Tag Archives: Council of Canadian Academies

Canadian ‘studies of science’ news: career opportunity for postdoc (2nd call), summer school in India, and a Situating Science update

The deadline for a posdoctoral fellowship with Atlantic Canada’s Cosmoplitanism group (which morphed out of the Situating Science group) is coming up shortly (March 2, 2015). I wrote about this opportunity in a Dec. 12, 2014 post part of which I will reproduce here,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Good luck! You can find more application information here.

Now for the summer school opportunity in India, (from a Feb. 18, 2015 Cosmopolitanism announcement).

Call for applications:
“Scientific Objects and Digital Cosmopolitanism” Summer School

Manipal Centre for Philosophy and Humanities,
Manipal, India
July 20-24, 2015

Please spread the word in your communities.

 

Scientific Objects and Digital Cosmopolitanism

Co-organized by the Manipal Centre for Philosophy and Humanities and Cosmopolitanism and the Local in Science and Nature.

Dates
July 20-24, 2015

Deadline for applications
Monday March 23, 2015

Organizers
Sundar Sarukkai, Manipal Centre for Philosophy and Humanities
Gordon McOuat, University of King’s College

Coordinator
Varun Bhatta, Manipal Centre for Philosophy and Humanities

Description:
Applications from post-graduate and doctoral students in the fields of philosophy, philosophy of science and social sciences, history and philosophy of science, science and technology studies, and cognate fields are invited to a five-day summer school in India, made possible by collaborations between institutions and scholars in Canada, India and Southeast Asia. This will be an excellent opportunity for graduate students interested in receiving advanced training in the philosophy of science and science and technology studies, with a focus on scientific objects and their relation to cosmopolitanism.

The paradigm of scientific objects has undergone a major transformation in recent times. Today, scientific objects are not limited to microscopic or major astronomical objects. A new category of objects involves ontological modes of data, grids, simulation, visualization, etc. Such modes of objects are not merely peripheral props or outcomes of scientific endeavour. They actively constitute scientific theorizing, experimentation and instrumentation, and catalyze notions of cosmopolitanism in the digital world. Cosmopolitanism in this context is defined as a model of cultural and political engagement based on multidirectional exchange and contact across borders. A cosmopolitan approach treats science as a contingent, multifaceted and multicultural network of exchange. The summer school will engage with philosophical themes around the nature of new scientific objects and digital cosmopolitanism.

“The event is organized by the Manipal Centre for Philosophy and Humanities (Manipal University) and by the Social Sciences and Humanities Research Council of Canada-funded Cosmopolitanism and the Local in Science and Nature, a three-year project to establish a research network on cosmopolitanism in science with partners in Canada, India, and Southeast Asia. The project closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape.

Program and Faculty:
Each of the days will be split among:
(a) Background sessions led by Arun Bala, Gordon McOuat and Sundar Sarukkai,
(b) Sessions led by other faculty members with recognized expertise in the theme, and
(c) Sessions devoted to student research projects.

There will be plenty of opportunities for interaction and participation. The seminar will be held in English and readings will be circulated in advance. Special events will be organized to complement session content. There also will be opportunities for exploring the incredible richness and diversity of the region.

Selection Criteria:
We seek outstanding graduate students from Canada, India and Southeast Asia. We will prioritize applications from graduate students in disciplines or with experience in philosophy, philosophy of science, social studies, the history and philosophy of science, or science and technology studies.

Location and Accommodations:
The event will be hosted by the Manipal Centre for Philosophy and Humanities in the picturesque ocean-side state of Karnataka in south-western India. Students will be housed in student residences. The space is wheelchair accessible.

Fees:
A registration fee of Rs 1500 for Indian students and $100 CAD for international students will be charged. This fee will include accommodations and some meals.

Financial Coverage:

Students from India:
Travel for India-based students will be covered by the summer school sponsors.

Students from Canada and Southeast Asia:
Pending government funding, travel costs may be defrayed for students from Canada or Southeast Asia. Students should indicate in their applications whether they have access to travel support (confirmed or unconfirmed) from home institutions or funding agencies. This will not affect the selection process. Acceptance letters will include more information on travel support.

Students from outside Canada, India and Southeast Asia:
Students from outside Canada, India and Southeast Asia will be expected to provide their own funding.

Students at home institutions of “Cosmopolitanism and the Local in Science and Nature” team members are strongly encouraged to contact the local team member to discuss funding options. Information on the project’s partners and team members is available on the project’s “About Us” page: www.CosmoLocal.org/about-us.

Any travel support will be considered as co-sponsorship to this international training event and acknowledged accordingly. Further information on funding will be included with acceptance letters.

Timeline:
Deadline for applications: March 23, 2015
Notification of acceptance: Week of April 6, 2015
Deadline for registration forms: May 11, 2015

Procedure:
Applications should include the following, preferably sent as PDFs:
1. Description of research interests and their relevance to the school (max. 300 words)
2. Brief Curriculum Vitae / resume highlighting relevant skills, experience and training,
3. One signed letter of recommendation from a supervisor, director of graduate studies, or other faculty member familiar with applicant’s research interests.

Applications should be sent to:
MCPH Office, mcphoffice@gmail.com
with a copy to
Varun Bhatta, varunsbhatta@gmail.com

For more information, please contact :
Greta Regan
Project Manager
Cosmopolitanism and the Local
University of King’s College
situsci@dal.ca

and/or

Dr. Gordon McOuat, History of Science and Technology Programme,
University of King’s College
gmcouat@dal.ca

The last bit of information for this post concerns the Situating Science research cluster mentioned here many times. Situating Science was a seven-year project funded by the Social Sciences and Humanities Research Council (SSHRC) which has become the Canadian Consortium for Situating Science and Technology (CCSST) and has some sort of a relationship (some of the Situating Science organizers have moved over) to the Cosmopolitanism project. The consortium seems to be a somewhat diminished version of the cluster so you may want to check it out now while some of the information is still current.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as an Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

*Word corrected in this sentence: “There was acknowledgement of Canada as [a changed to an] Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment.” on Nov. 17, 2020

Science Culture: Where Canada Stands; an expert assessment, Part 3 of 3: where were …?

I did have some major issues with this report. I’ve already touched on the makeup of the Expert Panel in my Feb. 22, 2013 post (Expert panel to assess the state of Canada’s science culture—not exactly whelming). There could have been more women on the panel (also noted in part 2 of this commentary) and they could have included a few culture makers (writers, visual artists, performing artists). Also mentioned in part 2 of this commentary, it would have been nice to have seen a few people from the aboriginal communities and a greater age range represented on the panel or on advisory committees.

In a discussion about science culture, I am somewhat shocked that the Situating Science; Science in Human Contexts research cluster was never mentioned. From the programme’s About Us page,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

A Social Sciences and Humanities Research Council (SSHRC) seven-year programme devoted to Canada’s science culture and it wasn’t mentioned??? An oversight or a symptom of a huge disconnection within Canada’s science culture? I vote for disconnection but please do let me know what you think in the comments section.

