Tag Archives: CERN

Donna Strickland, first female Nobel Prize winner in 55 years and one of only three (so far) in history

It’s been quite the fascinating week in the world of physics culminating with Donna Strickland’s shiny new Nobel Prize in physics.

For my purposes, this week in physics started on Friday, September 28, 2018 with Allesanndro Strumia’s presentation at CERN’s (European Particle Physics Laboratory) “1st workshop on high energy theory and gender” where he claimed and proved ‘scientifically’ that physics has become “sexist against men.” I’ll get back to Strumia in a moment but, first, let’s celebrate Donna Strickland and her achievements.

Only three women, including Strickland, in the history (117 years) of the Nobel Prize for Physics have won it, Marie Curie in 1903, Maria Goeppert Mayer in 1963, and, now, Strickland in 2018.

The University of Waterloo (Ontario, Canada) had this to say in an October 2, 2018 news release,

Donna Strickland wins Nobel Prize in Physics

Tuesday, October 2, 2018

Dr. Donna Strickland

Donna Strickland, a University of Waterloo professor who helped revolutionize laser physics, has been named a winner of this year’s Nobel Prize in Physics.

Strickland, an associate professor in the Department of Physics and Astronomy, shares half the $1.4 million prize with French laser physicist Gérard Mourou. The other half was awarded to U.S. physicist Arthur Ashkin.

The Royal Swedish Academy of Sciences stated that Mourou and Strickland paved the way toward the shortest and most intense laser pulses created by mankind. Their revolutionary article was published in 1985 and was the foundation of Strickland’s doctoral thesis.

Strickand conducted her Nobel-winning research while a PhD student under Mourou in 1989 at the University of Rochester in New York. The team’s research has a number of applications in industry and medicine.

It was great to have had the opportunity to work with one of the pioneers of ultrafast lasers, Gerard Mourou,” said Strickland. “It was a small community back then. It was a new, burgeoning field. I got to be part of that. It was very exciting.”

A Nobel committee member said billions of people make daily use of laser printers and optical scanners and millions undergo laser surgery.

“This is a tremendous day for Professor Strickland and needless to say a tremendous day for the University of Waterloo,” said Feridun Hamdullahpur, president and vice-chancellor of the University of Waterloo. “This is Waterloo’s first Nobel laureate and the first woman to receive the Nobel Prize in Physics in 55 years.”

During an interview, Strickland told the Globe and Mail [national newspaper]: “We need to celebrate women physicists because we’re out there, and hopefully in time it’ll start to move forward at a faster rate.”

Charmaine Dean, vice-president research at the University of Waterloo said: “Donna Strickland exemplifies research excellence at Waterloo. Her groundbreaking work is a testament to the importance of fundamental research as it has established the foundation for laser-based technologies that we see today from micromachining to laser eye surgery.”

An October 2, 2018 news item on Nanowerk focuses on the three winners,

Arthur Ashkin, an American physicist has been awarded half the prize for his invention of optical tweezers and their application to biological systems. His amazing tool has helped to reach the old dream of grabing [sic] particles, atoms, viruses and other living cells. The optical tweezers work with the radiation pressure of light to hold and move tiny object and are widely used to study the machinery of life.

French physicist Gérard Mourou and Canadian physicist Donna Strickland share the other half for their method of generating ultra-short and very intense optical pulses. Ultra-sharp laser beams have made possible to cut or drill holes in various materials extremely precisely – even in living matter. The technique this duo pioneered is called chirped pulse amplification or CPA and it has led to corrective eye surgeries for millions of people.

An Oct. 2, 2018 article by Marina Koren for The Atlantic is my favourite of the ones focusing on Strickland. One of Koren’s major focal points is Strickland’s new Wikipedia page (Note: Links have been removed),

It was about five in the morning in Ontario, Canada, when Donna Strickland’s phone rang. The Nobel Prize committee was on the line in Stockholm, calling to tell her she had won the prize in physics.

“We wondered if it was a prank,” Strickland said Tuesday [October 2 ,2018], in an interview with a Nobel official after the call. She had been asleep when the call arrived. “But then I knew it was the right day, and it would have been a cruel prank.”

Lasers, focused beams of light particles, were invented in the 1960s. Scientists immediately started tinkering with them, looking for ways to harness and manipulate these powerful devices.

Strickland and [Gérard] Mourou] found a way to stretch and compress lasers to produce short, intense pulses that are now used, among other things, in delicate surgeries to fix vision problems. [Arthur] Ashkin figured out a way to maneuver laser light so that it could push small particles toward the center of the beam, hold them in place, and even move them around. This technique became the delightfully named “optical tweezer.” It allowed Ashkin to use the power of light to capture and hold living bacteria and viruses without harming the organisms.

Unlike her fellow winners, Strickland did not have a Wikipedia page at the time of the announcement. A Wikipedia user tried to set up a page in May, but it was denied by a moderator with the message: “This submission’s references do not show that the subject qualifies for a Wikipedia article.” Strickland, it was determined, had not received enough dedicated coverage elsewhere on the internet to warrant a page.

On Tuesday, a newly created page flooded with edits: “Added in her title.” “Add Nobel-winning paper.” “Added names of other women Nobelists [sic] in physics.”

The construction of the Wikipedia page feels like a metaphor for a historic award process that has long been criticized for neglecting women in its selection, and for the shortage of women’s stories in the sciences at large. To scroll through the “history” tab of Strickland’s page, where all edits are recorded and tracked, is to witness in real time the recognition of a scientist whose story likely deserved attention long before the Nobel Prize committee called.

Strickland’s historic win comes a day after CERN, the European organization that operates the world’s most powerful particle accelerator, suspended a senior scientist for saying that physics was “invented and built by men.” Alessandro Strumia, a professor at the University of Pisa, made the statement during a recent speech at a seminar on gender issues in physics that was attended by mostly female physicists. Strumia said “men prefer working with things and women prefer working with people,” and that between men and women there is a “difference even in children before any social influence.” His remarks were widely circulated online and prompted fierce backlash.

The remarks don’t faze Strickland, who very publicly proved them wrong on Tuesday. In an interview with the BBC on Tuesday, she called Strumia’s claims “silly.”

For anyone curious about the Strumia situation, there’s an October 2, 2018 CBC Radio (As It Happens) online news article. Note: Links have been removed,

Not only was Alessandro Strumia being offensive when he said that physics “was invented and built by men” — he was also wrong, says physicist Jess Wade.

