Tag Archives: US Defense Advanced Research Projects Agency

US Defense Advanced Research Projects Agency (DARPA) Atoms to Products webinar in September 2014

On Sept. 9, 2014 and Sept. 11, 2014, DARPA (US Defense Advanced Research Projects Agency) will hold identical webinars for proposers interested in the Atoms to Products program (presumably they are expecting many, many proposers). (Thanks to James Lewis on the Foresight Institute’s Nanodot blog for his Sept. 1, 2014 posting about the webinars.)

An Aug. 22, 2014 DARPA news release offers details about the project and the webinars,

New program also seeks to develop revolutionary miniaturization and assembly methods that would work at scales 100,000 times smaller than current state-of-the-art technology

Many common materials exhibit different and potentially useful characteristics when fabricated at extremely small scales—that is, at dimensions near the size of atoms, or a few ten-billionths of a meter. These “atomic scale” or “nanoscale” properties include quantized electrical characteristics, glueless adhesion, rapid temperature changes, and tunable light absorption and scattering that, if available in human-scale products and systems, could offer potentially revolutionary defense and commercial capabilities. Two as-yet insurmountable technical challenges, however, stand in the way: Lack of knowledge of how to retain nanoscale properties in materials at larger scales, and lack of assembly capabilities for items between nanoscale and 100 microns—slightly wider than a human hair.

DARPA has created the Atoms to Product (A2P) program to help overcome these challenges. The program seeks to develop enhanced technologies for assembling atomic-scale pieces. It also seeks to integrate these components into materials and systems from nanoscale up to product scale in ways that preserve and exploit distinctive nanoscale properties.

“We want to explore new ways of putting incredibly tiny things together, with the goal of developing new miniaturization and assembly methods that would work at scales 100,000 times smaller than current state-of-the-art technology,” said John Main, DARPA program manager. “If successful, A2P could help enable creation of entirely new classes of materials that exhibit nanoscale properties at all scales. It could lead to the ability to miniaturize materials, processes and devices that can’t be miniaturized with current technology, as well as build three-dimensional products and systems at much smaller sizes.”

This degree of scaled assembly is common in nature, Main continued. “Plants and animals, for example, are effectively systems assembled from atomic- and molecular-scale components a million to a billion times smaller than the whole organism. We’re trying to lay a similar foundation for developing future materials and devices.”

To familiarize potential participants with the technical objectives of the A2P program, DARPA has scheduled identical Proposers Day webinars on Tuesday, September 9, 2014, and Thursday, September 11, 2014. Advance registration is required and closes on September 5, 2014, at 5:00 PM Eastern Time. Participants must register through the registration website: http://www.sa-meetings.com/A2PProposersDay.

The DARPA Special Notice announcing the Proposers’ Day webinars is available at http://go.usa.gov/mgKB. This announcement does not constitute a formal solicitation for proposals or abstracts and is issued solely for information and program planning purposes. The Special Notice is not a Request for Information (RFI); therefore, DARPA will accept no submissions against this announcement. DARPA expects to release a Broad Agency Announcement (BAA) with full technical details on A2P soon on the Federal Business Opportunities website (www.fbo.gov). For more information, please email DARPA-SN-14-61@darpa.mil.

Over the years I’ve come across several references to bottom-up engineering or manufacturing but it’s seemed more theoretical than real. I gather DARPA is hoping to make bottom-up manufacturing a reality.

TrueNorth, a brain-inspired chip architecture from IBM and Cornell University

As a Canadian, “true north” is invariably followed by “strong and free” while singing our national anthem. For many Canadians it is almost the only phrase that is remembered without hesitation.  Consequently, some of the buzz surrounding the publication of a paper celebrating ‘TrueNorth’, a brain-inspired chip, is a bit disconcerting. Nonetheless, here is the latest IBM (in collaboration with Cornell University) news from an Aug. 8, 2014 news item on Nanowerk,

Scientists from IBM unveiled the first neurosynaptic computer chip to achieve an unprecedented scale of one million programmable neurons, 256 million programmable synapses and 46 billion synaptic operations per second per watt. At 5.4 billion transistors, this fully functional and production-scale chip is currently one of the largest CMOS chips ever built, yet, while running at biological real time, it consumes a minuscule 70mW—orders of magnitude less power than a modern microprocessor. A neurosynaptic supercomputer the size of a postage stamp that runs on the energy equivalent of a hearing-aid battery, this technology could transform science, technology, business, government, and society by enabling vision, audition, and multi-sensory applications.

An Aug. 7, 2014 IBM news release, which originated the news item, provides an overview of the multi-year process this breakthrough represents (Note: Links have been removed),

There is a huge disparity between the human brain’s cognitive capability and ultra-low power consumption when compared to today’s computers. To bridge the divide, IBM scientists created something that didn’t previously exist—an entirely new neuroscience-inspired scalable and efficient computer architecture that breaks path with the prevailing von Neumann architecture used almost universally since 1946.

This second generation chip is the culmination of almost a decade of research and development, including the initial single core hardware prototype in 2011 and software ecosystem with a new programming language and chip simulator in 2013.

The new cognitive chip architecture has an on-chip two-dimensional mesh network of 4096 digital, distributed neurosynaptic cores, where each core module integrates memory, computation, and communication, and operates in an event-driven, parallel, and fault-tolerant fashion. To enable system scaling beyond single-chip boundaries, adjacent chips, when tiled, can seamlessly connect to each other—building a foundation for future neurosynaptic supercomputers. To demonstrate scalability, IBM also revealed a 16-chip system with sixteen million programmable neurons and four billion programmable synapses.

“IBM has broken new ground in the field of brain-inspired computers, in terms of a radically new architecture, unprecedented scale, unparalleled power/area/speed efficiency, boundless scalability, and innovative design techniques. We foresee new generations of information technology systems – that complement today’s von Neumann machines – powered by an evolving ecosystem of systems, software, and services,” said Dr. Dharmendra S. Modha, IBM Fellow and IBM Chief Scientist, Brain-Inspired Computing, IBM Research. “These brain-inspired chips could transform mobility, via sensory and intelligent applications that can fit in the palm of your hand but without the need for Wi-Fi. This achievement underscores IBM’s leadership role at pivotal transformational moments in the history of computing via long-term investment in organic innovation.”

The Defense Advanced Research Projects Agency (DARPA) has funded the project since 2008 with approximately $53M via Phase 0, Phase 1, Phase 2, and Phase 3 of the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program. Current collaborators include Cornell Tech and iniLabs, Ltd.

Building the Chip

The chip was fabricated using Samsung’s 28nm process technology that has a dense on-chip memory and low-leakage transistors.