As for the assessment’s packaging (cover, foreword, and final words), yikes! The theme colour (each CAC assessment has a theme colour; their policing assessment is blue) for Canada’s science culture is red, perhaps evoking the Canadian maple leaf on the flag. The picture on the cover depicts a very sweet, blond(e), white child with glasses too big for his/her face rimmed in thick black. Glasses are a long established symbol for nerds/intellectual people. So, it would seem Canada’s science culture is blond, nerdy, and, given the child’s clothing, likely male, though in this day and age not definitively so. Or perhaps the child’s hair is meant to signify the maple leaf on the flag with a reversed field (the cover) being red and the leaf being white.

The problem here is not a single image of a blond(e) child, the problem is the frequency with which blond(e) children are used to signify Canadians. Thankfully, advertising images are becoming more diverse but there’s still a long way to go.

There are also issues with the beginning and the end of the report. Two scientists bookend the report: both male, both physicists, one from the UK and the other from the US.

C. P. Snow and his 1959 lecture ‘Two Cultures’ about science and society is mentioned by the Expert Panel’s Chair, Arthur Carty (himself from the UK). In his foreword/message, Carty speculates about how C. P. Snow would respond to today’s science culture environment in a fashion that brings to mind William Lyon MacKenzie King, Canada’s Prime Minister from December 1921 – June 1926;  September 1926 – August 1930; and October 1935 – November 1948, Mackenzie King regularly communed with the dead. From the Wikipedia entry on William Lyon Mackenzie King (Note: Links have been removed),

Privately, he was highly eccentric, with his preference for communing with spirits, using seances and table-rapping, including those of Leonardo da Vinci, Sir Wilfrid Laurier, his dead mother, his grandfather William Lyon Mackenzie, and several of his Irish Terrier dogs, all named Pat except for one named Bob. He also claimed to commune with the spirit of the late President Roosevelt. He sought personal reassurance from the spirit world, rather than seeking political advice. Indeed, after his death, one of his mediums said that she had not realized that he was a politician. King asked whether his party would win the 1935 election, one of the few times politics came up during his seances. His occult interests were kept secret during his years in office, and only became publicized later. Historians have seen in his occult activities a penchant for forging unities from antitheses, thus having latent political import. In 1953, Time stated that he owned—and used—both an Ouija board and a crystal ball.

However, historian Charles Perry Stacey, author of the 1976 book A Very Double Life, which examined King’s secret life in detail, with work based on intensive examination of the King diaries, concluded, despite long-running interests in the occult and spiritualism, that King did not allow his beliefs to influence his decisions on political matters. Stacey wrote that King entirely gave up his interests in the occult and spiritualism during World War II.[80]

At the end of the report, Carty quotes Brian Greene, a US physicist,  p. 218 (PDF) thereby neatly framing Canada between the UK and the US,

However, as stated by physicist Brian Greene (2008), one of the simplest reasons for developing a stronger science culture is that doing so helps foster a fuller, richer experience of science itself:

Science is a way of life. Science is a perspective. Science is the process that takes us from confusion to understanding in a manner that’s precise, predictive, and reliable — a transformation, for those lucky enough to experience it, that is empowering and emotional. To be able to think through and grasp explanations — for everything from why the sky is blue to how life formed on earth — not because they are declared dogma, but because they reveal patterns confirmed by experiment and observation, is one of the most precious of human experiences.

Couldn’t we have found one Canadian thinker or perhaps a thinker from somewhere else on the globe? Assuming there’s a next time, I hope the approach evolves to something more reflective of Canadian society.

In the meantime there is more, much more in the assessment  including a discussion of science-based policy and including the arts to turn STEM (science, technology, engineering, and mathematics) to STEAM and I encourage you take a look at either the full version, the executive summary, or the abridged version, all of which can be found here.

Science Culture: Where Canada Stands; an expert assessment, Part 1 of 3: Canadians are doing pretty well

After almost two years, Science Culture: Where Canada Stands (256 pp. PDF; 222 pp. print) was released in August  2014 by the Council of Canadian Academies (CCA). The assessment as the CCA calls these reports was first mentioned here in a Dec. 19, 2012 post about the questions being asked and with a follow up Feb. 22, 2013 post when its Expert Panel was announced.

I believe this is the first document of its kind, i.e., assessing science culture in Canada, and it is very welcome. I have mixed feelings about the report; there’s some excellent content packaged in a rather unfortunate manner. (BTW, I was chuffed to find that my blog and I were mentioned in it.)

I will start with the good stuff first. The CCA has provided an infographic of how Canada compares to other countries where science culture is concerned,

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20rankings-cmyk.jpg]

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20rankings-cmyk.jpg]

It’s encouraging to see how well we’re doing globally although the report does note that some countries don’t have data for comparison and other countries’ may have older data (Canadian data gathered for this report is relatively recent as per one of the excerpts [further in this post] from Ivan Semeniuk’s August 28, 2014 Globe and Mail article) so the rankings may not reflect a truly accurate global ranking.

Here’s another infographic; this one describing Canadians’ attitudes towards and beliefs about science and technology,

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20national%20percentages%20infographic-cmyk.jpg]

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20national%20percentages%20infographic-cmyk.jpg]

As encouraging as these infographics are, Ivan Semeniuk (also namechecked in the report) notes some of the concerns broached in the assessment in his Aug, 28, 2014 Globe and Mail article,

From knowing what a molecule is to endorsing government support for basic research, Canadians as a whole display a clearer understanding of and a more positive attitude toward science than people in most other developed countries.

Overall, the report’s message is a positive one for Canada. “Canadians rank quite highly when it comes to science knowledge, attitudes and engagement in comparison with other countries in the world,” said Arthur Carty, chair of the panel that produced the report and a former national science adviser.

But despite high levels of interest, the report also reveals that in practical terms, most Canadians have an arm’s-length relationship with science. [emphasis mine] Only 20 per cent of first university degrees in Canada are awarded in science and engineering fields and only 30 per cent of employed Canadians work at science and technology related jobs – fewer than in the majority of other countries with a comparable standard of living.

It seems Semeniuk and the expert panel subscribe to the notion that formal science education is the only true measure of a ;close’ relationship with science. Neither party seems to take much comfort in the fact that Canadians keep up with science once their formal education (scientific or otherwise) is over (from Semeniuk’s article,

Among the most striking results from the survey is that Canada ranks first in science literacy, with 42 per cent of Canadians able to read and understand newspaper stories detailing scientific findings.

The comparatively high interest in science that Canadians express suggests they may be doing better than most at keeping up with the discoveries that have come along since their formal education ended. [emphasis mine] An emphasis on lifelong learning is important for cultivating a national science culture, the report’s authors say, because the leading edge of research is driven by knowledge that was not available 10 or 20 years ago.

The comparatively recent Canadian data, as mentioned earlier, may not provide a true picture of Canada’s ranking (from Semeniuk’s article),

But ongoing research by Dr. Miller [Jon Miller, a panel member and director of the International Center for the Advancement of Scientific Literacy at the University of Michigan] and others suggest that science literacy is on the rise everywhere, and therefore Canada’s high ranking could also be a function of how recently it was surveyed relative to other countries. Whatever the reason, the report’s numbers suggest there is more to be learned about precisely how Canadians are relating to science and how that is changing, says broadcaster and author Jay Ingram, who was also on the panel.

