Tag Archives: University of Illinois

Bring ‘jazzy’ molecules to life on an app

The app accompanies book two (Molecules: The Elements and the Architecture of Everything) in a proposed trilogy about chemical elements in all their glory. A Dec. 10, 2014 news item on phys.org describes the app,

Although molecules make up everything around us, most people encounter these groups of atoms held together by chemical bonds in the pages of a textbook. They read text and see a drawing of chemical symbols or colorful circles—a one-dimensional view of the microscopic structures. Other representations have drawbacks as well: three-dimensional models are made of materials that can’t replicate the rapid and continuous molecular movement. Molecules are wiggling and jiggling in a never-ending dance, but you can’t see it, not even with the most powerful microscope.

“What is the best thing you could do to present (a molecule) to somebody?” asked Theo Gray, a scientist and author of “Molecules: The Elements and the Architecture of Everything.” “What’s the closest that you can come to actually handing it to them, so they could pick it up and look at it themselves?”

How about an app? In collaboration with the Theoretical and Computational Biophysics Group (TCBG) at the Beckman Institute at the University of Illinois, Gray’s company, Touchpress, has created an app for the Apple operating system (iOS) that brings molecules to life in a handheld device. Through the app, people can use up to eleven [?] fingers to examine in great detail more than 350 molecules, which they can also twist, turn, and tie into knots.

Gray has produced an entertaining and ‘jazzy’ video promoting his app (from theodoregray.com’s Molecules webpage where a link to the iTunes Download is provided),

A Dec. 10, 2014 Beckman Institute (University of Illinois) news release (also on EurekAlert) which originated the news item on phys.org, describes the objectives and the app itself more thoroughly,

“Every student who learns about typical molecules can do it now in a playful manner and realize that molecules are not dead and frozen, but that they move,” said Klaus Schulten, head of TCBG, and professor of physics at Illinois.

The app also allows users to vary the temperature and time scale in order to make the molecules move more quickly or more slowly. If the temperature is warm the molecules will move rapidly, while cold temperatures turn them sluggish, and absolute zero freezes them solid.

Getting molecules into everyone’s hands has been a goal for Gray. Even though Molecules is a beautifully illustrated book, Gray knows that the most stunning color photos and detailed descriptions can’t show the actual nature of molecules as well as looking at moving images of the material and the atomic motions themselves.

“In the case of molecules, you really can’t get a sense of what this stuff is like if you’re just looking at a picture: how goopy is it? Is it very runny or is it very thick? Is it like molasses or more like oil or more like water?” explained Gray.

“There’s also the fact that you can’t see molecules: they’re too small to see, and they’re too fast to perceive, but by providing an interactive simulation, you can give people really quite a good intuitive feeling for what a molecule is like and how it moves and how it behaves, and translate that into human scale.”

A chance meeting at a 2013 New Year’s Eve party between Gray and Barry Isralewitz, a TCBG research programmer, led to a discussion of molecular dynamic simulation. Isralewitz’s work with the TCBG involves simulating biological structures down to the atomic level. The group has created software packages VMD, which creates the visualizations, and NAMD, which simulates the movement of the structures. The software runs consecutively and in conjunction on powerful computing systems and is freely available to researchers around the world, who use it to model and simulate structures at detailed levels. Recently with the help of Blue Waters, a petascale supercomputer at the University of Illinois, TCBG unraveled one of the largest structures ever simulated—the HIV capsid, made up of 64 million atoms.

For the app, Touchpress created the visualizations, and TCBG provided the NAMD software. Taking the software into iOS, which can be used on iPhones and iPads, was not an easy task. The TCBG staff, including Jim Phillips, John Stone, and Christopher Mayne, among others, consulted regularly with Richard Zito, the main programmer from Touchpress, who lives in London.

“When Theo Gray came to us, he was full of enthusiasm, and we were actually a little hesitant. We didn’t know how well it would work out,” said Schulten. “But it worked very well, and in the course of putting our program onto this device, some technical challenges had to be met and in the wave of enthusiasm of doing it, we actually met those challenges.”

“We learned that our scientific software, which cost around $20 million to develop for the world’s best computers, can actually serve children and their parents in acquainting themselves with flexibility of molecules,” said Schulten.

“Now between education and entertainment we can think of using it for teaching. VMD is actually already used at many colleges for teaching, but now with this approach and having just a tablet computer, not even a laptop or a desktop workstation, we can penetrate much further with utilizing our tools for teaching than we ever did before.”

According to Gray, the app can make significant inroads into bringing molecules to the masses.

