Tag Archives: Council of Canadian Academies

Digital world and the Cleveland Museum of Art

If this project is as advertised, then the Cleveland Museum of Art has developed a truly exciting interactive experience. Cliff Kuang in his Mar. 6, 2013 article for Fast Company is definitely enthusiastic,

If you’re a youngster, why stare at a Greek urn when you could blow one up in a video game? One institution thinking deeply about the challenge is the Cleveland Museum of Art, which this month unveiled a series of revamped galleries, designed by Local Projects, which feature cutting-edge interactivity. But the technology isn’t the point. “We didn’t want to create a tech ghetto,” says David Franklin, the museum’s director. Adds Local Projects founder Jake Barton, “We wanted to make the tech predicated on the art itself.”

Put another way, the new galleries at CMA tackle the problem plaguing most ambitious UI projects today: How do you let the content shine, and get the tech out of the way? How do you craft an interaction between bytes and spaces that feels fun?

The Cleveland Museum of Art’s Jan. 14, 2013 news release describes the new project,

… Gallery One, a unique, interactive gallery that blends art, technology and interpretation to inspire visitors to explore the museum’s renowned collections. This revolutionary space features the largest multi-touch screen in the United States, which displays images of over 3,500 objects from the museum’s world-renowned permanent collection. This 40-foot Collection Wall allows visitors to shape their own tours of the museum and to discover the full breadth of the collections on view throughout the museum’s galleries.

Throughout the space, original works of art and digital interactives engage visitors in new ways, putting curiosity, imagination and creativity at the heart of their museum experience. Innovative user-interface design and cutting-edge hardware developed exclusively for Gallery One break new ground in art museum interpretation, design and technology.

“Technology is a vital tool for supporting visitor engagement with the collection,” adds C. Griffith Mann, Deputy Director and Chief Curator. “Putting the art experience first required an unprecedented partnership between the museum’s curatorial, design, education and technology staff.”

Comprised of three major areas, Gallery One offers something for visitors of all ages and levels of comfort with art. Studio Play is a bright and colorful space that offers the museum’s youngest visitors and their families a chance to play and learn about art. Highlights of this portion of Gallery One include: Line and Shape, a multi-touch, microtile wall on which visitors can draw lines that are matched to works of art in the collection; a shadow-puppet theater where silhouettes of objects can be used as “actors” in plays; mobile- and sculpture-building stations where visitors can create their own interpretations of modern sculptures by Calder [Alexander Calder] and Lipchitz [Jacques Lipchitz]; and a sorting and matching game featuring works from the permanent collection. This space is designed to encourage visitors of all ages to become active participants in their museum experience.

In the main gallery space, visitors have an opportunity to learn about the collection and to develop ways of looking at art that are both fun and educational. The gallery is comprised of fourteen themed groups of works from the museum’s collection, six of which have “lens” stations. The “lens” stations comprise 46” multi-touch screens that offer additional contextual information and dynamic, interactive activities that allow visitors to create experiences and share them with others through links to social media. Another unique feature of the space is the Beacon, an introductory, dynamic screen that displays real-time results of visitors’ activities in the space, such as favorite objects, tours and activities.

The largest multi-touch screen in the United States, the Collection Wall utilizes innovative technology to allow visitors to browse these works of art on the Wall, facilitating discovery and dialogue with other visitors. The Collection Wall can also serve as an orientation experience, allowing visitors to download existing tours or curate their own tours to take out into the galleries on iPads. The Collection Wall, as well as the other interactive in the gallery, illustrates the museum’s long-term investment in technology to enhance visitor access to factual and interpretative information about the permanent collection.

“The Collection Wall powerfully demonstrates how cutting-edge technology can inspire our visitors to engage with our collection in playful and original ways never before seen on this scale,” said Jane Alexander, Director of Information Management and Technology Services. “This space, unique among art museums internationally, will help make the Cleveland Museum of Art a destination museum.”

In concert with the opening of Gallery One, the museum has also created ArtLens, a multi-dimensional app for iPads. Utilizing image recognition software, visitors can scan two-dimensional objects in Gallery One and throughout the museum’s galleries to access up to 9 hours of additional multimedia content, including audio tour segments, videos and additional contextual information. Indoor triangulation-location technology also allows visitors to orient themselves in the galleries and find works of art with additional interpretive content throughout their visit.

“ArtLens allows the visitor to take the experience of Gallery One out in to the other areas of the museum,” said Caroline Goeser. “It brings in many voices and traditions from different cultures, as well as giving visitors a chance to see demonstrations of art making techniques by local artists. The content is layered so visitors can choose what interests them and discover new ways of looking at and interpreting the object. Their experience is guided by their own sense of curiosity and discovery.”

It’s interesting to note the companies that partnered with the museum and to note the source for the money supporting this effort (from the news release),

The museum partnered with several other companies to complete the project, including Local Projects (media design and development), Gallagher and Associates (design and development), Zenith (AV Integration), Piction (CMS/DAM development), Earprint Productions (app content development), and Navizon (way-finding).

Gallery One is generously supported by the Maltz Family Foundation, which donated $10 million to support the project. Additional support for the project comes from grants and other donations.

Kuang’s article makes the exhibits come alive,

The first gallery that many new visitors will see, Gallery One, is a signature space, meant to draw in a younger crowd. To that end, the exhibits are about fostering an intuitive understanding of the art. Which sounds like baloney, but the end results are quietly terrific. At the root, the exhibits encourage people to move, fostering a connection to the art that’s literally written on the body:

  • In one display, a computer analyzes the expression on a visitor’s face. Then, they can see work spanning thousands of years that matches their own visage.
  • Gallery One also offers a chance to directly experience the physical decisions behind how masterpieces are made. For example, in front of a Jackson Pollack painting is a virtual easel, loaded with tools that approximate Pollock’s own, so that visitors can pour their own drip painting and compare it to the real thing.

Sounds like very exciting stuff. For anyone who can’t visit the exhibit, there are videos including this one where visitors strike a pose and an image (from the collection) mimicking the pose appears {ETA Mar.6.13 4:35 pm PST: I got this the wrong way round, the museum presents you with a piece of art and you strike the same p0se),

Sculpture Lens – Strike A Pose – Cleveland Museum of Art from Local Projects on Vimeo.

Kuang covers that exhibit and much more in his article, which I strongly recommend reading, and he makes this point,

Even as the designers go wild with the technology, they never stop to consider what anyone who doesn’t care about that technology would stand to gain. It was Barton’s [Local Projects founder Jake Barton] own skepticism about technology that made the technology great. His team didn’t necessarily believe that high-tech flare would add value to the museum experience. So they strove to look past the technology.

As a technical writer, I had many, many arguments with developers about precisely that point; most of us don’t care about the technology.  So, kudos to Jake Barton and all of the teams responsible for finding a way to integrate that understanding into a series of exhibits that allow the museum to showcase its collection, engage the public, and develop new audiences.

Meanwhile, the Council of Canadian Academies is poised to embark on an assessment which examines museums and other memory institutions along with digital technology from an entirely different perspective, Memory Institutions and the Digital Revolution,

Library and Archives Canada has asked the Council of Canadian Academies to assess how memory institutions, which includes archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges of the changing ways in which Canadians are communicating and working in the digital age.

These trends present both significant challenges and opportunities for traditional memory institutions as they work towards ensuring that valuable information is safeguarded and maintained for the long term and for the benefit of future generations. It requires that they keep track of new types of records that may be of future cultural significance, and of any changes in how decisions are being documented. As part of this assessment, the Council’s expert panel will examine the evidence as it relates to emerging trends, international best practices in archiving, and strengths and weaknesses in how Canada’s memory institutions are responding to these opportunities and challenges. Once complete, this assessment will provide an in-depth and balanced report that will support Library and Archives Canada and other memory institutions as it considers how best to manage and preserve the mass quantity of communications records generated as a result of new and emerging technologies.

I last mentioned the ‘memory institutions’ assessment in my Feb. 22, 2013 posting in the context of their ‘science culture in Canada’ assessment panel. I find it odd that the Canada Science and Technology Museums Corporation was one of the requestors for the ‘science culture’ assessment but it  is not involved (nor is any other museum) in the ‘memory institutions and digital revolution’ assessment.

After reading about the Cleveland Museum of Art project, something else strikes me as odd, there is no mention of analysing the role that museums, libraries, and others will play in a world which is increasingly ephemeral. After all, it’s not enough to keep and store records. There is no point  if we can’t access them or even have knowledge of their existence. As for storing and displaying objects, this traditional museum function is increasingly being made impossible as objects seemingly disappear. The vinyl record, cassette tape, and CD (compact disc) have almost disappeared to be replaced by digital files. Meanwhile, my local library has fewer and fewer books, DVDs, and other lending items. What roles will libraries, museums, and other memory institutions going to have in our lives?

Expert panel to assess the state of Canada’s science culture—not exactly whelming

I was very excited when the forthcoming assessment The State of Canada’s Science Culture was announced in early 2012 (or was it late 2011?). At any rate, much has happened since then including what appears to be some political shenanigans. The assessment was originally requested by the Canada Science and Technology Museums Corporation. After many, many months the chair of the panel was announced, Arthur Carty, and mentioned here in my Dec. 19, 2012 posting.

I was somewhat surprised to note (although I didn’t say much about it in December) that the science culture in Canada assessment webpage now included two new government agencies as requestors, Industry Canada and Natural Resources Canada. Where are Environment Canada, Transport Canada, Heritage Canada (we have an exciting science history which is part of our Canadian heritage), Health Canada, and Statistics Canada? For that matter, why not the entire civil service structure, as arguably every single government department has a vested interest in and commitment to science culture in Canada?