“Actually, women have contributed hugely to physics throughout the whole of history, but for an incredibly long time we haven’t documented or told those stories,” Wade told As It Happens host Carol Off.

And she would know. The Imperial College London research associate has made it her mission to write hundreds of Wikipedia entries about women in science and engineering.

Wade was in the room on Friday when Strumia, a physicist at Pisa University, made the inflammatory remarks during a gender workshop in Geneva, organized by the European nuclear research centre CERN.

CERN cut ties with Strumia after the BBC reported the content of his presentation.

This article includes some of the slides in Strumia’s now infamous presentation.

Tommaso Dorigo in an October 1, 2018 posting on the Science 2.0 blog offers another analysis,

The world of particle physics is in turmoil because of a presentation by Alessandro Strumia, an Italian phenomenologist, at CERN’s “1st workshop on high energy theory and gender”, and its aftermath.

By now the story has been echoed by many major newscasters around the world, and discussed in public and private forums, blogs, twitter feeds. I wanted to stay away from it here, mainly because it is a sensitive issue and the situation is still evolving, but after all, why not offer to you my personal pitch on the matter? Strumia, by the way, has been an occasional commenter to this blog – you can find some of his comments signed as “AS” in threads of past articles. Usually he makes good points here, as long as physics is the subject.

Anyway, first of all let me give you a quick recall of the events. The three-day workshop, which took place on September 26-28, was meant to”focus on recent developments in theoretical high-energy physics and cosmology, and discuss issues of gender and equal opportunities in the field“; it followed three previous events which combined string theory and gender issues. Strumia’s presentation was titled “Experimental tests of a new global symmetry“, a physicist’s way of describing the issue of man-woman equality. It is important to note that the talk was not an invited one – its author had asked the organizers for a slot as he said he would be talking of bibliometrics, and indeed his contribution was listed in the agenda of September 28 with the innocuous title “Bibliometrics data about gender issues in fundamental theory“.

Strumia’s slides contain a collection of half-baked claims, coming from his analysis of InSpire data from citations and authorship of articles in theoretical physics. I consider his talk offensive on many levels. It starts by casting the woman discrimination issue in scientific academia as a test of hypothesis of whether the “man-woman” symmetry is explicitly broken (i.e. there is no symmetry) or spontaneously broken (by a difference of treatment) – something that could even raise a smile in a geeky physicist; but the fun ends there.

Dorigo offers a detailed ‘takedown’ of Strumia’s assertions. I found the post intriguing for the insight it offers into physics. Never in a million years would I have thought this title, “Experimental tests of a new global symmetry,” would indicate a discussion on gender balance in the field of physics.

As I said in the opening, it has been quite the week in physics. On a final note, Brava to Doctor Donna Strickland!

The sense of beauty: an art/science film about CERN, the European Particle Physics Laboratory, in Vancouver, Canada; art/sci September in Toronto (Canada), a science at the bar night in Vancouver (Canada), and a festival in Calgary (Canada)

Compared to five or more years ago, there’s a lollapalooza of art/sci (or sciart) events coming up in September 2018. Of course, it’s helpful if you live in or are visiting Toronto or Vancouver or Calgary at the right time.  All of these events occur from mid September (roughly) to the end of September. In no particular date order:

Sense of beauty in Vancouver

The September 10, 2018 Dante Alighieri Society of British Columbia invitation (received via email) offered more tease than information. Happily, the evite webpage for “The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo filled in the details,

The Dante Alighieri Society of British Columbia

Invites you to the screening of the documentary

“The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo

TUESDAY, SEPTEMBER 25, 2018 at 6:30 pm

The CINEMATHEQUE – 1131 Howe Street, Vancouver

Duration of film: 75’. Director in attendance; Q&A with the film director to follow the screening

Free Admission

RSVP: info@dantesocietybc.ca

Director Jalongo will discuss the making of his documentary in a seminar open to the public on September 24 (1:00-2:30 pm) at UBC  [University of British Columbia] (Buchanan Penthouse, *1866 Main Maill, Block C, 5th floor*, Vancouver).

The Sense of Beauty is the story of an unprecedented experiment that involves scientists from throughout the world collaborating around the largest machine ever constructed by human beings: the LHC (Large Hadron Collider). As the new experiment at CERN proceeds in its exploration of the mysterious energy that animates the universe, scientists and artists guide us towards the shadow line where science and art, in different ways, pursue truth and beauty.

Some of these men and women believe in God, while others believe only in experiment and doubt. But in their search for truth they are all alert to an elusive sixth – or seventh – sense: the sense of beauty. An unmissable opportunity for lovers of science, of beauty, or of both.

Rome-born Valerio Jalongo is a teacher, screenwriter and director who works in cinema and TV, for which he created works of fiction and award-winning documentaries. Among them: Sulla mia pelle (On My Skin, 2003) and La scuola è finita (2010), starring Valeria Golino, on the difficulties facing public schools in Italy.

This event is presented by the Dante Alighieri Society of BC in collaboration with the Consulate General of Italy in Vancouver and in association with ARPICO (www.arpico.ca), the Society of Italian Researchers and Professionals in Western Canada.

RSVP: info@dantesocietybc.ca

I searched for more information both about the film and about the seminar at UBC. I had no luck with the UBC seminar but I did find more about the film. There’s an April (?) 2017 synopsis by Luciano Barisone on the Vision du Réel website,

From one cave to another. In prehistoric times, human beings would leave paintings in caves to show their amazement and admiration for the complexity of the world. These reproductions of natural forms were the results of an act of creation and also of mystical gestures which appropriated the soul of things. In another gigantic and modern den, the immense CERN laboratory, the same thing is happening today, a combination of enthralled exploration of the cosmos and an attempt to control it. Valerio Jalongo’s film tackles the big questions that have fascinated poets, artists and philosophers since the dawn of time. Who are we? Where do we come from? Where are we going? The scientists at CERN attempt to answer them through machines that explore matter and search for the origins of life. In their conversations or their words to camera, the meaning of existence thus seems to become a pure question of the laws of physics and mathematical formulae. If only for solving the mystery of the universe a sixth sense is necessary. That of beauty…

There’s also a February 5, 2018 essay by Stefano Caggiano for Interni, which uses a description of the film to launch into a paean to Italian design,

The success of the documentary The Sense of Beauty by Valerio Jalongo, which narrates the ‘aesthetic’ side of the physicists at CERN when faced with the fundamental laws of nature, proves that the yearning for beauty is not just an aspect of art, but something shared by all human efforts to interpret reality.