Getting on to the report/assessment proper, I do like the note of skepticism about the impact a strong science culture has on society given the somewhat hysterical claims made by some adherents to this philosophy,

Many claims have been advanced about the impacts of a strong science culture. Such claims are often plausible given the extent to which science and technology feature in most aspects of individual and social life. However, there is limited empirical evidence to substantiate these claims, and in some cases that evidence points to more complexity in the way these impacts are manifested than is typically acknowledged. Much of this evidence suggests that, while a stronger science culture may contribute to a range of personal or social benefits, it is not always in itself sufficient to ensure the realization of those benefits.(p. 24 PDF; p. xxii print]

It’s a thoughtfulness I very much appreciate.

The report offers a definition of science that could include social science but, given a rather egregious omission (more about that in part 3 of this commentary), does not appear to do so,

Science is a systematic means of discovery and exploration that enriches our collective understanding of the world and universe around us. It is a fundamental part of Canadian culture and society, implicated in nearly every aspect of individual and social life. (p. 34 PDF; p. 2 print)

I was intrigued to learn the term ‘science culture’ is specific to Canada,

One of the first challenges faced by the Panel was to define science culture. While often used in Canadian discussions of science and technology policy, the term is rarely defined with precision. It is most frequently used to convey the degree to which society and the public are broadly engaged in, and supportive of, science. For example, at the launch of Canada’s National Science and Technology Week in 1990, the then Minister for Science, William Winegard, stated that “a science culture means a society that embraces science, involves itself in the development, application and use of new technologies, and celebrates national achievements [in science] with pride and enthusiasm” (National Science and Technology Week, 1990).

The use of this term in Canada partly reflects Canada’s bilingual heritage. In other English-speaking countries, terms such as science literacy, public understanding of science, public engagement in science, and public communication of science are more common (Durant, 1993). These terms are not synonymous with each other, or with science culture. However, they are related concepts, representing a range of perspectives that have been applied to the study of how the public relates to, interacts with, and develops views about science and technology. Patterns in the use of these terms in the literature over time also reflect an evolution in the way in which scholars, scientists, and policy-makers discuss science and society issues (Bauer, 2009). In French, the preferred term is generally la culture scientifique or la culture scientifique et technique, and the use of these terms in Quebec may have contributed to the use of the English science culture throughout Canada.

Compared with science literacy or public understanding of science, science culture is a more expansive concept, encompassing different aspects of the relationship between society and science. (p. 39 PDF; p, 7 print)

Globally, discussions about science are necessary,

Public discussions about the role of science in society are now dominated by a number of critical issues. Debates about nuclear power, climate change, biotechnology, nanotechnology, and stem cells are common across many countries and have been frequently the source of both national and international studies. For example, concern about anthropogenic global warming has generated a significant amount of research on public perception and attitudes related to science and technology. … The global reach of many of these issues requires international policy responses involving coordination and alignment of many governments. Both government actions and media coverage of these issues can have an impact on public perception of science and technology on an international scale.

Specific events abroad can also have a major impact on science culture around the world. The crisis at the Fukushima nuclear plant in Japan in 2011, for example, caused widespread concern over nuclear safety across many countries and significantly affected public perception of the safety of these technologies (Kim et al., 2013). In Canada this event precipitated a review of all major nuclear facilities and the development of a four-year action plan to strengthen the safety of the nuclear industry (Canadian Nuclear Association, 2012; Canadian Nuclear Safety Commission, 2012) (pp. 46/7 PDF; pp. 14/5 print)

In a description of how new technologies are changing society and affecting the practice of science, the expert panel introduces the notion of ‘citizen science’ (Note: I agree with the notion and have a category for citizen science on this blog),

One such impact concerns how the public can participate in and contribute to scientific work. Canadian physicist Michael Nielsen argues that new possibilities for large-scale scientific collaboration resulting from web-based platforms can potentially transform the practice of science due to changes in how scientists collaborate, and to the development of online platforms for engaging the public in scientific research (Nielsen, 2012). “Citizen science” initiatives allow the public to contribute to many kinds of scientific activity, often through collaborative, web-based platforms … (p. 47 PDF; p. 15 print)

I was pleased to see that the influence of popular culture was also mentioned although I did feel it was a bit lacking,

First, popular culture can influence attitudes towards science and technology and perceptions of scientists and their role in society. The foundation of science is the acquisition of knowledge. Ungar (2000) argues that in some segments of society, attaining highly specialized knowledge is viewed as elitist. [emphasis mine] As such, it is sometimes popular to denigrate intellectualism in favour of a more egalitarian and conversational ethos, which may devalue the contributions of scientists. In a review of U.S. children’s educational science programs, Long and Steinke (1996) report that images of science have emphasized characteristics such as truth, fun, accessibility, and ubiquity. Scientists were portrayed through several stereotypes in these shows, ranging from being omniscient and elite to eccentric and antisocial. (p. 51 PDF; p. 19 print)

The panel adopted a rather interesting approach to a fairly complex topic and, in my view, gave it shorter shrift than it deserved. Frankly, the view that the science community is elitist has some merit. How do you like someone using the term ‘dumbing down’ in your presence?

Getting back to the assessment, I was happy to see that Québec was more or less given its due,

As the only Canadian province with a predominantly French-speaking population, Quebec has its own organizations dedicated to the promotion of science in the public (e.g., Association francophone pour le savoir); its own set of French- language science media organizations and programs (e.g., Agence Science-Presse, “Découverte,” “Le Code Chastenay”); French-language science museums and centres (e.g., Centre des sciences de Montréal); science festivals (e.g., Festival Eurêka!); and many other organizations and programs involved in supporting science culture and communication for the Francophone population. The formal science education and training system also differs in Quebec, given the role of institutions such as the collèges d’enseignement général et professionnel (CEGEP). The historical development of science culture in Quebec is also distinct from that of Anglophone Canada, more firmly rooted in French and European discourses about science, culture, and cultural policies (Chartrand et al., 1987; Schiele et al., 1994). As a result of these differences, past inquiries into science culture in Canada have often treated Quebec as separate from the rest of Canada, and the Quebec government has sponsored its own investigations into science culture in the province (e.g., CST, 2002a). (p. 53 PDF; p. 21 print)

I believe it’s the province with the most support of any for science culture and it cannot be an accident that Seed (a former Canadian and once successful English language science magazine and enterprise) was founded in Montréal, Québec.

The report also notes Aboriginal contributions to Canadian science culture,

Canada’s Aboriginal cultures also play a role in defining the science culture landscape in Canada, both through their own knowledge traditions and their impacts on science education and outreach. Aboriginal knowledge has also been incorporated into some provincial science curricula, and some science textbooks now teach students about both scientific and Aboriginal knowledge systems, as a result of the collaboration between ministries of education, Aboriginal Elders, and one Canadian publisher (Aikenhead & Elliott, 2010). Aboriginal knowledge and traditions have also had impacts on scientific research in Canada, with biologists, ecologists, climatologists, and geologists incorporating Aboriginal knowledge in their research in a number of ways … (pp. 53/4 PDF; pp. 21/2 print)

It would have been nice to know if any experts of Aboriginal origin were included in the expert panel and/or in the group of reviewers as it would have been nice to see more women in those groups. If you’re going to discuss diversity and opening things up then perhaps you should consider ‘being the change’ rather than simply discussing it.