It took an extraordinarily long period of time before the Council of Canadian Academies (CCA) announced its chair and expert panel and presumably the addition of two random government departments in the request was a factor. One would hope that the CCA’s desire to find the most exciting and diverse group of ‘experts’ would be another factor in the delay.  To be clear my greatest concern is not about the individuals. It is the totality of the panel that concerns me most deeply. Here’s the list from The Expert Panel on the State of Canada’s Science Culture webpage,

The Expert Panel on the State of Canada’s Science Culture is comprised of the following members:

Arthur Carty,  O.C., FRSC, FCAE  (Chair) Executive Director, Waterloo Institute for Nanotechnology (Waterloo, ON)

Adam Bly, Founder and Chairman, Seed (New York, NY)

Karen A. Burke, Director, Regulatory Affairs, Drug Safety and Quality Assurance,  Amgen Canada Inc. (Mississauga, ON)

Edna F. Einsiedel, Professor, Department of Communication and Culture,  University of Calgary (Calgary, AB)

Tamara A. Franz-Odendaal, NSERC Chair for Women in Science and Engineering (Atlantic Canada) and Associate Professor of  Biology, Mount Saint Vincent University (Halifax, NS)

Ian Hacking, C.C., FRSC University Professor Emeritus, Philosophy, University of Toronto (Toronto, ON)

Jay Ingram, C.M. Chair, Science Communications Program, Banff Centre; Former Co-Host, Discovery Channel’s “Daily Planet” (Calgary, AB)

Sidney Katz, C.M. Professor of Pharmacology and Toxicology,  Faculty of Pharmaceutical Sciences, University of British Columbia (Vancouver, BC)

Marc LePage, President and CEO, Génome Québec (Montréal, QC)

James Marchbank, Former CEO, Science North (Sudbury, ON)

Timothy I. Meyer, Head, Strategic Planning and Communications, TRIUMF (Vancouver, BC)

Jon Miller, Research Scientist, Center for Political Studies, University of Michigan (Ann Arbor, MI)

Bernard Schiele, Professor of Communications, Université du Québec à Montréal (UQAM) and Researcher, Centre interuniversitaire de recherche sur la science et la technologie (CIRST) (Montréal, QC)

Dawn Sutherland, Canada Research Chair in Science Education in Cultural Contexts, University of Winnipeg (Winnipeg, MB)

James Wilsdon, Professor of Science and Democracy, University of Sussex (Brighton, United Kingdom)

Given the CCA’s most recent assessment, Strengthening Canada’s Research Capacity: The Gender Dimension, it’s striking that the number of women on this panel of 15 individuals is four. This suggests that while the CCA is happy to analyze information and advise about gender and science, it is not able to incorporate its own advice when assembling an expert panel, especially one concerning science culture.

There is only one person in the group who has built a business and that’s Adam Bly. Ordinarily I’d be happy to see this inclusion but Bly and/or his company (Seed Media Group) are making an attempt to trademark the term ‘scientific thinking’. (I’ve objected to attempts to trademark parts of commonly used language many, many times in the past.) In addition to that, there’s another activity I questioned in my Feb. 11, 2013 posting about visualizing nanotechnology data.

(For those who are interested in some of the discussion around attempts to trademark phrases that are in common usage, there’s a Feb. 18, 2013 posting by Mike Masnick on Techdirt about a bank which is attempting to trademark the term ‘virtual wallet’.)

It’s a shame the members of the panel did not (or were not encouraged) to write a biography that showed their interest in science culture, however the member imagines it to be. Following the links from the ‘expert panel’ page leads only to information that has been reused countless times and has absolutely no hint of personality or passion. Even a single sentence would have been welcome. Whatever makes these individuals ‘experts on science culture in Canada’ has to be inferred. As it is, this looks like a list of policy and academic wonks with a few media types (Bly and Ingram) and business types (Bly, again, and Burke) thrown in for good measure.

I half jokingly applied to be on the panel in my Dec. 19, 2012 posting so (excluding me) here’s a list of people I’d suggest would make for a more interesting panel,

  • Margaret Atwood (writes speculative/science fiction)
  • Baba Brinkman (rapper, MFA from the University of Victoria, BC, known internationally for his Rap Guide to Evolution, the world’s peer-reviewed science rap)
  • Claire Eamer, founder of the Sci/Why blog about Canadian science writing for kids, science writer located in Yukon
  • Mary Filer (internationally known artist in glass who worked in the Montreal Neuro Centre and was a member of one of the most storied surgical teams in Canadian history)
  • Pascal Lapointe, founder of Agence Science Presse agency and Je vote pour la science project
  • Robert Lepage (theatre director known internationally for his groundbreaking use of technology)
  • Robert J. Sawyer (internationally know Canadian science fiction writer)

Could they not have found one visual or performing artist or writer or culture maker to add to this expert panel? One of them might have added a hint of creativity or imagination to this assessment.  Ironically, the visual and performing arts were included in the CCA’s asssesment The State of Science and Technology in Canada, 2012 released in Sept. 2012.

As for incorporating other marginalized, be it by race, ethnicity, social class, ability, etc., groups the panel members’ biography pages do not give any hint of whether or not any attempt was made. I hope attempts will be made during the information gathering process and that those attempts will be documented, however briefly, in the forthcoming assessment.

In any event, I’ve been hearing a few whispers about the panel and its doings. Apparently, the first meeting was held recently and predictably (from my Dec. 19, 2012 posting),

Hopefully, the expert panel will have a definition of some kind for “science culture.”

the expert panel discussed a definition for science culture. I hear from another source the panel may even consider science blogging in their assessment. It seems amusing that this possibility was mentioned in hushed tones suggesting there was no certainty science blogging would be included in the assessment since Bly and his company established the Science Blogs network. Of course, there was the ‘Pepsigate’ situation a few years ago. (This Wikipedia essay offers the least heated description I’ve seen of the Science Blogs/Pepsi contretemps.)

I have a prediction about this forthcoming assessment, it will be hugely focused on getting more children to study STEM (science, technology, engineering, and mathematics) subjects. I have no formal objection to the notion but it does seem like a huge opportunity lost to focus primarily on children when it’s the parents who so often influence their children’s eventual choices.  Here’s an excerpt from my Jan. 31, 2012 post illustrating my point about children, their parents, and attitudes towards science,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’.

Professor Archer says the findings indicate that engaging young people in science is not therefore simply a case of making it more interesting or more fun. She said: “There is a disconnect between interest and aspirations. Our research shows that young people’s ambitions are strongly influenced by their social backgrounds – ethnicity, social class and gender – and by family contexts. [emphases mine]

I purposefully used the term STEM as I suspect this expert panel will not have knowledge of the HSE (humanities, social sciences, and education), LS (life sciences), and PCEM (physical sciences, computer science, engineering, and mathematics) categories as defined by the recent assessment “(Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research.” Those categories were defined as an attempt to reflect the disposition of the major science funding organizations in Canada ((SSHRC [Social Sciences and Humanities Research Council], CIHR [Canadian Institutes of Health Research], and NSERC [Natural Sciences and Engineering Research Council]) and, arguably, they are a big—if not the biggest—influence on Canadian science culture.

I do have a question I hope will be answered in the assessment. If we motivate more children to study science type topics, where will the jobs be? David Kent on University Affairs’ The Black Hole blog has written about science trainees and their future for years. In fact, his Feb. 19, 2013 posting is titled, Planning Ahead: How many of you are there and who will pay you?

Interestingly, there was an announcement this morning of another assessment which could be described as related to science culture, from the Feb. 22, 2013 CCA news release,

Doug Owram to Serve as Expert Panel Chair on Memory Institutions and the Digital Revolution

The Council is pleased to announce the appointment of Dr. Doug Owram, FRSC, as Chair of the Expert Panel on Memory Institutions and the Digital Revolution. Library and Archives Canada has asked the Council to assess how memory institutions, including archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges in which Canadians are communicating and working in the digital age.

While the expert panel has yet to be announced, it is comforting to note that Owram is an historian and the link between memory and history seems unimpeachable. Oddly, the page listing ‘in progress assessments’ has the Memory Institutions and the Digital Revolution assessment listed as being On Hold (more political shenanigans?). Regardless, you can find out more about the assessment and its questions on the Memory Institutions and the Digital Revolution assessment page.

I wonder what impact, if any, these assessments will have on each other. In the meantime, I have one more prediction, the word innovation will be used with gay abandon throughout the science culture assessment.

Science, women and gender in Canada (part 2 of 2)

The material in the executive summary for Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, which was released on Nov. 21, 2012 by the Council of Canadian Academies (CCA) is developed throughout the report. (Part 1 of my commentary is here.)

The passage about the economic importance of diversity supported by a quote from University of Alberta President Indira Samarasekera hearkens back to the executive summary,

From an economic perspective, the underrepresentation of female researchers in academia raises many potential problems, not least the effects of a labour pool that operates at considerably less than full capacity. University of Alberta President Indira Samarasekera noted:

“I think our society isn’t balanced if we don’t have the contribution of both genders, in addition to people of different ethnic origins and different racial backgrounds. We all know that diversity is a strength. That’s what you see in nature. So why would we rob ourselves of ensuring that we have it?” (in Smith, 2011).