“It is an astonishing achievement to leverage a process traditionally used for commercially available, low-power mobile devices to deliver a chip that emulates the human brain by processing extreme amounts of sensory information with very little power,” said Shawn Han, vice president of Foundry Marketing, Samsung Electronics. “This is a huge architectural breakthrough that is essential as the industry moves toward the next-generation cloud and big-data processing. It’s a pleasure to be part of technical progress for next-generation through Samsung’s 28nm technology.”

The event-driven circuit elements of the chip used the asynchronous design methodology developed at Cornell Tech [aka Cornell University] and refined with IBM since 2008.

“After years of collaboration with IBM, we are now a step closer to building a computer similar to our brain,” said Professor Rajit Manohar, Cornell Tech.

The combination of cutting-edge process technology, hybrid asynchronous-synchronous design methodology, and new architecture has led to a power density of 20mW/cm2 which is nearly four orders of magnitude less than today’s microprocessors.

Advancing the SyNAPSE Ecosystem

The new chip is a component of a complete end-to-end vertically integrated ecosystem spanning a chip simulator, neuroscience data, supercomputing, neuron specification, programming paradigm, algorithms and applications, and prototype design models. The ecosystem supports all aspects of the programming cycle from design through development, debugging, and deployment.

To bring forth this fundamentally different technological capability to society, IBM has designed a novel teaching curriculum for universities, customers, partners, and IBM employees.

Applications and Vision

This ecosystem signals a shift in moving computation closer to the data, taking in vastly varied kinds of sensory data, analyzing and integrating real-time information in a context-dependent way, and dealing with the ambiguity found in complex, real-world environments.

Looking to the future, IBM is working on integrating multi-sensory neurosynaptic processing into mobile devices constrained by power, volume and speed; integrating novel event-driven sensors with the chip; real-time multimedia cloud services accelerated by neurosynaptic systems; and neurosynaptic supercomputers by tiling multiple chips on a board, creating systems that would eventually scale to one hundred trillion synapses and beyond.

Building on previously demonstrated neurosynaptic cores with on-chip, online learning, IBM envisions building learning systems that adapt in real world settings. While today’s hardware is fabricated using a modern CMOS process, the underlying architecture is poised to exploit advances in future memory, 3D integration, logic, and sensor technologies to deliver even lower power, denser package, and faster speed.

I have two articles that may prove of interest, Peter Stratton’s Aug. 7, 2014 article for The Conversation provides an easy-to-read introduction to both brains, human and computer, (as they apply to this research) and TrueNorth (h/t phys.org also hosts Stratton’s article). There’s also an Aug. 7, 2014 article by Rob Farber for techenablement.com which includes information from a range of text and video sources about TrueNorth and cognitive computing as it’s also known (well worth checking out).

Here’s a link to and a citation for the paper,

A million spiking-neuron integrated circuit with a scalable communication network and interface by Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dharmendra S. Modha. Science 8 August 2014: Vol. 345 no. 6197 pp. 668-673 DOI: 10.1126/science.1254642

This paper is behind a paywall.

Squishy but rigid robots from MIT (Massachusetts Institute of Technology)

A July 14, 2014 news item on ScienceDaily MIT (Massachusetts Institute of Technology) features robots that mimic mice and other biological constructs or, if you prefer, movie robots,

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed.

Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

The material — developed by Anette Hosoi, a professor of mechanical engineering and applied mathematics at MIT, and her former graduate student Nadia Cheng, alongside researchers at the Max Planck Institute for Dynamics and Self-Organization and Stony Brook University — could be used to build deformable surgical robots. The robots could move through the body to reach a particular point without damaging any of the organs or vessels along the way.

A July 14, 2014 MIT news release (also on EurekAlert), which originated the news item, describes the research further by referencing both octopuses and jello,

Working with robotics company Boston Dynamics, based in Waltham, Mass., the researchers began developing the material as part of the Chemical Robots program of the Defense Advanced Research Projects Agency (DARPA). The agency was interested in “squishy” robots capable of squeezing through tight spaces and then expanding again to move around a given area, Hosoi says — much as octopuses do.

But if a robot is going to perform meaningful tasks, it needs to be able to exert a reasonable amount of force on its surroundings, she says. “You can’t just create a bowl of Jell-O, because if the Jell-O has to manipulate an object, it would simply deform without applying significant pressure to the thing it was trying to move.”

What’s more, controlling a very soft structure is extremely difficult: It is much harder to predict how the material will move, and what shapes it will form, than it is with a rigid robot.

So the researchers decided that the only way to build a deformable robot would be to develop a material that can switch between a soft and hard state, Hosoi says. “If you’re trying to squeeze under a door, for example, you should opt for a soft state, but if you want to pick up a hammer or open a window, you need at least part of the machine to be rigid,” she says.

Compressible and self-healing

To build a material capable of shifting between squishy and rigid states, the researchers coated a foam structure in wax. They chose foam because it can be squeezed into a small fraction of its normal size, but once released will bounce back to its original shape.

The wax coating, meanwhile, can change from a hard outer shell to a soft, pliable surface with moderate heating. This could be done by running a wire along each of the coated foam struts and then applying a current to heat up and melt the surrounding wax. Turning off the current again would allow the material to cool down and return to its rigid state.

In addition to switching the material to its soft state, heating the wax in this way would also repair any damage sustained, Hosoi says. “This material is self-healing,” she says. “So if you push it too far and fracture the coating, you can heat it and then cool it, and the structure returns to its original configuration.”

To build the material, the researchers simply placed the polyurethane foam in a bath of melted wax. They then squeezed the foam to encourage it to soak up the wax, Cheng says. “A lot of materials innovation can be very expensive, but in this case you could just buy really low-cost polyurethane foam and some wax from a craft store,” she says.

In order to study the properties of the material in more detail, they then used a 3-D printer to build a second version of the foam lattice structure, to allow them to carefully control the position of each of the struts and pores.

When they tested the two materials, they found that the printed lattice was more amenable to analysis than the polyurethane foam, although the latter would still be fine for low-cost applications, Hosoi says.

The wax coating could also be replaced by a stronger material, such as solder, she adds.

Hosoi is now investigating the use of other unconventional materials for robotics, such as magnetorheological and electrorheological fluids. These materials consist of a liquid with particles suspended inside, and can be made to switch from a soft to a rigid state with the application of a magnetic or electric field.

When it comes to artificial muscles for soft and biologically inspired robots, we tend to think of controlling shape through bending or contraction, says Carmel Majidi, an assistant professor of mechanical engineering in the Robotics Institute at Carnegie Mellon University, who was not involved in the research. “But for a lot of robotics tasks, reversibly tuning the mechanical rigidity of a joint can be just as important,” he says. “This work is a great demonstration of how thermally controlled rigidity-tuning could potentially be used in soft robotics.”