It is no coincidence that the scientists themselves define the LHC particle accelerator (27 km) as a grand machine for beauty, conceived to investigate the meaning of things, not to perform some practical function. In fact, just as matter can be perceived only through form, and form only if supported by matter (Aristotle already understood this), so the laws of physics can be glimpsed only when they are applied to reality.

This is why in the Large Hadron Collider particles are accelerated to speeds close to that of light, reconstructing the matter-energy conditions just a few instants after the Big Bang. Only in this way is it possible to glimpse the hidden fundamental laws of the universe. It is precisely this evanescence that constitutes ‘beauty.’

The quivering of the form that reveals itself in the matter that conceals it, and which – given the fact that everything originates in the Big Bang – is found everywhere, in the most faraway stars and the closest objects: you just have to know how to prove it, grasp it, how to wait. Because this is the only way to establish relations with beauty: not perceiving it but awaiting it. Respecting its way of offering itself, which consists in denying itself.

Charging the form of an object with this sensation of awaiting, then, means catalyzing the ultimate and primary sense of beauty. And it is what is held in common by the work of the five Italian designers nominated for the Rising Talent Awards of Maison & Object 2018 (with Kensaku Oshiro as the only non-Italian designer, though he does live and work in Milan).

There’s a trailer (published by CERN on November 7, 2017,

It’s in both Italian and English with subtitles throughout, should you need them.

*The address for the Buchanan Penthouse was corrected from: 2329 West Mall to 1866 Main Maill, Block C, 5th floor on Sept. 17, 2018.

Toronto’s ArtSci Salon at Nuit Blanche, Mycology, Wild Bees and Art+Tech!

From a Tuesday, September 11, 2018 Art/Sci Salon announcement (received via email),

Baba Yaga Collective and ArtSci Salon Present:
Chaos Fungorum

In 1747, Carl Linnaeus, known as the “father of taxonomy”, observed
that the seeds of fungus moved in water like fish until “..by a law of
nature thus far unheard of and surpassing all human understanding..,”
they changed back to plant in their adult life.

He proceeded to include fungi in the new genus of “Chaos”. But why
delimiting fungi within categories and boundaries when it is exactly
their fluidity that make them so interesting?

Chaos Fungorum draws on the particular position occupied by fungi and
other hybrid organisms: neither plant nor animal, fungi extend across,
and can entertain, communications and collaborations between animal,
human and industrial realms.

Mixing different artistic practices and media, the artists featured in
this exhibition seek to move beyond rigid comprehensions of the living
by working with, rather than merely shaping, sculpting and manipulating
plants, microorganisms and fungi. Letting the non-human speak is to move
away from an anthropocentric approach to the world: it not only opens to
new rewarding artistic practices, but it also fosters new ideas of
sustainable coexistence, new unusual life collaborations and
adaptations, and new forms of communications and languages.

THE EXHIBITION
September 26 – October 7, 2018

Baba Yaga Collective 906 Queen Street West @Crawford, Toronto

info@babayagacollective.ca

FEATURING

BIO.CHROME COLLECTIVE
Robyn Crouch • Mellissa Fisher • Shavon Madden
Tracy Maurice • Tosca Teran • Alexis Williams

SPECIAL GUEST
Whitefeather Hunter

SPECIAL NUIT BLANCHE OPENING RECEPTION
September 29
6:00 – 9:00 pm

6:30pm: Artsci Salon introduction with Roberta Buiani and Stephen Morris
rethinking categories and the “non-human” in art and science

Followed by artist remarks.
Scientists from the University of Toronto will act as respondent.

9:30pm onward: Tosca Teran & Andrei Gravelle of Nanotopia [emphasis mine]

BIO-SONIFICATIONS: NON-HUMAN COLLABORATIONS Mycelium to MIDI •

Midnight Mushroom music live performance

This Special program is co-presented by The Baba Yaga Collective and
ArtSci Salon. For more information contact artscisalon@gmail.com
https://www.facebook.com/events/1763778620414561/

 All the Buzz on Wild Bee Club!
Summer Speaker Series

Wed Sept 19 at 7pm
High Park Nature Centre,
All the Buzz on Wild Bee Club! – Summer Speaker Series

The speaker series will feature the club’s biologist/leader SUSAN FRYE.
A major component of this club will use the SONIC SOLITARIES AUDIO BEE
CABINET  – an observable nest site for bees in OURSpace – to encompass a
sensory experience with stem nesting bees and wasps, and to record
weekly activity at the cabinet. Pairing magnified views in tandem with
amplified sound via headphones, the cabinet facilitates an enhanced
perception of its tiny inhabitants: solitary bees and wasps and other
nest biota in action, up close. As citizen scientists, we can gather and
record observations to compile them into a database that will contribute
to our growing understanding of native bees, the native (and non-native)
plants they use for food and nest material sources, their co-evolution,
and how pollination in a park and restored habitat setting is
facilitated by native bees.

Fri, Sept 21, 8pm
Music Gallery, 918 Bathurst (their new location) –
Trio Wow & Flutter
with Bea Labikova, fujara, saxophones,
Kayla Milmine-Abbott, soprano saxophone,
Sarah Peebles, shō, cracklebox, amplifiers.

Call for Participants: Art+Tech Jam

ChangeUp’s Art+Tech Jam
September 21-23

This three days event will unite a diverse group of artists and
technologists in an intensive, collaborative three-day creation period
and culminating showcase (public exhibition and interdisciplinary rave).

ChangeUo is currently accepting applicants from tech and arts/culture
spaces of all ages, backgrounds, and experience levels.
Limited spots available.
For more information and to apply
https://tinyurl.com/changeup-artsorg

I looked up Nanotopia and found it on SoundCloud. Happy listening!

Et Al III (the ultimate science bar night in Vancouver) and more

A September 12, 2018 Curiosity Collider announcement (received via email) reveals details about the latest cooperative event/bar night put on by three sciencish groups,

Curiosity Collider is bringing art + science to Vancouver’s Ultimate Bar Science Night with Nerd Nite & Science Slam

Do you enjoy learning about science in a casual environment? This is the third year that Curiosity Collider is part of Et al, the Ultimate Bar Science Night where we bring together awesome speakers and activities. Come and enjoy Curiosity Collider’s segment on quantum physics with Spoken Word Poet Angelica Poversky, Physicist James Day, and CC’s own Creative Director Char Hoyt.

When: Drinks and mingling start at 6:30pm. Presentations start at 7:30pm.
Where: Rio Theatre, 1660 E Broadway, Vancouver, BC V5N 1W1
Cost: $15-20 via Eventbrite and at the door. Proceeds will be used to cover the cost of running this event, and to fund future science bar events.

