Monthly Archives: May 2014

Tech worries: nanotechnology and nickel on Slate

Dr. Andrew Maynard’s May 20, 2014 article (Small Packages; A new case study on the health risks of nanotech doesn’t tell the whole story) for Slate magazine does much to calm any fears there might be in the wake of a recent case study about the consequences of handling nickel nanoparticles in the workplace,

… The report describes a chemist who developed symptoms that included throat irritation, nasal congestion, facial flushing, and skin reactions to jewelry containing nickel, after starting to work with a powder consisting of nanometer-sized nickel particles. According to the report’s lead author, this is “case one in our modern economy” of exposure to a product of nanotechnology leading to an individual becoming ill.

… And this is why the case of the nickel nanoparticles above needs to be approached with some caution. Many people have an allergic skin reaction to nickel, and research has shown that inhaling nickel particles can cause people to become sensitized to the metal. It’s also well known that fine powders will become airborne more easily than coarse ones when they’re handled, and that the finer the powder you inhale, the more potent it is in your lungs. So it shouldn’t come as a surprise that handling nickel nanopowder in an open lab without exposure controls is not a great idea. In other words, the reported incident was more a case of bad exposure management than nanoparticle risk.

That said, the case does highlight the level of respect with which any new or unusual material should be treated. …

Reinforcing Andrew’s comments about nickel sensitivities, there’s a recent report about smartphones and metal sensitivities. From a May 21, 2014 article by Sarah Knapton for The Telegraph (UK), Note: A link has been removed,

If you have ever noticed swelling, redness, itching or blistering near your cheekbones, ears, jaw or hands, you may be allergic to your phone.

A new study suggests the nickel, chromium and cobalt found in common phones made by BlackBerry, Samsung and LG among others, can cause skin irritations.

Danish and US researchers found at least 37 incidents since 2000 where contact dermatitis was caused by mobile phones.

Here are links to and citations for the nickel case study and to the smartphone paper,

Occupational handling of nickel nanoparticles: A case report by W. Shane Journeay, MD, and Rose H. Goldman, MD. American Journal of Industrial Medicine Article first published online: 8 MAY 2014 DOI: 10.1002/ajim.22344

Mobile Phone Dermatitis in Children and Adults: A Review of the Literature by Clare Richardson, Carsten R. Hamann, Dathan Hamann, and Jacob P. Thyssen. Pediatric Allergy, Immunology, and Pulmonology. Online Ahead of Print: March 5, 2014. doi:10.1089/ped.2013.0308.

The nickel paper is behind a paywall and the smartphone paper is open access.

One comment, the smartphone literature search yielded a small sample, on the other hand, if there isn’t category for the problem, it might not get into reports and be studied.

Getting back to Andrew’s article, it is illuminating and frustratingly opaque (perhaps there was an editing issue?),

Over a couple of days in London last summer, I found myself mulling over a very similar question with a small group of colleagues. We were a pretty eclectic group—engineers, designers, toxicologists, business leaders, academics, policy wonks—but we had one thing in common: We wanted get a better handle on how dangerous realistic products of nanotechnology might be, and how these dangers might be avoided.

… Our approach was to imagine products based on engineered nanomaterials that were technologically feasible and would also have a reasonable chance of surviving a cut-throat economy—products like active food packaging labels that indicated the presence of contaminants; helium-filled balloons with solar cell skins; and materials templated from viruses to generate hydrogen and oxygen from water. We then tried to imagine how these plausible products could potentially release dangerous materials into the environment.

To our surprise, we struggled to come up with scenarios that scared us.

It sounds like this session was organized as a think tank. It would have been nice to know who organized it, who were their invitees, and what was their expertise. On that note, there is this about Andrew at the end of the Slate article,

Andrew Maynard is a leading expert on the responsible development and use of emerging technologies and is the director of the U-M [University of Michigan] Risk Science Center.

Having stumbled across Andrew many times over the years within the ‘nano blogosphere’ and having him kindly answer my amateurish questions about reading research, I feel  confidence when reading his opinion pieces that he is well informed and has carefully considered not only questions I might ask but others as well.

While I might like to know more about that 2013 think tank session in London (UK), this section towards the end of the piece suggests that Andrew has not, in an excess of enthusiasm, thrown in his lot with some hype happy group,

… the case [nickel inhalation] does highlight the level of respect with which any new or unusual material should be treated. This was also one of the conclusions from those two days in London. Just because the risks of many nanotechnology products seem relatively small, doesn’t mean that we can afford to be complacent. There’s still the possibility that someone will create a particularly dangerous new material, or will use a material that seems safe in a dangerous way. As a society we need to be vigilant when it comes to advanced materials, whether they are branded with the nano insignia or not.

As for Knapton article and smartphone research, I haven’t come to any particular conclusions but I am going to keep an eye out for evidence, anecdotal or otherwise. A friend of mine, who sometimes suffers from skin sensitivities, just switched over to her first Blackberry.

Dirty medicine: a paper and a call for citizen scientists

A May 19, 2014 news item on phys.org features the role microbes and dirt may play in the future of medicine,

Microbes are not only a rich source of disease, but also a rich source of medicines, and experts think many life-saving compounds produced by as-yet-unnamed bacteria are awaiting discovery. But they don’t always give up their secrets easily. Researchers must know where to look to find promising bacteria, and how to get them to grow in the lab, the traditional route to identifying potentially valuable molecules they produce.

Researchers in Sean Brady’s Laboratory of Genetically Encoded Small Molecules [Rockefeller University] are working on a way around these roadblocks. By using genomic sequencing technology, they can investigate the organisms that live in habitats like soil without having to grow the microbes in the lab. They are using this information to map out the location of gene clusters they believe may encode novel antibiotics, and, with help from citizen scientists around the country, they are hoping to process soil samples from areas they would never be able to visit on their own.

A May 16, 2014 Rockefeller University news release, which originated the news item, offers more details about the work,

n a preliminary effort, Brady’s lab has surveyed nearly 100 soil samples from two U.S. regions, looking for genetic sequences that encode certain molecule-making abilities. “We hope to expand to other regions of the country and the world, to incorporate many more samples in order to create maps of the biosynthetic diversity of soil microbes,” says Zachary Charlop-Powers, a postdoc in the lab. “These maps could help guide drug discovery by identifying variants on known bacterial genes that might be part of a gene cluster encoding a new antibiotic.”