Here’s a link to and a citation for the paper,

Thermally Tunable, Self-Healing Composites for Soft Robotic Applications by Nadia G. Cheng, Arvind Gopinath, Lifeng Wang, Karl Iagnemma, and Anette E. Hosoi. Macromolecular Materials and Engineering DOI: 10.1002/mame.201400017 Article first published online: 30 JUN 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

US military wants you to remember

While this July 10, 2014 news item on ScienceDaily concerns DARPA, an implantable neural device, and the Lawrence Livermore National Laboratory (LLNL), it is a new project and not the one featured here in a June 18, 2014 posting titled: ‘DARPA (US Defense Advanced Research Projects Agency) awards funds for implantable neural interface’.

The new project as per the July 10, 2014 news item on ScienceDaily concerns memory,

The Department of Defense’s Defense Advanced Research Projects Agency (DARPA) awarded Lawrence Livermore National Laboratory (LLNL) up to $2.5 million to develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory, DARPA officials announced this week.

The research builds on the understanding that memory is a process in which neurons in certain regions of the brain encode information, store it and retrieve it. Certain types of illnesses and injuries, including Traumatic Brain Injury (TBI), Alzheimer’s disease and epilepsy, disrupt this process and cause memory loss. TBI, in particular, has affected 270,000 military service members since 2000.

A July 2, 2014 LLNL news release, which originated the news item, provides more detail,

The goal of LLNL’s work — driven by LLNL’s Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA) and Medtronic — is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals’ ability to form new memories and access previously formed ones.

Specifically, the Neural Technology group will seek to develop a neuromodulation system — a sophisticated electronics system to modulate neurons — that will investigate areas of the brain associated with memory to understand how new memories are formed. The device will be developed at LLNL’s Center for Bioengineering.

“Currently, there is no effective treatment for memory loss resulting from conditions like TBI,” said LLNL’s project leader Satinderpall Pannu, director of the LLNL’s Center for Bioengineering, a unique facility dedicated to fabricating biocompatible neural interfaces. …

LLNL will develop a miniature, wireless and chronically implantable neural device that will incorporate both single neuron and local field potential recordings into a closed-loop system to implant into TBI patients’ brains. The device — implanted into the entorhinal cortex and hippocampus — will allow for stimulation and recording from 64 channels located on a pair of high-density electrode arrays. The entorhinal cortex and hippocampus are regions of the brain associated with memory.

The arrays will connect to an implantable electronics package capable of wireless data and power telemetry. An external electronic system worn around the ear will store digital information associated with memory storage and retrieval and provide power telemetry to the implantable package using a custom RF-coil system.

Designed to last throughout the duration of treatment, the device’s electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer.

Using the Center for Bioengineering’s capabilities, Pannu and his team of engineers have achieved 25 patents and many publications during the last decade. The team’s goal is to build the new prototype device for clinical testing by 2017.

Lawrence Livermore’s collaborators, UCLA and Medtronic, will focus on conducting clinical trials and fabricating parts and components, respectively.

“The RAM [Restoring Active Memory] program poses a formidable challenge reaching across multiple disciplines from basic brain research to medicine, computing and engineering,” said Itzhak Fried, lead investigator for the UCLA on this project and  professor of neurosurgery and psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA and the Semel Institute for Neuroscience and Human Behavior. “But at the end of the day, it is the suffering individual, whether an injured member of the armed forces or a patient with Alzheimer’s disease, who is at the center of our thoughts and efforts.”

LLNL’s work on the Restoring Active Memory program supports [US] President [Barack] Obama’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative.

Obama’s BRAIN is picking up speed.

DARPA (US Defense Advanced Research Projects Agency) awards funds for implantable neural interface

I’m not a huge fan of neural implantable devices (at least not the ones that facilitate phone calls directly to and from the brain as per my April 30, 2010 posting; scroll down about 40% of the way) but they are important from a therapeutic perspective. On that  note, the Lawrence Livermore National Laboratory (LLNL) has received an award of $5.6M from the US Defense Advanced Research Projects Agency (DARPA) to advance their work on neural implantable interfaces. From a June 13, 2014 news item on Azonano,

Lawrence Livermore National Laboratory recently received $5.6 million from the Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to develop an implantable neural interface with the ability to record and stimulate neurons within the brain for treating neuropsychiatric disorders.

The technology will help doctors to better understand and treat post-traumatic stress disorder (PTSD), traumatic brain injury (TBI), chronic pain and other conditions.

Several years ago, researchers at Lawrence Livermore in conjunction with Second Sight Medical Products developed the world’s first neural interface (an artificial retina) that was successfully implanted into blind patients to help partially restore their vision. The new neural device is based on similar technology used to create the artificial retina.

An LLNL June 11, 2014 news release, which originated the news item, provides some fascinating insight into the interrelations between various US programs focused on the brain and neural implants,

“DARPA is an organization that advances technology by leaps and bounds,” said LLNL’s project leader Satinderpall Pannu, director of the Lab’s Center for Micro- and Nanotechnology and Center for Bioengineering, a facility dedicated to fabricating biocompatible neural interfaces. “This DARPA program will allow us to develop a revolutionary device to help patients suffering from neuropsychiatric disorders and other neural conditions.”

The project is part of DARPA’s SUBNETS (Systems-Based Neurotechnology for Emerging Therapies) program. The agency is launching new programs to support President Obama’s BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative, a new research effort aimed to revolutionize our understanding of the human mind and uncover ways to treat, prevent and cure brain disorders.

LLNL and Medtronic are collaborating with UCSF, UC Berkeley, Cornell University, New York University, PositScience Inc. and Cortera Neurotechnologies on the DARPA SUBNETS project. Some collaborators will be developing the electronic components of the device, while others will be validating and characterizing it.

As part of its collaboration with LLNL, Medtronic will consult on the development of new technologies and provide its investigational Activa PC+S deep brain stimulation (DBS) system, which is the first to enable the sensing and recording of brain signals while simultaneously providing targeted DBS. This system has recently been made available to leading researchers for early-stage research and could lead to a better understanding of how various devastating neurological conditions develop and progress. The knowledge gained as part of this collaboration could lead to the next generation of advanced systems for treating neural disease.

As for what LLNL will contribute (from the news release),

The LLNL Neural Technology group will develop an implantable neural device with hundreds of electrodes by leveraging their thin-film neural interface technology, a more than tenfold increase over current Deep Brain Stimulation (DBS) devices. The electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies. The goal is to seal the electronic components in miniaturized, self-contained, wireless neural hardware. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer.

