit was created by a group of chemists and physicists from the Department of Chemistry Nano-Science Center at the University of Copenhagen and Chinese Academy of Sciences, Beijing. Their discovery “Ultrathin Reduced Graphene Oxide Films as Transparent Top-Contacts for Light Switchable Solid-State Molecular Junctions”  has just been published online in the prestigious periodical Advanced Materials. The breakthrough was made possible through an innovative use of the two dimensional carbon material graphene.

Here’s how the transistor works (from the news release),

The molecular computer chip is a sandwich built with one layer of gold, one of molecular components and one of the extremely thin carbon material graphene. The molecular transistor in the sandwich is switched on and of using a light impulse so one of the peculiar properties of graphene is highly useful. Even though graphene is made of carbon, it’s almost completely translucent.

Using the new graphene chip researchers can now place their molecules with great precision. This makes it faster and easier to test the functionality of molecular wires, contacts and diodes so that chemists will know in no time whether they need to get back to their beakers to develop new functional molecules, explains Nørgaard [Kasper Nørgaard, an associate professor in chemistry at the University of Copenhagen].

“We’ve made a design, that’ll hold many different types of molecule” he says and goes on: “Because the graphene scaffold is closer to real chip design it does make it easier to test components, but of course it’s also a step on the road to making a real integrated circuit using molecular components. And we must not lose sight of the fact that molecular components do have to end up in an integrated circuit, if they are going to be any use at all in real life”.

In addition to the other benefits of this graphene chip, greater precision, etc., it is also greener, requiring no rare earths or heavy metals.

If you have problems accessing the news release, you can find the information in a June 20, 2013 news item on Nanowerk.

“Control my chirality, please,” said the carbon nanotube to the researchers

A combined Finnish, Russian, and Danish team have found a way to control the chirality of single-walled carbon nanotubes according to an Apr. 30, 2013 news item on Azonano,

An ultimate goal in the field of carbon nanotube research is to synthesise single-walled carbon nanotubes (SWNTs) with controlled chiralities. Twenty years after the discovery of SWNTs, scientists from Aalto University in Finland, A.M. Prokhorov General Physics Institute RAS in Russia and the Center for Electron Nanoscopy of Technical University of Denmark (DTU) have managed to control chirality in carbon nanotubes during their chemical vapor deposition synthesis.

The Aalto University Apr. 29, 2013 news release, which originated the news item, goes on to explain,

 Over the years, substantial progress has been made to develop various structure-controlled synthesis methods. However, precise control over the chiral structure of SWNTs has been largely hindered by a lack of practical means to direct the formation of the metal nanoparticle catalysts and their catalytic dynamics during tube growth.

– We achieved an epitaxial formation of Co nanoparticles by reducing a well-developed solid solution in CO, reveals Maoshuai He, a postdoctoral researcher at Aalto University School of Chemical Technology.

– For the first time, the new catalyst was employed for selective growth of SWNTs, adds senior staff scientist Hua Jiang from Aalto University School of Science.

By introducing the new catalysts into a conventional CVD reactor, the research team demonstrated preferential growth of semiconducting SWNTs (~90%) with an exceptionally high population of (6,5) tubes (53%) at 500 °C. Furthermore, they also showed a shift of the chiral preference from (6,5) tubes at 500 °C  to (7, 6) and (9, 4) nanotubes at 400 °C.

– These findings open new perspectives both for structural control of SWNTs and for elucidating their growth mechanisms, thus are important for the fundamental understanding of science behind nanotube growth, comments Professor Juha Lehtonen from Aalto University.

For anyone like me who needs a description of chirality, there’s this from Wikipedia,

Chirality (pron.: /kaɪˈrælɪtiː/) is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek, χειρ (kheir), “hand”, a familiar chiral object.

An object or a system is chiral if it is not identical to its mirror image, that is, it cannot be superposed onto it. A chiral object and its mirror image are called enantiomorphs (Greek opposite forms) or, when referring to molecules, enantiomers. A non-chiral object is called achiral (sometimes also amphichiral) and can be superposed on its mirror image.

