Monthly Archives: December 2014

Gold nanoparticles as catalysts for clear water and hydrogen production

The research was published online May 2014 and in a July 2014 print version,  which seems a long time ago now but there’s a renewed interest in attracting attention for this work. A Dec. 17, 2014 news item on phys.org describes this proposed water purification technology from Singapore’s A*STAR (Agency for Science Technology and Research), Note: Links have been removed,

A new catalyst could have dramatic environmental benefits if it can live up to its potential, suggests research from Singapore. A*STAR researchers have produced a catalyst with gold-nanoparticle antennas that can improve water quality in daylight and also generate hydrogen as a green energy source.

This water purification technology was developed by He-Kuan Luo, Andy Hor and colleagues from the A*STAR Institute of Materials Research and Engineering (IMRE). “Any innovative and benign technology that can remove or destroy organic pollutants from water under ambient conditions is highly welcome,” explains Hor, who is executive director of the IMRE and also affiliated with the National University of Singapore.

A Dec. 17, 2014 A*STAR research highlight, which originated the news item, describes the photocatalytic process the research team developed and tested,

Photocatalytic materials harness sunlight to create electrical charges, which provide the energy needed to drive chemical reactions in molecules attached to the catalyst’s surface. In addition to decomposing harmful molecules in water, photocatalysts are used to split water into its components of oxygen and hydrogen; hydrogen can then be employed as a green energy source.

Hor and his team set out to improve an existing catalyst. Oxygen-based compounds such as strontium titanate (SrTiO3) look promising, as they are robust and stable materials and are suitable for use in water. One of the team’s innovations was to enhance its catalytic activity by adding small quantities of the metal lanthanum, which provides additional usable electrical charges.

Catalysts also need to capture a sufficient amount of sunlight to catalyze chemical reactions. So to enable the photocatalyst to harvest more light, the scientists attached gold nanoparticles to the lanthanum-doped SrTiO3 microspheres (see image). These gold nanoparticles are enriched with electrons and hence act as antennas, concentrating light to accelerate the catalytic reaction.

The porous structure of the microspheres results in a large surface area, as it provides more binding space for organic molecules to dock to. A single gram of the material has a surface area of about 100 square meters. “The large surface area plays a critical role in achieving a good photocatalytic activity,” comments Luo.

To demonstrate the efficiency of these catalysts, the researchers studied how they decomposed the dye rhodamine B in water. Within four hours of exposure to visible light 92 per cent of the dye was gone, which is much faster than conventional catalysts that lack gold nanoparticles.

These microparticles can also be used for water splitting, says Luo. The team showed that the microparticles with gold nanoparticles performed better in water-splitting experiments than those without, further highlighting the versatility and effectiveness of these microspheres.

The researchers have provided an illustration of the process,

Improved photocatalyst microparticles containing gold nanoparticles can be used to purify water. © 2014 A*STAR Institute of Materials Research and Engineering

Improved photocatalyst microparticles containing gold nanoparticles can be used to purify water.
© 2014 A*STAR Institute of Materials Research and Engineering

Here’s a link to and a citation for the research paper,

Novel Au/La-SrTiO3 microspheres: Superimposed Effect of Gold Nanoparticles and Lanthanum Doping in Photocatalysis by Guannan Wang, Pei Wang, Dr. He-Kuan Luo, and Prof. T. S. Andy Hor. Chemistry – An Asian Journal Volume 9, Issue 7, pages 1854–1859, July 2014. Article first published online: 9 MAY 2014 DOI: 10.1002/asia.201402007

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Self-healing (high voltage installations) in the subsea and a search for funding

More concept than reality, nonetheless, the possibilities offered by this Scandinavian research are appealing. From a Dec. 16, 2014 news item on ScienceDaily,

Embryonic faults in subsea high voltage installations are difficult to detect and very expensive to repair. Researchers believe that self-repairing materials could be the answer.

The vital insulating material which encloses sensitive high voltage equipment may now be getting some ‘first aid’.

“We have preliminary results indicating that this is a promising concept, but we need to do more research to check out other solutions and try the technique out under different conditions.” So says SINTEF [largest independent research organisation in Scandinavial researcher Cédric Lesaint, who is hoping that the industry will soon wake up to the idea.

A Nov. 26, 2014 SINTEF press release, which originated the news item, describes the concept in more detail,

The technology used involves so-called ‘microcapsules’, which are added to traditional insulation materials and have the ability to ‘sniff out’ material fatigue and then release repairing molecules. The team working on this project is made up of chemists, physicists and electrical engineers. If they succeed, they may have discovered the next generation of insulating materials which can be applied in costly electrical installations.

The press release then describes a phenomenon named ‘electrical trees’,

So-called electrical trees develop in electrical insulation materials that are approaching the end of their useful lives. Electrical stress fields exploit small weaknesses in the insulation material and generate hair-thin channels that spread through the material like the branches of a tree. When the channels finally reach the surface of the insulation material, the damage is done and short-circuiting will occur.

“Short-circuiting is almost always linked to an electrical tree”, explains Lesaint’s colleague, Øystein Hestad.

Faults of this kind are extremely expensive to repair, especially if they occur in a device installed on an offshore wind farm or a subsea oil production installation – perhaps even under inhospitable Arctic conditions.

Under such conditions, say researchers, self-repairing insulation materials represent a cost-effective alternative to traditional repair methods.

The specific solution the researchers propose (from the press release),

SINTEF researchers have based their work on an established idea developed to repair mechanical damage and cracks in composite materials. The composites are mixed with microcapsules filled with a liquid monomer – single molecules which have the property to join with each other (polymerise) to form long-chain molecules. If cracks or other forms of damage encroach on the capsules, the monomer is released and fills the cracks.