Surgically implanted into the brain, the neural device is designed to help researchers understand the underlying dynamics of neuropsychiatric disorders and re-train neural networks to unlearn these disorders and restore proper function. This will enable the device to be eventually removed from the patient instead of being dependent on it.

This image from LLNL illustrates their next generation neural implant,

This rendering shows the next generation neural device capable of recording and stimulating the human central nervous system being developed at Lawrence Livermore National Laboratory. The implantable neural interface will record from and stimulate neurons within the brain for treating neuropsychiatric disorders.

This rendering shows the next generation neural device capable of recording and stimulating the human central nervous system being developed at Lawrence Livermore National Laboratory. The implantable neural interface will record from and stimulate neurons within the brain for treating neuropsychiatric disorders.

i expect there will be many more ‘brain’ projects to come with the advent of the US BRAIN initiative (funds of $100M in 2014 and $200M in 2015) and the European Union’s Human Brain Project (1B Euros to be spent on research over a 10 year period).

Harvest water from desert air with carbon nanotube cups (competition for NBD Nano?)

It’s been a while since I’ve seen Pulickel Ajayan’s name in a Rice University (Texas) news release and I wonder if this is the beginning of a series. I’ve noticed that researchers often publish a series of papers within a few months and then become quiet for two or more years as they work in their labs to gather more information.

This time the research from Pulickel’s lab has focused on the use of carbon nanotubes to harvest water from desert air. From a June 12, 2014 news item on Azonano,

If you don’t want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy.

New research by scientists at Rice University demonstrated that forests of carbon nanotubes can be made to harvest water molecules from arid desert air and store them for future use.

The invention they call a “hygroscopic scaffold” is detailed in a new paper in the American Chemical Society journal Applied Materials and Interfaces.

Researchers in the lab of Rice materials scientist Pulickel Ajayan found a way to mimic the Stenocara beetle, which survives in the desert by stretching its wings to capture and drink water molecules from the early morning fog.

Here’s more about the research from a June 11, 2014 Rice University news release (by Mike Williams?), which originated the news item,

They modified carbon nanotube forests grown through a process created at Rice, giving the nanotubes a superhydrophobic (water-repelling) bottom and a hydrophilic (water loving) top. The forest attracts water molecules from the air and, because the sides are naturally hydrophobic, traps them inside.

“It doesn’t require any external energy, and it keeps water inside the forest,” said graduate student and first author Sehmus Ozden. “You can squeeze the forest to take the water out and use the material again.”

The forests grown via water-assisted chemical vapor deposition consist of nanotubes that measure only a few nanometers (billionths of a meter) across and about a centimeter long.

The Rice team led by Ozden deposited a superhydrophobic layer to the top of the forest and then removed the forest from its silicon base, flipped it and added a layer of hydrophilic polymer to the other side.

In tests, water molecules bonded to the hydrophilic top and penetrated the forest through capillary action and gravity. (Air inside the forest is compressed rather then expelled, the researchers assumed.) Once a little water bonds to the forest canopy, the effect multiplies as the molecules are drawn inside, spreading out over the nanotubes through van der Waals forces, hydrogen bonding and dipole interactions. The molecules then draw more water in.

The researchers tested several variants of their cup. With only the top hydrophilic layer, the forests fell apart when exposed to humid air because the untreated bottom lacked the polymer links that held the top together. With a hydrophilic top and bottom, the forest held together but water ran right through.

But with a hydrophobic bottom and hydrophilic top, the forest remained intact even after collecting 80 percent of its weight in water.

The amount of water vapor captured depends on the air’s humidity. An 8 milligram sample (with a 0.25-square-centimeter surface) pulled in 27.4 percent of its weight over 11 hours in dry air, and 80 percent over 13 hours in humid air. Further tests showed the forests significantly slowed evaporation of the trapped water.

If it becomes possible to grow nanotube forests on a large scale, the invention could become an efficient, effective water-collection device because it does not require an external energy source, the researchers said.

Ozden said the production of carbon nanotube arrays at a scale necessary to put the invention to practical use remains a bottleneck. “If it becomes possible to make large-scale nanotube forests, it will be a very easy material to make,” he said.

This is not the first time researchers have used the Stenocara beetle (also known as the Namib desert beetle) as inspiration for a water-harvesting material. In a Nov. 26, 2012 posting I traced the inspiration  back to 2001 while featuring the announcement of a new startup company,

… US startup company, NBD Nano, which aims to bring a self-filling water bottle based on Namib desert beetle to market,

NBD Nano, which consists of four recent university graduates and was formed in May [2012], looked at the Namib Desert beetle that lives in a region that gets about half an inch of rainfall per year.

Using a similar approach, the firm wants to cover the surface of a bottle with hydrophilic (water-attracting) and hydrophobic (water-repellent) materials.

The work is still in its early stages, but it is the latest example of researchers looking at nature to find inspiration for sustainable technology.

“It was important to apply [biomimicry] to our design and we have developed a proof of concept and [are] currently creating our first fully-functional prototype,” Miguel Galvez, a co-founder, told the BBC.

“We think our initial prototype will collect anywhere from half a litre of water to three litres per hour, depending on local environments.”

You can find out more about NBD Nano here although they don’t give many details about the material they’ve developed. Given that MIT (Massachusetts Institute of Technology) researchers published a  paper about a polymer-based material laced with silicon nanoparticles inspired by the Namib beetle in 2006 and that NBD Nano is based Massachusetts, I believe NBD Nano is attempting to commercialize the material or some variant developed at MIT.

Getting back to Rice University and carbon nanotubes, this is a different material attempting to achieve the same goal, harvesting water from desert air. Here’s a link to and a citation for the latest paper inspired by the Stenocara beetle (Namib beetle),

Anisotropically Functionalized Carbon Nanotube Array Based Hygroscopic Scaffolds by Sehmus Ozden, Liehui Ge , Tharangattu N. Narayanan , Amelia H. C. Hart , Hyunseung Yang , Srividya Sridhar , Robert Vajtai , and Pulickel M Ajayan. ACS Appl. Mater. Interfaces, DOI: 10.1021/am5022717 Publication Date (Web): June 4, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

One final note, the research at MIT was funded by DARPA (US Defense Advanced Research Projects Agency). According to the news release the Rice University research held interest for similar agencies,

The U.S. Department of Defense and the U.S. Air Force Office of Scientific Research Multidisciplinary University Research Initiative supported the research.