U.S. researchers Hong and Page (2004) found that diverse groups tend to outperform homogeneous groups, even when the homogeneous groups are composed of the most talented problem solvers. They attribute this to the notion that individuals in homogeneous groups often think in similar ways, whereas diverse groups approach problems from multiple perspectives (Hong & Page, 2004). Considering that varied groups are “invariably more creative, innovative and productive” than homogeneous groups, the argument for encouraging women to be active in decision-making groups is similar to that for minority populations in general (Calnan & Valiquette, 2010). Similarly, the European Commission’s Expert Group on Structural Change (2011) analyzed a number of studies indicating that group creativity is fed by gender balance,25 and collective intelligence is positively correlated with the proportion of women in a group.26 As the McKinsey (2008) Report Women Matter 2 pointed out, since half of the talent pool is made up of women, it makes economic and social sense to bring the best minds of both sexes together to address the challenges that face society. (p. 60/1 PDF; p. 30/1 print)

One  of the more interesting aspects of this report is how the panel broke down the categories,

For the Panel’s analyses, fields of study were organized into three large categories: humanities, social sciences, and education (HSE); life sciences (LS); and physical sciences, computer science, mathematics and engineering (PCEM).31 The HSE, PCEM and LS categories are somewhat different from the categories commonly used in other reports, such as the well-known science, technology, engineering and mathematics classification (STEM);32 however, the Panel decided that the former classification was best suited to the Canadian context. For example, HSE, LS, and PCEM reflect the priorities of the three major Canadian granting agencies (SSHRC, CIHR, and NSERC). Considering the Tri-Council’s high level of involvement in funding available to researchers, it is logical to use a uniquely Canadian framework to define disciplines at the aggregate level. (pp. 68/9 PDF; pp. 38/9 print)

This categorization is not one I’ve seen before and I find it quite intriguing and compelling. Already noted in part 1 of my commentary is that the arts have no place in this report even though they are mentioned as an area of excellence in the State of Science and Technology in Canada, 2012 report released by the CCA in Sept. 2012.

The section following the description of the research categories is filled with data about salaries over time and across various fields of interest. Briefly, women have not done as well as men historically. While the gaps have narrowed in some ways, there is still a disparity today. There’s also a discussion about the difficulty of comparing numbers over time.

Given that women entered the academic sphere in serious numbers during the 1960s and each successive wave has dealt with different social imperatives, e.g. the drive to encourage women to study the science and mathematics in particular doesn’t gain momentum until decades after the 1960s. When a career timeframe (someone who entered an undergraduate programme in 2000 may have just finished their PhD in 2011 and, if lucky, would have started their career in the last 1.5 years) is added to this data, it becomes clear that we won’t understand the impact of higher enrollment and higher numbers of graduates for some years to come. From report,

The Panel recognizes that time is needed to see whether the higher numbers of women in the student population will translate into correspondingly higher numbers in tenure track or tenured positions. However, the Panel also questioned whether those changes would occur as quickly as one could expect considering the growth of female students among the general student population. Published by CAUT (2011), new appointment data on full-time university teachers38 from Statistics Canada and UCASS indicate that of the 2,361 new appointments in 2008–2009, 57.7 per cent were men, and 42.3 per cent were women. While this represents an increase from 2001–2002, when 62.7 per cent of the 2,634 new appointees were men and 37.3 per cent were women (CAUT, 2005), parity in new hires has not yet been achieved.39 (pp. 80/1 PDF; pp. 50/1 print)

Canada is not alone,

The higher one looks in university ranks, the fewer women are present in comparison to men. This trend is not unique to Canada. In general, the Canadian profile is similar to that found in other economically advanced nations including the U.S., and to the average profile seen in European Union (EU) countries. For example, in both Canada and the EU, women held slightly over 40 per cent of grade C45 research positions [approximately assistant professor level] and about 18 per cent of grade A46 positions [the highest research level] (Figure 3.8) in 2007 (Cacace, 2009).47 This global similarity reinforces the systemic nature of the under representation of women in academia. (p. 85 PDF; p. 55 print) Note:  The descriptions of grade C and grade A were taken from the footnotes.)

The difference is most striking when comparing C grade (assistant professor) to A grade (full professor) positions and their gendering,

The percentage of women at the Grade B level is generally lower than at the Grade C level, with the exception of Sweden (47 per cent) (please see also Figures A2.3 and A2.4 in Appendix 2). Finland also boasts a comparatively higher percentage of women at this rank, at 49 per cent. However, the greatest difference in women’s representation is noticeable between the ranks of associate professor and full professor. Again, there is some variation across countries (e.g., Finland at 23 per cent; Canada at 18 per cent; Germany at 12 per cent), which indicates that some nations have farther to go to achieve gender parity in research than others. In general though, the relatively low proportion of women at the full professor level suggests that the glass ceiling remains intact in Canada as well as in several comparator countries. (p. 87 PDF; p. 57 print) [emphasis mine]

In an earlier section of the report, there was discussion of  the impact that maternity, which forces an interruption, has on a career.  There was also discussion of the impact that stereotypes have,

The effects of stereotypes are cumulative. The desire for peer acceptance plus the influence of stereotypes make it difficult for anyone to escape powerful “cultural messages” (Etzkowitz et al., 2000). This is one of the reasons why gendered trends emerge in girls’ and boys’ choices and, combined with the lack of policy change, a reason why it is still difficult for women to advance in some university departments. Later on in the life course, these messages can make it harder for women’s professional experience to be valued in academia, as evidenced by findings that demonstrate that curricula vitae are evaluated differently based on whether the applicant’s name is male or female (Steinpreis et al., 1999), or that blind auditions increase the chances that women musicians will be hired in orchestras … (p. 95 PDF; p. 65 print)

What I find fascinating about stereotypes is that since we are all exposed to them, we are all inclined to discriminate along those stereotypical lines.  For example, I wrote about some research into wages for graduate students in a Sept. 24, 2012 posting where I pointed out that a female graduate student was better off seeking employment with a male professor, despite the fact that she would still be offered less money than her male counterpart,

I tracked down the paper (which is open access), Science faculty’s subtle gender biases favor male students by Corinne A. Moss-Racusin, John F. Dovidio, Victoria L. Bescroll, Mark J. Graham, and Jo Handelsman and found some figures in a table which I can’t reproduce here but suggest the saying ‘we women eat their own’ isn’t far off the mark. In it, you’ll see that while women faculty members will offer less to both genders, they offer significantly less to female applicants.

For a male applicant, here’s the salary offer,

Male Faculty               Female Faculty

30,520.82                    29, 333.33

For a female applicant, here’s the salary offer,

Male Faculty               Female Faculty

27,111.11                    25,000.00

To sum this up, the men offered approximately $3000 (9.25%) less to female applicants while the women offered approximately $4000 (14.6%) less. It’s uncomfortable to admit that women may be just as much or even more at fault as men where gender bias is concerned. However, it is necessary if the situation is ever going to change.

The researchers did not mention this aspect of the disparity in their news release nor (to my knowledge) was it mentioned in any of the subsequent coverage, other than on my blog.

Nowhere in this CCA report is there any hint that women discriminate against women. One is left with the impression, intentional or not, that discrimination against women will disappear once there are more women at higher levels in the worlds of academe and science. Given the one piece of research I’ve cited and much anecdotal evidence, I think that assumption should be tested.

Leaving aside which gender is ‘doing what to whom’, gender bias at home and at school has a great impact on who enters which field,

In sum, home and school environments, sociocultural attitudes, and beliefs regarding gender roles and the value of education affect gender differences in academic choice and performance. Self-confidence, test scores, and ultimately post-secondary and career choices are often by-products of these factors (UNESCO, 2007). The lack of women in science and engineering — and the lack of men in education studies and humanities — could be a result of gender bias during childhood and teen socialization (Vallès Peris & Caprile Elola-Olaso, 2009). (p. 97 PDF; p. 67 print) [emphasis mine]

I realize this report is focused on gender issues in the sciences, nonetheless, I find it striking there is no mention of social class (at home and at school) with regard to the impact that has on aspirations to a research career and, for that matter, any impact social class might have on gender roles.

Also, there is no substantive mention of age as a factor, which seems odd, since women are more likely to interrupt their careers for childbearing and childrearing purposes. This interruption means they are going to be older when they re-enter the workforce and an older woman is still perceived quite differently than an older man, irrespective of career accomplishments.

The Nov. 21, 2012 news release from the CCA summarizes the conclusions in this fashion,

“There is no single solution to remedy the underrepresentation of women in the highest ranks of academic research careers. The issue itself is a multifaceted one that is affected by social, cultural, economic, institutional, and political factors and contexts”, commented Panel Chair Dr. Lorna R. Marsden. “There has been significant progress in the representation of women in the academy since the 1970s, and there is much to be celebrated. However, as evidenced by the wide variation in women’s representation by discipline and rank, there are still challenges to overcome.”

The Expert Panel developed a baseline of information regarding the statistical profile of women researchers in Canada. The major findings from the statistical profile are:

  •       In general, the Canadian profile is similar to that of other economically advanced nations.
  •       Women’s progress in Canadian universities is uneven and dependent on discipline and rank.
  •        The higher the rank, the lower the percentage of women in comparison to men.

The Panel also identified key factors that affect the multiple career paths of women. These factors start early in life with stereotypes that define roles and expectations, followed by a lack of knowledge about requisites for potential career paths, and a lack of role models and mentors. These issues, combined with a rigid tenure track structure, challenges associated with the paid work-family life balance, and the importance of increased support and coordination amongst governments and institutions need to be examined if Canada is going to achieve a greater gender balance within academia.

There’s a lot of admire in this report. As noted in part 1 of this commentary, I particularly appreciate the inclusion of personal narrative (life-writing) with the usual literature surveys and data analyses; the discussion around the importance of innovation regarding the economy and the reference to research showing that innovation is enhanced by the inclusion of marginalized groups; and the way in which values fundamental to Canadian society were emphasized.