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is the writer and host of an online series based on her books which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Follow updates on twitter via @ccollider or #ColliderCafe. This event is part of the Science Literacy Week celebration across Canada.

Head to the Facebook event page – let us know you are coming and share this event with others!

Looking for more Art+Science in Vancouver?
For more Vancouver art+science events, visit the Curiosity Collider events calendar.

Devoted readers 🙂 will note that the Vancouver Biennale’s Curious Imaginings show was featured here in a June 18, 2018 post and mentioned more recently in the context of a September 11, 2018 post on xenotransplantation.

Finally for this section, special mention to whomever wrote up the ‘bar night’ description on Eventbrite,

Et Al III: The Ultimate Bar Science Night Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

POSTER BY: Armin Mortazavi IG:@Armin.Scientoonist

Et Al III: The Ultimate Bar Science Night

Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

6:30pm – Doors open
6:30-7:30 Drinks, Socializing, Nerding
7:30pm-945pm Stage Show with two intermissions

You like science? You like drinking while sciencing? In Vancouver there are many options to get educated and inspired through science, art, and culture in a casual bar setting outside of universities. There’s Nerd Nite which focuses on nerdy lectures in the Fox Cabaret, Curiosity Collider which creates events that bring together artists and scientists, and Science Slam, a poetry-slam inspired science communication competition!

In this third installment of Et Al, we’re making the show bigger than ever. We want people to know all about the bar science nights in Vancouver, but we also want to connect all you nerds together as we build this community. We encourage you to COME DRESSED AS YOUR FAVOURITE SCIENTIST. We will give away prizes to the best costumes, plus it’s a great ice breaker. We’re also encouraging science based organizations to get involved in the show by promoting your institution. Contact Kaylee or Michael at vancouver@nerdnite.com if your science organization would like to contribute to the show with some giveaways, you will get a free ticket, if you don’t have anything to give away, contact us anyway, we want this to be a celebration of science nights in Vancouver!

BIOS

CARIN BONDAR
Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is writer and host of online series based on her books (Wild Sex and Wild Moms) which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Curiosity Collider Art Science Foundation promotes interdisciplinary collaborations that capture natural human curiosity. At the intersection of art, culture, technology, and humanity are innovative ways to communicate the daily relevance of science. Though exhibitions, performance events and our quarterly speaker event, the Collider Cafe we help create new ways to experience science.

NERD NITE
In our opinion, there has never been a better time to be a Nerd! Nerd Nite is an event which is currently held in over 60 cities worldwide! The formula for each Nerd Nite is pretty standard – 20 minute presentations from three presenters each night, in a laid-back environment with lots to learn, and lots to drink!

SCIENCE SLAM
Science Slam YVR is a community outreach organization committed to supporting and promoting science communication in Vancouver. Our Science Slams are informal competitions that bring together researchers, students, educators, and communicators to share interesting science in creative ways. Every event is different, with talks, poems, songs, dances, and unexpected surprises. Our only two rules? Each slammer has 5 minutes, and no slideshows are allowed! Slammers come to share their science, and the judges and audience decide their fate. Who will take away the title of Science Slam champion?

That’s a pretty lively description. You can get tickets here.

Calgary’s Beakerhead

An art, science, and engineering festival in Calgary, Alberta, Beakerhead opens on September 19, 2018 and runs until September 23, 2018. Here’s more from the 2018 online programme announcement made in late July (?) 2018,

Giant Dung Beetle, Zorb Ball Racers, Heart Powered Art and More Set to Explode on Calgary Streets!

Quirky, fun adventures result when art, science and engineering collide at Beakerhead September 19 – 23, 2018.

In just seven weeks, enormous electric bolts will light up the sky in downtown Calgary when a crazy cacophony of exhibits and events takes over the city. The Beakerhead crew is announcing the official program lineup with tickets now available online for all ticketed events. This year’s extravaganza will include remarkable spectacles of art and science, unique activities, and more than 50 distinct events – many of which are free, but still require registration to get tickets.

The Calgary-born smash up of art, science and engineering is in its sixth year. Last year, more than 145,000 people participated in Beakerhead and organizers are planning to top that number in 2018.

“Expect conversations that start with “wow!” says Mary Anne Moser, President and Co-founder of Beakerhead. “This year’s lineup includes a lot of original concepts, special culinary events, dozens of workshops, shows and and tours.”

Beakerhead events take place indoors and out. Beakernight is science’s biggest ticketed street party and tickets are now on sale.

Highlights of Beakerhead 2018:

  • Light up the Night: Giant electric bolts will light up the night sky thanks to two 10-metre Tesla Coils built by a team of artists and engineers.
  • Lunch Without Light: This special Dark Table dining experience is led by a famous broadcaster and an esteemed neuroscientist.
  • Beakereats and Beakerbar: Dining is a whole new experience when chef and bartender become scientist! Creative Calgary chefs and mixologists experiment with a new theme in 2018: canola.
  • Four to Six on Fourth: Blocks of open-air experimentation including a human-sized hamster wheel, artists, performers, and hands-on or feet-on experiences like walking on liquid.
  • Beacons: This series of free neighbourhood installations is completely wild! There’s everything from a giant dung beetle to a 3.5 metre lotus that lights up with your heart beat.
  • Workshops: Learn the art of animation, understand cryptocurrency, meet famous scientists and broadcasters, make organic facial oil or a vegan carrot cake and much more.
  • Zorbathon: Get inside a zorb and cavort with family and friends in an oversized playground. Participate in rolling races, bump-a-thons, obstacle courses. Make a day of it.

Beakerhead takes place September 19 – 23, 2018 with the ticketed Beakernight on Saturday, September 22 at Fort Calgary.

Here’s a special shout out to Shaskatchewan`s Jean-Sébastien Gauthier and Brian F. Eames (featured here in a February 16, 2018 posting) and their free ‘Within Measure’ Sept. 19 – 23, 2018 event at Beakerhead.

That’s all folks! For now, that is.

Scientific evidence and certainty: a controversy in the US Justice system

It seems that forensic evidence does not deliver the certainty that television and US prosecutors (I wonder if Canadian Crown Attorneys or Crown Counsels concur with their US colleagues?) would have us believe. The US President’s Council of Advisors on Science and Technology (PCAST) released a report (‘Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods‘ 174 pp PDF) on Sept. 20, 2016 that amongst other findings, notes that more scientific rigour needs to be applied to the field of forensic science.