Medicine already owes a major debt to microbes, particularly bacteria. These tiny organisms have produced or inspired many antibiotics, from tetracycline to vancomycin, as well as cancer-fighting drugs and immune system-suppressing therapies used for organ transplants. These bacterial natural products are part of the organisms’ chemical defense system and these molecules have historically been isolated from the broth of bacteria grown in the laboratory.

“However, genetic evidence hints there are many, many more bacteria out there that we may not be able to grow,” Brady says. “And they should be an equally rich source of useful natural products. We have been developing genetic tools to help us look for new chemistry by looking at the genes used to synthesize these natural products.”

For the past five years, Brady’s lab has been sequencing and shifting through DNA obtained directly from soil to identify potentially useful genes, which the researchers then transplant into more-laboratory friendly bugs.

Charlop-Powers, Brady and colleagues recently published the first geographical survey intended to speed this discovery process in the Proceedings of the National Academy of Sciences. For this study, they focused on genes responsible for producing two important families of biologically active molecules: nonribosomal peptides and polyketides. These families include most of the therapeutic molecules isolated from cultured bacteria, but in spite of this diversity, the underlying genetic architecture remains constant. In these families, repetitive genetic domains generate molecules in an assembly line-like fashion that evolution has frequently retooled.

In DNA from 96 soil samples collected for the survey, the researchers looked at two of these domains to get a sense for the diversity and richness of microbes capable of producing compounds these families. They found a link between the type of soil and the sorts of molecules its resident microbes had the capacity to produce. “For reasons we don’t understand, arid soils turned out to harbor microbes capable of producing a greater diversity of compounds,” Charlop-Powers says. For this preliminary survey, Brady called on his family to send in samples from Arizona and New Mexico; another postdoc in his lab, Jeremy Owen, collected soil in New England.

Here’s a link to and a citation for the paper,

Chemical-biogeographic survey of secondary metabolism in soil by Zachary Charlop-Powers, Jeremy G. Owen, Boojala Vijay B. Reddy, Melinda A. Ternei, and Sean F. Brady. Proceedings of the National Academy of Sciences 111, 3757–3762. doi: 10.1073/pnas.1318021111. Epub 2014 Feb 18.

This paper is behind a paywall.

Given the magnitude of the project, the Rockefeller University news release includes a call for citizen scientists,

The Brady Lab would like to extend this study and hopes to encourage citizen scientists to contribute to the effort. The lab has set up a website: www.drugsfromdirt.org and after signing up, citizen scientists will receive information about how to collect and ship samples. The process is simple, says Brady: “Take a sandwich bag, a spoon or a trowel, and dump a couple of spoonfuls in the bag and ship it to us.”

That is a simple process! I notice a focus on recruiting children and youth on the Drugs For Dirt homepage,

We are particularly interested in working with school groups and science classes.

It’s a good idea that could be extended to other age groups and other types of groups. My suggestions, what about seniors groups and gardening groups?

CREATE ISOSIM (isotopes for science and medicine) and NanoMat (nanomaterials) program at the University of British Columbia (Canada)

It seems the Natural Sciences and Engineering Research Council (NSERC; one of Canada’s ‘big three’ science national funding agencies) has a new funding program, CREATE (Collaborative Research and Training Experience) and two local (Vancouver, Canada) institutions, the University of British Columbia (UBC) and TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) are beneficiaries to the tune of $3.3M.

Before getting the happy news, here’s a little information about this new NSERC program (from the CREATE page),

The Collaborative Research and Training Experience (CREATE) Program supports the training of teams of highly qualified students and postdoctoral fellows from Canada and abroad through the development of innovative training programs that:

  • encourage collaborative and integrative approaches, and address significant scientific challenges associated with Canada’s research priorities; and
  • facilitate the transition of new researchers from trainees to productive employees in the Canadian workforce.

These innovative programs must include the acquisition and development of important professional skills among students and postdoctoral fellows that complement their qualifications and technical skills.

In addition, these programs should encourage the following as appropriate:

  • student mobility, nationally or internationally, between individual universities and between universities and other sectors;
  • interdisciplinary research within the natural sciences and engineering (NSE), or at the interface between the NSE and health, or the social sciences and humanities. However, the main focus of the training must still lie within the NSE;
  • increased collaboration between industry and academia; and
  • for the industrial stream, an additional objective is to support improved job-readiness within the industrial sector by exposing participants to the specific challenges of this sector and training people with the skills identified by industry.

I wonder what they mean by “professional skills?” They use the phrase again in the Description,

The CREATE Program is designed to improve the mentoring and training environment for the Canadian researchers of tomorrow by improving areas such as professional skills, communication and collaboration, as well as providing experience relevant to both academic and non-academic research environments.

This program is intended for graduate students and has two streams, Industrial and International Collaboration. At this point, they have two international collaboration partners, one each in Germany and in Brazil.

There’s a subsection on the CREATE page titled Merit of the proposed training program (in my world that’s ‘criteria for assessment’),

Applicable to all applications:

  • the extent to which the program is associated with a research area of high priority to Canada and will provide a higher quality of training;
  • how the research area proposed relates to the current scientific or technical developments in the field, with references to the current literature;
  • the extent to which the research training program will facilitate the transition of the trainees to the Canadian workforce and will promote interaction of the trainees with non-academic sectors, such as private companies, industry associations, not-for-profit organizations, government departments, etc., as appropriate;
  • the description of the potential employers and a qualitative assessment of the job prospects for trainees;
  • the extent to which the program will provide opportunities for the trainees to develop professional skills;
  • the extent to which the program uses novel and interesting approaches to graduate student training in an integrated manner to provide an enriched experience for all participants;
  • the research training program’s focus and clarity of objectives, both short- and long-term; and
  • the added value that trainees will receive through their participation.

Clearly, this program is about training tomorrow’s workers and I expect CREATE is welcome in many corners. We (in Canada and elsewhere internationally) have a plethora of PhDs and nowhere for them to go. I have, of course, two provisos. First, I hope this program is not a precursor to a wholesale change in funding to a indulge a form of short-term thinking. Not every single course of study has to lead to a clearly defined job as defined by industry. Sometimes, industry doesn’t know what it needs until there’s a shortage. Second, I hope the administrators for this program support it. You (the government) can formulate all sorts of great policies but it’s the civil service that will implement your policies and if they don’t support them, you (the government) are likely to experience failure.