“It was particularly the combination of molecular dynamic simulation with a touch screen that makes it into sort of a magical experience that you don’t have when you’re doing it with a mouse,” said Gray. “Touch devices make things much more immediate and you have a personal connection to it. Combined with the fact that you can use multiple fingers to grab onto and move a molecule, like you would if you were actually holding it in your hands, it makes it quite a different experience and because it’s an iPad app, it’s available to anybody. I think it’s a pretty significant step toward getting the general public to have a better intuitive grasp as to what molecules are like.”

Schulten believes that the entertainment the app provides will help educate the next generation of scientists.

“Interacting with molecules makes them fun and natural, and that is a very powerful aspect of becoming familiar with the world of molecules,” said Schulten. “This is a wonderful tool that fits the landscape of the computing world that anybody can become familiar with through a cell phone and with a tablet, and we can utilize this big science for teaching the next generation.”

Molecules is the second volume in a proposed trilogy; The Elements: A Visual Exploration of Every Known Atom in the Universe was the first. Gray hopes that his next book Reactions and accompanying app can be as successful as Molecules.

“I think the most important thing, really,” said Gray, “is the fact that this technology has existed for quite some time, a couple of decades, but it’s really been locked up in labs, as it were—not because it wasn’t possible to bring it out to a more wide accessibility, but just because no one had thought of a good context to do that in, and maybe have the idea that it was possible to port them to a touch screen device.”

The app is available on iTunes for $13.99.

What a great idea! I wish Gray and his collaborators all the best with this project.

One last questions, is there an Android or PC desktop app in the works?

E-tattoo without the nanotech

John Rogers and his team at the University of Illinois and a colleague’s (Yonggang Huang) team at Northwestern University have devised an ‘electronic tattoo’ (a soft, stick-on patch) made up from materials that anyone can purchase off-the-shelf. Rogers is known for his work with nanomaterials (my Aug. 10, 2012 posting titled ‘Surgery with fingertip control‘ mentioned a silicon nanomembrane that can be fitted onto the fingertips for possible use in surgical procedures) and with electronics (my Aug. 12, 2011 posting titled: ‘Electronic tattoos‘ mentioned his earlier attempts at developing e-tattoos).

This latest effort from Rogers and his multi-university team is mentioned in an April 4, 2014 article by Mark Wilson for Fast Company,

About a year ago, University of Illinois researcher John Rogers revealed a pretty amazing creation: a circuit that, rather than living on an inflexible board, could stick to and move with someone’s skin just like an ink stamp. But like any early research, it was mostly a proof-of-concept, and it would require relatively expensive, custom-printed electronics to work.

Today, Rogers, in conjunction with Northwestern University’s Yonggang Huang, has published details on version 2.0 in Science, revealing that this once-esoteric project has more immediate, mass market appeal.

… It means that you could create a wearable electronic that’s one-part special sticky circuit board, every other part whatever-the-hell-you-manufactured-in-China. This flexible circuit could accommodate a stock battery, an accelerometer, a Wi-Fi chip, and a Bluetooth circuitry, for instance, all living on your skin rather than inside your iPhone. And as an added bonus, it would be relatively cheap.

A University of Illinois April ?, 2014 news release describes Rogers, his multi-university team, and their current (pun intended) e-tattoo,

Engineers at the University of Illinois at Urbana-Champaign and Northwestern University have demonstrated thin, soft stick-on patches that stretch and move with the skin and incorporate commercial, off-the-shelf chip-based electronics for sophisticated wireless health monitoring.

The patches stick to the skin like a temporary tattoo and incorporate a unique microfluidic construction with wires folded like origami to allow the patch to bend and flex without being constrained by the rigid electronics components. The patches could be used for everyday health tracking – wirelessly sending updates to your cellphone or computer – and could revolutionize clinical monitoring such as EKG and EEG testing – no bulky wires, pads or tape needed.

“We designed this device to monitor human health 24/7, but without interfering with a person’s daily activity,” said Yonggang Huang, the Northwestern University professor who co-led the work with Illinois professor John A. Rogers. “It is as soft as human skin and can move with your body, but at the same time it has many different monitoring functions. What is very important about this device is it is wirelessly powered and can send high-quality data about the human body to a computer, in real time.”

The researchers did a side-by-side comparison with traditional EKG and EEG monitors and found the wireless patch performed equally to conventional sensors, while being significantly more comfortable for patients. Such a distinction is crucial for long-term monitoring, situations such as stress tests or sleep studies when the outcome depends on the patient’s ability to move and behave naturally, or for patients with fragile skin such as premature newborns.

Rogers’ group at Illinois previously demonstrated skin electronics made of very tiny, ultrathin, specially designed and printed components. While those also offer high-performance monitoring, the ability to incorporate readily available chip-based components provides many important, complementary capabilities in engineering design, at very low cost.