Climb like a gecko (in DARPA’s [US Defense Advanced Research Projects Agency] Z-Man program)

I’m not entirely certain why DARPA (US Defense Advanced Research Projects Agency) has now issued a news release (h/t June 5, 2014 news item on Nanowerk) about this achievement (a human climbing like a Gecko) which seems to have first occurred in 2012 but perhaps they want to emphasize that this particular demonstration occurred on a glass wall. In any event, I’m happy to get more news about DARPA’s Z-Man program. From the June 5, 2014 DARPA news release,

DARPA’s Z-Man program has demonstrated the first known human climbing of a glass wall using climbing devices inspired by geckos. The historic ascent involved a 218-pound climber ascending and descending 25 feet of glass, while also carrying an additional 50-pound load in one trial, with no climbing equipment other than a pair of hand-held, gecko-inspired paddles. [emphasis mine] The novel polymer microstructure technology used in those paddles was developed for DARPA by Draper Laboratory of Cambridge, Mass. [Massachusetts]

Historically, gaining the high ground has always been an operational advantage for warfighters, but the climbing instruments on which they’re frequently forced to rely—tools such as ropes and ladders—have not advanced significantly for millennia. Not only can the use of such tools be overt and labor intensive, they also only allow for sequential climbing whereby the first climber often takes on the highest risk.

DARPA created the Z-Man program to overcome these limitations and deliver maximum safety and flexibility for maneuver and rapid response to warfighters operating in tight urban environments. The goal of the program is to develop biologically inspired climbing aids to enable warfighters carrying a full combat load to scale vertical walls constructed from typical building materials.

“The gecko is one of the champion climbers in the Animal Kingdom, so it was natural for DARPA to look to it for inspiration in overcoming some of the maneuver challenges that U.S. forces face in urban environments,” said Dr. Matt Goodman, the DARPA program manager for Z-Man. “Like many of the capabilities that the Department of Defense pursues, we saw with vertical climbing that nature had long since evolved the means to efficiently achieve it. The challenge to our performer team was to understand the biology and physics in play when geckos climb and then reverse-engineer those dynamics into an artificial system for use by humans.”

Geckos can climb on a wide variety of surfaces, including smooth surfaces like glass, with adhesive pressures of 15-30 pounds per square inch for each limb, meaning that a gecko can hang its entire body by one toe. The anatomy of a gecko toe consists of a microscopic hierarchical structure composed of stalk-like setae (100 microns in length, 2 microns in radius). From individual setae, a bundle of hundreds of terminal tips called spatulae (approximately 200 nanometers in diameter at their widest) branch out and contact the climbing surface.

A gecko is able to climb on glass by using physical bond interactions—specifically van der Waals intermolecular forces—between the spatulae and a surface to adhere reversibly, resulting in easy attachment and removal of the gecko’s toes from the surface. The van der Waals mechanism implied that it is the size and shape of the spatulae tips that affect adhesive performance, not specific surface chemistry. This suggested that there were design principles and physical models derived from nature that might enable scientists to fabricate an adhesive inspired by gecko toes.

Humans, of course, have much more weight to carry than a gecko. One of the initial challenges in developing a device to support human climbing was the issue of scaling: a typical Tokay gecko weighs 200 grams, while an average human male weighs 75 kilograms. To enable dynamic climbing like a gecko at this larger scale required that the engineers create climbing paddles capable of balancing sufficient adhesive forces in both the shear (parallel to the vertical surface) and normal (perpendicular to the vertical surface) directions. That feature is necessary for a climber to remain adhered on a surface without falling off while in the act of attaching and detaching the paddles with each movement.

The Draper Laboratory team was also challenged to create novel micro- and nanofabrication technologies to produce the high-aspect-ratio microstructures found in the gecko toe. In the process of achieving that capability, the Z-Man performers transformed the fundamental design and development of reversible adhesives for potential biomedical, industrial, and consumer applications.

The first human climbing demonstration occurred in February 2012 and tests of the technology are ongoing. [emphasis mine]

I’m guessing that glass is difficult to photograph because the image which accompanies the DARPA news release doesn’t highlight the achievement in quite the way one would expect,

During testing, an operator climbed 25 feet vertically on a glass surface using no climbing equipment other than a pair of hand-held, gecko-inspired paddles. The climber wore, but did not require, the use of a safety belay. Image: DARPA

During testing, an operator climbed 25 feet vertically on a glass surface using no climbing equipment other than a pair of hand-held, gecko-inspired paddles. The climber wore, but did not require, the use of a safety belay. Image: DARPA

I last wrote about Z-man in an April 3, 2012 posting highlighting some DARPA-funded work being done at the University of Massachusetts at Amherst while also mentioning work being done in other labs not associated (to my knowledge) with DARPA.

I was not successful in my attempts to find a video highlighting this ‘glass wall’ achievement but I did find this episode of Science Friction, where the host, Rusty Ward, does a very nice job of describing the technology (van der Waals forces, the nanostructures allowing spiders and geckos to climb all sorts of surfaces, etc.) along with some pop culture references (Spider-Man),

This runs for approximately 5 mins. 30 secs., a bit longer than usual for a video embedded here.

One last note, for anyone curious about* the laboratory referenced in the news release, you can find more here at the (Charles Stark) Draper Laboratory Wikipedia entry.

*The word ‘about’ was added June 30, 2022.

Brain-on-a-chip 2014 survey/overview

Michael Berger has written another of his Nanowerk Spotlight articles focussing on neuromorphic engineering and the concept of a brain-on-a-chip bringing it up-to-date April 2014 style.

It’s a topic he and I have been following (separately) for years. Berger’s April 4, 2014 Brain-on-a-chip Spotlight article provides a very welcome overview of the international neuromorphic engineering effort (Note: Links have been removed),

Constructing realistic simulations of the human brain is a key goal of the Human Brain Project, a massive European-led research project that commenced in 2013.

The Human Brain Project is a large-scale, scientific collaborative project, which aims to gather all existing knowledge about the human brain, build multi-scale models of the brain that integrate this knowledge and use these models to simulate the brain on supercomputers. The resulting “virtual brain” offers the prospect of a fundamentally new and improved understanding of the human brain, opening the way for better treatments for brain diseases and for novel, brain-like computing technologies.

Several years ago, another European project named FACETS (Fast Analog Computing with Emergent Transient States) completed an exhaustive study of neurons to find out exactly how they work, how they connect to each other and how the network can ‘learn’ to do new things. One of the outcomes of the project was PyNN, a simulator-independent language for building neuronal network models.

Scientists have great expectations that nanotechnologies will bring them closer to the goal of creating computer systems that can simulate and emulate the brain’s abilities for sensation, perception, action, interaction and cognition while rivaling its low power consumption and compact size – basically a brain-on-a-chip. Already, scientists are working hard on laying the foundations for what is called neuromorphic engineering – a new interdisciplinary discipline that includes nanotechnologies and whose goal is to design artificial neural systems with physical architectures similar to biological nervous systems.