Here’s the CREATE funding announcement in a May 19, 2014 news item on Azonano,

Researchers studying nanomaterials and isotopes at the University of British Columbia received a $3.3 million boost in funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Two UBC teams, led respectively by Chemistry Prof. Mark MacLachlan and Physics Prof. Reiner Kruecken, received $1.65 million each from NSERC’s Collaborative Research and Training Experience (CREATE) grants. The funding extends over a six-year period. The investment will help MacLachlan and Kruecken mentor and train graduate students and postdoctoral fellows.

A May 16, 2014 UBC news release, which originated the news item, provides more information including some background for the two project leaders,

Mark MacLachlan, Professor, UBC Department of Chemistry
NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology

Nanomaterials have dimensions about 1/1000th the width of a human hair. Though invisible to our eyes, these materials are already used for diagnosing and treating diseases, environmental remediation, developing solar cells and batteries, as well as other applications. Nanomaterials form a multi-billion dollar industry that is expanding rapidly. To address the growing need for highly qualified trainees in Canada, UBC researchers have spearheaded the NanoMat program. Through a unique interdisciplinary training program, science and engineering students will undertake innovative research projects, receive hands-on training, and undertake internships at companies in Canada and across the world.

Reiner Kruecken, Professor, UBC Department of Physics and Astronomy
ISOSIM, ISOtopes for Science and Medicine

The ISOSIM program is designed to provide students with enriched training experiences in the production and preparation of nuclear isotopes for innovative applications that range from medical research and environmental science to investigations of the foundations of the universe. This will prepare students for positions in a number of Canadian industrial sectors including medical diagnostics and treatment, pharmaceutical sciences, development of next-generation electronic devices, environmental sciences, and isotope production. This project builds on the existing cooperation between UBC and TRIUMF, Canada’s national laboratory for particle and nuclear phsyics, [sic] on isotopes science.

Not mentioned in the UBC news release is that ISOSIM is a program that is jointly run with TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics. Here’s how TRIUMF views their CREATE grant, from a May 16, 2014 TRIUMF news release,

The ISOSIM program will train undergraduate students, graduate students, and postdoctoral researchers at UBC and TRIUMF from fields associated with isotope sciences in an individually tailored, interdisciplinary curriculum that will build on and complement the education in their specialty field. Unique in Canada, this program offers a combination of interdisciplinary isotope-related training ranging from pure to applied sciences, industrial internships, and mobility with German research institutions with unique large-scale equipment and scientific infrastructures.

It seems this particular grant was awarded as part of the international collaboration stream. (I wonder if TRIUMF or TRIUMF-friendly individuals had a role in developing that particular aspect of the CREATE program. Following on that thought, is there a large Canadian science organization with ties to Brazil?)

Getting back to TRIUMF’s current CREATE grant, the news release emphasizes an industrial focus,

“ISOSIM represents a timely and nationally important training initiative and is built on a world-class collaborative research environment,” says Dr. Reiner Kruecken, TRIUMF’s Science Division Head and Professor at UBC Department of Physics and Astronomy. Kruecken is leading the ISOSIM initiative and is joined by over twenty collaborators from UBC, TRIUMF, and several research institutes in Germany.

ISOSIM is poised to create the next generation of leaders for isotope-related industries and markets, including commercial, public health, environmental, and governmental sectors, as well as academia. The combination of research institutions like UBC, TRIUMF, and the BC Cancer Agency with Canadian companies like Nordion Inc., and Advanced Cyclotron Solutions Inc., have transformed Vancouver into a hub for isotope-related research and industries, emerging as “Isotope Valley”.

The inspiration for the ISOSIM program came from an interdisciplinary TRIUMF-led team who, in response to the isotope crisis, demonstrated non-reactor methods for producing the critical medical isotope Tc-99m. This required a coordinated approach of physicists, chemists, biologists, and engineers.

Similar interdisciplinary efforts are needed for expanding the use and application of isotopes in key areas. While their medical use is widely known, isotopes enjoy growing importance in many fields. Isotopes are used as tracers to examine the trace flow of nutrients and pollutants in the environment. Isotopes are also used to characterize newly designed materials and the behaviour of nanostructured materials that play a key role in modern electronics devices. The production and investigation of very short-lived radioactive isotopes, also known as rare-isotopes, is a central approach in nuclear physics research to understand the nuclear force and how the chemical elements heavier than iron were formed in stars and stellar explosions.

I really wish they (marketing/communications and/or business people) would stop trying to reference ‘silicon valley’ as per this news release’s ‘isotope valley’. Why not ‘isotope galaxy’? It fits better with the isotope and star theme.

Getting back to the “professional skills” mentioned in the CREATE grant description, I don’t see any mention of etiquette, good manners, listening skills, or the quality of humility, all of which are handy in the workplace and having had my share of experience dealing with fresh out-of-graduate-school employees, I’d say they’re sorely needed.

Regardless, I wish both MacLachlan and Krueken the best as they and their students pioneer what I believe is a new NSERC program.

Women and Girls at the Intersection of Innovation and Opportunity webcast May 21, 2014

The webcast, Women and Girls at the Intersection of Innovation and Opportunity, takies place at 2 pm EDT (11 am PDT). I find the information about access to the webcast confusing in this EIC network May 21, 2014 announcement,

Live Webcast on EICnetwork.tv’s Science Engineering & Technology Channel from TV  [emphasis mine]
Worldwide Studios Near Washington D.C.
Wednesday, May 21, 2014, 2 PM ET

The Manufacturing Institute and EICnetwork.tv are kicking off the summer with a special webcast focusing on Women and Girls in STEM + the Arts. The webcast will be hosted on Wednesday, May 21st, live from the EICnetwork.tv studio in Chantilly, VA at 2pm ET, with a studio audience of students from the greater DC/VA area. It will be made available for later viewing immediately following the live event. [emphasis mine]

Featured panelists include Harris IT Services Director of Human Resources, Patricia Munchel; Harris IT Services Line of Business Lead & Program Manager for Health and Human Services/Clinical Research Support, Elena Byrley; Director of Communications at The Manufacturing Institute (a division of the National Association of Manufacturing), AJ Jorgenson; Brittney Exline, the youngest African-American female computer engineer in the US, and female leadership from Lockheed Martin’s space division.

This is an incredible opportunity to support excellent Internet TV program content reaching a wide audience of students, educators, policy leaders, academia, news media, mentors, entertainment writers, and executives who support initiatives in STEM + the Arts.