“As far as we know, we’re the first to have tested this technique on damage resulting from electrical stress fields”, says Lesaint.

The microcapsules they incorporated into the insulation materials burst when they encounter one of the branches of an electrical tree. The liquid monomer then invades the thin channels forming the ‘tree’ and polymerises. The channels are filled in and the electrical degradation of the insulation material is halted.

In this way the ‘immune defences’ of the insulation material are strengthened, and the lifetime of the installation extended.

As promising as the research is, the scientists are looking for funds (from the press release),

This summer [2014], the SINTEF research team presented the concept at a conference in Philadelphia, USA.

“Many people were surprised, especially when they realised that we had chosen to share the concept with others”, says Lesaint. “Taking the chance that other researchers might steal such a good idea is a risk we have to take”, he says.

The industry has also expressed some interest, but so far not enough to consider funding further research.

“We’re being met with curious interest, but have been told to come back when we have more test results”, says Lesaint. “The problem is that at present we have insufficient funds to conduct the research needed to carry the project forward”, he says.

Next year [2015?] will thus decide as to whether this self-repairing project will take the step from being a promising concept to becoming the next generation of insulation materials.

You can also find the press release/article by Lars Martin Hjortho here in  a Gemini.no newsletter.

Here’s an illustration the researchers have made available,

Subsea installations can get longer life-time with self-repairing materials. Illustration: SINTEF Energy  [downloaded from http://gemini.no/en/2014/11/self-repairing-subsea-material/]

Subsea installations can get longer life-time with self-repairing materials. Illustration: SINTEF Energy [downloaded from http://gemini.no/en/2014/11/self-repairing-subsea-material/]

Insurance companies, the future, and perceptions about nanotechnology risks

Michael Berger has written a Dec. 15, 2014 Nanowerk Spotlight about a study examining perceptions of nanotechnology risks amongst members of the insurance industry,

Insurance companies are major stakeholders capable of contributing to the safer and more sustainable development of nanotechnologies and nanomaterials. This is owed to the fact that the insurance industry is one of the bearers of potential losses that can arise from the production and use of nanomaterials and nanotechnology applications.

Researchers at the University of Limerick in Ireland have examined how the insurance market perception of nanotechnology can influence the sustainability of technological advances and insurers’ concern for nanotechnology risks. They claim that, despite its role in sustaining technology development in modern society, insurers’ perception on nanomaterials has been largely overlooked by researchers and regulators alike.

I encourage you to read Berger’s piece in its entirety as it includes nuggets such as this,

… Over 64 per cent of surveyed insurers said they were vaguely familiar with nanotechnology and nanomaterial terms, and over 25 per cent said they had a moderate working knowledge and were able to define the terms. The interview data, however, suggests that this knowledge is at a basic level and there is a need for more information in order to allow this group to differentiate between distinct nanomaterial risks.

For those of you who would like to read the researchers’ paper in its entirety, you can find it in the Geneva Association Newsletter: Risk Management, No. 54, June 2014 where you will find a very interesting set of prognostications in Walter R. Stahel’s editorial,

In the editorial of the Risk Management newsletter of May 2013, I was looking back at 25 years of Risk Management Research of The Geneva Association. Today, this editorial and newsletter will look at some specific risks of the next 25 years.

If we first look back 25 years, to 1988, the PC had just been invented, Internet was still an internal network at the site of its invention the CERN [European Particle Physics Laboratory] in Geneva, cars were driven by people and mobile phones weighed five kilos and cost $5000, to give but a few technical examples. Dying forests, air pollution and retreating glaciers were the main environmental topics in the news, unemployment and sovereign debt were high on the agenda of politicians—some topics change, others remain.

Looking forward to 2039, the impacts of climate change will have amplified: invasive species—both plants such as ambrosia and animals such as the tiger mosquito—will have advanced further northward in Europe, while intensive agriculture in Scotland and Scandinavia will have become the norm—the European Union (EU) expects a 75 per cent increase in agricultural yields in these regions.

Other topics, such as bacteria which are resistant to antibiotics, represent a formidable challenge both as an opportunity for science and a risk to society. The European Commission estimates that today, 25,000 people die annually as a result of an infection with multi-drug-resistant bacteria.

The ageing population is another major opportunity and risk in the hands of policymakers, a topic which The Geneva Association started analysing more than 25 years ago. Yet the multiple benefits of continued activity by the elderly—such as lower health costs—are only starting to be recognised by politicians. And most companies, organisations and administrations are still extremely hesitant to keep able employees beyond the legal age of retirement.

No easy predictions can be made on the outcome of societal changes. Trends such as a shift from science-based policymaking to policy-based science, from evidence-based advocacy to advocacy-based evidence and from fault-based liability to need-based compensation could lead society onto down the wrong path, which may be irreversible.

The last paragraph from the excerpt is the most interesting to me as its puts some of the current machinations within Canadian public life into context within the European (and I suspect the international) political scene.

I do have a comment or two about the research but first here’s a citation for it,

Insurance Market Perception of Nanotechnology and Nanomaterials Risks By Lijana Baublyte, Martin Mullins, Finbarr Murphy and Syed A.M. Tofai. Geneva Association Newsletter: Risk Management, No. 54, June 2014.

No date is offered for when the research was conducted and there is no indication in the newsletter that it was published prior to its June 2014 publication.