Several research projects funded with millions of dollars are at work with the goal of developing brain-inspired computer architectures or virtual brains: DARPA’s SyNAPSE, the EU’s BrainScaleS (a successor to FACETS), or the Blue Brain project (one of the predecessors of the Human Brain Project) at Switzerland’s EPFL [École Polytechnique Fédérale de Lausanne].

Berger goes on to describe the raison d’être for neuromorphic engineering (attempts to mimic biological brains),

Programmable machines are limited not only by their computational capacity, but also by an architecture requiring (human-derived) algorithms to both describe and process information from their environment. In contrast, biological neural systems (e.g., brains) autonomously process information in complex environments by automatically learning relevant and probabilistically stable features and associations. Since real world systems are always many body problems with infinite combinatorial complexity, neuromorphic electronic machines would be preferable in a host of applications – but useful and practical implementations do not yet exist.

Researchers are mostly interested in emulating neural plasticity (aka synaptic plasticity), from Berger’s April 4, 2014 article,

Independent from military-inspired research like DARPA’s, nanotechnology researchers in France have developed a hybrid nanoparticle-organic transistor that can mimic the main functionalities of a synapse. This organic transistor, based on pentacene and gold nanoparticles and termed NOMFET (Nanoparticle Organic Memory Field-Effect Transistor), has opened the way to new generations of neuro-inspired computers, capable of responding in a manner similar to the nervous system  (read more: “Scientists use nanotechnology to try building computers modeled after the brain”).

One of the key components of any neuromorphic effort, and its starting point, is the design of artificial synapses. Synapses dominate the architecture of the brain and are responsible for massive parallelism, structural plasticity, and robustness of the brain. They are also crucial to biological computations that underlie perception and learning. Therefore, a compact nanoelectronic device emulating the functions and plasticity of biological synapses will be the most important building block of brain-inspired computational systems.

In 2011, a team at Stanford University demonstrates a new single element nanoscale device, based on the successfully commercialized phase change material technology, emulating the functionality and the plasticity of biological synapses. In their work, the Stanford team demonstrated a single element electronic synapse with the capability of both the modulation of the time constant and the realization of the different synaptic plasticity forms while consuming picojoule level energy for its operation (read more: “Brain-inspired computing with nanoelectronic programmable synapses”).

Berger does mention memristors but not in any great detail in this article,

Researchers have also suggested that memristor devices are capable of emulating the biological synapses with properly designed CMOS neuron components. A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. It has the special property that its resistance can be programmed (resistor) and subsequently remains stored (memory).

One research project already demonstrated that a memristor can connect conventional circuits and support a process that is the basis for memory and learning in biological systems (read more: “Nanotechnology’s road to artificial brains”).

You can find a number of memristor articles here including these: Memristors have always been with us from June 14, 2013; How to use a memristor to create an artificial brain from Feb. 26, 2013; Electrochemistry of memristors in a critique of the 2008 discovery from Sept. 6, 2012; and many more (type ‘memristor’ into the blog search box and you should receive many postings or alternatively, you can try ‘artificial brains’ if you want everything I have on artificial brains).

Getting back to Berger’s April 4, 2014 article, he mentions one more approach and this one stands out,

A completely different – and revolutionary – human brain model has been designed by researchers in Japan who introduced the concept of a new class of computer which does not use any circuit or logic gate. This artificial brain-building project differs from all others in the world. It does not use logic-gate based computing within the framework of Turing. The decision-making protocol is not a logical reduction of decision rather projection of frequency fractal operations in a real space, it is an engineering perspective of Gödel’s incompleteness theorem.

Berger wrote about this work in much more detail in a Feb. 10, 2014 Nanowerk Spotlight article titled: Brain jelly – design and construction of an organic, brain-like computer, (Note: Links have been removed),

In a previous Nanowerk Spotlight we reported on the concept of a full-fledged massively parallel organic computer at the nanoscale that uses extremely low power (“Will brain-like evolutionary circuit lead to intelligent computers?”). In this work, the researchers created a process of circuit evolution similar to the human brain in an organic molecular layer. This was the first time that such a brain-like ‘evolutionary’ circuit had been realized.

The research team, led by Dr. Anirban Bandyopadhyay, a senior researcher at the Advanced Nano Characterization Center at the National Institute of Materials Science (NIMS) in Tsukuba, Japan, has now finalized their human brain model and introduced the concept of a new class of computer which does not use any circuit or logic gate.

In a new open-access paper published online on January 27, 2014, in Information (“Design and Construction of a Brain-Like Computer: A New Class of Frequency-Fractal Computing Using Wireless Communication in a Supramolecular Organic, Inorganic System”), Bandyopadhyay and his team now describe the fundamental computing principle of a frequency fractal brain like computer.

“Our artificial brain-building project differs from all others in the world for several reasons,” Bandyopadhyay explains to Nanowerk. He lists the four major distinctions:
1) We do not use logic gate based computing within the framework of Turing, our decision-making protocol is not a logical reduction of decision rather projection of frequency fractal operations in a real space, it is an engineering perspective of Gödel’s incompleteness theorem.
2) We do not need to write any software, the argument and basic phase transition for decision-making, ‘if-then’ arguments and the transformation of one set of arguments into another self-assemble and expand spontaneously, the system holds an astronomically large number of ‘if’ arguments and its associative ‘then’ situations.
3) We use ‘spontaneous reply back’, via wireless communication using a unique resonance band coupling mode, not conventional antenna-receiver model, since fractal based non-radiative power management is used, the power expense is negligible.
4) We have carried out our own single DNA, single protein molecule and single brain microtubule neurophysiological study to develop our own Human brain model.

I encourage people to read Berger’s articles on this topic as they provide excellent information and links to much more. Curiously (mind you, it is easy to miss something), he does not mention James Gimzewski’s work at the University of California at Los Angeles (UCLA). Working with colleagues from the National Institute for Materials Science in Japan, Gimzewski published a paper about “two-, three-terminal WO3-x-based nanoionic devices capable of a broad range of neuromorphic and electrical functions”. You can find out more about the paper in my Dec. 24, 2012 posting titled: Synaptic electronics.

As for the ‘brain jelly’ paper, here’s a link to and a citation for it,

Design and Construction of a Brain-Like Computer: A New Class of Frequency-Fractal Computing Using Wireless Communication in a Supramolecular Organic, Inorganic System by Subrata Ghoshemail, Krishna Aswaniemail, Surabhi Singhemail, Satyajit Sahuemail, Daisuke Fujitaemail and Anirban Bandyopadhyay. Information 2014, 5(1), 28-100; doi:10.3390/info5010028

It’s an open access paper.

As for anyone who’s curious about why the US BRAIN initiative ((Brain Research through Advancing Innovative Neurotechnologies, also referred to as the Brain Activity Map Project) is not mentioned, I believe that’s because it’s focussed on biological brains exclusively at this point (you can check its Wikipedia entry to confirm).