The report also mentioned Canada’s ageing population never once suggesting there might be ways to integrate that population into the larger science culture. The report’s bias was definitely youthful. Again on the subject of ‘being the change’, it might have been interesting to include youth and seniors in an advisory capacity to the panel.

On to part 2 and part 3.

*Note: I corrected CAC to CCA on February 6, 2020.

Postdoctoral position for Cosmopolitanism in Science project in Halifax, Nova Scotia, Canada)

It seems to be the week for job postings. After months and months with nothing, I stumble across two in one week. The latest comes from the Situating Science research cluster (more about the research cluster after the job posting). From a Dec. 10, 2014 Situating Science announcement,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Application:

Full applications will contain:
1.     Cover letter that includes a description of current research projects,
2.     Research plan for post-doctoral work. Include how the proposed research fits within the Cosmopolitanism project’s scope, and which co-applicant with whom you wish to work.
3.     Academic CV,
4.     Writing sample,
5.     Names and contact information of three referees.

Applications can be submitted in either hardcopy or emailed as PDF documents:

Hardcopy:
Dr. Gordon McOuat
Cosmopolitanism and the Local Project
University of King’s College
6350 Coburg Road
Halifax, NS.  B3H 2A1
CANADA

News of this partnership is exciting especially in light of the objectives as described on the Cosmopolitanism & the Local in Science & Nature website’s About Us page,

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods, [emphasis mine]
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

I’m not sure ‘expose’ is the verb I’d use here since it’s perfectly obvious that the Canadian scholarly community is eurocentric. For confirmation all you have to do is look at the expert panels convened by the Council of Canadian Academies for their various assessments (e.g. The Expert Panel on the State of Canada’s Science Culture). Instead of ‘expose’, I’d use ‘Shift conscious and unconscious assumptions within a largely eurocentric Canadian scholarly community to widening perspectives’.

As for Situating Science, there is this (from its About Us page; Note: Links have been removed),

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

At the end of our 7 years, we can boast a number of collaborative successes. We helped organize and support over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Our network helped facilitate the development of 4 new programs of study at partner institutions. We leveraged more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. We hired over 30 students and 9 postdoctoral fellows. The events resulted in over 60 videos and podcasts as well as dozens of student blogs and over 50 publications.

I see the Situating Science project is coming to an end and I’m sorry to see it go. I think I will write more about Situating Science in one of my end-of-year posts. Getting back to the postdoc position, good luck to all the applicants!

Science advice tidbits: Canada and New Zealand

Eight months after the fact, I find out from the Canadian Science Policy Centre website that a private member’s bill calling for the establishment of a parliamentary science officer was tabled (November 2013) in Canada’s House of Commons. From a Nov. 21, 2013 article by Ivan Semeniuk for the Globe and Mail,

With the Harper government facing continued criticism from many quarters over its policies towards science, the opposition has announced it wants to put in place a parliamentary champion to better shield government researchers and their work from political misuse.

In a private member’s bill to be tabled next week the NDP [New Democratic Party] science and technology critic, Kennedy Stewart, calls for the establishment of a parliamentary science officer reporting not to the government nor to the Prime Minister’s office, but to Parliament as a whole.

The role envisioned in the NDP bill is based in part on a U.K. model and is similar in its independence to that of the Parliamentary Budget Officer. The seven-year, one-term appointment would also work in concert with other federal science advisory bodies, including the Science, Technology and Innovation Council – which provides confidential scientific advice to the government but not to Parliament – and the Council of Canadian Academies, which provides publicly accessible information related to science policy but does not make recommendations.

Speaking to a room mainly filled with science policy professionals, Dr. Stewart drew applause for the idea but also skepticism about whether such an ambitious multi-faceted role could be realistically achieved or appropriately contained within one job.

Stewart was speaking about his private member’s bill at the 2013 Canadian Science Policy Conference held in Toronto, Ontario from Nov. 20 – 22, 2013.

More recently and in New Zealand, a national strategic plan for science in society was released (h/t to James Wilsdon’s twitter feed). From a July 29, 2014 Office of the Prime Minister’s Chief Science Advisor media release,

With today’s [July 29, 2014] launch of A Nation of Curious Minds, the national strategic plan for science in society by Ministers Joyce and Parata [Minister of Science and Innovation, Hon Steven Joyce, and Minister of Education, Hon Hekia Parata ], Sir Peter Gluckman, the Prime Minister’s Chief Science Advisor,called it an important next step in a journey. Sir Peter was Chair of the National Science Challenges Panel that recommended Government take action in this area, and was Chair of the Reference Group that advised on the plan.

Sir Peter noted that a stand-out feature of the plan is that it does not simply put the onus on the public – whether students, families, or communities – to become better informed about science. Rather, there is a clear indication of the responsibility of the science sector and the role of the media in making research more accessible and relevant to all New Zealanders. “It is a two-way conversation,” said Sir Peter. “Scientists can no longer assume that their research direction and their results are of interest only to their peers, just as the public and governments need to better understand the types of answers that they can and cannot expect from science.”

The plan also calls for a Participatory Science Platform. Curiosity aroused, I chased down more information, From p. 31 (PDF) of New Zealand’s national strategic plan for science in society,

The participatory science platform builds on traditional concepts in citizen science and enhances these through collaborative approaches more common to community-based participatory research. [emphasis mine] Participatory science is a method of undertaking scientific research where volunteers can be meaningfully involved in research in collaboration with science professionals (including post- graduate students or researchers and private sector scientists) and builds on international models of engagement.

The goal is to involve schools/kura and/or community-based organisations such as museums and associations in projects with broad appeal, that have both scientific value and pedagogical rigour, and that resonate with the community. In addition, several ideas are being tested for projects of national significance that would integrate with the National Science Challenges and be national in reach.

The participatory science platform has the potential to:

›offer inspiring and relevant learning opportunities for students and teachers
›engage learners and participants beyond the school/kura community to reach parents, whānau
and wider communities
›offer researchers opportunities to become involved in locally relevant  lines of enquiry, where data can be enriched by the local knowledge and contribution of citizens.

The participatory science platform is built on four core components and incorporates mātauranga
Māori:

1. A process that seeks ideas for participatory science projects both from the community (including early childhood education services and kōhanga reo, schools/kura, museums and other organisations, Kiwi authorities or community associations) and from science professionals (from post-graduate students to principal investigators in both the public and private sectors
2. A managed process for evaluating these ideas for both pedagogical potential (in the case of schools/kura) and scientific quality, and for ensuring their practicality and relevance to the participating partners (science sector and community-based)
3. A web-based match-making process between interested community-based partners and science professionals
4. A resource for teachers and other community or learning leaders to assist in developing their projects to robust standards.