As for the research itself, first, the respondents are self-assessing their knowledge about nanotechnology. That presents an interesting problem for researchers since self-assessment in any area is highly dependent on various attributes such as confidence, perceived intelligence, etc. For example, someone who’s more knowledgeable might self-assess as being less so than someone who has more confidence in themselves. As for this statistic from the report,

… Over 40 per cent of surveyed laypeople heard nothing at all about nanotechnologies and nanomaterials, 47.5 per cent said they were vaguely familiar with the technology and the remaining 11.7 per cent of respondents reported having moderate working knowledge.

Generally, people won’t tell you that they know about nanotechnologies and nanomaterials from a video game (Deux Ex) or a comic book (Iron Man’s Extremis story line) as they may not consider that to be knowledge or are embarrassed. In the case of the video game, the information about nanotechnology is based on reputable scientific research although it is somewhat massaged to fit into the game ethos. Nonetheless, information about emerging technologies is often conveyed through pop culture properties and/or advertising and most researchers don’t take that into account.

One more thing about layperson awareness, the researchers cite a meta-analysis conducted by Terre Satterfield, et. al. (full citation: Satterfield, T., Kandlikar, M., Beaudrie, C.E.H., Conti,J., and Herr Harthorn, B. [2009]. Anticipating the perceived risk of nanotechnologies. Nature Nanotechnology, 4[11]: 752–758),  which was published in 2009 (mentioned in my Sept. 22, 2009 post; scroll down about 35% of the way). As I recall, the meta-analysis fell a bit short as the researchers didn’t provide in-depth analysis of the research instruments (questionnaires) instead analysing only the results. That said, one can’t ‘reinvent the wheel’ every time one writes a paper or analyses data although I do wish just once I’d stumble across a study where researchers analysed the assumptions posed by the wording of the questions.

India and a National Seminar on Literature in the Emerging Contexts of Technology and Culture

I recently got a notice about an intriguing national seminar being held at Punjabi University (India). From a Dec. 12, 2014 notice,

The Department of English is pleased to invite you to the National Seminar on Literature in the Emerging Contexts of Technology and Culture being held on February 25 and 26, 2015.

There is an old, almost primal, bond between writing and technology. From the earliest tools of writing—probably a sharp-edged stone—to the stylus pen, from the clay tablet to the capacitive touch screen, this bond has proclaimed itself with all the force of technology’s materiality. However, the relatively rapid emergence and acceptance of the digital writing environment has foregrounded with unprecedented clarity how command and control are always already embedded in communication. Moreover, in the specific sphere of literary production, the opaqueness of creativity stands further complicated with the entry of the programmer, often in the very person of the writer. At the other end, reading struggles to break free from the constraints of both the verbal and the linear as it goes multimedia and hypertextual, making fresh demands upon the human sensorium. The result is that the received narratives of literary history face radical interruptions.

While cultures enfold and shape literatures and technologies, it must be admitted that they are also articulated and shaped by the latter. Technology in particular has advanced and proliferated so much in the last three decades that it has come to be regarded as a culture in its own right. It has come to acquire, particularly since the early decades of the twentieth century, a presence and authority it never really possessed before. With prosthetics, simulation and remote-sensing, for instance, it has brought within the horizon of realization the human aspiration for self-overcoming. Yet in spite of its numerous enabling, even liberating, tools, technology has also often tended to close off several modes of cognition and perception. While most of us would like to believe that we use technology, it is no less true that technology also uses us. Heidegger correctly warned of the potential, inherent in modern technology, to reduce the human beings to its resources and reserves. He also alerted us to its elusive ways, particularly the way it resists being thought and pre-empts any attempts to think beyond itself, thereby instituting itself as the exclusive horizon of thinking. Paradoxically, like a literary text or like thought itself, technology may have some chinks, certain gaps or spaces, through which it may be glimpsed against its larger, imposing tendencies.

The ostensible self-sufficiency and plenitude of the technological, as of the cultural, can be questioned and their nature examined probably most productively from a space which is structured self-reflexively, that is from the space of the literary. At the same time, the implications of the technological turn, especially in its digital avatar, for literature, as also for culture, demand thinking.

The proposed seminar will be an opportunity to reflect on these and related issues, with which a whole galaxy of thinkers have engaged — from Walter Benjamin, Martin Heidegger, Raymond Williams and Jean Baudrillard to Donna Haraway, George Landow, Lev Manovich, Bernard Steigler, Katherine Hayles, Henry Jenkins, Hubert Dreyfus, Mari-Laure Ryan, the Krokers, Manuel Castells, Fredrich Kittler, David J Bolter, Manuel De Landa, Nick Montfort, Noah Wardrip-Fruin and others. Among the areas on which papers/presentations for the seminar are expected are:

  • The Work of Literature/Art in the Digital Age
  • Cultures of Technology and Technologies of Culture
  • Resistance and Appropriation Online: Strategies and Subterfuges
  • Global Capitalism and Cyberspace
  • Posthumanist Culture and Its Literatures
  • Digital Humanities and the Literary Text
  • Reconsidering Literature: Between Technology and Theory
  • Virtuality and/as Fiction
  • Plotting the Mutating Networks: The Logics of Contingency
  • Writing Technologies and Literature
  • Reading Literature in the Digital Age
  • Literature and Gaming
  • After the Death of the Author: The Posthuman Authority
  • Cyberpunk Writing
  • Teaching Literature in the Post-Gutenberg Classroom

Submission of abstracts: By 20 January 2015
Submission of papers: By 10 February 2015
Registration Fee: Rs. 1000/- (Rs. 500 for Research Scholars/Students)

All submissions must be made through email to sharajesh@gmail.com and/or pup.english@gmail.com.