Anirban Bandyopadhyay was last mentioned here in a January 16, 2014 posting titled: Controversial theory of consciousness confirmed (maybe) in  the context of a presentation in Amsterdam, Netherlands.

University of British Columbia (Canada) discovers the ‘organ-on-a-chip’ and plans to host a July 2014 workshop

My latest piece about an ‘organ-on-a-chip’ project was a July 26, 2012 posting titled Organ chips for DARPA (Defense Advanced Research Projects Agency) featuring the Wyss Institute (which pops up again in the latest news I have from the University of British Columbia [UBC; located in Vancouver, Canada)]). First, here’s more about that 2012 announcement,,

The Wyss Institute will receive up to  $37M US for a project that integrates ten different organ-on-a-chip projects into one system. From the July 24, 2012 news release on EurekAlert,

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented “human-on-a-chip” will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed “has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development.”

It’s nice to see that there’s interest in this area of research at UBC. From the Dec. 30, 2013 UBC news release by Gian-Paolo Mendoza which describes James Feng’s (professor in biological and chemical engineering) interest in the future possibilities offered by ‘organ-on-a-chip’ research,

“The potential is tremendous,” says Feng. “The main impact of organs grown this way will be on the design of drugs; the understanding of the pathological processes.”

Dr. Feng’s group carries out research in three broad areas: mechanics of biological cells and tissues, interfacial fluid dynamics, and mechanics and rheology of complex fluids.

The group has an inter-disciplinary flavour–crosscutting applied mathematics, cell biology, soft-matter physics and chemical and biomedical engineering—that is well-suited for exploring this burgeoning technology.

Feng cites a Harvard study [Ed. Note: This is the work being done at the Wyss Institute] using a small silicon device that holds a thin layer of real cell membranes capable of producing motion similar to the heaving and breathing of a lung.

Organ models designed this way have the potential to be more accurate in drug and treatment trials, says Feng, as they can better mimic the functions of human organs, as opposed to animal models which are the current research standard.

“It’s more controlled and you can simplify the process much faster,” said Feng.

“Harvard researchers also injected drugs into their chip model to see how it changed its behaviour and to see the tissue’s reaction to mechanical or chemical disturbance,” he added.

“It’s very important for drug design and discovery and the pharmaceutical industry would be tremendously interested in that.”

In addition, organs on a chip present a less controversial option for organ model testing compared to stem cell research. According to Feng, this is because their ultimate goals are very different from each other.

“The research that tried to grow organs directly from stem cells is aiming for eventually implantable organs,” he said. “The idea of making the chip is to work toward replacing animal models, so as to be more accurate and realistic like human organs. While the ability to replicate a complex human organ function remains far off, the direction appeals to anyone who is hoping to reduce the use of animals in research.”

Here’s the ‘lung-on-a-chip’ video the Wyss Institute has produced,

By contrast with ‘organ-on-a-chip’, the ‘lab-on-a-chip’ does not simulate the action of organs responding to various experimental therapeutic measures but makes standard testing and diagnostic procedures, such as blood tests, much faster, cheaper, and, in some cases, much less invasive as per my February 15, 2011 posting  which included some information about a local (Vancouver, Canada) project, the PROOF.(Prevention of Organ Failure) Centre.

The ‘organ-on-a-chip’ will help make clinical trials easier and faster according to Feng (from the news release),

Feng says this kind of organ testing offers the possibility of greatly reducing cost and time required for clinical trials.

“By using computer simulations we can generate results and insights, and run virtual tests much more easily and quickly,” he says.

“We can test maybe hundreds or thousands of designs of organ chips to be able to tell you whether you should try those ten designs instead of the hundreds one by one.”

Feng, who has a background in aerospace engineering, says this new bio-technology has the potential to transform the development of artificial organs and drugs the way computer simulations have replaced the use of wind tunnels for designing aircrafts.

“That used to be the dominant mode of designing crafts,” he said, “but that’s being replaced by online computer simulations because we understand the principles of aerodynamics so well.”

There’s also recognition that UBC is a little late to the ‘party’,

While UBC’s efforts in the field are in the early stages, Feng is reaching out to researchers from other backgrounds. He will be inviting leading scientists to UBC in July 2014 for a workshop that will centre on the growth of artificial organs and computer simulations. He is also exploring ideas of his own.

“I have a collaboration with an engineering colleague on how to use the microfluidic chip, the technology used to emulate the lung in the Harvard study, as a way of measuring malaria-infected red cells,” he said, suggesting that this is just one of the countless ways this new technology could be used to fuel future innovation.

And since it’s Friday (Jan. 3, 2014), I thought it was time for a music video, and Pink’s ‘Let’s get the party started’ seems to fit the bill,,

Have a good first weekend of the year 2014!

Funding opportunities from the European Union’s Horizon 2010 programme and US DARPA’s Young Faculty Award program

A Dec. 12, 2013 news item on Nanowerk announces a call for proposals from the European Union’s (EU) massive science funding programme, Horizon 2020, which replaces the EU’s previous Framework Programme 7 initiative,

The European Commission presented for the first time today calls for Proposals under Horizon 2020, the European Union’s new 80 billion euro research and innovation program, which runs from 2014 to 2020. Worth more than 15 billion euros over the first two years, the funding is intended to help boost Europe’s knowledge-driven economy, and tackle issues that will make a difference in people’s lives. International cooperation is a priority in Horizon 2020 with the program open to participation of researchers from across the world, including the United States.

“It’s time to get down to business,” said European Research, Innovation and Science Commissioner Maire Geoghegan-Quinn. “Horizon 2020 funding is vital for the future of research and innovation in Europe, and will contribute to growth, jobs and a better quality of life. We have designed Horizon 2020 to produce results, and we have slashed red tape to make it easier to participate. So I am calling on researchers, universities, businesses including SMEs, and others to sign up!”

A Dec. 11, 2013 EU press release provides more details about the call and about Horizon 2020,

For the first time, the Commission has indicated funding priorities over two years, providing researchers and businesses with more certainty than ever before on the direction of EU research policy. Most calls from the 2014 budget are already open for submissions as of today, with more to follow over the course of the year. Calls in the 2014 budget alone are worth around €7.8 billion, with funding focused on the three key pillars of Horizon 2020:

  • Excellent Science: Around €3 billion, including €1.7 billion for grants from the European Research Council for top scientists and €800 million for Marie Skłodowska-Curie fellowships for younger researchers (see MEMO/13/1123).
  • Industrial Leadership: €1.8 billion to support Europe’s industrial leadership in areas like ICT, nanotechnologies, advanced manufacturing, robotics, biotechnologies and space.
  • Societal challenges: €2.8 billion for innovative projects addressing Horizon 2020’s seven societal challenges, broadly: health; agriculture, maritime and bioeconomy; energy; transport; climate action, environment, resource efficiency and raw materials; reflective societies; and security.