Human hands are perhaps the most universally recognized example of chirality: The left hand is a non-superimposable mirror image of the right hand; no matter how the two hands are oriented, it is impossible for all the major features of both hands to coincide.[2] This difference in symmetry becomes obvious if someone attempts to shake the right hand of a person using his left hand, or if a left-handed glove is placed on a right hand. In mathematics chirality is the property of a figure that is not identical to its mirror image.

One of the researchers notes why they, or anyone else, would want to control the chirality of carbon nanotubes, from the news release,

– Chirality defines the optical and electronic properties of carbon nanotubes, so controlling it is a key to exploiting their practical applications, says Professor Esko I. Kauppinen, the leader of the Nanomaterials Group in Aalto University School of Science.

ETA Apr. 30, 2013 at 4:20 pm PDT: Here’s a link to and a citation for the team’s published paper,

Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles by Maoshuai He, Hua Jiang, Bilu Liu, Pavel V. Fedotov, Alexander I. Chernov, Elena D. Obraztsova, Filippo Cavalca, Jakob B. Wagner, Thomas W. Hansen, Ilya V. Anoshkin, Ekaterina A. Obraztsova, Alexey V. Belkin, Emma Sairanen, Albert G. Nasibulin,  Juha Lehtonen, & Esko I. Kauppinen. Scientific Reports 3, Article number 1460  doi:10.1038/srep01460 Published15 March 2013

This article is open access.

Legend of the giant squid, a lesson for environmentalists on how to tell a science story

Mark Schrope has written a wonderful piece on the search for the giant squid in his Jan. 25, 2013 posting on Slate.com. It’s a story about adventure, myth, scientific pursuits, and, very cunningly, environmental issues.

I will excerpt a few bits from the piece but I encourage you to read it in its entirety,

Deep-sea biologist Edith Widder was working on a ship positioned off Japan’s Ogasawara Islands when Wen-Sung Chung asked her to step into the lab to see something. Cameras followed her as she got up. This was not unusual, since the Japan Broadcasting Commission (NHK) and the Discovery Channel were funding the expedition, which was being conducted from a research yacht named Alucia leased from a billionaire hedge fund owner. Chung was nonchalant, so it didn’t occur to Widder that she was about to see the culmination of a quest that has driven ocean explorers for more than a century. She thought maybe it was going to be video of a cool shark.

The purpose of the expedition was to capture footage of the enigmatic giant squid in its natural habitat. The animal can grow to 35 feet or longer, and its eye is as big as your head. But it lives about 1,000 feet below the surface and deeper, and it had only been glimpsed a few times at the surface and photographed alive once.

Widder is a world expert on bioluminescence, the light that countless marine animals use to communicate, especially in the dark world of the deep sea.

Schopes introduces a mystery, ‘What is Widder about to see?’, and then doesn’t answer it for several paragraphs while he explains who she is, her area of research, and the legend of the giant squid. Note: A link has been removed.

The giant squid has been the stuff of legend for about as long as people have sailed across oceans. Aristotle and Pliny the Elder described what may have been giant squid, which occasionally wash ashore or end up in fishermen’s nets, and the species is thought to be the origin of the Norwegian kraken myth.

Countless groups in past decades have tried to manufacture giant squid encounters, investing millions, getting all the best advice from the experts, only to come back as failed crusaders. One of the other scientists aboard the Alucia, Tsunemi Kubodera of Japan’s National Museum of Nature and Science, has been hunting giant squid in these waters for years. He managed to capture some still images of one giant squid and video of another after it was caught and brought to the surface. But none of that could compare to video of the animal alive in the deep, a view that would finally allow scientists to begin to understand the mysterious animal.

The expedition has not released expense figures, but it must have cost millions. When Chung, a graduate student at the University of Queensland, brought Widder into the lab and started fast-forwarding through the video, the scientists were already a week into a six-week expedition with nothing significant to show. Producer-types were growing tense.

Apparently, giant squid have a good sense of drama,

Now Widder is the first person to capture footage of a giant squid in its natural habitat. But even she admits that the grainy black-and-white footage, by itself, would have been a little unsatisfying. Some high-def footage would be the ultimate satisfaction. The drama-savvy squid would come through again.

Seven days after the first Medusa footage of a giant squid, Kubodera was in the clear sphere of a Triton submersible with pilot Jim Harris and NHK cameraman Tatsuhiko “Magic Man” Sugita when it happened. Kubodera was exploiting a different hypothesis: that the elusive squid find their prey by looking up with those huge eyes to see the faint silhouette of prey.