Perhaps the writer meant that if you don’t catch the live webcast, you can view it later?

I have found out more about EIC (Entertainment Industries Council) and its various projects, from the About page (Note: Links have been removed),

The Entertainment Industries Council, Inc. (EIC) is a non-profit organization founded in 1983 by leaders in the entertainment industry to provide information, awareness and understanding of major health and social issues among the entertainment industries and to audiences at large.

EIC represents the entertainment industry’s best examples of accurately depicting health and social issues onscreen in feature films, TV and music videos, in music and within the pages of comic books. A look at our Board of Directors and Trustees will reveal the entertainment industry’s commitment to incorporating science-based information into storylines to make them as believable–and beneficial to the viewer–as possible, and to heighten entertainment value.

EIC not only represents the best creative works that come out of Hollywood, New York and beyond; we take an active role in helping entertainment creators maximize the realistic attributes of health and social issues in their productions. EIC provides educational services and resources, including First Draft™ briefings and consultations, publications that spotlight specific health issues, Generation Next™ film school briefings and fellowships, and much, much more.

EIC also produces the PRISM Awards™, EDGE Awards™ and other recognition programs that serve to recognize and reinforce our industry’s hard work and great accomplishments in depicting health and social issues realistically, but also in an entertaining way. It is our belief that the majority of Americans–and people all over the world–are most receptive to information when it is provided in an easily digestible way. with today’s health and social issues, substance abuse and addiction, gun violence, mental illness, depression, suicide, bipolar disorder and HIV/AIDS, constantly rising cancer rates and so many more, making a difference through entertainment is a powerful tool to reach millions of people. EIC is the link between the science and the entertainment, and enables communication between scientists and the creative community, and facilitates communication from them to the public.

EIC educates, serves as a resource to, and recognizes the incredible writers, directors, producers, performers and others who are committed to making a difference through their art.

I also looked at the Board of Directors list and found a familiar sounding name, Michele Lee (from her EIC Board of Directors biography page),

A founding Board Director of the Entertainment Industries Council, Inc., this thriving star of Broadway, film and television has diversified since completing her nine year stint as Karen McKenzie on Knot”s Landing. Now an accomplished filmmaker, she was the first woman to ever write, produce, direct and star in a movie for television. A 1998 recipient of the Larry Stewart Leadership and Inspiration Award, she has long served as the “voice of EIC” – a passion which continues in her role on the PRISM Awards Honorary Committee.

Congratulations Ms. Lee on reinventing yourself.

Apply to be a nursemaid for Giant Panda cubs in China (it’s a paid job)

This comes from a May 20, 2014 article by Eve Nagy for Fast Company,

It pays less than most starting teachers’ salaries and has tougher odds than a position at Google, but don’t let that deter you from applying for this best of all the jobs: the Giant Panda Protection and Research Center in China’s Sichuan province has launched a worldwide search for panda cub caretakers.

You can get more details in a May 12, 2014 news item on ChinaDaily.com,

“Your work has only one mission: spending 365 days with the pandas and sharing in their joys and sorrows,” organizers said.

Applicants should be at least 22 years old and have some basic knowledge of pandas. They should also have good writing skills and the ability to take pictures, according to the recruiters’ requirements.

The campaign will also recruit eight panda observers for a free three-day trip to the Bifengxia base.

People can apply for the job at fun.sohu.com. Recruiting drives will also be held in Shanghai, Chengdu and Guangzhou and will last until July 15 [2014].

You will need to be able to read Chinese or get very lucky when applying at fun.sohu.com.

Brains, prostheses, nanotechnology, and human enhancement: summary (part five of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’.

Now for the summary. Ranging from research meant to divulge more about how the brain operates in hopes of healing conditions such as Parkinson’s and Alzeheimer’s diseases to utilizing public engagement exercises (first developed for nanotechnology) for public education and acceptance of brain research to the development of prostheses for the nervous system such as the Walk Again robotic suit for individuals with paraplegia (and, I expect quadriplegia [aka tetraplegia] in the future), brain research is huge in terms of its impact socially and economically across the globe.

Until now, I have not included information about neuromorphic engineering (creating computers with the processing capabilities of human brains). My May 16, 2014 posting (Wacky oxide. biological synchronicity, and human brainlike computing) features one of the latest developments along with this paragraph providing links to overview materials of the field,

As noted earlier, there are other approaches to creating an artificial brain, i.e., neuromorphic engineering. My April 7, 2014 posting is the most recent synopsis posted here; it includes excerpts from a Nanowerk Spotlight article overview along with a mention of the ‘brain jelly’ approach and a discussion of my somewhat extensive coverage of memristors and a mention of work on nanoionic devices. There is also a published roadmap to neuromorphic engineering featuring both analog and digital devices, mentioned in my April 18, 2014 posting.

There is an international brain (artificial and organic) enterprise underway. Meanwhile, work understanding the brain will lead to new therapies and, inevitably, attempts to enhance intelligence. There are already drugs and magic potions (e.g. oxygenated water in Mental clarity, stamina, endurance — is it in the bottle? Celebrity athletes tout the benefits of oxygenated water, but scientists have their doubts, a May 16,2014 article by Pamela Fayerman for the Vancouver Sun). In a June 19, 2009 posting featured Jamais Cascio’s  speculations about augmenting intelligence in an Atlantic magazine article.

While researchers such Miguel Nicolelis work on exoskeletons (externally worn robotic suits) controlled by the wearer’s thoughts and giving individuals with paraplegia the ability to walk, researchers from one of Germany’s Fraunhofer Institutes reveal a different technology for achieving the same ends. From a May 16, 2014 news item on Nanowerk,

People with severe injuries to their spinal cord currently have no prospect of recovery and remain confined to their wheelchairs. Now, all that could change with a new treatment that stimulates the spinal cord using electric impulses. The hope is that the technique will help paraplegic patients learn to walk again. From June 3 – 5 [2-14], Fraunhofer researchers will be at the Sensor + Test measurement fair in Nürnberg to showcase the implantable microelectrode sensors they have developed in the course of pre-clinical development work (Hall 12, Booth 12-537).