Lodging and hospitality shall be provided by the University to all outstation resource persons and, subject to availability, to paper presenters. In view of financial constraints, it may not be possible to reimburse travel expenses to all paper presenters.

Rajesh Sharma
Seminar Director
Professor and Head
Department of English
783 796 0942
0175-304 6246

Jaspreet Mander
Associate Professor of English
Seminar Coordinator
941 792 3373

I couldn’t agree with the sentiments more, applaud the organizers’ ambitious scope, and wish them the best!

PS: There is a Canada/India/Southeast Asia project, Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership, that’s starting up soon as per my Dec. 12, 2014 post and this seminar would seem like an opportunity for those academics to reach out. Finally, you can get more information about Punjabi University here.

Could there be a quantum internet?

We’ve always had limited success with predicting future technologies by examining current technologies. For example, the Internet and World Wide Web as we experience them today would have been unthinkable for most people in the 1950s when computers inhabited entire buildings and satellites were a brand new technology designed for space exploration not bouncing communication signals around the planet. That said, this new work on a ‘quantum internet’ from Eindhoven University of Technology is quite intriguing (from a Dec. 15, 2014 news item on Nanowerk),

In the same way as we now connect computers in networks through optical signals, it could also be possible to connect future quantum computers in a ‘quantum internet’. The optical signals would then consist of individual light particles or photons. One prerequisite for a working quantum internet is control of the shape of these photons. Researchers at Eindhoven University of Technology (TU/e) and the FOM foundation  [Foundation for Fundamental Research on Matter] have now succeeded for the first time in getting this control within the required short time.

A Dec. 15, 2014 Eindhoven University of Technology (TU/e) press release, which originated the news item, describes one of the problems with a ‘quantum internet’ and the researchers’ solution,

Quantum computers could in principle communicate with each other by exchanging individual photons to create a ‘quantum internet’. The shape of the photons, in other words how their energy is distributed over time, is vital for successful transmission of information. This shape must be symmetric in time, while photons that are emitted by atoms normally have an asymmetric shape. Therefore, this process requires external control in order to create a quantum internet.

Optical cavity

Researchers at TU/e and FOM have succeeded in getting the required degree of control by embedding a quantum dot – a piece of semiconductor material that can transmit photons – into a ‘photonic crystal’, thereby creating an optical cavity. Then the researchers applied a very short electrical pulse to the cavity, which influences how the quantum dot interacts with it, and how the photon is emitted. By varying the strength of this pulse, they were able to control the shape of the transmitted photons.

Within a billionth of a second

The Eindhoven researchers are the first to achieve this, thanks to the use of electrical pulses shorter than nanosecond, a billionth of a second. This is vital for use in quantum communication, as research leader Andrea Fiore of TU/e explains: “The emission of a photon only lasts for one nanosecond, so if you want to change anything you have to do it within that time. It’s like the shutter of a high-speed camera, which has to be very short if you want to capture something that changes very fast in an image. By controlling the speed at which you send a photon, you can in principle achieve very efficient exchange of photons, which is important for the future quantum internet.”

Here’s a link to and a citation for the paper,

Dynamically controlling the emission of single excitons in photonic crystal cavities by Francesco Pagliano, YongJin Cho, Tian Xia, Frank van Otten, Robert Johne, & Andrea Fiore. Nature Communications 5, Article number: 5786 doi:10.1038/ncomms6786 Published 15 December 2014

This is an open access paper.

ETA Dec. 16, 2014 at 1230 hours PDT: There is a copy of the Dec. 15, 2014 news release on EurekAlert.

Singaporeans’ perceptions of nanotechnology and consumer attitudes towards nanotechnologies in food production

This is the first time I’ve seen a study about nanotechnology perception and awareness from Asia. (As I’m sure this is not the first or the only such study, I lament my language skills once more. Since my primary search is for English language materials with my second language, French, as a very distant second, I am limited to translated materials.)

This piece of research comes from Singapore. From a Dec. 11, 2014 news item on the Asian Scientist magazine website,

A survey published in the Journal of Nanoparticle Research shows that while the Singaporean population is more familiar with nanotechnology than their Western counterparts in the US and Europe, they are also more wary of the risks involved.

Asia is expected to dominate the use and release of nanomaterials into the environment, largely due to the size of the population. Furthermore, the region in general—and Singapore in particular—has invested heavily in nanotechnology research, rapidly translating their findings into industrial and consumer products. However, there has been a lack of studies documenting public attitudes and acceptance of new technologies such as nanotechnology.

To address this gap of information, a team of researchers led by first author Dr. Saji George from the Nanyang Polytechnic (NYP) Center for Sustainable Nanotechnology conducted a survey of 1,080 Singaporeans above the age of 15. Their results revealed that approximately 80 percent had some understanding of nanotechnology.

A June 20, 2014 Nanyang Polytechnic media release provides additional details about the research,

In a recent public perception study conducted in Singapore with 1,000 respondents, researchers from Nanyang Polytechnic’s (NYP) Centre for Sustainable Nanotechnology (CSN) found that 80% of respondents were aware of nanotechnology, while only 40% of them were positive about its benefits. This was shared at the official launch of the CSN today. The event was graced by Mr Derek Ho, Director-General, Environmental Public Health Division, National Environment Agency (NEA).

The Centre is the first-of-its-kind among institutes of higher learning (IHLs) in Singapore. It is dedicated to studying the potential impact of novel engineered nanomaterials, and developing ways to ensure that nanotechnology applications are adopted in a sustainable manner for individuals and the environment. This makes the $1 million facility a key training facility for NYP’s students from the Schools of Chemical & Life Sciences, Engineering, and Health Sciences.