Background

Horizon 2020 is the EU’s biggest ever research and innovation framework programme with a seven year budget worth nearly €80 billion. Most EU research funding is allocated on the basis of competitive calls, but the budget for Horizon includes funding also for the Joint Research Centre, the European Commission’s in-house science service; the European Institute for Innovation and Technology and research carried out within the framework of the Euratom Treaty. Separate calls will also be published under specific Partnerships with industry and with Member States (see IP/13/668). In 2014 the total EU research budget, including these items and administrative expenditure, will be around €9.3 billion, rising to around €9.9 billion in 2015. Final 2015 amounts are subject to the decision on the 2015 annual budget.

The funding opportunities under Horizon 2020 are set out in work programmes published on the EU’s digital portal for research funding, which has been redesigned for quicker, paperless procedures. Participants will also find simpler programme architecture and funding, a single set of rules, and a reduced burden from financial controls and audits.

The 2014-15 calls include €500 million over two years dedicated to innovative small and medium-sized enterprises (SMEs) through a brand new SME Instrument. Gender aspects are expected to be included in many of the projects, and there is funding to further stimulate debate on science’s role within society. There are also new rules to make ‘open access’ a requirement for Horizon 2020, so that publications of project results are freely accessible to all.

The EU’s Horizon 2010 programme has created a How to get funding? webpage, which should answer your questions and does provide links to applications and more.

Moving on: Jessica Leber writes about a US DARPA (Defense Advanced Research Projects Agency) call for research proposals in her Dec. 11, 2013 article for Fast Company (Note: Links have been removed),

The Pentagon’s advanced research arm is always dreaming up crazy, futuristic technologies that will shape the future of the military and society. DARPA was involved in early Internet development, and these days the agency works on everything from drone-slaying lasers to humanoid robots that could save your life.

Every year, DARPA gives out young faculty awards aimed at recruiting the “rising star” researchers in academia to devote their brains to the military’s technological needs. “The long-term goal of the program is to develop the next generation of scientists and engineers in the research community who will focus a significant portion of their future careers on DoD and National Security issues,” this year’s grant program announcement reads.

A Nov. 19, 2013 DARPA news release describes the Young Faculty Awards program, eligibility (you must be employed in a US institution of higher learning), and their areas of interest,

2014 YFA announcement increases the number of research topics from 13 to 18 and for the first time permits teaming with subcontractors

DARPA defines its research portfolio within a framework that puts the Agency’s enduring mission in the context of tomorrow’s environment for national security and technology. An integral part of this strategy includes establishing and sustaining a pipeline of talented scientists, engineers, and mathematicians who are motivated to pursue high risk, high payoff fundamental research in disciplines that are critical to maintaining the technological superiority of the U.S. military.

DARPA’s Young Faculty Awards (YFA) program addresses this need by funding the work of promising researchers and pairing them with DARPA program managers.  This pairing provides YFA researchers with mentoring and networking opportunities as well as exposure to DoD technology needs and the overall research and development process. The 2014 YFA solicitation includes technical topic areas in the physical sciences, engineering, materials, mathematics, biology, computing, informatics and manufacturing disciplines that are relevant to the research interests of DARPA’s Defense Sciences and Microsystems Technology Offices.

“YFA offers promising junior faculty members and their peers at nonprofit research institutions the chance to do potentially revolutionary work much earlier in their careers than they otherwise could,” said William Casebeer, DARPA program manager for the 2014 class. “By expanding the list of research topics this year from 13 to 18—our largest portfolio since the program started in 2006—we hope to attract even more creative proposals that could lead to future breakthroughs on critical defense challenges. The growth reflects how successful past awardees have been in supporting DARPA’s mission.”

Eligible applicants must be employed in U.S. institutions of higher learning and within five years of appointment to a tenure-track position, or hold equivalent positions at non-profit research institutions.

Researchers selected for YFA grants receive up to $500,000 in funding over a 24-month period. As many as four of the most exceptional performers may be selected to receive up to another $500,000 over an additional year under a DARPA Director’s Fellowship.

DARPA is, for the first time, permitting proposers to form partnerships with subcontractors. The subcontractor relationship cannot exceed 30 percent of the total grant value. In addition to enhancing the competitiveness of proposed research plans, this change is designed to provide young investigators with the opportunity to manage a multidisciplinary team and gain a better understanding of the work performed by a DARPA program manager.

“The YFA program represents a strategic investment in fundamental research and professional development of the next generation of scientists and engineers focused on defense and national security issues,” said Mari Maeda, director of DARPA’s Defense Sciences Office. “It also benefits the young researchers and their institutions by engaging them in valuable, high-risk, high-impact research, providing a mentoring relationship with a DARPA program manager, expanding channels for future ideas to flow, and, now, exposing them to the rigors of managing a multidisciplinary team.”

The list of technical topic areas for 2014 includes:

  • Optimizing Supervision for Improved Autonomy
  • Neurobiological Mechanisms of Social Media Processing
  • Next-generation Neural Sensing for Brain-Machine Interfaces
  • Mathematical and Computational Methods to Identify and Characterize Logical and Causal Relations in Information
  • Time-Dependent Integrated Computational Materials Engineering
  • Long-range Detection of Special Nuclear Materials
  • Alternate Fusion Concepts
  • New Materials and Devices for Monitoring and Modulating Local Physiology
  • Methods and Theory for Fundamental Circuit-Level Understanding of the Human Brain
  • Hierarchically Complex Materials that Respond and Adapt
  • Disruptive Materials Processing
  • Disruptive Computing Architectures
  • Appliqué Antenna Elements for Platform Integration
  • Modeling Phonon Generation and Transport in the Near Junction Region of Wide-Bandgap Transistors
  • Advanced Automation and Microfluidic Technologies for Engineering Biology
  • Energy Recovery in Post-CMOS Technologies
  • Thin Film Transistors for High-performance RF and Power Electronics
  • Neural-inspired Computer Engineering

You can go here  http://www.grants.gov/web/grants/view-opportunity.html?oppId=247637 for all the details about DAARPA’s YFA call for proposals,

As for deadlines, I had some difficulty finding one for the current 2020 Horizon call for proposals, as I gather there a number of calls being announced in the news item on Nanowerk,. You can find more information on the How to participate page but it is only one of several starting points for your journey through this remarkable and huge funding programme.

Meanwhile ,the current deadline for the DARPA YRA proposals is Jan. 7, 2014.

Good luck!