The photograph on the front cover was a misstep. The most serious criticism I have of this assessment is the failure to recognize that simply having more women in leadership positions will not necessarily address gender equity issues. Stereotypes about women and gender run deep in both men and women and that needs to be recognized and dealt with. I am also disappointed that they failed to mention in the conclusion the impact that leadership has on gender equity and the necessity of giving leaders a reason (carrot and/or stick) to care about it.

I cannot comment on the makeup of the expert panel as I’m largely unfamiliar with the individuals, other than to say that as expected, this panel was largely composed of women.

I recommend reading the report as I learned a lot from it not least that there are many science organizations in this country that I’d not heard of or encountered previously. One final appreciation, I thought deconstructing STEM (science, technology, engineering, and mathematics) to create HSE (humanities, social sciences, and education), LS (life sciences), and PCEM (physical sciences, computer science, engineering, and mathematics) so the designations more clearly reflected Canadian science funding realities was brilliant.

Science, women and gender in Canada (part 1 of 2)

Titled Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, the Council of Canadian Academies (CCA) released their assessment on Nov. 21, 2012, approximately 20 months after the incident which tangentially occasioned it (from the Strengthening … webpage) Note: I have added a reference and link to a report on CERC (Canada Excellence Research Chairs) gender issues in the following excerpt,

After the notable absence of female candidates in the Canada Excellence Research Chairs (CERC) program, the Minister of Industry, in March 2010, struck an ad-hoc panel to examine the program’s selection process. The ad-hoc panel found that the lack of female representation was not due to active choices made during the CERC selection process. [Dowdeswell, E., Fortier, S., & Samarasekera, I. (2010). Report to the Minister of Industry of the Ad Hoc Panel on CERC Gender Issues. Ottawa (ON):Industry Canada.] As a result, the Council of Canadian Academies received a request to undertake an assessment of the factors that influence university research careers of women, both in Canada and internationally.

To conduct the assessment, the Council convened an expert panel of 15 Canadian and international experts from diverse fields, which was chaired by Dr. Lorna Marsden, President emeritus and Professor, York University.

For anyone unfamiliar with the CERC programme,

The Canada Excellence Research Chairs (CERC) Program awards world-class researchers up to $10 million over seven years to establish ambitious research programs at Canadian universities.

My commentary is primarily focused on the assessment and not the preceding report from the ad hoc panel, as well, I am not commenting on every single aspect of the report. I focus on those elements of the report that caught my attention.

There is much to appreciate in this assessment/report unfortunately the cover image cannot be included. By choosing a photograph, the designer immediately entered shark-infested waters, metaphorically speaking. From a semiotic perspective, photographs are a rich and much studied means of criticism. Having a photograph of an attractive, middle-aged white woman with blonde hair (a MILF, depending on your tastes)  who’s surrounded by ‘adoring’ students (standing in for her children?) on the cover of this assessment suggests an obliviousness to nuance that is somewhat unexpected. Happily, the image is not reflective of the content.

The report lays out the basis for this assessment,

There are many reasons for concern at the lack of proportional representation of women in senior positions in all facets of our society, including politics, law, medicine, the arts, business, and academia. The underrepresentation of women in any of these areas is a concern considering the fundamental Canadian values of equality, fairness, and justice, as outlined in the Canadian Human Rights Act, the Canadian Charter of Rights and Freedoms, and the Employment Equity Act. This report focuses on women in academia: the 11,064 women with PhDs who are employed full-time in degree-granting institutions. In comparison, there are 22,875 men in this category (see Table 3.1).1 Besides educating millions of students, these researchers and innovators are working to address the major issues Canada faces in the 21st century, including climate change, demographic shifts, healthcare, social inequality, sustainable natural resources management, cultural survival, as well as the role Canada plays as an international actor. These contributions are in addition to the basic, or knowledge discovery, research that is one of the main duties of academic researchers. In the knowledge economy, a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge. The wider the pool is from which to draw, the more perspectives, experiences, and ideas will be brought to the creative process. [emphasis mine] Arguments for fully including women in research careers range from addressing skills shortages and increasing innovation potential by accessing wider talent pools, to greater market development, stronger financial performance, better returns on human resource investments, and developing a better point from which to compete in the intensifying global talent race. (p. 15 PDF; p. xiii print)

I appreciate the reference to fundamental values in Canadian society as it is important but I suspect the portion I’ve highlighted contains the seeds of an argument that is far more persuasive for power brokers. It was a very smart move.

It is possible to skim this report by simply reading the executive summary and reading the Key Messages page included after each chapter heading, save the final chapter. They’ve done a good job of making this report easy to read if you don’t have too much time but prefer to view the complete assessment rather than an abridged version.

The Chapter 1 Key Messages are,

Chapter Key Messages

• While many reports have focused specifically on women in science, technology, engineering, and mathematics careers, this assessment employs comparative analyses to examine the career trajectories of women researchers across a variety of disciplines. The Panel was able to respond to the charge using a combination of research methods, but their analyses were sometimes hindered by a paucity of key data sets.

• In an attempt not to simply repeat numerous studies of the past on women in research careers, the Panel used a life course model to examine the data from a new perspective. This conceptual framework enabled the Panel to consider the multidimensional nature of human lives as well as the effects of external influences on the career trajectories of women researchers.

• Women are now present in all areas of research, including those areas from which they have previously been absent. Over time, institutions have become more inclusive, and Canadian governments have created policies and legislation to encourage more gender equity. Collective bargaining has contributed to this process. Clearly, the advancement of women in research positions relies on the contributions of individuals, institutions and government.

• Since the 1970s, there has been major progress such that women have been obtaining PhDs and entering the academy as students and faculty at increasing rates. However, women remain underrepresented at the highest levels of academia, as demonstrated by their low numbers in the Canada Research Chairs (CRC) program, and their absence from the Canada Excellence Research Chairs (CERC) program. There is considerable room for improvement in women’s representation as faculty.

• Higher education research and development funding has nearly doubled in the past decade. However, the amount of funding allocated to core grants and scholarship programs varies among the tri-council agencies [SSHRC, Social Science and Humantities Research Council; NSERC, Natural Science and Engineering Research Council; and CIHR, Canadian Institutes of Health Research], with the majority of funds available to researchers sponsored by NSERC and CIHR. This pattern is generally replicated in the Canada Research Chairs and the Canada Excellence Research Chairs programs. As noted in the 2003 Human Rights Complaint regarding the Canada Research Chairs program, women are least represented in the areas of research that are the best funded.  (p. 33 PDF; p. 3 print) [emphasis mine]

This panel in response to the issue of women being least represented in the best funded areas of research elected to do this,

The Panel noted that many reports have focused on women in science, technology, and engineering research careers (due in part to the fact that women have been significantly underrepresented in these fields) yet relatively little attention has been paid to women researchers in the humanities, social sciences, and education. This is despite the fact that 58.6 per cent of doctoral students in these disciplines are women (see Chapter 3), and that their research contributions have profoundly affected the study of poverty, violence, the welfare state, popular culture, and literature, to note only a few examples. Considering this, the Panel’s assessment incorporates a comparative, interdisciplinary analysis, with a focus on the broader category of women in university research. In order to identify the areas where women are the most and least represented, Panellists compiled data and research that describe where Canadian female researchers are — and are not — in terms of both discipline and rank. Where possible, this study also analyzes the situation of women researchers outside of academia so as to paint a clearer picture of female researchers’ career trajectories. (pp. 37/8 PDF; pp. 7/8 print) [emphases mine]

Bringing together all kinds of research where women are both over and under represented and including research undertaken outside the academic environment was thoughtful. I also particularly liked this passage,

American research suggests that holding organizational leaders accountable for implementing equity practices is a particularly effective way of enhancing the diversity of employees (Kalev et al., 2006), indicating that reporting and monitoring mechanisms are key to success. [emphasis mine] The Panel observed that meeting these commitments requires the proper implementation of accountability mechanisms, such as reporting and monitoring schemes. (p. 44 PDF; p. 14 print)

Juxtaposing the comment about leaders being held accountable for equity practices and the  comment I emphasized earlier ” … a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge …” could suggest an emergent theme about leadership and the current discourse about innovation.

To get a sense of which disciplines and what research areas are rewarded within the Canada Research Chair programme read this from the assessment,

Similarly, while 80 per cent of Canada Research Chairs are distributed among researchers in NSERC and CIHR disciplines, SSHRC Chairs represent only 20 per cent of the total — despite the fact that the majority (60 per cent) of the Canadian professoriate come from SSHRC disciplines (Grant & Drakich, 2010). Box 1.1 describes the gendered implications of this distribution, as well as the history of the program. (p. 45 PDF; p. 15 print)

What I find intriguing here isn’t just the disparity. 60% of the researchers are chasing after 20% of the funds (yes, physical sciences are more expensive but those percentages still seem out of line), but that social sciences and the humanities are not really included in the innovation rubric except here in this assessment. Still, despite the inclusion of the visual and performing arts in the State of Science and Technology in Canada, 2012 report issued by the CCA in Sept. 2013 (part 1 of my commentary on that assessment is in this Dec. 28, 2012 posting; part 2 of my commentary is in this Dec. 28, 2012 posting) there is no mention of them in this assessment/report of gender and science.