Here’s more from the Sept. 20, 2016 posting by Eric Lander, William Press, S. James Gates, Jr., Susan L. Graham, J. Michael McQuade, and Daniel Schrag, on the White House blog,

The study that led to the report was a response to the President’s question to his PCAST in 2015, as to whether there are additional steps on the scientific side, beyond those already taken by the Administration in the aftermath of a highly critical 2009 National Research Council report on the state of the forensic sciences, that could help ensure the validity of forensic evidence used in the Nation’s legal system.

PCAST concluded that two important gaps warranted the group’s attention: (1) the need for clarity about the scientific standards for the validity and reliability of forensic methods and (2) the need to evaluate specific forensic methods to determine whether they have been scientifically established to be valid and reliable. The study aimed to help close these gaps for a number of forensic “feature-comparison” methods—specifically, methods for comparing DNA samples, bitemarks, latent fingerprints, firearm marks, footwear, and hair.

In the course of its year-long study, PCAST compiled and reviewed a set of more than 2,000 papers from various sources, educated itself on factual matters relating to the interaction between science and the law, and obtained input from forensic scientists and practitioners, judges, prosecutors, defense attorneys, academic researchers, criminal-justice-reform advocates, and representatives of Federal agencies.

A Sept. 23, 2016 article by Daniel Denvir for Salon.com sums up the responses from some of the institutions affected by this report,

Under fire yet again, law enforcement is fighting back. Facing heavy criticism for misconduct and abuse, prosecutors are protesting a new report from President Obama’s top scientific advisors that documents what has long been clear: much of the forensic evidence used to win convictions, including complex DNA samples and bite mark analysis, is not backed up by credible scientific research.

Although the evidence of this is clear, many in law enforcement seem terrified that keeping pseudoscience out of prosecutions will make them unwinnable. Attorney General Loretta Lynch declined to accept the report’s recommendations on the admissibility of evidence and the FBI accused the advisors of making “broad, unsupported assertions.” But the National District Attorneys Association, which represents roughly 2,5000 top prosecutors nationwide, went the furthest, taking it upon itself to, in its own words, “slam” the report.

Prosecutors’ actual problem with the report, produced by some of the nation’s leading scientists on the President’s Council of Advisors on Science and Technology, seems to be unrelated to science. Reached by phone NDAA president-elect Michael O. Freeman could not point to any specific problem with the research and accused the scientists of having an agenda against law enforcement.

“I’m a prosecutor and not a scientist,” Freeman, the County Attorney in Hennepin County, Minnesota, which encompasses Minneapolis, told Salon. “We think that there’s particular bias that exists in the folks who worked on this, and they were being highly critical of the forensic disciplines that we use in investigating and prosecuting cases.”

That response, devoid of any reference to hard science, has prompted some mockery, including from Robert Smith, Senior Research Fellow and Director of the Fair Punishment Project at Harvard Law School, who accused the NDAA of “fighting to turn America’s prosecutors into the Anti-Vaxxers, the Phrenologists, the Earth-Is-Flat Evangelists of the criminal justice world.”

It has also, however, also lent credence to a longstanding criticism that American prosecutors are more concerned with winning than in establishing a defendant’s guilt beyond a reasonable doubt.

“Prosecutors should not be concerned principally with convictions; they should be concerned with justice,” said Daniel S. Medwed, author of “Prosecution Complex: America’s Race to Convict and Its Impact on the Innocent” and a professor at Northern University School of Law, told Salon. “Using dodgy science to obtain convictions does not advance justice.”

Denvir’s article is lengthier and worth reading in its entirety.

Assuming there’s an association of forensic scientists, I find it interesting they don’t appear to have responded.

Finally, if there’s one thing you learn while writing about science it’s that there is no real certainty. For example, if you read about the Higgs boson discovery, you’ll note that the scientists involved the research never stated with absolute certainty that it exists but rather they ‘were pretty darn sure’ it does (I believe the scientific term is 5-sigma). There’s more about the Higgs boson and 5-sigma in this July 17, 2012 article by Evelyn Lamb for Scientific American,

In short, five-sigma corresponds to a p-value, or probability, of 3×10-7, or about 1 in 3.5 million. This is not the probability that the Higgs boson does or doesn’t exist; rather, it is the probability that if the particle does not exist, the data that CERN [European Particle Physics Laboratory] scientists collected in Geneva, Switzerland, would be at least as extreme as what they observed. “The reason that it’s so annoying is that people want to hear declarative statements, like ‘The probability that there’s a Higgs is 99.9 percent,’ but the real statement has an ‘if’ in there. There’s a conditional. There’s no way to remove the conditional,” says Kyle Cranmer, a physicist at New York University and member of the ATLAS team, one of the two groups that announced the new particle results in Geneva on July 4 [2012].

For the interested, there’s a lot more to Lamb’s article.

Getting back to forensic science, this PCAST report looks like an attempt to bring forensics back into line with the rest of the science world.

A selection of science songs for summer

Canada’s Perimeter Institute for Theoretical Physics (PI) has compiled a list of science songs and it includes a few Canadian surprises. Here’s more from the July 21, 2016 PI notice received via email.

Ah, summer.

School’s out, the outdoors beckon, and with every passing second a 4.5-billion-year-old nuclear fireball fuses 620 million tons of hydrogen so brightly you’ve gotta wear shades.

Who says you have to stop learning science over the summer?

All you need is the right soundtrack to your next road trip, backyard barbeque, or day at the beach.

Did we miss your favourite science song? Tweet us @Perimeter with the hashtag #SciencePlaylist.

You can find the list and accompanying videos on The Ultimate Science Playlist webpage on the PI website. Here are a few samples,

“History of Everything” – Barenaked Ladies (The Big Bang Theory theme)

You probably know this one as the theme song of The Big Bang Theory. But here’s something you might not know. The tune began as an improvised ditty Barenaked Ladies’ singer Ed Robertson performed one night in Los Angeles after reading Simon Singh’s book Big Bang: The Most Important Scientific Discovery of All Time and Why You Need to Know About It. Lo and behold, in the audience that night were Chuck Lorre and Bill Prady, creators of The Big Bang Theory. The rest is history (of everything).

“Bohemian Gravity” – A Capella Science (Tim Blais)

Tim Blais, the one-man choir behind A Capella Science, is a master at conveying complex science in fun musical parodies. “Bohemian Gravity” is his most famous, but be sure to also check out our collaboration with him about gravitational waves, “LIGO: Feel That Space.”