On Kubodera’s dives, the team tied a smaller, diamondback squid to the front of the sub and wrapped the bait around foam so that it would sink slower. Up and down, up and down the sub had gone for hours, using another low-light camera.

A giant squid latched on at 2,000 feet. As it drifted down, Harris matched the descent to keep the squid in full camera view. After the first few minutes they had flipped on the big lights, thinking the squid would flee, but it was committed to the bait. The sub’s maximum safe depth is 3,300 feet. Had the squid held on that far, Harris would have had to hit the brakes and the squid would have dropped out of view. But instead, at the last minute—3,000 feet—the squid swam off, so they got the entire encounter on film.

“I’ll never forget how beautiful it was,” says Harris. “It looked like it was covered in gold leaf.” That was a surprise to everyone because the dead ones certainly hadn’t looked like that. They were pasty. Kubodera says it was like seeing an entirely different animal.

Once Schrope has established the adventure aspect and revealed a giant squid covered in gold while, incidentally, establishing Widder’s credentials as a scientist and lover of marine life, there’s this,

For Widder, deep exploration remains a delight, but it’s no longer the primary focus of her career. In 2005, she left her longtime research post at the Harbor Branch Oceanographic Institution to found the Ocean Research and Conservation Association [ORCA], headquartered in a scenic old Coast Guard station on the Fort Pierce inlet. She wanted to take a step away from academia, where scientists are expected to stay relatively quiet in public and avoid anything that smacks of activism.

Widder had been growing increasingly overwhelmed by the environmental decline she was seeing, particularly pollution in coastal waters and estuaries, which are plagued by the polluted runoff of a Florida lifestyle dependent on constant growth and lots of fertilizer.

It gets better,

… She wants to wipe away the fallacy that pollution is an amorphous, intractable problem by gathering the information needed to pinpoint key problems. [emphasis mine] The group wants to create the aquatic equivalent of weather maps. Red shows polluted waters, blue the areas in the best shape. If people know the spot their kids swim in is in the red, they’ll take much more notice, she reasons. Perhaps more importantly, tourists would gravitate to cleaner waters if they could, creating a strong motivation for improvements.

Already the project has had success. [emphasis mine] Mapping the pollution in a stretch of Indian River Lagoon—Widder’s home and her office are both on the lagoon—she was surprised to find that two canals came up blue in a field of red. After some checking, the team learned that the golf course on those canals had switched to better environmental practices. They were preventing mowed grass clippings and runoff from the course from making it into the water. It was the perfect example for the local government, and in short order, a new fertilizer ordinance was passed.

The pièce de résistance,

They seem a world apart, but to Widder, the deep-sea exploration for fantastic creatures and the coastal environmental work guided by microbes are intimately tied. Not just because it’s all one big sea. Attention from the higher profile deep-sea work gives her a bully pulpit for focusing attention on things people don’t want to hear about, like water pollution. “I don’t want to hear about that stuff either,” she says. “But we’ve got to deal with it.” …

Too often in environmental stories writers and activists, in an attempt to communicate the seriousness of the issues,  project a sense of doom. Necessary in the early days, the time has come to change the tone otherwise there’s a risk of inculcating hopelessness (some might say it’s already happening), which is the last thing we need. As Widder says, ” … we’ve got to deal with it.”

Very nicely done Mr. Schrope and Dr. Widder!

You can find more about ORCA here, by the way, the story has videos of the giant squid, and Discovery Channel (which broadcast the documentary on Jan. 27, 2013) also has information about the giant squid. Canadians are not allowed to view the video on the US website, we are required to visit the .ca website.

ETA Mar. 20, 2013: Danish scientists have determined that all giant squid no matter where they are found are related as per a Mar. 19, 2013 news item on ScienceDaily,

The giant squid is one of the most enigmatic animals on the planet. It is extremely rarely seen, except as the remains of animals that have been washed ashore, and placed in the formalin or ethanol collections of museums. But now, researchers at the University of Copenhagen leading an international team, have discovered that no matter where in the world they are found, the fabled animals are so closely related at the genetic level that they represent a single, global population, and thus despite previous statements to the contrary, a single species worldwide.