I did particularly like how the panel approached data collection and analysis,

Coming from a variety of disciplinary backgrounds, Panellists brought with them a range of methodological expertise and preferences. Through a combination of quantitative and qualitative data, the Panel was able to identify and analyze factors that affect the career trajectories of women researchers in Canada (see Appendix 1 for full details). In addition to an extensive literature review of the national and international research and evidence related to the topic, the Panel collected information in the form of data sets and statistics, heard from expert witnesses, conducted interviews with certain stakeholders from academia and industry, and analyzed interview and survey results from their secondary analysis of Canada Research Chairs data (see Appendix 5 for a full description of methodology and results). Together, these methods contributed to the balanced approach that the Panel used to understand the status of women in Canadian university research careers.

In addition, the Panel took an innovative approach to painting a more vibrant picture of the experience of women professors by incorporating examples from academic “life-writing.” Life-writing is the generic name given to a variety of forms of personal narrative — autobiography, biography, personal essays, letters, diaries, and memoirs. Publishing personal testimony is a vital strategy for marginalized groups to claim their voices and tell their own stories, and academic women’s life-writing adds vital evidence to a study of women in university careers (Robbins et al., 2011). The first study of academic life-writing appeared in the U.S. in 2008 (Goodall, 2008); as yet, none exists for Canada.16 Recognizing the benefits of this approach, which focuses on the importance of women’s voices and stories, the Panel chose to weave personal narrative from women academics throughout the body of the report to illuminate the subject matter. As with the data gleaned from the Panel’s secondary analysis of Canada Research Chairs data, these cases highlight the experience of an articulate and determined minority of women who are prepared and positioned to speak out about structural and personal inequities. More comprehensive surveys are required to establish the precise extent of the problems they so effectively illustrate. (pp. 49/50 PDF; pp. 19/20 print)

Nice to note that they include a very broad range of information as evidence. After all, evidence can take many forms and not all evidence can be contained in a table of data nor is all data necessarily evidence. That said there were some other issues with data and evidence,

Despite the extensive literature on the subject, the Panel identified some data limitations. While these limitations made some analyses difficult, the Panel was able to effectively respond to the charge by using the combination of research methods described above. Data limitations identified by the Panel include:

• relatively little research specific to the Canadian context;

• lack of longitudinal data;

• relatively few studies (both quantitative and qualitative) dealing with fields such as the humanities and social sciences;

• lack of data on diversity in Canadian academia, including intersectional data;

• lack of comprehensive data and evidence from the private and government sectors; and

• difficulty in comparing some international data due to differences in disciplinary classifications. (p. 50 PDF; p. 20 print)

I think this does it for part 1 of my commentary.

Council of Canadian Academies tries to answer question: What is the state of Canada’s science culture?

The Council of Canadian Academies is an organization designed to answer questions about science in Canada. From the Council’s About Us webpage on their website,

The Council is an independent, not-for-profit corporation that supports science-based, expert assessments (studies) to inform public policy development in Canada. The Council began operation in 2005 and consists of a Board of Governers, a Scientific Advisory Committee and Secretariat. The Council draws upon the intellectual capital that lies within its three Member Academies the Royal Society of Canada (RSC); the Canadian Academy of Engineering;  and the Canadian Academy of Health Sciences.

Our mission is to contribute to the shaping of evidence-based public policy that is in the public interest. This is achieved by appointing independent, multidisciplinary panels of expert volunteers. The Council’s work encompasses a broad definition of science, incorporating the natural, social and health sciences as well as engineering and the humanities.

Expert Panels directly address the question and sub-questions referred to them. Panel assessments may also identify: emerging issues, gaps in knowledge, Canadian strengths, and international trends and practices. Upon completion, assessments provide government decision-makers, academia and stakeholders with high-quality information required to develop informed and innovative public policy.

Several months ago, Gary Goodyear, Canada’s Minister of State (Science and Technology), requested on behalf of the Canada Science and Technology Museums Corporation (CSTMC), Natural Resources Canada, and Industry Canada an assessment of science culture in Canada. From the State of Canada’s Science Culture webpage on the Council of Canadian Academies website,

Over the past 30 years, public interest and debate has been steadily growing in Canada and abroad over the need to foster a science culture as part of the national science and technology agenda. In this period, significant government and private investments have contributed to the development of hundreds of individual science culture programs and institutions.

Now more than ever the volume of programs and data support the need for a national examination of issues, such as the performance indicators that best reflect the vitality of Canada’s science culture, and a need to understand where Canada ranks internationally. The expert panel will be asked to consider these and other questions such as what factors influence an interest in science among youth; what are the key components of the informal system that supports science culture; and what strengths and weaknesses exist in the Canadian system.

Assessments of science culture can focus either on science in the general culture, or the culture among scientists. This assessment will focus principally on the former, with additional interest in understanding the underlying connections among entrepreneurship, innovation and science. …

The full assessment process includes a rigorous peer review exercise to ensure the report is objective, balanced and evidence-based. Following the review and approval by the Council’s Board of Governors, the complete report will be made available on the Council’s website in both official languages. …

Question

What is the state of Canada’s science culture?

Sub-questions:

  1. What is the state of knowledge regarding the impacts of having a strong science culture?
  2. What are the indicators of a strong science culture? How does Canada compare with other countries against these indicators? What is the relationship between output measures and major outcome measures?
  3. What factors (e.g., cultural, economic, age, gender) influence interest in science, particularly among youth?
  4. What are the critical components of the informal system that supports science culture (roles of players, activities, tools and programs run by science museums, science centres, academic and not-for-profit organizations and the private sector)? What strengths and weaknesses exist in Canada’s system?
  5. What are the effective practices that support science culture in Canada and in key competitor countries?

Hopefully, the expert panel will have a definition of some kind for “science culture.”

After waiting what seems to be an unusually long period, the Council announced the chair for the  “science culture” expert panel (from the CCA Dec. 19, 2012 news release),

Arthur Carty to Serve as Expert Panel Chair on the State of Canada’s Science Culture

The Council is pleased to announce the appointment of Dr. Arthur Carty, O.C., as Chair of the Expert Panel on the State of Canada’s Science Culture. In 2011, the Minister of State (Science and Technology) on behalf of the Canada Science and Technology Museums Corporation (CSTMC), Natural Resources Canada, and Industry Canada requested the Council conduct an in-depth, evidence-based assessment on the state of Canada’s science culture.

As Chair of the Council’s Expert Panel, Dr. Carty will work with a multidisciplinary group of experts, to be appointed by the Council, to address the following question: What is the state of Canada’s science culture?

Dr. Carty is currently the Executive Director of the Waterloo Institute for Nanotechnology at the University of Waterloo. Dr. Carty also serves as Special Advisor to the President on international science and technology collaboration, and as Research Professor in the Department of Chemistry. Prior to this, Dr. Carty served as Canada’s first National Science Advisor to the Prime Minister and to the Government of Canada from 2004-2007 and as President of the National Research Council Canada from 1994-2004.

You can find out more on Carty’s biography webpage, on the CCA website,

Arthur Carty is the Executive Director of the Waterloo Institute for Nanotechnology at the University of Waterloo, Special Advisor to the President on international science and technology collaboration, and Research Professor in the Department of Chemistry

From 2004-2008, Dr. Carty served as Canada’s first National Science Advisor to the Prime Minister and to the Government of Canada. Prior to this appointment, he was President of the National Research Council Canada for 10 years. Before this, he spent 2 years at Memorial University and then 27 years at the University of Waterloo, where he was successively Professor of Chemistry, Director of the Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Chair of the Department of Chemistry, and Dean of Research.

….

Carty’s profile page on the Waterloo Institute of Nanotechnology (WIN) website offers the same information but in more detail.

It’s difficult to divine much from the biographical information about Carty as it is very purpose-oriented to impress the reader with Carty’s international and national involvements in the field of science advice and collaboration. Carty may have extensive experience with multi-disciplinary teams and an avid interest in a science culture that includes informal science education and the arts and humanities, unfortunately, it’s not visible on either the CCA or WIN website biographies.

Hopefully,  Carty and the CCA will assemble a diverse expert panel. (Warning: blatant self-promotion ahead) If they are looking for a person of diverse personal and professional interests

  • who has an MA in Creative Writing (nonfiction and fiction) and New Media from De Montfort University in Leicester, UK and
  • a BA (Communication – Honors) from Simon Fraser University in Burnaby, Canada and
  • who has built up one of the largest and longest-running independent science blogs in the country thereby contributing to science culture in Canada,
  • neatly combining the social sciences, the humanities, and an informed perspective on science and science culture in Canada in one person,

they may want to contact me at nano@frogheart.ca. I have more details in the CV and can supply references.

FrogHeart (part 1) at the 2012 Canadian Science Policy Conference (& Thinking big panel)

Unfortunately, I was only present for one day (Nov. 6, 2012) at the Fourth Canadian Science Policy Conference in Calgary, Alberta. In fact, my one day was more like a 1/2 day due to delays at the airport. It broke my heart to miss most of Panel 13: Dissecting Canada’s Science & Technology Landscape, which featured a discussion of the Council of Canadian Academies’ latest assessment, “The State of Science and Technology in Canada, 2012.” I have my fingers crossed that a video of the presentation will be posted in the not too distant future.

Jeffrey Simpson, Ph.D and National Affairs Columnist at The Globe and Mail moderated the panel discussion about this latest assessment (the last one was in 2006) which was requested by Industry Canada. The panel included: Dr. Eliot Phillipson, Ph.D, Sir John and Lady Eaton Professor of Medicine Emeritus at the University of Toronto (he led the expert panel which presided over the assessment); Lorraine Whale, Ph.D and Manager of Unconventional Resource Research at Shell Global Solutions (Canada); and R. Peter MacKinnon, former President of the University of Saskatchewan.