“NaCl” – Kate and Anna McGarrigle

“NaCl” is a romantic tale of the courtship of a chlorine atom and a sodium atom, who marry and become sodium chloride. “Think of the love you eat,” sings Kate McGarrigle, “when you salt your meat.”

This is just a sampling. At this point, there are 15 science songs on the webpage. Surprisingly, rap is not represented. One other note, you’ll notice all of my samples are Canadian. (Sadly, I had other videos as well but every time I saved a draft I lost at least half or more. It seems the maximum allowed to me is three.).

Here are the others I wanted to include:

“Mandelbrot Set” – Jonathan Coulton

Singer-songwriter Jonathan Coulton (JoCo, to fans) is arguably the patron saint of geek-pop, having penned the uber-catchy credits songs of the Portal games, as well as this loving tribute to a particular set of complex numbers that has a highly convoluted fractal boundary when plotted.

“Higgs Boson Sonification” – Traq 

CERN physicist Piotr Traczyk (a.k.a. Traq) “sonified” data from the experiment that uncovered the Higgs boson, turning the discovery into a high-energy metal riff.

“Why Does the Sun Shine?” – They Might Be Giants

Choosing just one song for this playlist by They Might Be Giants is a tricky task, since They Definitely Are Nerdy. But this one celebrates physics, chemistry, and astronomy while also being absurdly catchy, so it made the list. Honourable mention goes to their entire album for kids, Here Comes Science.

In any event, the PI list is a great introduction to science songs and The Ultimate Science Playlist includes embedded videos for all 15 of the songs selected so far. Happy Summer!

Help find some siblings for the Higgs boson

This is the Higgs Hunters’ (or HiggsHunters) second call for volunteers; the first was described in my Dec. 2, 2014 posting. Some 18 months after the first call, over 20,000 volunteers have been viewing images from the Large Hadron Collider in a bid to assist physicists at CERN (European Organization for Nuclear Research).

These images show how particles appear in the ATLAS detector. The lines show the paths of charged particles travelling away from a collision at the centre. Volunteers are looking for tracks appearing 'out of thin air' away from the centre. (Image: CERN)

These images show how particles appear in the ATLAS detector. The lines show the paths of charged particles travelling away from a collision at the centre. Volunteers are looking for tracks appearing ‘out of thin air’ away from the centre. (Image: CERN)

A July 6, 2016 news item on phys.org announces the call for more volunteers (Note: Links have been removed),

A citizen science project, called HiggsHunters gives everyone the chance to help search for the Higgs boson’s relatives.

Volunteers are searching through thousands of images from the ATLAS experiment on the HiggsHunters.org website, which makes use of the Zooniverse  citizen science platform.

They are looking for ‘baby Higgs bosons’, which leave a characteristic trace in the ATLAS detector.

This is the first time that images from the Large Hadron Collider have been examined on such a scale – 60,000 of the most interesting events were selected from collisions recorded throughout 2012 – the year of the Higgs boson discovery. About 20,000 of those collisions have been scanned so far, revealing interesting features.

A July 4, 2016 posting by Harriet Kim Jarlett on Will Kalderon’s CERN blog, which originated the news item, provides more details,

“There are tasks – even in this high-tech world – where the human eye and the human brain simply win out,” says Professor Alan Barr of the University of Oxford, who is leading the project.

Over the past two years, more than twenty thousand amateur scientists, from 179 countries, have been scouring images of LHC collisions,  looking for as-yet unobserved particles.

Dr Will Kalderon, who has been working on the project says “We’ve been astounded both by the number of responses and ability of people to do this so well, I’m really excited to see what we might find”.

July 4, 2016 was the fourth anniversary of the  confirmation that the Higgs Boson almost certainly exists (from the CERN blog),

Today, July 4 2016, is the fourth birthday of the Higgs boson discovery. Here, a toy Higgs is sat on top of a birthday cake decorated with a HiggsHunter event display. On the blackboard behind is the process people are looking for - Higgs-strahlung. (Image: Will Kalderon/CERN)

Today, July 4 2016, is the fourth birthday of the Higgs boson discovery. Here, a toy Higgs is sat on top of a birthday cake decorated with a HiggsHunter event display. On the blackboard behind is the process people are looking for – Higgs-strahlung. (Image: Will Kalderon/CERN)

You can find the Higgs Hunters website here. Should you be interested in other citizen science projects, you can find the Zooniverse website here.

Simulating elementary physics in a quantum simulation (particle zoo in a quantum computer?)

Whoever wrote the news release used a very catchy title “Particle zoo in a quantum computer”; I just wish they’d explained it. Looking up the definition for a ‘particle zoo’ didn’t help as much as I’d hoped. From the particle zoo entry on Wikipedia (Note: Links have been removed),

In particle physics, the term particle zoo[1][2] is used colloquially to describe a relatively extensive list of the then known “elementary particles” that almost look like hundreds of species in the zoo.

In the history of particle physics, the situation was particularly confusing in the late 1960s. Before the discovery of quarks, hundreds of strongly interacting particles (hadrons) were known, and believed to be distinct elementary particles in their own right. It was later discovered that they were not elementary particles, but rather composites of the quarks. The set of particles believed today to be elementary is known as the Standard Model, and includes quarks, bosons and leptons.

I believe the writer used the term to indicate that the simulation undertaken involved elementary particles. If you have a better explanation, please feel free to add it to the comments for this post.

Here’s the news from a June 22, 2016 news item on ScienceDaily,

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The discovery of the Higgs boson at the CERN in 2012 constitutes a further step towards the confirmation of the Standard Model. However, many aspects of this theory are still not understood because their complexity makes it hard to investigate them with classical computers. Quantum computers may provide a way to overcome this obstacle as they can simulate certain aspects of elementary particle physics in a well-controlled quantum system. Physicists from the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences have now done exactly that: In an international first, Rainer Blatt’s and Peter Zoller’s research teams have simulated lattice gauge theories in a quantum computer. …

A June 23, 2016 University of Innsbruck (Universität Innsbruck) press release, which seems  to have originated the news item, provides more detail,

Gauge theories describe the interaction between elementary particles, such as quarks and gluons, and they are the basis for our understanding of fundamental processes. “Dynamical processes, for example, the collision of elementary particles or the spontaneous creation of particle-antiparticle pairs, are extremely difficult to investigate,” explains Christine Muschik, theoretical physicist at the IQOQI. “However, scientists quickly reach a limit when processing numerical calculations on classical computers. For this reason, it has been proposed to simulate these processes by using a programmable quantum system.” In recent years, many interesting concepts have been proposed, but until now it was impossible to realize them. “We have now developed a new concept that allows us to simulate the spontaneous creation of electron-positron pairs out of the vacuum by using a quantum computer,” says Muschik. The quantum system consists of four electromagnetically trapped calcium ions that are controlled by laser pulses. “Each pair of ions represent a pair of a particle and an antiparticle,” explains experimental physicist Esteban A. Martinez. “We use laser pulses to simulate the electromagnetic field in a vacuum. Then we are able to observe how particle pairs are created by quantum fluctuations from the energy of this field. By looking at the ion’s fluorescence, we see whether particles and antiparticles were created. We are able to modify the parameters of the quantum system, which allows us to observe and study the dynamic process of pair creation.”