The platform’s website will serve as a match-making tool between scientists and potential community-based partners seeking to take part in a research project by offering a platform for community-initiated and scientist-initiated research.

A multi-sectoral management and review panel will be established to maintain quality control over the programme and advise on any research ethics requirements.

All projects will have an institutional home which will provide a coordination role. This could be a school, museum, zoo, science centre, iwi office or research institute, university or other tertiary
organisation.

The projects will be offered as opportunities for community-based partners to participate in scientific research as a way to enhance their local input, their science knowledge and their interest,
and (in the case of schools) to strengthen learning programmes through stronger links to relevant learning environments and expertise.

Once matches are made between community-based partners and scientists, these partners would self-direct their involvement in carrying out the research according to an agreed plan and approach.

A multi-media campaign will accompany the launch of programme, and a dedicated website/social media site will provide a sustained channel of communication for ideas that continue to emerge. It will build on the momentum created by the Great New Zealand Science Project and leverages the legacy of that project, including its Facebook page. [emphasis mine]

To enable more sophisticated projects, a limited number of seed grants will be made available to help foster a meaningful level of community involvement. The seed grants will part-fund science professionals and community/school groups to plan together the research question, data collection, analysis and knowledge translation strategy for the project. In addition, eligible costs could include research tools or consumables that would not otherwise be accessible to community partners.

I admire the ambitiousness and imagination of the Participatory Science Platform project and hope that it will be successful. As for the rest of the report, there are 52 pp. in the PDF version for those who want to pore over it.

For anyone unfamiliar (such as me) with the Great New Zealand Science Project, it was a public consultation where New Zealanders were invited to submit ideas and comments about science to the government.  As a consequence of the project, 10 research areas were selected as New Zealand’s National Science Challenges. From a June 25, 2014 government update,

On 1 May 2013 Prime Minister John Key and Hon Steven Joyce, Minister of Science and Innovation, announced the final 10 National Science Challenges.

The ten research areas identified as New Zealand’s first National Science Challenges are:

Ageing well – harnessing science to sustain health and wellbeing into the later years of life …

A better start – improving the potential of young New Zealanders to have a healthy and successful life …

Healthier lives – research to reduce the burden of major New Zealand health problems …

High value nutrition – developing high value foods with validated health benefits …

New Zealand’s biological heritage – protecting and managing our biodiversity, improving our biosecurity, and enhancing our resilience to harmful organisms …

Our land and water  – Research to enhance primary sector production and productivity while maintaining and improving our land and water quality for future generations …

Sustainable seas – enhance utilisation of our marine resources within environmental and biological constraints.

The deep south – understanding the role of the Antarctic and the Southern Ocean in determining our climate and our future environment …

Science for technological innovation – enhancing the capacity of New Zealand to use physical and engineering sciences for economic growth …

Resilience to nature’s challenges – research into enhancing our resilience to natural disasters …

The release of “A Nation of Curious Minds, the national strategic plan for science in society” is timely, given that the 2014 Science Advice to Governments; a global conference for leading practitioners is being held mere weeks away in Auckland, New Zealand (Aug. 28, – 29, 2014).

In Canada, we are waiting for the Council of Canadian Academies’ forthcoming assessment  The State of Canada’s Science Culture, sometime later in 2014. The assessment is mentioned at more length here in the context of a Feb. 22, 2013 posting where I commented on the expert panel assembled to investigate the situation and write the report.

A new science advice network launched in the European Union

On June 23, 2014, the Euroscience Open Forum (in Copenhagen) saw the launch of a new pan-European science advice network. From a June 23, 2014 account by James Wilsdon (more about him in a moment) for the Guardian,

This afternoon, at the Euroscience Open Forum in Copenhagen, a new pan-EU network of government science advisers will hold its first meeting. Senior scientific representatives from twelve member states, including the UK’s Sir Mark Walport, will discuss how to strengthen the use of evidence in EU policymaking and improve coordination between national systems, particularly during emergencies, such as when clouds of volcanic ash from Iceland grounded flights across Europe in 2011.

Today’s [June 24, 2014] meeting is indeed the product of dedication: a painstaking 18-month effort by Glover [Anne Glover, chief scientific adviser to the outgoing President of the European commission, José Manuel Barroso] to persuade member states of the benefits of such a network. One of the challenges she has faced is the sheer diversity of models for scientific advice across Europe: while the UK, Ireland and (until recently) Czech Republic have a government chief scientist, several countries – including Portugal, Denmark, Finland and Greece – prefer to use an advisory committee. In another handful of member states, including Italy, Spain and Sweden, science advice is provided by civil servants. Others, such as Austria, Hungary and the Netherlands, look to the president of the national academy of science to perform the role. The rest, including France and Germany, use a hybrid of these models, or none at all.

The new network intends to respect this diversity, and not advance one approach as preferable to the others. (Indeed, it could be particularly counter-productive to promote the UK model in the current EU climate.)

Interestingly, Wilsdon goes on to note that a Chief Science Adviser for the European Union is a relatively new position having been in existence for two years (as of 2014) and there is no certainty that the new president (not yet confirmed) of the European Union will continue with the practice.

Wilsdon also mentions an international science advice conference to take place in New Zealand in August 2014. You can find out more about it in my April 8, 2014 posting where I noted that Wilsdon is one of the speakers or you can go directly to the conference website,  2014 Science Advice to Governments; a global conference for leading practitioners.

Getting back to James Wilsdon, this is the description they have for him at the Guardian,

James Wilsdon is professor of science and democracy at SPRU (Science and Technology Policy Research), University of Sussex. From 2008 to 2011 he was director of science policy at the Royal Society.

He’s also known in Canada as a member of the Council of Canadian Academies Expert Panel on The State of Canada’s Science Culture as per my Feb. 22, 2013 posting. The report is due this year and I expect it will be delivered in the Fall, just in time for the Canadian Science Policy Conference, Oct. 15 -17, 2014.

Finally, you might want to check out Wilsdon’s Twitter feed (https://twitter.com/jameswilsdon) for the latest on European science policy endeavours.

Canada Science and Technology Museums Corporation welcomes Alex Benay as president and chief executive officer (CEO)

The search took over one year as the Canada Science and Technology Museums Corporation (CSTMC) cast about for a new president and CEO in the wake of previous incumbent Denise Amyot’s departure. From the June 17, 2014 CSTMC announcement,

The Canada Science and Technology Museums Corporation (CSTMC) welcomes the appointment by the Minister of Canadian Heritage and Official Languages, the Honourable Shelly Glover, of Alex Benay as its new President and CEO. Mr Benay will assume the role beginning July 2, 2014 for a 5-year term.

“This is excellent news,” said Dr Gary Polonsky, Chair of the CSTMC Board of Trustees. “Alex Benay is an exceptional leader with the capacity to heighten the CSTMC profile as the only national museum institution entirely dedicated to tracking Canada’s rich history and heritage in science, technology and innovation.”

“Alex’s appointment demonstrates the government’s support toward our museums”, added Dr Polonsky. “I wish to recognize Minister Glover’s leadership in this nomination process and express our gratitude for the appointment of a leader with vast experience in managing people, processes and resources. Alex’s significant networks in the private and public sectors in Canada and internationally, and leadership experience with Canada’s digital industry, will be great assets in developing the Corporation.”