I did manage to attend Panel 16: The Second Mouse Gets the Cheese: Turning Talk of Creativity Into a Sustainable Creative Economy which featured a slew of creative types such as Mary Anne Moser, Ph.D and Co-Founder of Beakerhead; Jay Ingram, Co-Founder of Beakerhead; Jasmine Palardy, Program Manager of Beakerhead;  Patrick Finn, Ph.D and Performance Expert, University of Calgary; and Haley Simons, Ph.D, Executive Director of Creative Alberta.

Creativity workshops are to hard to pull off, especially when you pepper them with leadership information, an argument for the importance of creativity in examinations of the economy, descriptions of the creative process, etc. while leading the group through the process of designing a better mouse trap. It was an odd choice for a creativity exercise, notwithstanding the metaphor in the group’s panel title. I liked some of the ideas they were trying to discuss and demonstrate but I associate creativity with an element of play and letting loose. Devising a better mouse trap didn’t activate my sense of play nor was there time to let loose any creative/chaotic impulses as we were either listening to someone giving us information or trying to complete the exercises we were given.

For anyone who’s noticed the incidence of the institution, Beakerhead, amongst the panelists, it’s a new  art/engineering event which will be taking place in Calgary during the Calgary Stampede, I believe (from the About page),

Beakerhead is an annual movement that culminates in a five-day citywide spectacle that brings together the arts and engineering sectors to build, engage, compete and exhibit interactive works of art, engineered creativity and entertainment.

Starting annually in 2013, Beakerhead will take place in Calgary’s major educational institutions, arts and culture venues, on the streets and, most importantly, in communities.
From performances and installations to workshops and concerts, Beakerhead is made possible by a continuously growing list of partners who share the desire of staging a collaborative event of epic proportions.

I wish them well with Beakerhead while I’m somewhat unclear as to what the workshop was supposed to achieve. Personally, I would have preferred working on a Beakerhead event for 2013. Imagine if those of us at the 2012 CSPC “Second mouse” presentation had developed something that might actually take place. That’s creativity in action and I think they could have drawn together all that other stuff they were trying to communicate to us by inviting us to participate in something meaningful.

Next up was Panel 19: Thinking big: science culture and policy in Canada, which I was moderating. From my Oct. 1, 2012 posting,

… here’s the description,

Science culture is more than encouraging kids to become scientists to insure our economic future; more than having people visit a science museum or centre and having fun; more than reading an interesting article in a newspaper or magazine about the latest whizbang breakthrough; more than educating people so they become scientifically literate and encourage ‘good’ science policies; it is a comprehensive approach to community- and society-building.

We live in a grand (in English, magnificent and en francais, big) country, the 2nd largest in the world and it behooves us all to be engaged in developing a vibrant science culture which includes

  • artists (performing and visual),
  • writers,
  • scientists,
  • children,
  • seniors,
  • games developers,
  • doctors,
  • business people,
  • elected officials,
  • philosophers,
  • government bureaucrats,
  • educators,
  • social scientists,
  • and others

as we grapple with 21st century scientific and technical developments.

As scientists work on prosthetic neurons for repair in people with Parkinsons and other neurological diseases, techniques for tissue engineering, self-cleaning windows, exponentially increased tracking capabilities for devices and goods tagged with RFID devices, engineered bacteria that produce petroleum and other products (US Defense Advanced Research Projects Living Foundries project), and more, Canadians will be challenged to understand and adapt to a future that can be only dimly imagined.

Composed of provocative thinkers from the worlds of science writing, science education, art/science work, and scientific endeavour, during this panel discussion they will offer their ideas and visions for a Canadian science culture and invite you to share yours. In addition to answering questions, each panelist will prepare their own question for audience members to answer.

The panelists are:

Marie-Claire Shanahan

Marie-Claire Shanahan is a professor of science education and science communication at the University of Alberta. She is interested in how and why students make decisions to pursue their interests science, in high schools, post-secondary education and informal science education. She also conducts research on interactions between readers and writers in online science communications.

Stephen Strauss

Stephen Strauss, Canadian Science Writers’ Association president, has been writing about science for 30 years. After receiving a B.A. (history) from the University of Colorado, he worked as an English teacher, a social worker, an editor before joining the Globe and Mail in 1979. He began writing about science there.

Since leaving the newspaper in 2004 he has written for the CBC.ca, Nature, New Scientist, The Canadian Medical Association Journal as well as authored books and book chapters. He has written for organizations such as the Canada Foundation for Innovation and the Government of Ontario and has won numerous awards.

Amber Didow

Amber Didow is the Executive Director for the Canadian Association of Science Centres. She has over 20 years experience in the non-profit sector and advancing informal education. She has worked within the Science Centre field for many years including the Saskatchewan Science Centre and Science World British Columbia.  Amber’s background includes new business development; educational outreach; programming with at-risk youth; creating community based science events; melding science with art and overseeing the creation and development of both permanent and travelling exhibitions. Amber has a strong passion for community development within the sector.

Maryse de la Giroday (moderator)

Maryse de la Giroday currently runs one of the largest and longest running Canadian science blogs (frogheart.ca) where she writes commentary on  nanotechnology, science policy, science communication, society, and the arts. With a BA in Communication (Simon Fraser University, Canada) and an MA in Creative Writing and New Media (De Montfort University, UK), she combines education and training in the social sciences and humanities with her commitment as an informed member of the science public. An independent scholar, she has presented at international conferences on topics of nanotechnology, storytelling, and memristors.

Dr. Moira Stilwell, MLA

Dr. Moira Stilwell was appointed Minister of Social Development  for the province of British Columbia in September 2012. Elected MLA for Vancouver-Langara in the 2009 provincial general election. She previously served as Parliamentary Secretary for Industry, Research and Innovation to the Minister of Jobs, Tourism and Innovation and Parliamentary Secretary to the Minister of Health with a focus on Health Innovation. She also served as Vice Chair of the Cabinet Committee on Jobs and Economic Growth. In her first cabinet appointment, she served as Minister of Advanced Education and Labour Market Development from June 2009 to October 2010.

Prior to her political career, Stilwell graduated from the University of Calgary Medical School. She received further training in nuclear medicine at the University of British Columbia and in radiology at the University of Toronto after that. She served for several years as the Head of Nuclear Medicine at St. Paul’s Hospital, Vancouver, Surrey Memorial Hospital, and Abbotsford Regional Hospital and Cancer Clinic but left all those positions in 2009 to run for public office.

The driving force behind the province’s Year of Science in BC (2010-11) initiative for schools, Stilwell has a passionate interest and commitment to integrating science awareness and culture in government, education, and society.

Rob Annan

Rob is the Director of Policy, Research and Evaluation at Mitacs, a leading Canadian not-for-profit that supports innovation through skills development, research, and collaboration between students, researchers, and industry. Mitacs supports research across sciences, humanities and social sciences and understands that innovation often occurs at the intersection of science and culture. Mitacs’ approach to innovation is reflected in our outreach activities, most notably Math Out Loud – a theatre musical designed to inspire Canadian students to understand and appreciate the mathematics that surround them. Inspired by Laval University’s renowned Professor of Mathematics Jean-Marie De Koninck and produced by Academy Award winner Dale Hartleben, Math Out Loud explores the relationships between math and culture as an effective outreach tool.

Prior to joining Mitacs, Rob worked as a consultant to universities, researchers and non-profit agencies for strategic planning and policy, and was active as a blogger on science policy issues in Canada. Rob embodies the intersection of arts and science, with a PhD in Biochemistry from McGill University, a BSc in Biology from UVic and a BA in English from Queen’s University.

We started late and I think it went relatively well although next time (assuming there is one) I’ll practice cutting people off in a timely fashion and giving more direction. In other words, any criticisms of the session should be directed at me. The panelists were great.

Marie-Claire Shanahan, professor of science education at the University of Alberta, introduced a provocative question in the context of acknowledging Canada’s excellent science education programmes, Why isn’t there an active science discourse in Canada? Audience members tried to answer that question and came to no general agreement.

Stephen Strauss, president of the Canadian Science Writers Association (CSWA), introduced what I thought was a very exciting idea, a science entrepot supported by the CSWA. The entrepot would be a storage webspace for all Canadian science news releases and a place where the people producing the news releases would get feedback on their efforts. The feedback idea is an acknowledgement that, increasingly,  scientists in Canada are writing their own news releases. There wasn’t much uptake from the audience on this idea but perhaps people need more time think about something that changes their relationship to the media.

The Honourable Dr. Moira Stilwell discussed her experiences trying to introduce science into government, that is, trying to use more scientific approaches in the various BC ministries. The former head of Nuclear Medicine at St. Paul’s Hospital, Surrey Memorial Hospital, and Abbotsford Regional Hospital and Cancer Clinic described the process by which her big idea became part of a government initiative and changed mightily in the process.

Rob Annan, director of policy, research, and evaluation at Mitacs, talked about different approaches Mitacs has taken to embedding science culture in Canada and he challenged the audience about the notion of expertise with regard to science as one of the audience members expressed great distress (sadness mixed with anger/indignation) over the ‘declining’ trust in science experts. I hope Rob will correct me if I get this wrong, I believe his point was that experts need to stop assuming that they are right and the public just has to listen and do as they are told. The audience member did not couch his comments that way but the assumption that we, the unwashed must do as we are told and our concerns are not relevant or wrong, is often at the heart of the ‘expertise’ claim. (Also I’m going to interject, I think the audience member had flipped the issue around. The question I’d be asking is why expertise in science is accepted unthinkingly in some areas and distrusted in others.)

Amber Didow, executive director of the Canadian Association of Science Centres, spoke about the importance of these centres with regard to science culture, the extensive programming they provide, and their relationship to their communities both locally and further afield. The fact that we were in Calgary’s new ‘science world’ (in Calgary, it’s Telus Spark) added greatly to the experience.