Scientists hunger for your money

Crowdfunding (raising funds by posting a project, on a website designed for the purpose, and asking for money in return for rewards you will give to the funders) seems to be everywhere at the moment. I tried it last year for one of my projects and had one failure and one partial success. It’s certainly an interesting process to go through and I’m fascinated with the current interest from scientists. According to an April 25, 2012 posting by Michael Ho on Techdirt, there are at least four crowdfunding websites for science projects.

In addition to the ones Ho cites, I found the #SciFund Challenge, which is being held from May 1  – May 31, 2012. From their home page,

Last fall, scientists raised $76,230 for their research in the first round of the #SciFund Challenge. The second round launches on May 1, 2012!

What? The #SciFund Challenge is a grand experiment in science funding. Can scientists raise money for their research by convincing the general public to open their wallets for small-amount donations? In more and more fields – from music to dance to journalism – people are raising lots of money for projects in precisely this way. The process is called crowdfunding. The first round of the #SciFund Challenge showed that this model can work for funding scientific research. Now, let’s take it to the next level!

Who? Well over 140 scientists, from across the globe, have signed for the second round of the #SciFund Challenge.

When? From May 1- May 31, 2012, scientists participating in the #SciFund Challenge will each conduct their own crowdfunding campaigns for their own research. But even though each scientist will be fundraising for their own research, participants won’t be on their own.  In the month of April, #SciFund scientists will be trained how to run a crowdfunding campaign. And, through the Challenge, participants will be connected together to increase the chances that everyone succeeds.

How do I learn more? Read the blog! You can also contact one of the #SciFund Challenge organizers with any questions: Jai Ranganathan (jai.ranganathan@gmail.com). If you would like to be informed about future rounds of the #SciFund Challenge, please sign up for our mailing list.

From the About page (I have removed several links),

The #SciFund Challenge is an experiment – can scientists use crowdfunding to fund their research? The current rate of funding for science proposals in the U.S. is ~20%. The current rate for crowdfunding statues of RoboCop in Detroit is 135% – to the tune of $67,436. Perhaps Scientists can do better by tapping this reservoir of funds from an interested public. …

The #SciFund Challenge is also a way to get scientists to directly engage with the public. Crowdfunding forces scientists to build public interaction and outreach into their research from day one. It’s a new mechanism to couple science and society, and one that we think has a lot of promise. …

Founders
The founders of the #SciFund Challenge are Dr. Jai Ranganathan  and Dr. Jarrett Byrnes. We are biologists – ecologists, actually – and each spends too much time in the science online scene. Jai ran a weekly science podcast, called Curiouser and Curiouser for Miller-McCune magazine, and Jarrett is the big boss over at the science blog I’m a Chordata! Urochordata! On Twitter, you can find Jai at @jranganathan and jai.ranganathan@gmail.com and Jarrett at @jebyrnes.

On another note and in response to my April 18, 2012 posting about Lego robots being used to grow bones,  I received a notice about a project to raise funds on Kickstarter. As I’m not a Lego afficionado, it took a little digging to figure out the project.

In my April 18, 2012 posting the scientists used a robot that they built with a Lego Mindstorms kit. The beams used to create a base for the robots limit builders and a team from Denmark (Lasse Mogensen and Soren Jensen), which is the home of Lego, have developed a base (a rectangular plate, 21 x 30 holes), which would allow scientists and others to create larger, more robust and complex robots. They call their project, MinuteBot Base,

There are ways to combine the MinuteBot Base plates, which are fully compatible with Lego products, in case a single base does not suffice.

Here’s the MinuteBot Base Kickstarter page where you can find more information and diagrams. The group has raised almost 1/2 of the funds they’ve requested with some 20 days left in their campaign. The group has contacted Michelle Oyen, who’s one of the scientists cited in my April 18, 2012 posting (from their April 25, 2012 email to me),

We are in contact with Michelle Oyen who expressed interest in our products:

“Please let me know if I can be of use in the future, and if you are interested in collaborating on more ideas regarding using Lego Mindstorms for biomedical/bioengineering research!”

The group also has a second project, a MinuteBot Bearing, which they (represented by team member, Dorota Sauer)  have entered in a contest for a prize of $10,000. From the MinuteBot Bearing page on the Boca Bearing contest website,

What was your goal in building this project?