Mr Benay was previously Vice-President, Government Affairs and Business Development at Open Text, Canada’s largest software company since 2011.

As President and CEO, Mr Benay will be responsible for the CSTMC’s day-to-day operations and a staff of about 225 employees and an annual budget of $33 million. The CSTMC includes the Canada Agriculture and Food Museum, the Canada Aviation and Space Museum, and the Canada Science and Technology Museum. Collectively, they are responsible for preserving and protecting Canada’s scientific and technological heritage, while also promoting, celebrating, and sharing knowledge of that heritage and how it impacts Canadians’ daily lives.

I took a look at Mr. Benay’s LinkedIn profile and found this,

President and Chief Executive Officer
Canada Science and Technology Museums Corporation

Government Agency; 201-500 employees; Museums and Institutions industry

June 2014 – Present (1 month) Ottawa, Canada Area

VP, Government Relations
OpenText

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

August 2012 – June 2014 (1 year 11 months) Ottawa

VP, Enterprise Software and Cloud Services
Maplesoft Group

Privately Held; 51-200 employees; Information Technology and Services industry

March 2012 – August 2012 (6 months) Canada

VP, Government Relations
OpenText

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

July 2011 – March 2012 (9 months) Ottawa, Ontario

Manage government relations including :
– trade relations
– trade promotion
– global strategic investment programs (G20, Commonwealth, etc.)
– senior level delegations and engagements
– manage government grant and industry investment programs
– Etc.

Provide company wide government thought leadership and strategic planning

Director, Industry Marketing
Open Text

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

August 2010 – March 2012 (1 year 8 months) Ottawa, Ontario

Responsible for marketing and communication strategies for OpenText’s major industry sectors, enabling field sales and providing thought leadership in key priority sectors.

Director, Eastern Canadian Sales
Open Text

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

January 2010 – August 2010 (8 months) Ottawa, Ontario

Responsible for all product, solutions and services sales for Ottawa, Québec and the Maritimes.

Senior Director, Customer Enablement
Open Text

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

2009 – 2010 (1 year) Ottawa, Ontario

Responsible, throughout the Canadian public sector (including healtcare), for all professional services delivery, establishing a national training program, managing partner relations, pubic speaking engagements, technical support and overall existing customer relations.
Strong focus on strategic communications and planning throughout the Canadian Public Sector.

Director, Information Management
Canadian International Development Agency

Government Agency; 1001-5000 employees; Government Administration industry

2006 – 2009 (3 years) Gatineau, Québec

Responsible for all information and communications aspects within the organisation : enterprise technologies, communication strategies, strategic planning, etc. Including all policy, operational and management aspects of managing organisational information and knowledge

Director, Policy
Canadian International Development Agency

Government Agency; 1001-5000 employees; International Affairs industry

2004 – 2006 (2 years)

Define ICT policy framework for CIDA
coordinate with central agencies and other large multilateral organisations

Senior Program Manager
Canadian International Development Agency

Government Agency; 1001-5000 employees; International Affairs industry

2003 – 2004 (1 year)

Managed all information and communications elements for the Multilateral Programs Branch. Responsible for relations with United Nations, World Bank, etc.; ensuring all systems (technical and human) were properly enabling multilateral development; developed large and complex global engagement and communications strategies pertaining to Canadian multilateralism

Manager, Information, Communications and Knowledge Management
Natural Resources Canada

Government Agency; 1001-5000 employees; Government Administration industry

2001 – 2003 (2 years)

Responsible for the Energy Sector information, communication and knowledge management strategies, thought leadership, events, strategic planning and operational management.

Information Services Officer
Department of Foreign Affairs and International Trade

2000 – 2001 (1 year)

Provide global briefing and communications support to various senior Foreign Affairs and International Trade Ministers, Deputy Ministers and Assistant Deputy Ministers

Medical Assistant
Canadian Armed Forces

Government Agency; 10,001+ employees; Military industry

1999 – 2001 (2 years)

Medical Assistant duties included : emergency response, first aid, suturing, orderly duties, basic military training, etc.

Archival Assistant
Library and Archives Canada

Government Agency; 1001-5000 employees; Government Administration industry

1998 – 2000 (2 years)

He certainly brings an interesting and peripatetic work history to the position. Given his previous work record and that he looks to be relatively young (I estimate he’s a few years shy of 40), my most optimistic prediction is that he will last five to six years in this job, assuming he makes it past his first six months.

Alex Benay, president and CEO of the Canada Science and Technology Museums Corporation

Alex Benay, president and CEO of the Canada Science and Technology Museums Corporation

Getting back to his work record, I’m not sure how Mr. Benay manged to be both an archival assistant for Library and Archives Canada and a medical assistant for the Canadian Armed Forces from 1999 – 2000. (Possibly he was working in the Reserves, which, as I understand it, requires weekends and the occasional longterm stint easily contained within one’s work vacation.) There is one other niggling thing, wouldn’t 1998 – 2000 be three years not two?

Interestingly, the company with which Benay has been most closely associated is OpenText whose Chairman, Tom Jenkins, led a  panel to review government funding programmes for research and development (R&D, a term often synonymous with science and technology). The resultant report is known familiarly as the Jenkins Report (Innovation Canada: A Call to Action; Review of Federal Support to R&D;–Expert Panel Report). I’m guessing Mr. Benay brings with him some important connections both corporately and governmentally, which could potentially extend to the University of British Columbia where Arvind Gupta (a member of Jenkins’ expert panel) is due to take up the reins as president when Stephen Toope officially vacates the position June 30, 2014.

I’m not sure how much insight one can derive from this March 6, 2014 article (for Canadian Government Executive) written by Mr. Benay while he was enjoying his second stint as VP Government Relations for Open Text,

With the rise of “smart power,” distinct from “hard” and “soft” power of traditional theories of international relations, the use of online collaboration has become an integral part of government communication.

Public sector employees who adopt partner-based collaboration models will find that they are able to effectively achieve their goals and generate results. Ideas shared through open-platform communication technologies, peer-to-peer networks, and enterprise-grade secure collaboration platforms can help foster greater dialogue and understanding between governments and citizens, ultimately leading to more effective attainment of foreign policy goals.

Increasingly, public-private partnerships are driving this new era of e-diplomacy.

As an example, governments worldwide are achieving tremendous success through their use of Public Service Without Borders (PSWB), the secure, cloud-enabled collaboration and social media environment developed in partnership with the Institute of Public Administration of Canada (IPAC).

Using secure social software solutions, PSWB helps to connect all levels of public service employees to one another to network, engage, share ideas and impart valuable lessons learned in such areas as governance, healthcare, technology and the environment. Whether via desktops or through mobile devices, participants can connect, network, plan and deliver exciting new partnerships and initiatives anytime, from anywhere in the world. This online collaboration platform ultimately fosters better, faster and more efficient services to all constituencies.