A May 14, 2014 Fraunhofer Institute news release, which originated the news item, provides more details about this technology along with an image of the implantable microelectrode sensors,

The implantable microelectrode sensors are flexible and wafer-thin. © Fraunhofer IMM

The implantable microelectrode sensors are flexible and wafer-thin.
© Fraunhofer IMM

Now a consortium of European research institutions and companies want to get affected patients quite literally back on their feet. In the EU’s [European Union’s] NEUWalk project, which has been awarded funding of some nine million euros, researchers are working on a new method of treatment designed to restore motor function in patients who have suffered severe injuries to their spinal cord. The technique relies on electrically stimulating the nerve pathways in the spinal cord. “In the injured area, the nerve cells have been damaged to such an extent that they no longer receive usable information from the brain, so the stimulation needs to be delivered beneath that,” explains Dr. Peter Detemple, head of department at the Fraunhofer Institute for Chemical Technology’s Mainz branch (IMM) and NEUWalk project coordinator. To do this, Detemple and his team are developing flexible, wafer-thin microelectrodes that are implanted within the spinal canal on the spinal cord. These multichannel electrode arrays stimulate the nerve pathways with electric impulses that are generated by the accompanying by microprocessor-controlled neurostimulator. “The various electrodes of the array are located around the nerve roots responsible for locomotion. By delivering a series of pulses, we can trigger those nerve roots in the correct order to provoke motion sequences of movements and support the motor function,” says Detemple.

Researchers from the consortium have already successfully conducted tests on rats in which the spinal cord had not been completely severed. As well as stimulating the spinal cord, the rats were given a combination of medicine and rehabilitation training. Afterwards the animals were able not only to walk but also to run, climb stairs and surmount obstacles. “We were able to trigger specific movements by delivering certain sequences of pulses to the various electrodes implanted on the spinal cord,” says Detemple. The research scientist and his team believe that the same approach could help people to walk again, too. “We hope that we will be able to transfer the results of our animal testing to people. Of course, people who have suffered injuries to their spinal cord will still be limited when it comes to sport or walking long distances. The first priority is to give them a certain level of independence so that they can move around their apartment and look after themselves, for instance, or walk for short distances without requiring assistance,” says Detemple.

Researchers from the NEUWalk project intend to try out their system on two patients this summer. In this case, the patients are not completely paraplegic, which means there is still some limited communication between the brain and the legs. The scientists are currently working on tailored implants for the intervention. “However, even if both trials are a success, it will still be a few years before the system is ready for the general market. First, the method has to undergo clinical studies and demonstrate its effectiveness among a wider group of patients,” says Detemple.

Patients with Parkinson’s disease could also benefit from the neural prostheses. The most well-known symptoms of the disease are trembling, extreme muscle tremors and a short, [emphasis mine] stooped gait that has a profound effect on patients’ mobility. Until now this neurodegenerative disorder has mostly been treated with dopamine agonists – drugs that chemically imitate the effects of dopamine but that often lead to severe side effects when taken over a longer period of time. Once the disease has reached an advanced stage, doctors often turn to deep brain stimulation. This involves a complex operation to implant electrodes in specific parts of the brain so that the nerve cells in the region can be stimulated or suppressed as required. In the NEUWalk project, researchers are working on electric spinal cord simulation – an altogether less dangerous intervention that should however ease the symptoms of Parkinson’s disease just as effectively. “Initial animal testing has yielded some very promising results,” says Detemple.

(For anyone interested in the NEUWalk project, you can find more here,) Note the reference to Parkinson’s in the context of work designed for people with paraplegia. Brain research and prosthetics (specifically neuroprosthetics or neural prosthetics), are interconnected. As for the nanotechnology connection, in its role as an enabling technology it has provided some of the tools that make these efforts possible. It has also made some of the work in neuromorphic engineering (attempts to create an artificial brain that mimics the human brain) possible. It is a given that research on the human brain will inform efforts in neuromorphic engineering and that attempts will be made to create prostheses for the brain (cyborg brain) and other enhancements.

One final comment, I’m not so sure that transferring approaches and techniques developed to gain public acceptance of nanotechnology are necessarily going to be effective. (Harthorn seemed to be suggesting in her presentation to the Presidential Presidential Commission for the Study of Bioethical Issues that these ‘nano’ approaches could be adopted. Other researchers [Caulfield with the genome and Racine with previous neuroscience efforts] also suggested their experience could be transferred. While some of that is likely true,, it should be noted that some self-interest may be involved as brain research is likely to be a fresh source of funding for social science researchers with experience in nanotechnology and genomics who may be finding their usual funding sources less generous than previously.)

The likelihood there will be a substantive public panic over brain research is higher than it ever was for a nanotechnology panic (I am speaking with the benefit of hindsight re: nano panics). Everyone understands the word, ‘brain’, far fewer understand the word ‘nanotechnology’ which means that the level of interest is lower and people are less likely to get disturbed by an obscure technology. (The GMO panic gained serious traction with the ‘Frankenfood’ branding and when it fused rather unexpectedly with another research story,  stem cell research. In the UK, one can also add the panic over ‘mad cow’ disease or Creutzfeldt-Jakob disease (CJD), as it’s also known, to the mix. It was the GMO and other assorted panics which provided the impetus for much of the public engagement funding for nanotechnology.)

All one has to do in this instance is start discussions about changing someone’s brain and cyborgs and these researchers may find they have a much more volatile situation on their hands. As well, everyone (the general public and civil society groups/activists, not just the social science and science researchers) involved in the nanotechnology public engagement exercises has learned from the experience. In the meantime, pop culture concerns itself with zombies and we all know what they like to eat.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (part four of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Brazil’s World Cup for soccer/football which opens on June 12, 2014 will be the first public viewing of someone with paraplegia demonstrating a mind-controlled exoskeleton (or a robotic suit as it’s sometimes called) by opening the 2014 games with the first kick-off.

I’ve been covering this story since 2011 and, even so, was late to the party as per this May 7, 2014 article by Alejandra Martins for BBC World news online,

The World Cup curtain-raiser will see the first public demonstration of a mind-controlled exoskeleton that will enable a person with paralysis to walk.

If all goes as planned, the robotic suit will spring to life in front of almost 70,000 spectators and a global audience of billions of people.

The exoskeleton was developed by an international team of scientists as part of the Walk Again Project and is the culmination of more than a decade of work for Dr Miguel Nicolelis, a Brazilian neuroscientist based at Duke University in North Carolina. [emphasis mine]

Since November [2013], Dr Nicolelis has been training eight patients at a lab in Sao Paulo, in the midst of huge media speculation that one of them will stand up from his or her wheelchair and deliver the first kick of this year’s World Cup.