Perceptions influenced by exposure to prior information

The perception study conducted in collaboration with the United Kingdom’s Newcastle University, is part of a worldwide study. [emphasis mine] About 1,000 respondents were surveyed in Singapore. Among them, 80% had some level of familiarity with nanotechnology,  while only 40% of them were positive about its benefits. One of the strong determinants that influenced the perception of the public was their prior exposure to news on adverse effects of nanotechnology. This could be due to negative information on nanotechnology carried in the media. Often these are over interpretations of laboratory studies that tend to dampen public confidence in nanotechnology.

“Nanotechnology may be a double-edged sword in some applications. A large proportion of the population is already aware of it, and interestingly, 60% have actually come across negative information on nanotechnology. This points to the need for the Centre for Sustainable Nanotechnology to conduct its work robustly and effectively, to sharpen the benefits, and blunt the risks associated with nanotechnology. This will enable industries to better apply the relevant solutions, and for people to use products containing nanotechnology more confidently. Another impetus for the Centre is that through such studies, companies will learn what consumers are concerned about in specific types of products and how these concerns can be addressed during product design and manufacturing stages,” said Dr Joel Lee, Director of NYP’s School of Chemical & Life Sciences where the Centre is located.

The study also found variations in perception among different socio-demographic groups, and among applications of nanotechnology across different product ranges, for example food, baby products, medicine, clothing, cosmetics, water filters and electronics.

While this is a segue, there’s a very interesting tidbit about silver nanoparticles in this media release,

Smarter Antibacterial Nanotechnology

Since the CSN started operations in 2013, senior lecturers, Dr Saji George and Dr Hannah Gardner, from NYP’s Schools of Chemical & Life Sciences and Engineering, respectively, have studied the effectiveness of nano-silver in eliminating bacteria – which accounts for 30% of commercial nanotechnology – in applications currently available in the market. Nano-silver is largely used as an alternate anti-microbial solution in a range of industries, including clothing, baby products, personal care products and medicine.

Their research findings, now filed as a patent, uncovered that some drug resistant bacterial strains could also develop resistance to silver, contrary to the general notion that all bacterial strains will succumb to it. The duo then designed and developed a cost-effective method to generate cationic polymer coated silver nanoparticles. They observed that these nanoparticles could eliminate pathogenic bacteria regardless of their ability to resist antibiotics and silver.

Dr Lee added, “Nano-silver has captured the attention of industry and researchers. What we hope to achieve with the CSN is two-fold. We aim to be a resource for industries and even government regulatory agencies to tap on to better understand nanotechnology, its effects, and improve on its applications. These would also translate into real-world industry projects for our students and equip them to better serve the industry when they embark on their careers.”

Here’s a link to and citation for the paper,

Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore by Saji George, Gulbanu Kaptan, Joel Lee, Lynn Frewer. Journal of Nanoparticle Research November 2014, 16:2751 Date: 22 Nov 2014

This paper is behind a paywall.

I did search for the “… worldwide study” regarding nanotechnology awareness and perceptions but found instead a recently published study on the topic of consumer attitudes towards nanotechnologies used in food production practices which features George and Frewer,

Consumer attitudes towards nanotechnologies applied to food production by L.J. Frewer, N. Gupta, S. George, A.R.H. Fischer, E.L. Giles, and D. Coles. Trends in Food Science & Technology, Volume 40, Issue 2, December 2014, Pages 211–225 (Special Issue: Nanotechnology in Foods: Science behind and future perspectives)

This article is behind a paywall.

Molecular robots (nanobots/nanorobots): a promising start at Oxford University

‘Baby steps’ is how they are describing the motion and the breakthrough in functional molecular robots at the University of Oxford. From a Dec. 11, 2014 news item on phys.org,

A walking molecule, so small that it cannot be observed directly with a microscope, has been recorded taking its first nanometre-sized steps.

It’s the first time that anyone has shown in real time that such a tiny object – termed a ‘small molecule walker’ – has taken a series of steps. The breakthrough, made by Oxford University chemists, is a significant milestone on the long road towards developing ‘nanorobots’.

‘In the future we can imagine tiny machines that could fetch and carry cargo the size of individual molecules, which can be used as building blocks of more complicated molecular machines; imagine tiny tweezers operating inside cells,’ said Dr Gokce Su Pulcu of Oxford University’s Department of Chemistry. ‘The ultimate goal is to use molecular walkers to form nanotransport networks,’ she says.

A Dec. 10, 2014 University of Oxford science blog post by Pete Wilton, which originated the news item, describes one of the problem with nanorobots,

However, before nanorobots can run they first have to walk. As Su explains, proving this is no easy task.

For years now researchers have shown that moving machines and walkers can be built out of DNA. But, relatively speaking, DNA is much larger than small molecule walkers and DNA machines only work in water.

The big problem is that microscopes can only detect moving objects down to the level of 10–20 nanometres. This means that small molecule walkers, whose strides are 1 nanometre long, can only be detected after taking around 10 or 15 steps. It would therefore be impossible to tell with a microscope whether a walker had ‘jumped’ or ‘floated’ to a new location rather than taken all the intermediate steps.

The post then describes how the researchers solved the problem,

… Su and her colleagues at Oxford’s Bayley Group took a new approach to detecting a walker’s every step in real time. Their solution? To build a walker from an arsenic-containing molecule and detect its motion on a track built inside a nanopore.