Combining different fields of physics

With this experiment, the physicists in Innsbruck have built a bridge between two different fields in physics: They have used atomic physics experiments to study questions in high-energy physics. While hundreds of theoretical physicists work on the highly complex theories of the Standard Model and experiments are carried out at extremely expensive facilities, such as the Large Hadron Collider at CERN, quantum simulations may be carried out by small groups in tabletop experiments. “These two approaches complement one another perfectly,” says theoretical physicist Peter Zoller. “We cannot replace the experiments that are done with particle colliders. However, by developing quantum simulators, we may be able to understand these experiments better one day.” Experimental physicist Rainer Blatt adds: “Moreover, we can study new processes by using quantum simulation. For example, in our experiment we also investigated particle entanglement produced during pair creation, which is not possible in a particle collider.” The physicists are convinced that future quantum simulators will potentially be able to solve important questions in high-energy physics that cannot be tackled by conventional methods.

Foundation for a new research field

It was only a few years ago that the idea to combine high-energy and atomic physics was proposed. With this work it has been implemented experimentally for the first time. “This approach is conceptually very different from previous quantum simulation experiments studying many-body physics or quantum chemistry. The simulation of elementary particle processes is theoretically very complex and, therefore, has to satisfy very specific requirements. For this reason it is difficult to develop a suitable protocol,” underlines Zoller. The conditions for the experimental physicists were equally demanding: “This is one of the most complex experiments that has ever been carried out in a trapped-ion quantum computer,” says Blatt. “We are still figuring out how these quantum simulations work and will only gradually be able to apply them to more challenging phenomena.” The great theoretical as well as experimental expertise of the physicists in Innsbruck was crucial for the breakthrough. Both Blatt and Zoller emphasize that they have been doing research on quantum computers for many years now and have gained a lot of experience in their implementation. Innsbruck has become one of the leading centers for research in quantum physics; here, the theoretical and experimental branches work together at an extremely high level, which enables them to gain novel insights into fundamental phenomena.

Here’s a link to and a citation for the paper,

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer by Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, & Rainer Blatt.  Nature 534, 516–519 (23 June 2016)  doi:10.1038/nature18318 Published online 22 June 2016

This paper is behind a paywall.

There is a soundcloud audio file featuring an explanation of the work from the lead author, Esteban A. Martinez,

Less pollution from ships with nanofilter

04.05.16 - Cargo ships are among the leading sources of pollution on the planet. Starting in 2020, however, stricter sulfur emission standards will take effect. A low-cost solution for reaching the new targets may come from an EPFL start-up, which is developing a nanostructured filter for use in a ship’s exhaust stacks. Courtesy EPFL

04.05.16 – Cargo ships are among the leading sources of pollution on the planet. Starting in 2020, however, stricter sulfur emission standards will take effect. A low-cost solution for reaching the new targets may come from an EPFL start-up, which is developing a nanostructured filter for use in a ship’s exhaust stacks. Copyright Alain Herzog Courtesy EPFL

A May 4, 2016 news item on Nanowerk describes a marine initiative from the École Polytechnique de Lausanne (EPFL) in Switzerland,

Around 55,000 cargo ships ply the oceans every day, powered by a fuel that is dirtier than diesel. And owing to lax standards, maritime transport has emerged as one of the leading emitters – alongside air transport – of nitrogen oxide and sulfur. But the International Maritime Organization has enacted tighter emission limits, with new standards set to take effect in 2020. In response, an EPFL start-up is developing a low-cost and eco-friendly solution: a filter that can be installed in the ships’ exhaust stacks. The start-up, Daphne Technology, could do well on this massive market.

Given that no oceans or seas border Switzerland, it’s a rather interesting initiative on their part. Here’s more from a May 4, 2015 EPFL press release, which originated the news item,

Lowering sulfur emissions to below 1%

Under laboratory conditions, the nanostructured filter is able to cut sulfur emissions to below 1% and nitrogen oxide emissions to 15% of the current standards. This is a major improvement, seeing as the new standards will require an approximately 14% reduction in sulfur emissions.

Manufacturing the filters is similar to manufacturing solar cells. A thin metal plate – titanium in this case – is nanostructured in order to increase its surface area, and a number of substances are deposited in extremely thin layers. The plates are then placed vertically and evenly spaced, creating channels through which the toxic gases travel. The gases are captured by the nanostructured surfaces. This approach is considered eco-friendly because the substances in the filter are designed to be recycled. And the exhaust gas itself becomes inert and could be used in a variety of products, such as fertilizer.

The main challenges now are to figure out a way to make these filters on large surfaces, and to bring down the cost. It was at EPFL’s Swiss Plasma Center that researcher Mario Michan found a machine that he could modify to meet his needs: it uses plasma to deposit thin layers of substances. The next step is to produce a prototype that can be tested under real-world conditions.

Michan came up with his solution for toxic gas emissions after he worked on merchant ships while completing his Master’s degree in microengineering. It took several years, some techniques he picked up in the various labs in which he worked, and a few patents for Michan to make headway on his project. It was while he was working in another field at CERN and observing the technologies used to coat the inside of particle accelerators that he discovered a process needed for his original concept. An EPFL patent tying together the various aspects of the technology and several manufacturing secrets should be filed this year.

According to the European Environment Agency, merchant ships give off 204 times more sulfur than the billion cars on the roads worldwide. Michan estimates that his nanostructured filters, if they were used by all cargo ships, would reduce these emissions to around twice the level given off by all cars, and the ships would not need to switch to another fuel. Other solutions exist, but his market research showed that they were all lacking in some way: “Marine diesel fuel is cleaner but much more expensive and would drive up fuel costs by 50% according to ship owners. And the other technologies that have been proposed cannot be used on boats or they only cut down on sulfur emissions without addressing the problem of nitrogen oxide.”