“That was the original plan,” the Duke University researcher told the BBC. “But not even I could tell you the specifics of how the demonstration will take place. This is being discussed at the moment.”

Speaking in Portuguese from Sao Paulo, Miguel Nicolelis explained that all the patients are over 20 years of age, with the oldest about 35.

“We started the training in a virtual environment with a simulator. In the last few days, four patients have donned the exoskeleton to take their first steps and one of them has used mental control to kick a ball,” he explained.

The history of Nicolelis’ work is covered here in a series of a posts starting the with an Oct. 5, 2011 post (Advertising for the 21st Century: B-Reel, ‘storytelling’, and mind control; scroll down 2/3 of the way for a reference to Ed Yong’s article where I first learned of Nicolelis).

The work was explored in more depth in a March 16, 2012 posting (Monkeys, mind control, robots, prosthetics, and the 2014 World Cup (soccer/football) and then followed up a year later by two posts which link Nicoleliis’ work with the Brain Activity Map (now called, BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative: a March 4, 2013 (Brain-to-brain communication, organic computers, and BAM [brain activity map], the connectome) and a March 8,  2013 post (Prosthetics and the human brain) directly linking exoskeleton work in Holland and the project at Duke with current brain research and the dawning of a new relationship to one’s prosthestics,

On the heels of research which suggests that humans tend to view their prostheses, including wheel chairs, as part of their bodies, researchers in Europe  have announced the development of a working exoskeleton powered by the wearer’s thoughts.

Getting back to Brazil and Nicolelis’ technology, Ian Sample offers an excellent description in an April 1, 2014 article for the Guardian (Note: Links have been removed),

The technology in question is a mind-controlled robotic exoskeleton. The complex and conspicuous robotic suit, built from lightweight alloys and powered by hydraulics, has a simple enough function. When a paraplegic person straps themselves in, the machine does the job that their leg muscles no longer can.

The exoskeleton is the culmination of years of work by an international team of scientists and engineers on the Walk Again project. The robotics work was coordinated by Gordon Cheng at the Technical University in Munich, and French researchers built the exoskeleton. Nicolelis’s team focused on ways to read people’s brain waves, and use those signals to control robotic limbs.

To operate the exoskeleton, the person is helped into the suit and given a cap to wear that is fitted with electrodes to pick up their brain waves. These signals are passed to a computer worn in a backpack, where they are decoded and used to move hydraulic drivers on the suit.

The exoskeleton is powered by a battery – also carried in the backpack – that allows for two hours of continuous use.

“The movements are very smooth,” Nicolelis told the Guardian. “They are human movements, not robotic movements.”

Nicolelis says that in trials so far, his patients seem have taken to the exoskeleton. “This thing was made for me,” one patient told him after being strapped into the suit.

The operator’s feet rest on plates which have sensors to detect when contact is made with the ground. With each footfall, a signal shoots up to a vibrating device sewn into the forearm of the wearer’s shirt. The device seems to fool the brain into thinking that the sensation came from their foot. In virtual reality simulations, patients felt that their legs were moving and touching something.

Sample’s article includes a good schematic of the ‘suit’ which I have not been able to find elsewhere (meaning the Guardian likely has a copyright for the schematic and is why you won’t see it here) and speculation about robotics and prosthetics in the future.

Nicolelis and his team have a Facebook page for the Walk Again Project where you can get some of the latest information with  both English and Portuguese language entries as they prepare for the June 12, 2014 kickoff.

One final thought, this kickoff project represents an unlikely confluence of events. After all, what are the odds

    • that a Brazil-born researcher (Nicolelis) would be working on a project to give paraplegics the ability to walk again? and
    • that Brazil would host the World Cup in 2014 (the first time since 1950)? and
    • that the timing would coincide so a public demonstration at one of the world’s largest athletic events (of a sport particularly loved in Brazil) could be planned?

It becomes even more extraordinary when one considers that Brazil had isolated itself somewhat in the 1980s with a policy of nationalism vis à vis the computer industry (from the Brazil Science and Technology webpage on the ITA website),

In the early 1980s, the policy of technological nationalism and self-sufficiency had narrowed to the computer sector, where protective legislation tried to shield the Brazilian mini- and microcomputer industries from foreign competition. Here again, the policy allowed for the growth of local industry and a few well-qualified firms, but the effect on the productive capabilities of the economy as a whole was negative; and the inability to follow the international market in price and quality forced the policy to be discontinued.

For those who may have forgotten, the growth of the computer industry (specifically personal computers) in the 1980s figured hugely in a country’s economic health and, in this case,with  a big negative impact in Brazil.

Returning to 2014, the kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

ETA June 16, 2014: The kickoff seems to have been a disappointment (June 15, 2014 news item on phys.org) and for those who might be interested in some of the reasons for the World Cup unrest and protests in Brazil, John Oliver provides an excoriating overview of the organization which organizes the World Cup games while professing his great love of the games, http://www.youtube.com/watch?v=DlJEt2KU33I

Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (part three of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

A May 14, 2014 news release on EurekAlert announced the release of volume 1 (in a projected 2-volume series) from the US Presidential Commission for the Study of Bioethical Issues in response to a request from President Barack Obama regarding the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative,

Bioethics commission plays early role in BRAIN Initiative
Calls for integrating ethics explicitly throughout neuroscience research ‘Everyone benefits when the emphasis is on integration, not intervention’

Washington, DC— Calling for the integration of ethics across the life of neuroscientific research endeavors, the Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) released volume one of its two-part response to President Obama’s request related to the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. The report, Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, includes four recommendations for institutions and individuals engaged in neuroscience research including government agencies and other funders.

You can find volume one: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society here. For those who prefer the short story, here’s more from the news release,

“Neurological conditions—which include addiction, chronic pain, dementia, depression, epilepsy, multiple sclerosis, Parkinson’s disease, schizophrenia, stroke, and traumatic brain injury, among other conditions—affect more than one billion people globally. Neuroscience has begun to make important breakthroughs, but given the complexity of the brain, we must better understand it in order to make desired progress,” said Amy Gutmann, Ph.D., Bioethics Commission Chair. “But because research on our brains strikes at the very core of who we are, the ethical stakes of neuroscience research could not be higher. Ethicists and scientists should be together at the table in the earliest stages of research planning fostering a fluent two-way conversation. Too often in our nation’s past, ethical lapses in research have had tragic consequences and derailed scientific progress.”