Nanopores are already the foundation of pioneering DNA sequencing technology developed by the Bayley Group and spinout company Oxford Nanopore Technologies. Here, tiny protein pores detect molecules passing through them. Each base disrupts an electric current passed through the nanopore by a different amount so that the DNA base ‘letters’ (A, C, G or T) can be read.

In this new research, they used a nanopore containing a track formed of five ‘footholds’ to detect how a walker was moving across it.

‘We can’t ‘see’ the walker moving, but by mapping changes in the ionic current flowing through the pore as the molecule moves from foothold to foothold we are able to chart how it is stepping from one to the other and back again,’ Su explains.

To ensure that the walker doesn’t float away, they designed it to have ‘feet’ that stick to the track by making and breaking chemical bonds. Su says: ‘It’s a bit like stepping on a carpet with glue under your shoes: with each step the walker’s foot sticks and then unsticks so that it can move to the next foothold.’ This approach could make it possible to design a machine that can walk on a variety of surfaces.

There is a video illustrating the molecular walker’s motion, (courtesy University of Oxford),

There is as noted in Wilton’s post, more work to do,

It’s quite an achievement for such a tiny machine but, as Su is the first to admit, there are many more challenges to be overcome before programmable nanorobots are a reality.

‘At the moment we don’t have much control over which direction the walker moves in; it moves pretty randomly,’ Su tells me. ‘The protein track is a bit like a mountain slope; there’s a direction that’s easier to walk in so walkers will tend to go this way. We hope to be able to harness this preference to build tracks that direct a walker where we want it to go.’

The next challenge after that will be for a walker to make itself useful by, for instance, carrying a cargo: there’s already space for it to carry a molecule on its ‘head’ that it could then take to a desired location to accomplish a task.

Su comments: ‘We should be able to engineer a surface where we can control the movement of these walkers and observe them under a microscope through the way they interact with a very thin fluorescent layer. This would make it possible to design chips with different stations with walkers ferrying cargo between these stations; so the beginnings of a nanotransport system.’

These are the first tentative baby steps of a new technology, but they promise that there could be much bigger strides to come.

Here’s a link to and a citation for the research paper,

Continuous observation of the stochastic motion of an individual small-molecule walker by Gökçe Su Pulcu, Ellina Mikhailova, Lai-Sheung Choi, & Hagan Bayley. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.264 Published online 08 December 2014

This paper is behind a paywall.

Bring ‘jazzy’ molecules to life on an app

The app accompanies book two (Molecules: The Elements and the Architecture of Everything) in a proposed trilogy about chemical elements in all their glory. A Dec. 10, 2014 news item on phys.org describes the app,

Although molecules make up everything around us, most people encounter these groups of atoms held together by chemical bonds in the pages of a textbook. They read text and see a drawing of chemical symbols or colorful circles—a one-dimensional view of the microscopic structures. Other representations have drawbacks as well: three-dimensional models are made of materials that can’t replicate the rapid and continuous molecular movement. Molecules are wiggling and jiggling in a never-ending dance, but you can’t see it, not even with the most powerful microscope.

“What is the best thing you could do to present (a molecule) to somebody?” asked Theo Gray, a scientist and author of “Molecules: The Elements and the Architecture of Everything.” “What’s the closest that you can come to actually handing it to them, so they could pick it up and look at it themselves?”

How about an app? In collaboration with the Theoretical and Computational Biophysics Group (TCBG) at the Beckman Institute at the University of Illinois, Gray’s company, Touchpress, has created an app for the Apple operating system (iOS) that brings molecules to life in a handheld device. Through the app, people can use up to eleven [?] fingers to examine in great detail more than 350 molecules, which they can also twist, turn, and tie into knots.

Gray has produced an entertaining and ‘jazzy’ video promoting his app (from theodoregray.com’s Molecules webpage where a link to the iTunes Download is provided),

A Dec. 10, 2014 Beckman Institute (University of Illinois) news release (also on EurekAlert) which originated the news item on phys.org, describes the objectives and the app itself more thoroughly,

“Every student who learns about typical molecules can do it now in a playful manner and realize that molecules are not dead and frozen, but that they move,” said Klaus Schulten, head of TCBG, and professor of physics at Illinois.

The app also allows users to vary the temperature and time scale in order to make the molecules move more quickly or more slowly. If the temperature is warm the molecules will move rapidly, while cold temperatures turn them sluggish, and absolute zero freezes them solid.

Getting molecules into everyone’s hands has been a goal for Gray. Even though Molecules is a beautifully illustrated book, Gray knows that the most stunning color photos and detailed descriptions can’t show the actual nature of molecules as well as looking at moving images of the material and the atomic motions themselves.

“In the case of molecules, you really can’t get a sense of what this stuff is like if you’re just looking at a picture: how goopy is it? Is it very runny or is it very thick? Is it like molasses or more like oil or more like water?” explained Gray.

“There’s also the fact that you can’t see molecules: they’re too small to see, and they’re too fast to perceive, but by providing an interactive simulation, you can give people really quite a good intuitive feeling for what a molecule is like and how it moves and how it behaves, and translate that into human scale.”

A chance meeting at a 2013 New Year’s Eve party between Gray and Barry Isralewitz, a TCBG research programmer, led to a discussion of molecular dynamic simulation. Isralewitz’s work with the TCBG involves simulating biological structures down to the atomic level. The group has created software packages VMD, which creates the visualizations, and NAMD, which simulates the movement of the structures. The software runs consecutively and in conjunction on powerful computing systems and is freely available to researchers around the world, who use it to model and simulate structures at detailed levels. Recently with the help of Blue Waters, a petascale supercomputer at the University of Illinois, TCBG unraveled one of the largest structures ever simulated—the HIV capsid, made up of 64 million atoms.