The Daphne Technology website is here.

Mega science (e.g., a Large Hadron Collider) for agriculture

They are not talking about smashing plants together at high speeds when they suggest creating a CERN LHC (European Particle Physics Laboratory Large Hadron Collider) for agricultural sciences. Rather, three scientists have published a discussion paper about enabling large scale collaborations amongst agricultural scientists in Europe, according to a Jan. 5, 2016 news item on phys.org,

The Large Hadron Collider, a.k.a. CERN, found success in a simple idea: Invest in a laboratory that no one institution could sustain on their own and then make it accessible for physicists around the world. Astronomers have done the same with telescopes, while neuroscientists are collaborating to build brain imaging observatories. Now, in Trends in Plant Science on January 5 [2016], agricultural researchers present their vision for how a similar idea could work for them.

Rather than a single laboratory, the authors want to open a network of research stations across Europe—from a field in Scotland to an outpost in Sicily. Not only would this provide investigators with easy access to a range of different soil properties, temperatures, and atmospheric conditions to study plant/crop growth, it would allow more expensive equipment (for example, open-field installations to create artificial levels of carbon dioxide) to be a shared resource.

A Jan. 5, 2016 Cell Press news release on EurekAlert, which originated the news item, expands on the theme,

“Present field research facilities are aimed at making regional agriculture prosperous,” says co-author Hartmut Stützel of Leibniz Universität Hannover in Germany. “To us, it is obvious that the ‘challenges’ of the 21st century–productivity increase, climate change, and environmental sustainability–will require more advanced research infrastructures covering a wider range of environments.”

Stützel and colleagues, including Nicolas Brüggemann of Forschungszentrum Jülich in Germany and Dirk Inzé of VIB and Ghent University in Belgium, are just at the beginning of the process of creating their network, dubbed ECOFE (European Consortium for Open Field Experimentation). The idea was born last February at a meeting of Science Europe and goes back to discussions within a German Research Foundation working group starting four years ago. Now, they are approaching European ministries to explore the possibilities for ECOFE’s creation.

In addition to finding financial and political investment, ECOFE’s success will hinge on whether scientists at the various institutional research stations will be able to sacrifice a bit of their autonomy to focus on targeted research projects, Stützel says. He likens the network to a car sharing service, in which researchers will be giving up the autonomy and control of their own laboratories to have access to facilities in different cities. If ECOFE catches on, thousands of scientists could be using the network to work together on a range of “big picture” agricultural problems.

“It will be a rather new paradigm for many traditional scientists, but I think the communities are ready to accept this challenge and understand that research in the 21st century requires these types of infrastructures,” Stützel say. “We must now try to make political decision makers aware that a speedy implementation of a network for open field experimentation is fundamental for future agricultural research.”

Here’s a link to and a citation for the paper,

The Future of Field Trials in Europe: Establishing a Network Beyond Boundaries by Hartmut Stützel, Nicolas Brüggemann, Dirk Inzé. Publication stage: In Press Corrected Proof DOI: http://dx.doi.org/10.1016/j.tplants.2015.12.003 Published Online: January 05, 2016

This paper appears to be open access.

Become a Higgs Hunter (anyone can do it)

The Higgs you’d be hunting is a Higgs boson; the one that was confirmed to worldwide jubilation in 2012. (For anyone not familiar with the Higgs, I have a Dec. 14, 2011 post which provides a introductory video from the US Fermi Lab along with more information.)

Thanks to David Bruggeman and a Nov. 29, 2014 post on his Pasco Phronesis blog I have additional details about this citizen science, aka, crowdsourced science, project,

If you accept the assignment, Higgs Hunters will provide you several particle images from the ATLAS detector at CERN.  Mark any tracks that are off-centre in the images and move on to the next.  The tracks represent decay of exotic particles, particles that could have resulted from the decay of the Higgs boson.

Here’s more from a Science Magazine Nov. 26, 2014 posting (Note: Links have been removed),

Today [Nov. 26, 2014] marks the beginning of your chance to hunt for tiny explosions that could eventually lead to entirely new physics. Head to higgshunters.org to help scientists analyze 25,000 images from CERN’s particle collider, but be warned, you’ll be looking for evidence of the Higgs boson’s death. Some scientists believe that when the Higgs boson decays, it leaves behind other, completely new particles. …

Higgshunters.org has prepared its own video introduction to the project,

For those who prefer text, Higgs Hunters has this to say on its Introductory page,

In 2012, the world of Particle Physics rejoiced with the discovery of the long sought after Higgs boson particle. But this is just the beginning. In our search for answers to the most fundamental questions about the nature of reality, we are looking for your help in finding evidence of new physics beyond our current understanding. Through searching for exotic decays (particles falling apart in unexpected ways) in the Large Hadron Collider’s particle collisions, you can be a part of the next great revolution in Physics. The LHC’s computer programs were not designed to look for these decays, but we are willing to bet that a keen pair of human eyes can. So how about it, are you ready to change our understanding of the world?

On its How you can help page, the Higgs Hunters scientists describe the magnitude of the project and The Zooniverse (a citizen science organization), which is providing the platform for this project Note: Links have been removed,

Particle colliders produce a huge amount of data – so large in fact that the world-wide web was invented at CERN so scientists could share the data with each other to handle it. CERN now has a global computing grid of 170 computing centres in 40 countries trawling through the data, but computers are far from perfect. Unlike the human brain, which is naturally curious and excellent at pattern recognition, computer programs can only find what they have been taught how to find.

The Zooniverse has a rich history of making new discoveries that computers had completely missed (some older members will recall the excitement surrounding ‘Hanny’s Voorwerp’ found by a citizen scientist working on the Galaxy Zoo project). In this spirit, we need your help to look for the weird and wonderful secrets hiding in the LHC data. In doing so, you will also be teaching our computers how to better spot exotic particle events, speeding up the process of future scientific discoveries! To do this Higgs Hunters shows you a combination of simulated and real data. We need to understand what kind of events can be ‘detected’ using this site, and so we include computer-generated data as well as real data. You’ll be told after each classification if it was a simulation.

With your help, we can collectively improve our understanding of the universe. The next new discovery is waiting to be found!

Good luck!

I last mentioned The Zooniverse and citizen science in a Nov. 19, 2014 post about the upcoming American Association for the Advancement of Science (AAAS) 2015 meeting in California. Citizen science will be discussed in presentations at the meeting and also at the  Citizen Science Association’s first conference (which is being held as a pre-AAAS 2015 meeting conference).