President Obama asked the Bioethics Commission to play a critical role in ensuring that neuroscientific investigational methods and protocols are consistent with sound ethical principles and practices. Specifically the President asked the Bioethics Commission to “identify proactively a set of core ethical standards – both to guide neuroscience research and to address some of the ethical dilemmas that may be raised by the application of neuroscience research findings.”

“Our rapidly advancing knowledge of the nervous system – and ability to detect disease sometimes even before symptoms begin – has not yet led to much needed breakthroughs in treatment, repair, and prevention; the BRAIN initiative will hopefully accelerate the trajectory of discoveries against terrible neurologic maladies,” Commission Member and neuroimmunologist Stephen Hauser, M.D., said.

In its report the Bioethics Commission noted that when facing the promise of neuroscience, we are compelled to consider carefully scientific advances that have the potential to alter our conception of the very private and autonomous nature of self. Our understanding of the mind, our private thoughts, and our volition necessitates careful reflection about the scientific, societal, and ethical aspects of neuroscience endeavors. Integrating ethics explicitly and systematically into the relatively new field of contemporary neuroscience allows us to incorporate ethical insights into the scientific process and to consider societal implications of neuroscience research from the start. Early ethics integration can prevent the need for corrective interventions resulting from ethical mishaps that erode public trust in science.

“In short, everyone benefits when the emphasis is on integration, not intervention,” Gutmann said. “Ethics in science must not come to the fore for the first time after something has gone wrong. An essential step is to include expert ethicists in the BRAIN Initiative advisory and review bodies.”

Recommendations

In its report the Bioethics Commission noted that although ethics is already integrated into science in various ways, more explicit and systematic integration serves to elucidate implicit ethical judgments and allows their merits to be assessed more thoughtfully. The Commission offered four recommendations.

  1. Integrate ethics early and explicitly throughout research: Institutions and individuals engaged in neuroscience research should integrate ethics across the life of a research endeavor, identifying the key ethical questions associated with their research and taking immediate steps to make explicit their systems for addressing those questions. Sufficient resources should be dedicated to support ethics integration. Approaches to ethics integration discussed by the Bioethics Commission include:a. Implementing ethics education at all levels
    b. Developing institutional infrastructure to facilitate integration
    c. Researching the ethical, legal, and social implications of scientific research
    d. Providing research ethics consultation services
    e. Engaging with stakeholders
    f. Including an ethics perspective on the research team
  2. Evaluate existing and innovative approaches to ethics integration: Government agencies and other research funders should initiate and support research that evaluates existing as well as innovative approaches to ethics integration. Institutions and individuals engaged in neuroscience research should take into account the best available evidence for what works when implementing, modifying, or improving systems for ethics integration.
  3. Integrate ethics and science through education at all levels: Government agencies and other research funders should initiate and support research that develops innovative models and evaluates existing and new models for integrating ethics and science through education at all levels.
  4. Explicitly include ethical perspectives on advisory and review bodies: BRAIN Initiative-related scientific advisory and funding review bodies should include substantive participation by persons with relevant expertise in the ethical and societal implications of the neuroscience research under consideration.

Next the Bioethics Commission will consider the ethical and societal implications of neuroscience research and its applications more broadly – ethical implications that a strongly integrated research and ethics infrastructure will be well equipped to address, and that myriad stakeholders, including scientists, ethicists, educators, public and private funders, advocacy organizations, and the public should be prepared to handle.

Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society is the Bioethics Commission’s seventh report. The Commission seeks to identify and promote policies and practices that ensure that scientific research, health care delivery, and technological innovation are conducted by the United States in a socially and ethically responsible manner. The Commission is an independent, deliberative panel of thoughtful experts that advises the President and the Administration, and, in so doing, educates the nation on bioethical issues. To date the Commission has:

  • Advised the White House on the benefits and risks of synthetic biology;
  • Completed an independent historical overview and ethical analysis of the U.S. Public Health Service STD experiments in Guatemala in the 1940s;
  • Assessed the rules that currently protect human participants in research;
  • Examined the pressing privacy concerns raised by the emergence and increasing use of whole genome sequencing;
  • Conducted a thorough review of the ethical considerations of conducting clinical trials of medical countermeasures with children, including the ethical considerations involved in conducting a pre-and post-event study of anthrax vaccine adsorbed for post-exposure prophylaxis with children; and
  • Offered ethical analysis and recommendations for clinicians, researchers, and direct-to-consumer testing companies on how to manage the increasingly common issue of incidental and secondary findings.

David Bruggeman offers a few thoughts on this volume of the series in a May 14, 2014 posting on his Pasco Phronesis blog,

Of specific application to the BRAIN Initiative is the need to include professionals with expertise in ethics in advisory boards and similar entities conducting research in this area.

Volume Two will focus more on the social and ethical implications of neuroscience research,  …

While it’s not mentioned in the news release, human enhancement is part of the discussion as per the hearing in February 2014. Perhaps it will be mentioned in volume two? Here’s an early post (July 27, 2009) I wrote in 2009 on human enhancement which provides some information about a then recent European Parliament report on the subject. The post was part of a series.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

BRAIN and ethics in the US with some Canucks (not the hockey team) participating (part two of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience*, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Before further discussing the US Presidential Commission for the Study of Bioethical Issues ‘brain’ meetings mentioned in part one, I have some background information.

The US launched its self-explanatory BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative (originally called BAM; Brain Activity Map) in 2013. (You can find more about the history and details in this Wikipedia entry.)