“Our original epidermal devices exploited specialized device geometries – super thin, structured in certain ways,” Rogers said. “But chip-scale devices, batteries, capacitors and other components must be re-formulated for these platforms. There’s a lot of value in complementing this specialized strategy with our new concepts in microfluidics and origami interconnects to enable compatibility with commercial off-the-shelf parts for accelerated development, reduced costs and expanded options in device types.”

The multi-university team turned to soft microfluidic designs to address the challenge of integrating relatively big, bulky chips with the soft, elastic base of the patch. The patch is constructed of a thin elastic envelope filled with fluid. The chip components are suspended on tiny raised support points, bonding them to the underlying patch but allowing the patch to stretch and move.

One of the biggest engineering feats of the patch is the design of the tiny, squiggly wires connecting the electronics components – radios, power inductors, sensors and more. The serpentine-shaped wires are folded like origami, so that no matter which way the patch bends, twists or stretches, the wires can unfold in any direction to accommodate the motion. Since the wires stretch, the chips don’t have to.

Skin-mounted devices could give those interested in fitness tracking a more complete and accurate picture of their activity level.

“When you measure motion on a wristwatch type device, your body is not very accurately or reliably coupled to the device,” said Rogers, a Swanlund Professor of Materials Science and Engineering at the U. of I. “Relative motion causes a lot of background noise. If you have these skin-mounted devices and an ability to locate them on multiple parts of the body, you can get a much deeper and richer set of information than would be possible with devices that are not well coupled with the skin. And that’s just the beginning of the rich range of accurate measurements relevant to physiological health that are possible when you are softly and intimately integrated onto the skin.”

The researchers hope that their sophisticated, integrated sensing systems could not only monitor health but also could help identify problems before the patient may be aware. For example, according to Rogers, data analysis could detect motions associated with Parkinson’s disease at its onset.

“The application of stretchable electronics to medicine has a lot of potential,” Huang said. “If we can continuously monitor our health with a comfortable, small device that attaches to our skin, it could be possible to catch health conditions before experiencing pain, discomfort and illness.”

Here’s a link to and a citation for the paper,

Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin by Sheng Xu, Yihui Zhang, Lin Jia, Kyle E. Mathewson, Kyung-In Jang, Jeonghyun Kim, Haoran Fu, Xian Huang, Pranav Chava, Renhan Wang, Sanat Bhole, Lizhe Wang, Yoon Joo Na, Yue Guan, Matthew Flavin, Zheshen Han, Yonggang Huang, & John A. Rogers. Science 4 April 2014: Vol. 344 no. 6179 pp. 70-74 DOI: 10.1126/science.1250169

This paper is behind a paywall.

Seeing things from a bug’s perspective—a new type of digital camera

The new digital cameras exploit large arrays of tiny focusing lenses and miniaturized detectors in hemispherical layouts, just like eyes found in arthropods

The new digital cameras exploit large arrays of tiny focusing lenses and miniaturized detectors in hemispherical layouts, just like eyes found in arthropods

A May 1, 2013 news item on Nanowerk provides some details about a new ‘bug-eyed’ digital camera,

An interdisciplinary team of researchers has created the first digital cameras with designs that mimic those of ocular systems found in dragonflies, bees, praying mantises and other insects. This class of technology offers exceptionally wide-angle fields of view, with low aberrations, high acuity to motion, and nearly infinite depth of field.

Taking cues from Mother Nature, the cameras exploit large arrays of tiny focusing lenses and miniaturized detectors in hemispherical layouts, just like eyes found in arthropods. The devices combine soft, rubbery optics with high performance silicon electronics and detectors, using ideas first established in research on skin and brain monitoring systems by John A. Rogers, a Swanlund Chair Professor at the University of Illinois at Urbana-Champaign, and his collaborators.

The May 1, 2013 University of Illinois news release by John Kubetz, which originated the news item, describes the special properties of an insect eye and how the camera mimics those properties,

Eyes in arthropods use compound designs, in which arrays of smaller eyes act together to provide image perception. Each small eye, known as an ommatidium, consists of a corneal lens, a crystalline cone, and a light sensitive organ at the base. The entire system is configured to provide exceptional properties in imaging, many of which lie beyond the reach of existing man-made cameras.

The researchers developed new ideas in materials and fabrication strategies allowing construction of artificial ommatidia in large, interconnected arrays in hemispherical layouts. Building such systems represents a daunting task, as all established camera technologies rely on bulk glass lenses and detectors constructed on the planar surfaces of silicon wafers which cannot be bent or flexed, much less formed into a hemispherical shape.