To design a turntable with a perfect interface with LEGO Mindstorms and with improved mechanical properties. The broader vision is to make a kit consisting of robust elements designed for higher precision and durability using industrial components. Robotics made in minutes. That’s MinuteBot.

Does your project help to solve a problem? If so what problem?

LEGO Mindstorms is very easy to program but as it is a toy the precision, durability and mechanical integrity is limited. The MinuteBot Bearing is based on industry-grade ball bearings providing the needed mechanical performance of the turntable.

What makes your idea unique?

The combination of user friendliness, the interface with LEGO Mindstorms and the good mechanical performance makes MinuteBot Bearing unique.

You can find out more information about the team and the products at the MinuteBot website.

Getting back to Michael Ho and his posting about the science-specific crowdfunding sites, here are two listings I’ve excerpted from his April 25, 2012 posting,

Good luck to them all!

 

Two (Denmark & US) contrasting documents about nanomaterials and risk

The Danes released their NanoRiskCat (NRC) document in early December 2011 while the US National Research Council released its report on the US research strategy on environmental and health impact of engineered nanomaterials today, Jan. 25, 2012.

(BTW, There”s going to be an alphabet soup situation in this posting with two different NRCs [the catalogue] and the US National Research Council for starters. I’ll do my best to keep these entities distinct from each other.)

The documents represent an interesting contrast regarding approaches to nanomaterials and their risks. From the Jan. 25, 2012 Nanowerk Spotlight article about Denmark’s NanoRiskCat,

The project’s aim was to identify, categorize and rank the possible exposure and hazards associated with a nanomaterial in a product. NanoRiskCat is using a stepwise approach based on existing data on the conventional form of the chemical as well as the data that may exist on the nanoform. However, the tool still needs to be further validated and tested on a series of various nano products in order to adjust and optimize the concept and thereby to achieve a screening tool as informative and practical as possible.

Meanwhile, here’s the description of the US NRC’s latest report, from the Jan. 25, 2012 news item on Nanowerk,

Despite extensive investment in nanotechnology and increasing commercialization over the last decade, insufficient understanding remains about the environmental, health, and safety aspects of nanomaterials. Without a coordinated research plan to help guide efforts to manage and avoid potential risks, the future of safe and sustainable nanotechnology is uncertain, says a new report (“A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials“)from the National Research Council. The report presents a strategic approach for developing research and a scientific infrastructure needed to address potential health and environmental risks of nanomaterials. Its effective implementation would require sufficient management and budgetary authority to direct research across federal agencies.

I find it interesting that the US government which has poured billions into its National Nanotechnology Initiative (NNI) is still trying to develop a research strategy for environmental and health impacts while the Danish (who have likely spent far less and, to be fair, likely have less bureaucracy) have created an assessment tool designed to evaluate the exposure to and hazards posed by nanomaterials found in consumer and industrial use.

One other interesting tidbit, both the Danish and the US Environmental Protection Agencies (EPAs) were instigators of their country’s respective documents. The Danish EPA was one of the three funders (the other two were the Danish Technical University and the National Research Centre for the Working Environment) for their NanoRiskCat. The US EPA was one of the sponsors  for the strategy report. The other sponsors include the The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council.

I have to admit I’m getting a little tired of strategy documents and I’m please to see an attempt to evaluate the situation. I’m not sure which version (alpha or beta) of the tool they’ve released but there’s definitely some tweaking to be done as the Danes themselves admit,

It is the view of the Danish EPA that the traffic light ranking [I’m assuming they assign a colour [red, amber, yellow] as a means of quickly identifying a risk level in their documentation of specific nanomaterials) of the health effects may be further modified to obtain a better ranking in the various categories. Thus titanium dioxide in sunscreen is ranked as red due to lung effects of titanium dioxide, because the tool in its present form does not sufficiently take account of which type of health effects that are most relevant for the most relevant exposure route of the product. In this case the inhalational exposure of titanium dioxide from a sun screen seems less relevant.

Yes, I agree that exposure to nanoscale titanium dioxide via inhalation is an unlikely when you’re using a nanosunscreen. Although given some folks I’ve known, it’s not entirely out of the question. (It’s been my experience that people will inhale anything if they think they can get high from it.)