For the app, Touchpress created the visualizations, and TCBG provided the NAMD software. Taking the software into iOS, which can be used on iPhones and iPads, was not an easy task. The TCBG staff, including Jim Phillips, John Stone, and Christopher Mayne, among others, consulted regularly with Richard Zito, the main programmer from Touchpress, who lives in London.

“When Theo Gray came to us, he was full of enthusiasm, and we were actually a little hesitant. We didn’t know how well it would work out,” said Schulten. “But it worked very well, and in the course of putting our program onto this device, some technical challenges had to be met and in the wave of enthusiasm of doing it, we actually met those challenges.”

“We learned that our scientific software, which cost around $20 million to develop for the world’s best computers, can actually serve children and their parents in acquainting themselves with flexibility of molecules,” said Schulten.

“Now between education and entertainment we can think of using it for teaching. VMD is actually already used at many colleges for teaching, but now with this approach and having just a tablet computer, not even a laptop or a desktop workstation, we can penetrate much further with utilizing our tools for teaching than we ever did before.”

According to Gray, the app can make significant inroads into bringing molecules to the masses.

“It was particularly the combination of molecular dynamic simulation with a touch screen that makes it into sort of a magical experience that you don’t have when you’re doing it with a mouse,” said Gray. “Touch devices make things much more immediate and you have a personal connection to it. Combined with the fact that you can use multiple fingers to grab onto and move a molecule, like you would if you were actually holding it in your hands, it makes it quite a different experience and because it’s an iPad app, it’s available to anybody. I think it’s a pretty significant step toward getting the general public to have a better intuitive grasp as to what molecules are like.”

Schulten believes that the entertainment the app provides will help educate the next generation of scientists.

“Interacting with molecules makes them fun and natural, and that is a very powerful aspect of becoming familiar with the world of molecules,” said Schulten. “This is a wonderful tool that fits the landscape of the computing world that anybody can become familiar with through a cell phone and with a tablet, and we can utilize this big science for teaching the next generation.”

Molecules is the second volume in a proposed trilogy; The Elements: A Visual Exploration of Every Known Atom in the Universe was the first. Gray hopes that his next book Reactions and accompanying app can be as successful as Molecules.

“I think the most important thing, really,” said Gray, “is the fact that this technology has existed for quite some time, a couple of decades, but it’s really been locked up in labs, as it were—not because it wasn’t possible to bring it out to a more wide accessibility, but just because no one had thought of a good context to do that in, and maybe have the idea that it was possible to port them to a touch screen device.”

The app is available on iTunes for $13.99.

What a great idea! I wish Gray and his collaborators all the best with this project.

One last questions, is there an Android or PC desktop app in the works?

Postdoctoral position for Cosmopolitanism in Science project in Halifax, Nova Scotia, Canada)

It seems to be the week for job postings. After months and months with nothing, I stumble across two in one week. The latest comes from the Situating Science research cluster (more about the research cluster after the job posting). From a Dec. 10, 2014 Situating Science announcement,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Application:

Full applications will contain:
1.     Cover letter that includes a description of current research projects,
2.     Research plan for post-doctoral work. Include how the proposed research fits within the Cosmopolitanism project’s scope, and which co-applicant with whom you wish to work.
3.     Academic CV,
4.     Writing sample,
5.     Names and contact information of three referees.

Applications can be submitted in either hardcopy or emailed as PDF documents:

Hardcopy:
Dr. Gordon McOuat
Cosmopolitanism and the Local Project
University of King’s College
6350 Coburg Road
Halifax, NS.  B3H 2A1
CANADA

News of this partnership is exciting especially in light of the objectives as described on the Cosmopolitanism & the Local in Science & Nature website’s About Us page,

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods, [emphasis mine]
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

I’m not sure ‘expose’ is the verb I’d use here since it’s perfectly obvious that the Canadian scholarly community is eurocentric. For confirmation all you have to do is look at the expert panels convened by the Council of Canadian Academies for their various assessments (e.g. The Expert Panel on the State of Canada’s Science Culture). Instead of ‘expose’, I’d use ‘Shift conscious and unconscious assumptions within a largely eurocentric Canadian scholarly community to widening perspectives’.

As for Situating Science, there is this (from its About Us page; Note: Links have been removed),

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

At the end of our 7 years, we can boast a number of collaborative successes. We helped organize and support over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Our network helped facilitate the development of 4 new programs of study at partner institutions. We leveraged more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. We hired over 30 students and 9 postdoctoral fellows. The events resulted in over 60 videos and podcasts as well as dozens of student blogs and over 50 publications.

I see the Situating Science project is coming to an end and I’m sorry to see it go. I think I will write more about Situating Science in one of my end-of-year posts. Getting back to the postdoc position, good luck to all the applicants!

Projecting beams of light from contact lenses courtesy of Princeton University (US)

Princeton University’s 3D printed contact lenses with LED (light-emitting diodes) included are not meant for use by humans or other living beings but they are a flashy demonstration. From a Dec. 10, 2014 news item on phys.org,

As part of a project demonstrating new 3-D printing techniques, Princeton researchers have embedded tiny light-emitting diodes into a standard contact lens, allowing the device to project beams of colored light.

Michael McAlpine, the lead researcher, cautioned that the lens is not designed for actual use—for one, it requires an external power supply. Instead, he said the team created the device to demonstrate the ability to “3-D print” electronics into complex shapes and materials.

“This shows that we can use 3-D printing to create complex electronics including semiconductors,” said McAlpine, an assistant professor of mechanical and aerospace engineering. “We were able to 3-D print an entire device, in this case an LED.”