“A critical feature of our fly’s eye cameras is that they incorporate integrated microlenses, photodetectors, and electronics on hemispherically curved surfaces,” said Jianliang Xiao, an assistant professor of mechanical engineering at University of Colorado Boulder and coauthor of the study. “To realize this outcome, we used soft, rubbery optics bonded to detectors/electronics in mesh layouts that can be stretched and deformed, reversibly and without damage.”

On a more technical note, from the news release,

The fabrication starts with electronics, detectors and lens arrays formed on flat surfaces using advanced techniques adapted from the semiconductor industry, said Xiao [Jianliang Xiao, an assistant professor of mechanical engineering at University of Colorado Boulder and coauthor of the study], who began working on the project as a postdoctoral researcher in Rogers’ lab at Illinois. The lens sheet—made from a polymer material similar to a contact lens—and the electronics/detectors are then aligned and bonded together. Pneumatic pressure deforms the resulting system into the desired hemispherical shape, in a process much like blowing up a balloon, but with precision engineering control.

The individual electronic detectors and microlenses are coupled together to avoid any relative motion during this deformation process. Here, the spaces between these artificial ommatidia can stretch to allow transformation in geometry from planar to hemispherical. The electrical interconnections are thin, and narrow, in filamentary serpentine shapes; they deform as tiny springs during the stretching process.

According to the researchers, each microlens produces a small image of an object with a form dictated by the parameters of the lens and the viewing angle. An individual detector responds only if a portion of the image formed by the associated microlens overlaps the active area. The detectors stimulated in this way produce a sampled image of the object that can then be reconstructed using models of the optics.

Katherine Bourzac in her May 1, 2013 article for Nature magazine provides some additional insight and a perspective (intentional wordplay) from a researcher who has an idea of how he might like to integrate this new type of camera into his own work,

Insect eyes are made up of hundreds or even thousands of light-sensing structures called ommatidia. Each contains a lens and a cone that funnels light to a photosensitive organ. The long, thin ommatidia are bunched together to form the hemispherical eye, with each ommatidium pointing in a slightly different direction. This structure gives bugs a wide field of view, with objects in the periphery just as clear as those in the centre of the visual field, and high motion sensitivity. It also allows a large depth of field — objects are in focus whether they’re nearby or at a distance.

“The whole thing [the new digital camera] is stretchy and thin, and we blow it up like a balloon” so that it curves like a compound eye, says Rogers. The current prototype produces black-and-white images only, but Rogers says a colour version could be made with the same design.

With the basic designs in place, Rogers says, his team can now increase the resolution of the camera by incorporating more ommatidia. “We’d like to do a dragonfly, with 20,000 ommatidia,” he says, which will require some miniaturization of the components.

Alexander Borst, who builds miniature flying robots at the Max Planck Institute of Neurobiology in Martinsried, Germany, says that he is eager to integrate the camera into his machines. Insects’ wide field of vision helps them to monitor and stabilize their position during flight; robots with artificial compound eyes might be better fliers, he says.

For interested parties, here’s a link to and a citation for the research paper,

Digital cameras with designs inspired by the arthropod eye by Young Min Song, Yizhu Xie, Viktor Malyarchuk, Jianliang Xiao, Inhwa Jung, Ki-Joong Choi, Zhuangjian Liu, Hyunsung Park, Chaofeng Lu, Rak-Hwan Kim, Rui Li, Kenneth B. Crozier, Yonggang Huang, & John A. Rogers.
Nature 497, 95–99 (02 May 2013) doi:10.1038/nature12083 Published online 01 May 2013

This article is behind a paywall.

I last mentioned John A. Rogers and the University of Illinois in a Feb. 28, 2013 posting about a bendable, stretchable lithium-ion battery.

Pousse-café nanowires

If you grow a nanowire made up of three elements on a graphene substrate, you get a surprise. At least, that’s what the research team at the University of Illinois received. From the Apr. 23, 2013 news release on EurekAlert,

Nanowires, tiny strings of semiconductor material, have great potential for applications in transistors, solar cells, lasers, sensors and more.

“Nanowires are really the major building blocks of future nano-devices,” said postdoctoral researcher Parsian Mohseni, first author of the study. “Nanowires are components that can be used, based on what material you grow them out of, for any functional electronics application.”

Li’s group uses a method called van der Waals epitaxy to grow nanowires from the bottom up on a flat substrate of semiconductor materials, such as silicon. The nanowires are made of a class of materials called III-V (three-five), compound semiconductors that hold particular promise for applications involving light, such as solar cells or lasers.