I did attend one more session, Kennedy Stewart’s NDP (New Democratic Party) Science Policy session but that’s for part 2.

ETA Nov. 14, 2012: I’ve forgotten my manners and I apologize for not doing this sooner. Thank you to the organizers for an exciting and well paced conference. Special thanks to Marissa Bender who eased my way before, during, and after; Dustin Rivers for making sure that I didn’t fall over from hunger once I finally arrived and  his impeccable graciousness, Mehrdad Hariri for his understanding and for extending a helping hand in the midst of what must have been one of heaviest organizational periods for the 2012 conference (I am impressed), Sean for his invaluable advice regarding rush hour traffic in Calgary, and the two heroic women who managed the portable mikes for my session.

The State of Science and Technology in Canada, 2012 report celebrated

This morning, Sept. 27, 2012, the Council of Canadian Academies released its 2nd report on the state of science and technology in Canada. I haven’t had time to read the full report (officially titled:  The State of Science and Technology in Canada, 2012) but did attend (virtually) a webinar/press conference that was hosted by the Science Media Centre of Canada and found the mood amongst the presenters,

  • Elizabeth Dowdeswell, President of the Council of Canadian Academies and chair of the 1st (2006) report on science and technology in Canada;
  • Dr. Eliot A. Phillipson, chair of the expert panel, Sir John and Lady Eaton Professor of Medicine Emeritus at the University of Toronto and former President and CEO of the Canada Foundation for Innovation; and
  • Dr. Sara Diamond, President, Ontario College of Art and Design University (OCAD U)

to be celebratory. The Council of Canadian Academies Sept. 27, 2012 news release on EurekAlert sums up much of what is said in the webinar,

“There is much for Canadians to be proud of as Canada’s international reputation is strong, science and technology research is robust across the country, and globally we are considered to have world-leading research infrastructure and programs,” said Panel Chair Dr. Eliot Phillipson. “The Panel’s findings are comprehensive and represent one of the most in-depth examinations of Canadian science and technology ever undertaken.”

Here are some of the findings (from the news release),

  • The six research fields in which Canada excels are: clinical medicine, historical studies, information and communication technologies (ICT), physics and astronomy, psychology and cognitive sciences, and visual and performing arts.
  • Canadian science and technology is healthy and growing in both output and impact. With less than 0.5 per cent of the world’s population, Canada produces 4.1 per cent of the world’s research papers and nearly 5 per cent of the world’s most frequently cited papers.
  • In a survey of over 5,000 leading international scientists, Canada’s scientific research enterprise was ranked fourth highest in the world, after the United States, United Kingdom, and Germany.
  • Canada is part of a network of international science and technology collaboration that includes the most scientifically advanced countries in the world. Canada is also attracting high-quality researchers from abroad, such that over the past decade there has been a net migration of researchers into the country.
  • Ontario, Quebec, British Columbia and Alberta are the powerhouses of Canadian science and technology, together accounting for 97 per cent of total Canadian output in terms of research papers. These provinces also have the best performance in patent-related measures and the highest per capita numbers of doctoral students, accounting for more than 90 per cent of doctoral graduates in Canada in 2009.
  • Several fields of specialization were identified in other provinces, such as: agriculture, fisheries, and forestry in Prince Edward Island and Manitoba; historical studies in New Brunswick; biology in Saskatchewan; as well as earth and environmental sciences in Newfoundland and Labrador and Nova Scotia.

The Council of Canadian Academies webpage which hosts the completed assessment, The State of Science and Technology in Canada, 2012 provides links to the full report, an abridged version, an executive summary, a listing of the 18 member expert panel, and more.

Early media responses (as per my Google search of Sept. 27, 2012, 1338 hours (PDT) suggest one of two attitudes: “Canadian science and technology is healthy” or “Canadians are falling behind in the areas of environmental and resources sciences.”

For the moment, I’m going to celebrate and shelve my critique for a later date (probably early next week, Oct. 1-5, 2012) when I’ve had time to read the full report.

Canada, emerging technologies, and chemical assessments (pesticides)

The Council of Canadian Academies released a report titled, Integrating Emerging Technologies into Chemical Safety Assessment, on Jan. 12, 2012. It wasn’t what I thought it might be.

Before launching into the report, it might be helpful to know something more about the Council of Canadian Academies. (Shockingly, I can’t find a description of the group in the postings where I’ve mentioned them previously.) From the Council’s About Us page (Mar.23.12 Note: I have removed links to the Council’s Board of Governors, etc.),

The Council is an independent, not-for-profit corporation that supports science-based, expert assessments (studies) to inform public policy development in Canada. The Council began operation in 2005 and consists of a Board of Governors,  a Scientific Advisory Committee and Secretariat. The Council draws upon the intellectual capital that lies within its three Member Academies the Royal Society of Canada (RSC); the Canadian Academy of Engineering; and the Canadian Academy of Health Sciences.

Our mission is to contribute to the shaping of evidence-based public policy that is in the public interest. This is achieved by appointing independent, multidisciplinary panels of expert volunteers. The Council’s work encompasses a broad definition of science, incorporating the natural, social and health sciences as well as engineering and the humanities.

This latest report on emerging technologies and chemical assessments is in fact a report on emerging technologies for  health and safety assessment procedures of toxic chemicals using pesticides as a test case. Here’s the reasoning (from the abridged version of the report, Report in Focus; Integrating Emerging Technologies into Chemical Safety Assessment),

Protecting human health and the environment is of paramount importance to Canadians. As such, there has been an increasing demand for improved regulation of chemicals in Canada. Nevertheless, recent estimates suggest that toxicity data are lacking for over three quarters of the chemicals on the market. In fact, this paucity of data can extend to the other components within a chemical product. For example, the active ingredients in pesticides are among the most stringently regulated compounds on the market; however, the final pesticide product may also contain data-poor formulants. Added to enhance the use or increase the stability of the pesticide product, formulants are not typically subjected to the full battery of toxicity tests that the active ingredients must undergo.

The data-rich and data-poor nature of pesticide formulation is a metaphor for the dichotomy that exists for most industrial chemicals. While there are some substances for which we have an enormous amount of data, such as pesticide active ingredients, the vast majority of industrial chemicals are extremely data-poor. (p. 1)

This specific report was commissioned by the Minister of Health. From the Report in Focus; Integrating Emerging Technologies into Chemical Safety Assessment,

All levels of government in Canada play a role in regulating the sale and use of pesticides; however, the federal government is responsible for the registration of pest control products in Canada. In May 2009, the Minister of Health, on behalf of the Pest Management Regulatory Agency (PMRA), approached the Council of Canadian Academies to appoint an expert panel to answer the question:

“What is the scientific status of the use of integrated testing strategies in the human and environmental regulatory risk assessment of pesticides.”

In response to this question, the Council assembled a multidisciplinary panel of 15 eminent experts from Canada and the United States. (p. 3)

Here’s a list of the members of the Expert Panel (from the Executive Summary; Integrating Emerging Technologies into Chemical Safety Assessment),

The Expert Panel on the Integrated Testing of Pesticides

Leonard Ritter (Chair) Executive Director, Canadian Network of Toxicology Centres; and Professor of Toxicology, University of Guelph (Guelph, ON)

Christopher P. Austin Director, Chemical Genomics Center, National Institutes of Health (Bethesda, MD)

John R. (Jack) Bend Distinguished University Professor, Departments of Pathology; Physiology and Pharmacology; and Paediatrics in the Schulich School of Medicine and Dentistry, University of Western Ontario (London, ON)

Conrad G. Brunk Professor of Philosophy, University of Victoria (Victoria, BC)

Timothy Caulfield, FRSC, FCAHS Professor, Faculty of Law and School of Public Health; Research Director, Health Law Institute; and Canada Research Chair in Health Law and Policy, University of Alberta (Edmonton, AB)

Vicki L. Dellarco Science Advisor, Office of Pesticide Programs, United States Environmental Protection Agency (Washington, DC)

Paul A. Demers Director, School of Environmental Health, College for Interdisciplinary Studies; and Professor, School of Population & Public Health, Faculty of Medicine, University of British Columbia (Vancouver, BC)

Warren Foster Professor, Department of Obstetrics and Gynaecology; and Director, Centre for Reproductive Care, McMaster University Health Sciences Centre (Hamilton, ON)

Claire Infante-Rivard Professor, Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University (Montréal, QC)

Catherine Jumarie Professor, Department of Biological Sciences, Université du Québec à Montréal (Montréal, QC)

Sam Kacew Associate Director of Toxicology, R. Samuel McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa (Ottawa, ON)

Robert J. Kavlock Director, National Center for Computational Toxicology, United States Environmental Protection Agency (Durham, NC)

Daniel Krewski Director, R. Samuel McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa (Ottawa, ON)

Paul G. Mezey Canada Research Chair in Scientific Modelling and Simulation, Memorial University of Newfoundland (St. John’s, NL)

Terry W. Schultz Emeritus Professor, Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee (Knoxville, TN) (p. 7)

Getting to the point (from the Executive Summary),

“The issues inherent in the current approach to chemical testing are two-fold: to address the lack of toxicity data for the vast majority of industrial chemicals and to recognize that regulatory decisions must be based on the best available science. The Panel believes that these challenges can be best met by adopting an Integrated Approach to Testing and Assessment (IATA).” – Leonard Ritter, Chair of the Expert Panel (p. 4)

As for what that means,

Integrated Approaches to Testing and Assessment (IATA) represent a pragmatic approach that will move toxicology away from describing what happens towards an explanation of how it happens. Toxicity testing will no longer depend on the one-size-fits-all hazard-based checklist of tests currently used but rather be based on a refined and focused testing strategy tailored to the toxicity profile and intended use of the chemical in question. An IATA strategy uses a tiered approach to help categorize and prioritize higher risk chemicals; all of the existing data on a substance are compiled at the start of the testing process in order to evaluate what data gaps exist and what testing approaches would be most appropriate to understand the precise toxicological profile of that substance.