Another case in point is the G-20 Summit in Toronto. For the first time in history, policymakers from around the world were able to collaborate over secure social networking software in advance of and during the Toronto G-20 Summit. A confidential and secure social networking application was created to enhance the sharing of government leaders’ stances on important world financial issues. [emphasis mine]

Providing the secure, hosted social networking platform to G-8 and G-20 participants was in itself a collaboration between Open Text, the Canadian Digital Media Network (CDMN) – the organization that attracted high-tech companies to the event – and the then-called Canadian Department of Foreign Affairs and International Trade (DFAIT). [emphasis mine] In addition to secure Web access from anywhere in the world in real time, delegates were also able to access the application from their BlackBerrys, iPhones and iPads. The application supported multiple languages to enhance the ability of delegates to network productively.

The leap from ‘soft power’ in paragraphs one and two  to ‘public-private partnerships’ in paragraph three is a bit startling and suggests Benay’s tendency is towards ‘big picture’ thinking buttressed by a weakness for jumping from one idea to the next without much preparation. This is not a deal breaker as all leaders have weaknesses and a good one knows that sort of thing about him or herself so compensates for it.

Benay’s association with OpenText and, presumably, Jenkins suggests * strongly, when added to his article on public-private partnerships, that the CSTMC museums will be corporatized to a new degree. After all, it was Jenkins who delivered a report with recommendations to tie research funding more directly to business and economic needs. (This report was submitted to then Minister of State for Science and Technology, Gary Goodyear on Oct. 17, 2011 according to this Review of Federal Support to Research and Development  website. For those unfamiliar with the Canadian science and technology scene, this is considered a junior ministry and is part of the Industry Canada portfolio.) Since 2011, a number of these recommendations have been adopted, often accompanied by howls of despair (this May 22, 2013 posting delves into some of the controversies,which attracted attention by US observers).

I am somewhat intrigued by Benay’s experience with content management and digital media. I’m hopeful he will be using that experience to make some changes at the CSTMC such that it offers richer online and outreach experiences in the museums (Canada Agriculture and Food Museum, the Canada Aviation and Space Museum, and the Canada Science and Technology Museum) for those of us who are not resident in Ottawa. Amyot, during her* tenure, made some attempts (my Oct. 28, 2010 posting makes note of one such attempt) but they failed to take root for reasons not known* to me.

Returning to Benay’s old boss for a moment, Tom Jenkins has some connections of his own with regard to digital media and the military (from the OpenText Board of Directors page) ,

Mr. Jenkins was Chair of the Government of Canada’s military procurement review Panel which reported “Canada First: Leveraging Defence Procurement through Key Industrial Sectors (KICs) in February 2013 and reviewed the $490 Billion of federal public spending on defence to determine means by which the Canadian economy could benefit from military procurement.   Mr. Jenkins was Chair of the Government of Canada’s Research and Development Policy Review Panel which reported “Innovation Canada: A Call to Action” in October 2011 and reviewed the $7 Billion of federal public spending on research to assist the Canadian economy in becoming more innovative.   He was also chair of the November 2011 report to the Government of Canada on Innovation and Government Procurement.  He is also the Chair of the federal centre of excellence Canadian Digital Media Network (CDMN) which co-ordinates commercialization activity in the digital economy throughout Canada.  He is a member of the Canadian Government’s Advisory Panel on Open Government.  He is also an appointed member of the Social Sciences and Humanities Research Council of Canada (SSHRC), past appointed member of the Government of Canada’s Competition Policy Review Panel (the Wilson Panel) which reported “Compete to Win” in June 2008, and past appointed member of the Province of Ontario’s Ontario Commercialization Network Review Committee (OCN) which reported in February 2009.  … Mr. Jenkins is also one of the founders of Communitech – the Waterloo Region Technology Association.  Mr. Jenkins served as a commissioned officer in the Canadian Forces Reserve and he currently serves as Honorary Colonel of the Royal Highland Fusiliers of Canada (RHFC), a reserve infantry regiment in the Waterloo Region. [emphases mine]

Meanwhile, Mr. Benay’s appointment takes place within a larger context where the Council of Canadian Academies will be presenting two assessments with direct bearing on the CSTMC. The first, which is scheduled for release in 2014, is The State of Canada’s Science Culture (an assessment requested by the CSTMC which much later was joined by Industry Canada and Natural Resources Canada). The assessment is featured in my Feb. 22, 2013 posting titled: Expert panel to assess the state of Canada’s science culture—not exactly whelming. I will predict now that a main focus of this report will be on children, STEM (science, technology, engineering, and mathematics, and the economy (i.e., how do we get more children to study STEM topics?). Following on that thought, what better to way to encourage children than to give them good experiences with informal science education (code for science museums and centres).

The second assessment is called Memory Institutions and the Digital Revolution and was requested by Library and Archives Canada (museums too perform archival functions). in the context of a Jan. 30,2014 posting about digitizing materials in Fisheries and Oceans Canada libraries I excerpted this from an earlier posting,

Library and Archives Canada has asked the Council of Canadian Academies to assess how memory institutions, which include archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges of the changing ways in which Canadians are communicating and working in the digital age.

Background

Over the past three decades, Canadians have seen a dramatic transformation in both personal and professional forms of communication due to new technologies. Where the early personal computer and word-processing systems were largely used and understood as extensions of the typewriter, advances in technology since the 1980s have enabled people to adopt different approaches to communicating and documenting their lives, culture, and work. Increased computing power, inexpensive electronic storage, and the widespread adoption of broadband computer networks have thrust methods of communication far ahead of our ability to grasp the implications of these advances.

These trends present both significant challenges and opportunities for traditional memory institutions as they work towards ensuring that valuable information is safeguarded and maintained for the long term and for the benefit of future generations. It requires that they keep track of new types of records that may be of future cultural significance, and of any changes in how decisions are being documented. As part of this assessment, the Council’s expert panel will examine the evidence as it relates to emerging trends, international best practices in archiving, and strengths and weaknesses in how Canada’s memory institutions are responding to these opportunities and challenges. Once complete, this assessment will provide an in-depth and balanced report that will support Library and Archives Canada and other memory institutions as they consider how best to manage and preserve the mass quantity of communications records generated as a result of new and emerging technologies.

The Council’s assessment is running concurrently with the Royal Society of Canada’s [RSC] expert panel assessment on Libraries and Archives in 21st century Canada. Though similar in subject matter, these assessments have a different focus and follow a different process. The Council’s assessment is concerned foremost with opportunities and challenges for memory institutions as they adapt to a rapidly changing digital environment. In navigating these issues, the Council will draw on a highly qualified and multidisciplinary expert panel to undertake a rigorous assessment of the evidence and of significant international trends in policy and technology now underway. The final report will provide Canadians, policy-makers, and decision-makers with the evidence and information needed to consider policy directions. In contrast, the RSC panel focuses on the status and future of libraries and archives, and will draw upon a public engagement process.

While this could be considered a curse, these are interesting times.

* ‘a’ removed from ‘a strongly’ and ‘strongly’ moved to closer proximity with ‘suggests’, ‘her’ added to ‘her tenure’ and ‘know’ corrected to ‘known’ on June 19, 2014 at 1200 hours PDT.