A Dec. 9, 2014 Princeton University news release by John Sullivan, which originated the news item, describes the 3D lens, the objectives for this project, and an earlier project involving a ‘bionic ear’ in more detail (Note: Links have been removed),

The hard contact lens is made of plastic. The researchers used tiny crystals, called quantum dots, to create the LEDs that generated the colored light. Different size dots can be used to generate various colors.

“We used the quantum dots [also known as nanoparticles] as an ink,” McAlpine said. “We were able to generate two different colors, orange and green.”

The contact lens is also part of an ongoing effort to use 3-D printing to assemble diverse, and often hard-to-combine, materials into functioning devices. In the recent past, a team of Princeton professors including McAlpine created a bionic ear out of living cells with an embedded antenna that could receive radio signals.

Yong Lin Kong, a researcher on both projects, said the bionic ear presented a different type of challenge.

“The main focus of the bionic ear project was to demonstrate the merger of electronics and biological materials,” said Kong, a graduate student in mechanical and aerospace engineering.

Kong, the lead author of the Oct. 31 [2014] article describing the current work in the journal Nano Letters, said that the contact lens project, on the other hand, involved the printing of active electronics using diverse materials. The materials were often mechanically, chemically or thermally incompatible — for example, using heat to shape one material could inadvertently destroy another material in close proximity. The team had to find ways to handle these incompatibilities and also had to develop new methods to print electronics, rather than use the techniques commonly used in the electronics industry.

“For example, it is not trivial to pattern a thin and uniform coating of nanoparticles and polymers without the involvement of conventional microfabrication techniques, yet the thickness and uniformity of the printed films are two of the critical parameters that determine the performance and yield of the printed active device,” Kong said.

To solve these interdisciplinary challenges, the researchers collaborated with Ian Tamargo, who graduated this year with a bachelor’s degree in chemistry; Hyoungsoo Kim, a postdoctoral research associate and fluid dynamics expert in the mechanical and aerospace engineering department; and Barry Rand, an assistant professor of electrical engineering and the Andlinger Center for Energy and the Environment.

McAlpine said that one of 3-D printing’s greatest strengths is its ability to create electronics in complex forms. Unlike traditional electronics manufacturing, which builds circuits in flat assemblies and then stacks them into three dimensions, 3-D printers can create vertical structures as easily as horizontal ones.

“In this case, we had a cube of LEDs,” he said. “Some of the wiring was vertical and some was horizontal.”

To conduct the research, the team built a new type of 3-D printer that McAlpine described as “somewhere between off-the-shelf and really fancy.” Dan Steingart, an assistant professor of mechanical and aerospace engineering and the Andlinger Center, helped design and build the new printer, which McAlpine estimated cost in the neighborhood of $20,000.

McAlpine said that he does not envision 3-D printing replacing traditional manufacturing in electronics any time soon; instead, they are complementary technologies with very different strengths. Traditional manufacturing, which uses lithography to create electronic components, is a fast and efficient way to make multiple copies with a very high reliability. Manufacturers are using 3-D printing, which is slow but easy to change and customize, to create molds and patterns for rapid prototyping.

Prime uses for 3-D printing are situations that demand flexibility and that need to be tailored to a specific use. For example, conventional manufacturing techniques are not practical for medical devices that need to be fit to a patient’s particular shape or devices that require the blending of unusual materials in customized ways.

“Trying to print a cellphone is probably not the way to go,” McAlpine said. “It is customization that gives the power to 3-D printing.”

In this case, the researchers were able to custom 3-D print electronics on a contact lens by first scanning the lens, and feeding the geometric information back into the printer. This allowed for conformal 3-D printing of an LED on the contact lens.

Here’s what the contact lens looks like,

Michael McAlpine, an assistant professor of mechanical and aerospace engineering at Princeton, is leading a research team that uses 3-D printing to create complex electronics devices such as this light-emitting diode printed in a plastic contact lens. (Photos by Frank Wojciechowski)

Michael McAlpine, an assistant professor of mechanical and aerospace engineering at Princeton, is leading a research team that uses 3-D printing to create complex electronics devices such as this light-emitting diode printed in a plastic contact lens. (Photos by Frank Wojciechowski)

Also, here’s a link to and a citation for the research paper,

3D Printed Quantum Dot Light-Emitting Diodes by Yong Lin Kong, Ian A. Tamargo, Hyoungsoo Kim, Blake N. Johnson, Maneesh K. Gupta, Tae-Wook Koh, Huai-An Chin, Daniel A. Steingart, Barry P. Rand, and Michael C. McAlpine. Nano Lett., 2014, 14 (12), pp 7017–7023 DOI: 10.1021/nl5033292 Publication Date (Web): October 31, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

I’m always a day behind for Dexter Johnson’s postings on the Nanoclast blog (located on the IEEE [institute of Electrical and Electronics Engineers]) so I didn’t see his Dec. 11, 2014 post about these 3Dprinted LED[embedded contact lenses until this morning (Dec. 12, 2014). In any event, I’m excerpting his very nice description of quantum dots,

The LED was made out of the somewhat exotic nanoparticles known as quantum dots. Quantum dots are a nanocrystal that have been fashioned out of semiconductor materials and possess distinct optoelectronic properties, most notably fluorescence, which makes them applicable in this case for the LEDs of the contact lens.

“We used the quantum dots [also known as nanoparticles] as an ink,” McAlpine said. “We were able to generate two different colors, orange and green.”

I encourage you to read Dexter’s post as he provides additional insights based on his long-standing membership within the nanotechnology community.