The group previously reported growing III-V nanowires on silicon. While silicon is the most widely used material in devices, it has a number of shortcomings. Now, the group has grown nanowires of the material indium gallium arsenide (InGaAs) on a sheet of graphene, a 1-atom-thick sheet of carbon with exceptional physical and conductive properties.

“One of the reasons we want to grow on graphene is to stay away from thick and expensive substrates,” Mohseni said. “About 80 percent of the manufacturing cost of a conventional solar cell comes from the substrate itself. We’ve done away with that by just using graphene. Not only are there inherent cost benefits, we’re also introducing functionality that a typical substrate doesn’t have.”

The researchers pump gases containing gallium, indium and arsenic into a chamber with a graphene sheet. The nanowires self-assemble, growing by themselves into a dense carpet of vertical wires across the surface of the graphene. Other groups have grown nanowires on graphene with compound semiconductors that only have two elements, but by using three elements, the Illinois group made a unique finding: The InGaAs wires grown on graphene spontaneously segregate into an indium arsenide (InAs) core with an InGaAs shell around the outside of the wire. [emphasis mine]

“This is unexpected,” Li [professor Xiuling Li] said. “A lot of devices require a core-shell architecture. Normally you grow the core in one growth condition and change conditions to grow the shell on the outside. This is spontaneous, done in one step. The other good thing is that since it’s a spontaneous segregation, it produces a perfect interface.”

The group plans to make solar cells amongst other items with this new type of nanowire. You can find the whole story (Apr. 23, 2013 news item) on ScienceDaily along with a link to and citation for the researchers’ paper.

This story reminded me of a cocktail that’s fascinated me for years, a pousse-café,

Downloaded from http://www.scienceofdrink.com/2010/10/18/pousse-cafe-and-some-modern-derivatives/langswitch_lang/en/

Downloaded from http://www.scienceofdrink.com/2010/10/18/pousse-cafe-and-some-modern-derivatives/langswitch_lang/en/

The layers are not self-assembling as are the nanowires. Making this drink requires knowledge of the various weights of the liqueurs you are using and some care. You can find some recipes for modern pousse-cafés at the Science of Drink here. I believe this site has been translated from another language so you may find some unusual grammatical structures.

Have a lovely weekend.

Bend it, twist it, any way you want to—a foldable lithium-ion battery

Feb. 26, 2013 news item on ScienceDaily features an extraordinary lithium-ion battery,

Northwestern University’s Yonggang Huang and the University of Illinois’ John A. Rogers are the first to demonstrate a stretchable lithium-ion battery — a flexible device capable of powering their innovative stretchable electronics.

No longer needing to be connected by a cord to an electrical outlet, the stretchable electronic devices now could be used anywhere, including inside the human body. The implantable electronics could monitor anything from brain waves to heart activity, succeeding where flat, rigid batteries would fail.

Huang and Rogers have demonstrated a battery that continues to work — powering a commercial light-emitting diode (LED) — even when stretched, folded, twisted and mounted on a human elbow. The battery can work for eight to nine hours before it needs recharging, which can be done wirelessly.

The researchers at Northwestern have produced a video where they demonstrate the battery’s ‘stretchability’,

The Northwestern University Feb. 26, 2013 news release by Megan Fellman, which originated the news item, offers this detail,

“We start with a lot of battery components side by side in a very small space, and we connect them with tightly packed, long wavy lines,” said Huang, a corresponding author of the paper. “These wires provide the flexibility. When we stretch the battery, the wavy interconnecting lines unfurl, much like yarn unspooling. And we can stretch the device a great deal and still have a working battery.”

The power and voltage of the stretchable battery are similar to a conventional lithium-ion battery of the same size, but the flexible battery can stretch up to 300 percent of its original size and still function.

Huang and Rogers have been working together for the last six years on stretchable electronics, and designing a cordless power supply has been a major challenge. Now they have solved the problem with their clever “space filling technique,” which delivers a small, high-powered battery.

For their stretchable electronic circuits, the two developed “pop-up” technology that allows circuits to bend, stretch and twist. They created an array of tiny circuit elements connected by metal wire “pop-up bridges.” When the array is stretched, the wires — not the rigid circuits — pop up.

This approach works for circuits but not for a stretchable battery. A lot of space is needed in between components for the “pop-up” interconnect to work. Circuits can be spaced out enough in an array, but battery components must be packed tightly to produce a powerful but small battery. There is not enough space between battery components for the “pop-up” technology to work.

Huang’s design solution is to use metal wire interconnects that are long, wavy lines, filling the small space between battery components. (The power travels through the interconnects.)