Science Advice to Government; a global conference in August 2014

There’s a big science advice conference on the horizon for August 28 – 29, 2014 to be held in New Zealand according to David Bruggeman’s March 19, 2014 posting on his Pasco Phronesis blog (Note: Links have been removed),

… It [the global science advice conference] will take place in Auckland, New Zealand August 28 and 29 [2014].  It will be hosted by the New Zealand Chief Science Adviser, Sir Peter Gluckman.

(If you’re not following Sir Peter’s work and writings on science advice and science policy, you’re missing out.)

The announced panelists and speakers include chief scientists and/or chief science advisers from several countries and the European Union.  It’s a very impressive roster.  The conference is organised around five challenges:

  • The process and systems for procuring evidence and developing/delivering scientific      advice for government
  • Science advice in dealing with crisis
  • Science advice in the context of opposing political/ideological positions
  • Developing an approach to international science advice
  • The modalities of science advice: accumulated wisdom

The 2014 Science Advice to Governments; a global conference for leading practitioners is being organized by the International Council for Science. Here’s a list of the confirmed speakers and panellists (Note: Links have been removed),

We are delighted that the following distinguished scientists have confirmed their participation in the formal programme:

Prof. Shaukat Abdulrazak, CEO National Commission for Science, Technology and Innovation, Kenya

Dr. Ian Boyd, Chief Science Advisor, Department of Environment, Food and Rural Affairs (DEFRA) UK

Dr. Phil Campbell, Editor-in-Chief, Nature

Dr. Raja Chidambaram, Principal Scientific Advisor to the Government of India, and Chairman of the Scientific Advisory Committee to the Cabinet, India

Prof. Ian Chubb, Chief Scientist for Australia

Prof. Brian Collins, University College London’s Department of Science, Technology, Engineering and Public Policy (UCL STEaPP)

Dr. Lourdes J Cruz, President of the National Research Council of the Philippines and National Scientist

Prof. Heather Douglas, Chair in Science & Society, Balsillie School of International Affairs, U. of Waterloo Canada

Prof. Mark Ferguson, Chief Scientific Adviser to the Government of Ireland, and Director General, Science Foundation Ireland

Prof. Anne Glover, Chief Science Adviser to the President of the European Commission

Sir Peter Gluckman, Prime Minister’s Chief Science Advisor, New Zealand

Dr. Jörg Hacker, President of the German Academy of Sciences – Leopoldina; Member of UN Secretary General’s Scientific Advisory Board

Dr. Yuko Harayama, Executive member of Council for Science and Technology Policy, Cabinet Office of Japan; Member of UN Secretary General’s Scientific Advisory Board; former Deputy Director OECD Directorate for Science, Technology and Industry

Prof. Andreas Hensel, President of the Federal Institute for Risk Assessment (BfR), Germany

Prof. Gordon McBean, President-elect, International Council for Science (ICSU)

Prof. Romain Murenzi, Executive Director of The World Academy of Sciences (TWAS)

Dr. Mary Okane, Chief Scientist and Engineer, New South Wales Australia

Prof. Remi Quirion, Chief Scientist, Province of Quebec, Canada

Chancellor Emeritus Kari Raivio, Council of Finnish Academies, Finland

Prof. Nils Chr. Stenseth, President of the Norwegian Academy of Science and Letters and President of the International Biological Union (IUBS)

Dr. Chris Tyler, Director of the Parliamentary Office of Science and Technology (POST) in UK

Sir Mark Walport, Chief Scientific Advisor to the Government of the UK

Dr. James Wilsdon, Professor of Science and Democracy, University of Sussex, UK

Dr. Steven Wilson, Executive Director, International Council for Science (ICSU)

Dr. Hamid Zakri, Science Advisor to the Prime Minister of Malaysia; Member of UN Secretary General’s Scientific Advisory Board

I noticed a couple of Canadian representatives (Heather Douglas, Chair in Science & Society at the University of Waterloo, and Remi Quirion, Chief Scientist, province of Québec) on the list. We don’t have any science advisors for the Canadian federal government but it seems they’ve instituted some such position for the province of Québec. In lieu of a science advisor, there is the Council of Canadian Academies, which “is an independent, not-for-profit organization that supports independent, authoritative, and evidence-based expert assessments that inform public policy development in Canada” (from their About page).

One other person should be noted (within the Canadian context), James Wilsdon is a member of the Expert Panel for the Council of Canadian Academies’ still-in-progress assessment, The State of State of Canada’s Science Culture. (My Feb. 22, 2013 posting about the assessments provides a lengthy discourse about the assessment and my concerns about both it and the panel.)

Getting back to this meeting in New Zealand, the organizers have added a pre-conference symposium on science diplomacy (from the Science and Diplomacy webpage), Note: A link has been removed,

We are pleased to announce the addition of a pre-conference symposium to our programme of events. Co-chaired by Dr. Vaughan Turekian, Editor-in-Chief of the AAAS Journal Science and Diplomacy, and the CE of New Zealand Ministry of Foreign Affairs and Trade, this symposium will explore ‘the place of science in foreign ministries’.

Overview of the symposium

The past decade has seen unprecedented interested in the interface between science and diplomacy from a number of perspectives including:

– Diplomacy for Science – building international relationships to foster robust collaborative scientific networks and shared expertise and infrastructure;
– Science for Diplomacy – the science enterprise as a doorway to relationship building between nations with shared goals and values;
– Science in Diplomacy – the role of science in various diplomatic endeavours (e.g.: verification of agreements on climate change, nuclear treaties etc; in support of aid projects; in promoting economic and trade relationships; and in various international agreements and instruments such as phyto-sanitary regulations, free trade agreements, biodiversity agreements etc.).

Yet, despite the growing interest in this intersection, there has been little discussion of the practical realities of fostering the rapprochement between two very distinct professional cultures and practices, particularly with specific reference to the classical pillars of foreign policy: diplomacy; trade/economic; and aid. Thus, this pre-conference symposium will be focusing on the essential question:

How should scientists have input into the operation of foreign ministries and in particular into three pillars of foreign affairs (diplomacy, trade/economics and foreign aid)?

The discussion will focus on questions such as: What are the mechanisms and methods that can bring scientists and policy makers in science and technology in closer alignment with ministries or departments of foreign affairs and vice versa? What is the role of public scientists in assisting countries’ foreign policy positions and how can this be optimised? What are the challenges and opportunities in enhancing the role of science in international affairs? How does the perception of science in diplomacy vary between large and small countries and between developed and developing countries?

To ensure vibrant discussion the workshop will be limited to 70 participants. Anyone interested is invited to write to info@globalscienceadvice.org with a request to be considered for this event.

The conference with this newly added symposium looks to be even more interesting than before. As for anyone wishing to attend the science diplomacy symposium, the notice has been up since March 6, 2014 so you may wish to get your request sent off while there’s still space (I assume they’ll put a notice on the webpage once the spaces are spoken for). One final observation, it’s surprising in a science conference of this size that there’s no representation from a US institution (e.g., the National Academy of Sciences, Harvard University, etc.) other than the AAAS (American Association for the Advancement of Science) organizer of the pre-conference symposium.