Given my interest in the toxicological impacts of nanomaterials and concerns about responding to uncertainty and risk in a timely and appropriate fashion, this approach seems promising. Of course, the recommendations may or may not be accepted and, even then, there’s no telling what implementation would look like. Still, I am encouraged.

You can find a full list of all the documents (Report, Report in Focus, Executive Summary, etc.) here.

Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health

Thanks to a reader who provided me with a link, I found a document (titled Evidence) about a ‘nanomaterials’ hearing held by Canada’s House of Commons Standing Committee on Health on June 10, 2010 and chaired by Joyce Murray, Member of Parliament, Vancouver Quadra. It makes for interesting reading and you can find it here.

The official title for the hearing was Potential Risks and Benefits of Nanotechnology, which I found out after much digging around. The purpose for the *hearing*  seemed to be the education of the committee members about nanotechnology both generally (what is it? is there anything good about it?) and about its possible toxicology.

For information about the committee and the meeting, go here to find the minutes, the evidence (direct link provided in 1st para.), and your choice of webcasts (English version, French version, and floor version). One comment before you go, keep scrolling down past the sidebar and the giant white box to find the list of meetings along with appropriate links and if you choose to listen to the webcast, wait at least 1 minute for the audio to start. There’s a list of the committee members here, again scroll down past the giant white box to find the information.

I am going to make a few comments about this hearing. I will have to confine myself to a few points as the committee covered quite a bit of ground in the proceedings as they grappled with understanding something about nanotechnology, health and safety issues, benefits, and regulatory frameworks, amongst other issues.

It was unexpected to find that Mihail Roco, a well known figure in the US nanotechnology field, was speaking via videoconference (from the document),

Dr. Mihail Roco (Senior Advisor for Nanotechnology, National Nanotechnology Initiative, National Science Foundation, As an Individual) (p. 1 in print version, p. 3 in PDF)

He did have this to say,

First of all, I would like to present an overview of different themes in the United States, and thereafter make some recommendations, some ideas for the future. [emphasis mine] (p. 5 in print version, p. 7 in PDF)

I have to say my eyebrows raised at Roco’s “… make some recommendations …” comment. While appreciative of his experience and perspective, I’ve sometimes found that speakers from the US tend to give recommendations that are better geared to their own situation and less so to the Canadian one. Thankfully,  he offered unexceptional advice that I heartily agree with,

I would like to say, in conclusion, that it’s important to have an anticipatory, participatory, and adaptive governance approach to nanotechnology in order to capture the new developments and also to prepare people, tools, and organizations for the future. (p. 6 in print version, p. 8 in PDF)

The Canadian guests are not as well known to me save for Dr. Nils Petersen who heads up Canada’s National Institute of Nanotechnology. Here is a list of the Canadian guest speakers,

Mr. (sometimes referred to as Dr. in the document) Claude Ostiguy (Director, Research and Expertise Support Department, Institut de recherche Robert-Sauvé en santé et en sécurité du travail) (p. 1 in print version, p. 3 in PDF)

Dr. Nils Petersen (Director General, National Research Council Canada, National Institute for Nanotechnology) (p. 2 in print version, p. 4 in PDF)

Dr. Claude Emond (Toxicologist, Department of Environmental and Occupational Health, Université de Montréal) (p. 3 in print version, p. 5 in PDF)

Ms. Françoise Maniet (Lecturer and Research Agent, Centre de recherche interdisciplinaire sur la biologie, la santé, la société et l’environnement (CINBIOSE) et Groupe de recherche en droit international et comparé de la consommation (GREDICC), Université du Québec à Montréal) (p. 4 in print version, p. 6 in PDF)

Emond spoke to the need for a national nanotechnology development strategy. He also mentioned communication although I’m not sure he and would agree much beyond the point that some communication programmes are necessary,

The different meetings I attend point out the necessity to integrate the social communication transparency education aspect in nanotechnology development, so many structures already exist around the words. As I said before with OECD, NNI, we also have ISO 229. Now we have a network called NE3LS in Quebec, and we also have this international team we created a few years ago, which I spoke about earlier [he leads an international team in nano safety with members from France, Japan, US, Germany, and Canada].

A Canadian strategy initiative in nanotechnology can be inspired by a group above. In closing the discussion, I want to say there is an urgent need to coordinate the national development of nanotechnology and more particularly in parallel with the nanosafety issue, including research, characterization exposure, toxicology, and assessment. I would like to conclude by saying that Canada has to assume leadership in nanosafety and contribute to this international community rather than wait and see.

The NE3LS in Québec is new to me and I wonder if  they liaise with the team in Alberta last mentioned here in connection with Alberta’s Nanotechnology Asset Map.

In response to a question from the committee member, Mrs. Cathy McLeod, Kamloops—Thompson—Cariboo,

First, because I am someone who is somewhat new to the understanding of this issue, could we take an example of either a cosmetic or a food or something that’s commonplace and follow it through from development into the product so I could understand the pathway of a nanoparticle in a cosmetic product or food? (p. 6 in print version, p. 8 in PDF)

The example Dr. Ostiguy used for his response was titanium dioxide nanoparticles in sunscreens and his focus was occupational safety, i.e., what happens to people working to produce these sunscreens.  The surprising moment came when I saw Dr. Petersen’s response as he added,

In the case of cosmetics, they take that nanoparticle and put it into the cream formulation at a factory site. Then it normally comes out to the consumer encapsulated or protected in one way or another. [emphasis mine]

In general, in those kinds of manufacturing environments the risks are at the start of the process, when you are making the particles and incorporating them into a material, and possibly at the end of the product’s life, when you’re disposing of it. It might then be released in ways that you might not have anticipated—for example, through the wearing down or opening of the cassette of toner or whatever.

I think those are the two areas. Most consumers would see a product in which nanoparticles are encapsulated or incorporated— maybe inside a cellphone, or something like that—and often not be exposed in that way. (p. 7 in print version, p. 9 in PDF)

As I understand Petersen’s comments, he believes that the nanoparticles in sunscreens (and other cosmetics) do not make direct contact as they are somehow incorporated into a shell or capsule. He then makes a comparison to cell phones to prove his point. This is incorrect. Yes, any nanomaterials in a cell phone are bound to the product (cell phones are not rubbed onto the skin) but the nanoparticles in sunscreens make direct contact and *penetrate the skin. *ETA June 28, 2010: It has not been unequivocally proved that nanoparticles penetrate healthy adult skin. I apologize for the error. ** ETA July 19, 2010: As per the July 18, 2010 posting on Andrew Maynard’s 2020 Science blog, the evidence so far suggests that there is no skin penetration by nanoparticles in sunscreens.

I have posted extensively about nanoparticles and sunscreens and will try later to lay in some links either to my posts or to more informed parties as to safety issues regarding consumers.

There was an interesting development towards the end of the meeting with Carolyn Bennett, St. Paul’s,

Firstly, I wanted to apologize for being late. I think some of you know it was the tenth anniversary of CIHR [Canadian Institutes of Health Research] this morning, the breakfast, and some of us who were there at the birth were supposed to be there at the birthday party. So my apologies.

What happened on the way in to the breakfast was that I ran into Liz Dowdeswell, from the Council of Canadian Academies, and it seems that they have just done a review of nanotechnology in terms of pros and cons. [emphasis mine]So I would first ask the clerk and the analyst to circulate that report to the committee, because I think it might be very helpful to us, and then I think it would be interesting to know if the witnesses had seen it and whether they had further comments on whether you felt it was taking Canada in the right direction.

The report mentioned by Bennett was released in July 8, 2008 (news release). You can find the full report here and the abridged version here.

I wouldn’t describe this report as having just been “done” but I think that as a primer it stands up well. (You can read my 2008 comments here.)

I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole).

I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.

I have sent Joyce Murray a set of questions which I hope she’ll answer about the committee’s interest in nanotechnology and about the science resources and advice available to the Members of Parliament.

ETA June 30, 2010: I received this correction from Mr. Julian’s office today:

I would like to bring to your attention incorrect information provided in the Frogheart posting on June 23, Nanomaterials, Toxicity, and Canada’s House of Commons Standing Committee on Health. Of particular concern are the closing comments:

“I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole). I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.”

Mr. Julian is indeed aware of the Council of Canadian Academies excellent report on nanotechnology in 2008. The document is one of many that formed the basis of Mr. Julian’s Bill C-494 which was tabled in Parliament on March 10. It is incorrect to assume that Mr. Julian was not aware of the report’s existence.

There is indeed interest in nanotechnology in Ottawa. Canadians should expect sustained interest when the House of Commons reconvenes in September with a focus on better ensuring that nanotechnology’s benefits are safely produced in the marketplace.

I apologize for the error and I shouldn’t have made the assumption. I am puzzled that the Council of Canadian Academies report was not mentioned in the interview Mr. Julian very kindly gave me and where I explicitly requested some recommendations for Canadians who want to read up about nanotechnology. Mr. Julian’s reply (part 2 of the interview) did not include a reference to the Council’s nanotechnology report, which I consider more readable than some of the suggestions offered.

*’haring’ changed to ‘hearing’ on July 26, 2016.