The unique mechanism is a “spring within a spring”: The line connecting the components is a large “S” shape and within that “S” are many smaller “S’s.” When the battery is stretched, the large “S” first stretches out and disappears, leaving a line of small squiggles. The stretching continues, with the small squiggles disappearing as the interconnect between electrodes becomes taut.

“We call this ordered unraveling,” Huang said. “And this is how we can produce a battery that stretches up to 300 percent of its original size.”

The stretching process is reversible, and the battery can be recharged wirelessly. The battery’s design allows for the integration of stretchable, inductive coils to enable charging through an external source but without the need for a physical connection.

Huang, Rogers and their teams found the battery capable of 20 cycles of recharging with little loss in capacity. The system they report in the paper consists of a square array of 100 electrode disks, electrically connected in parallel.

I’d like to see this battery actually powering a device even though the stretching is quite alluring in its way. For those who are interested here’s a citation and a link to the research paper,

Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems by Sheng Xu, Yihui Zhang, Jiung Cho, Juhwan Lee, Xian Huang, Lin Jia, Jonathan A. Fan, Yewang Su, Jessica Su, Huigang Zhang, Huanyu Cheng, Bingwei Lu,           Cunjiang Yu, Chi Chuang, Tae-il Kim, Taeseup Song, Kazuyo Shigeta, Sen Kang, Canan Dagdeviren, Ivan Petrov  et al.   Nature Communications 4, Article number: 1543 doi: 10.1038/ncomms2553  Published 26 February 2013

The article is behind a paywall.

Graphene and its grain boundaries

Most folks who follow the graphene scene are familiar with the honeycomb structure (hexagonal network) shown in diagram after diagram but I imagine there’s more than one of us who didn’t realize that defects can occur at the boundaries, from the Jan. 15, 2012 news release on EurekAlert,

When graphene is grown, lattices of the carbon grains are formed randomly, linked together at different angles of orientation in a hexagonal network. However, when those orientations become misaligned during the growth process, defects called grain boundaries (GBs) form. These boundaries scatter the flow of electrons in graphene, a fact that is detrimental to its successful electronic performance.

The Jan. 14, 2013 University of Illinois Beckman Institute news release written by Steve McGoughey, which originated the item on  EurekAlert, provides insight into the problem and its solution,

Beckman Institute researchers Joe Lyding and Eric Pop and their research groups have now given new insight into the electronics behavior of graphene with grain boundaries that could guide fabrication methods toward lessening their effect. The researchers grew polycrystalline graphene by chemical vapor deposition (CVD), using scanning tunneling microscopy (STM) and spectroscopy for analysis, to examine at the atomic scale grain boundaries on a silicon wafer. They reported their results in the journal ACS Nano.

“We obtained information about electron scattering at the boundaries that shows it significantly limits the electronic performance compared to grain boundary free graphene,” Lyding said. “Grain boundaries form during graphene growth by CVD, and, while there is much worldwide effort to minimize the occurrence of grain boundaries, they are a fact of life for now.

“For electronics you would want to be able to make it on a wafer scale. Boundary free graphene is a key goal. In the interim we have to live with the grain boundaries, so understanding them is what we’re trying to do.”

Lyding compared graphene lattices made with the CVD method to pieces of a cyclone fence.

“If you had two pieces of fence, and you laid them on the ground next to each other but they weren’t perfectly aligned, then they wouldn’t match,” he said. “That’s a grain boundary, where the lattice doesn’t match.”

Their analysis showed that when the electrons’ itinerary takes them to a grain boundary, it is like, Lyding said, hitting a hill.

“The electrons hit this hill, they bounce off, they interfere with themselves and you actually see a standing wave pattern,” he said. “It’s a barrier so they have to go up and over that hill. Like anything else, that is going to slow them down. That’s what Justin was able to measure with these spectroscopy measurements.

“Basically a grain boundary is a resistor in series with a conductor. That’s always bad. It means it’s going to take longer for an electron to get from point A to point B with some voltage applied.”

In the paper, the researchers were able to report on their analysis of the orientation angles between pieces of graphene as they grew together, and found “no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and Si02 topography.” They reported that analysis of those patterns “indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.”

The researchers work is aimed not just at understanding, but also at controlling grain boundaries. One of their findings – that GBs are aperiodic – replicated other work and could have implications for controlling them, as they wrote in the paper: “Combining the spectroscopic and scattering results suggest that GBs that are more periodic and well-ordered lead to reduced scattering from the GBs.”

“I think if you have to live with grain boundaries you would like to be able to control exactly what their orientation is and choose an angle that minimizes the scattering,” Lyding said.

Here’s a citation and link for the article,

Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study by Justin C. Koepke, Joshua D. Wood, David Estrada, Zhun-Yong Ong, Kevin T. He, Eric Pop, and Joseph W. Lyding in ACS Nano, Article ASAP DOI: 10.1021/nn302064p Publication Date (Web): December 13, 2012

Copyright © 2012 American Chemical Society

The article has not been published in print and it is behind a paywall.

Electronic tattoos

Yes, you can temporarily apply electronics that look like tattoos to your skin. From the August 11, 2011 news item on physorg.com,

Engineers have developed a device platform that combines electronic components for sensing, medical diagnostics, communications and human-machine interfaces, all on an ultrathin skin-like patch that mounts directly onto the skin with the ease, flexibility and comfort of a temporary tattoo.

The team led by professor John Rogers at the University of Illinois has create wearable electronics.

The patches are initially mounted on a thin sheet of water-soluble plastic, then laminated to the skin with water – just like applying a temporary tattoo. Alternately, the electronic components can be applied directly to a temporary tattoo itself, providing concealment for the electronics.

Here’s a video released by the University of Illinois featuring Rogers and his colleague, lead author Dae-Hyeong Kim, describing their work,
http://www.youtube.com/watch?v=tOk7OWZ-Lck

(ETA April 7, 2014: This link leads to a notice that the video is no long available.)

Possible applications for this technology include (from the news item on physorg.com),

In addition to gathering data, skin-mounted electronics could provide the wearers with added capabilities. For example, patients with muscular or neurological disorders, such as ALS, could use them to communicate or to interface with computers. The researchers found that, when applied to the skin of the throat, the sensors could distinguish muscle movement for simple speech. The researchers have even used the electronic patches to control a video game, demonstrating the potential for human-computer interfacing.

The August 11, 2011 news item about this research on Nanwerk features some technical details [Note: The news item on physorg.com also offers technical information but the Nanowerk item from the National Science Foundation offered some additional details.],

The researchers have created a new class of micro-electronics with a technology that they call an epidermal electronic system (EES). They have incorporated miniature sensors, light-emitting diodes, tiny transmitters and receivers, and networks of carefully crafted wire filaments into their initial designs.

The technology is presented—along with initial measurements that researchers captured using the EES—in a paper by lead author Dae-Hyeong Kim of the University of Illinois and colleagues in the August 12, 2011, issue of Science (“Epidermal Electronics “).

While existing technologies accurately measure heart rate, brain waves and muscle activity, EES devices offer the opportunity to seamlessly apply sensors that have almost no weight, no external wires and require negligible power.

Because of the small power requirements, the devices can draw power from stray (or transmitted) electromagnetic radiation through the process of induction and can harvest a portion of their energy requirements from miniature solar collectors.

The EES designs yield flat devices that are less than 50-microns thick—thinner than the diameter of a human hair—which are integrated onto the polyester backing familiar from stick-on tattoos.

The devices are so thin that close-contact forces called van der Waals interactions dominate the adhesion at the molecular level, so the electronic tattoos adhere to the skin without any glues and stay in place for hours. The recent study demonstrated device lifetimes of up to 24 hours under ideal conditions.

In light of today’s earlier posting on surveillance, I’m torn between appreciating the technological advance with its attendant possibilities and my concerns over increased monitoring.

Adding to my disconcertment is this comment from one of Rogers’ other colleagues (from the news item on physorg.com),

“The blurring of electronics and biology is really the key point here,” Huang [Northwestern University engineering professor Yonggang Huang] said. “All established forms of electronics are hard, rigid. Biology is soft, elastic. It’s two different worlds. This is a way to truly integrate them.”

Engineers never talk about the social implications of these concepts (integrating biology and electronics) which can be quite frightening and upsetting to some folks depending on how they are introduced to the concept.

While existing technologies accurately measure heart rate, brain waves and muscle activity, EES devices offer the opportunity to seamlessly apply sensors that have almost no weight, no external wires and require negligible power.
Because of the small power requirements, the devices can draw power from stray (or transmitted) electromagnetic radiation through the process of induction and can harvest a portion of their energy requirements from miniature solar collectors.
The EES designs yield flat devices that are less than 50-microns thick—thinner than the diameter of a human hair—which are integrated onto the polyester backing familiar from stick-on tattoos.
The devices are so thin that close-contact forces called van der Waals interactions dominate the adhesion at the molecular level, so the electronic tattoos adhere to the skin without any glues and stay in place for hours. The recent study demonstrated device lifetimes of up to 24 hours under ideal conditions.

Finger pinches today, heartbeats tomorrow and electricity forever

Devices powered by energy generated and harvested from one’s own body have been of tremendous interest to me. Last year I mentioned some research in this area by Professor Zhong Lin Wang at Georgia Tech (Georgia Institute of Technology) in a July 12, 2010 posting. Well, Wang and his team recently announced that they have developed the first commercially viable nanogenerator. From the March 29, 2011 news item on Physorg.com,

After six years of intensive effort, scientists are reporting development of the first commercially viable nanogenerator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity. Speaking here today at the 241st National Meeting & Exposition of the American Chemical Society, they described boosting the device’s power output by thousands times and its voltage by 150 times to finally move it out of the lab and toward everyday life.

“This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets,” said lead scientist Zhong Lin Wang, Ph.D. “Our nanogenerators are poised to change lives in the future. Their potential is only limited by one’s imagination.”

Here’s how it works  (from Kit Eaton’s article on Fast Company),

The trick used by Dr. Zhong Lin Wang’s team has been to utilize nanowires made of zinc oxide (ZnO). ZnO is a piezoelectric material–meaning it changes shape slightly when an electrical field is applied across it, or a current is generated when it’s flexed by an external force. By combining nanoscopic wires (each 500 times narrower than a human hair) of ZnO into a flexible bundle, the team found it could generate truly workable amounts of energy. The bundle is actually bonded to a flexible polymer slice, and in the experimental setup five pinky-nail-size nanogenerators were stacked up to create a power supply that can push out 1 micro Amp at about 3 volts. That doesn’t sound like a lot, but it was enough to power an LED and an LCD screen in a demonstration of the technology’s effectiveness.

Dexter Johnson at Nanoclast on the IEEE (Institute of Electrical Engineering and Electronics) website notes in his March 30, 2010 posting (http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/powering-our-electronic-devices-with-nanogenerators-looks-more-feasible) that the nanogenerator’s commercial viability is dependent on work being done at the University of Illinois,

I would have happily chalked this story [about the nanogenerator] up to one more excellent job of getting nanomaterial research into the mainstream press, but because of recent work by Eric Pop and his colleagues at the University of Illinois’s Beckman Institute in reducing the energy consumed by electronic devices it seems a bit more intriguing now.

So low is the energy consumption of the electronics proposed by the University of Illinois research it is to the point where a mobile device may not need a battery but could possibly operate on the energy generated from piezoelectric-enabled nanogenerators contained within such devices like those proposed by Wang.

I have a suspicion it’s going to be a while before I will be wearing nanogenerators to harvest the electricity my body produces. Meanwhile, I have some questions about the possible uses for nanogenerators (from the Kit Eaton article),

The search for tiny power generator technology has slowly inched forward for years for good reason–there are a trillion medical and surveillance uses–not to mention countless consumer electronics applications– for a system that could grab electrical power from something nearby that’s moving even just a tiny bit. Imagine an implanted insulin pump, or a pacemaker that’s powered by the throbbing of the heart or blood vessels nearby (and then imagine the pacemaker powering the heart, which is powered by the pacemaker, and so on and so on….) and you see how useful such a system could be.

It’s the reference to surveillance that makes me a little uneasy.

Teaching nano the haptic way; Brownian motion ain’t what we thought; EPA issues final new rules for carbon nanotubes

In keeping with my interest in the multimodal communication of science, I have found a slide show about teaching nanotechnology using haptics here. The technique is intended for the visually impaired but as the authors point out visual contact at the nano scale is impossible. So, everyone, visually impaired or not, makes haptic contact with material at the nano scale with the consequence that the teaching technique is suitable for everybody.

As suggested in my July 27, 2009 blog posting (part 4 of the robots and human enhancement series), developments such as these suggest that the notion of physical impairment may change significantly or disappear.

In a media release, on the Azonano site, detailing new revelations about Brownian motion,  Steve Granick, Founder Professor of Engineering at the University of Illinois, describes how many of us are taught about Brownian motion,

“In high school science classes, students are often assigned the task of using a microscope to watch a particle of dust sitting in a drop of water,” Granick said. “The dust particle seems alive, moving back and forth, never in the same way. The motion of the dust particle is caused by the random ‘kicks’ of surrounding water molecules.”

Granick goes on to describe what he and his researchers have observed,

“Like Einstein, we used to think we could describe Brownian motion with a standard bell-shaped curve,” Granick said. “But now, with the ability to measure very small distances much more precisely than was possible 100 years ago, we have found that we can have extremes much farther than previously imagined.”

Please do take a look at the story on the Azonano site for more about the significance of this discovery.

Nanowerk News has posted a media release from the US Environmental Protection Agency (EPA) about new rules which allow for commercialization of carbon nanotubes under limited conditions.  The EPA document is here and pages 9 (multi-walled carbon nanotubes) and 10 (single-walled nanotubes) are the relevant pages.