From the beginning there has been discussion about how nanotechnology will be of fundamental use in the US BRAIN initiative and the European Union’s 10 year Human Brain Project (there’s more about that in my Jan. 28, 2013 posting). There’s also a 2013 book (Nanotechnology, the Brain, and the Future) from Springer, which, according to the table of contents, presents an exciting (to me) range of ideas about nanotechnology and brain research,

I. Introduction and key resources

1. Nanotechnology, the brain, and the future: Anticipatory governance via end-to-end real-time technology assessment by Jason Scott Robert, Ira Bennett, and Clark A. Miller
2. The complex cognitive systems manifesto by Richard P. W. Loosemore
3. Analysis of bibliometric data for research at the intersection of nanotechnology and neuroscience by Christina Nulle, Clark A. Miller, Harmeet Singh, and Alan Porter
4. Public attitudes toward nanotechnology-enabled human enhancement in the United States by Sean Hays, Michael Cobb, and Clark A. Miller
5. U.S. news coverage of neuroscience nanotechnology: How U.S. newspapers have covered neuroscience nanotechnology during the last decade by Doo-Hun Choi, Anthony Dudo, and Dietram Scheufele
6. Nanoethics and the brain by Valerye Milleson
7. Nanotechnology and religion: A dialogue by Tobie Milford

II. Brain repair

8. The age of neuroelectronics by Adam Keiper
9. Cochlear implants and Deaf culture by Derrick Anderson
10. Healing the blind: Attitudes of blind people toward technologies to cure blindness by Arielle Silverman
11. Ethical, legal and social aspects of brain-implants using nano-scale materials and techniques by Francois Berger et al.
12. Nanotechnology, the brain, and personal identity by Stephanie Naufel

III. Brain enhancement

13. Narratives of intelligence: the sociotechnical context of cognitive enhancement by Sean Hays
14. Towards responsible use of cognitive-enhancing drugs by the healthy by Henry T. Greeley et al.
15. The opposite of human enhancement: Nanotechnology and the blind chicken debate by Paul B. Thompson
16. Anticipatory governance of human enhancement: The National Citizens’ Technology Forum by Patrick Hamlett, Michael Cobb, and David Guston
a. Arizona site report
b. California site report
c. Colorado site reportd. Georgia site report
e. New Hampshire site report
f. Wisconsin site report

IV. Brain damage

17. A review of nanoparticle functionality and toxicity on the central nervous system by Yang et al.
18. Recommendations for a municipal health and safety policy for nanomaterials: A Report to the City of Cambridge City Manager by Sam Lipson
19. Museum of Science Nanotechnology Forum lets participants be the judge by Mark Griffin
20. Nanotechnology policy and citizen engagement in Cambridge, Massachusetts: Local reflexive governance by Shannon Conley

Thanks to David Bruggeman’s May 13, 2014 posting on his Pasco Phronesis blog, I stumbled across both a future meeting notice and documentation of the  Feb. 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (Note: Links have been removed),

Continuing from its last meeting (in February 2014), the Presidential Commission for the Study of Bioethical Issues will continue working on the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative in its June 9-10 meeting in Atlanta, Georgia.  An agenda is still forthcoming, …

In other developments, Commission staff are apparently going to examine some efforts to engage bioethical issues through plays.  I’d be very excited to see some of this happen during a Commission meeting, but any little bit is interesting.  The authors of these plays, Karen H. Rothenburg and Lynn W. Bush, have published excerpts in their book The Drama of DNA: Narrative Genomics.  …

The Commission also has a YouTube channel …

Integrating a theatrical experience into the reams of public engagement exercises that technologies such as stem cell, GMO (genetically modified organisms), nanotechnology, etc. tend to spawn seems a delightful idea.

Interestingly, the meeting in June 2014 will coincide with the book’s release date. I dug further and found these snippets of information. The book is being published by Oxford University Press and is available in both paperback and e-book formats. The authors are not playwrights, as one might assume. From the Author Information page,

Lynn Bush, PhD, MS, MA is on the faculty of Pediatric Clinical Genetics at Columbia University Medical Center, a faculty associate at their Center for Bioethics, and serves as an ethicist on pediatric and genomic advisory committees for numerous academic medical centers and professional organizations. Dr. Bush has an interdisciplinary graduate background in clinical and developmental psychology, bioethics, genomics, public health, and neuroscience that informs her research, writing, and teaching on the ethical, psychological, and policy challenges of genomic medicine and clinical research with children, and prenatal-newborn screening and sequencing.

Karen H. Rothenberg, JD, MPA serves as Senior Advisor on Genomics and Society to the Director, National Human Genome Research Institute and Visiting Scholar, Department of Bioethics, Clinical Center, National Institutes of Health. She is the Marjorie Cook Professor of Law, Founding Director, Law & Health Care Program and former Dean at the University of Maryland Francis King Carey School of Law and Visiting Professor, Johns Hopkins Berman Institute of Bioethics. Professor Rothenberg has served as Chair of the Maryland Stem Cell Research Commission, President of the American Society of Law, Medicine and Ethics, and has been on many NIH expert committees, including the NIH Recombinant DNA Advisory Committee.

It is possible to get a table of contents for the book but I notice not a single playwright is mentioned in any of the promotional material for the book. While I like the idea in principle, it seems a bit odd and suggests that these are purpose-written plays. I have not had good experiences with purpose-written plays which tend to be didactic and dull, especially when they’re not devised by a professional storyteller.

You can find out more about the upcoming ‘bioethics’ June 9 – 10, 2014 meeting here.  As for the Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post featured Barbara Herr Harthorn’s (director of the Center for Nanotechnology in Society at the University of California at Santa Barbara) participation only.

It turns out, there are some Canadian tidbits. From the Meeting Sixteen: Feb. 10-11, 2014 webcasts page, (each presenter is featured in their own webcast of approximately 11 mins.)

Timothy Caulfield, LL.M., F.R.S.C., F.C.A.H.S.

Canada Research Chair in Health Law and Policy
Professor in the Faculty of Law
and the School of Public Health
University of Alberta

Eric Racine, Ph.D.

Director, Neuroethics Research Unit
Associate Research Professor
Institut de Recherches Cliniques de Montréal
Associate Research Professor,
Department of Medicine
Université de Montréal
Adjunct Professor, Department of Medicine and Department of Neurology and Neurosurgery,
McGill University

It was a surprise to see a couple of Canucks listed as presenters and I’m grateful that the Presidential Commission for the Study of Bioethical Issues is so generous with information. in addition to the webcasts, there is the Federal Register Notice of the meeting, an agenda, transcripts, and presentation materials. By the way, Caulfield discussed hype and Racine discussed public understanding of science with regard to neuroscience both fitting into the overall theme of communication. I’ll have to look more thoroughly but it seems to me there’s no mention of pop culture as a means of communicating about science and technology.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series:

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

* ‘neursocience’ corrected to ‘neuroscience’ on May 20, 2014.

Brain research, ethics, and nanotechnology (part one of five)

This post kicks off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience*, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Barbara Herr Harthorn, head of UCSB’s [University of California at Santa Barbara) Center for Nanotechnology in Society (CNS), one of two such centers in the US (the other is at Arizona State University) was featured in a May 12, 2014 article by Lyz Hoffman for the [Santa Barbara] Independent.com,

… Barbara Harthorn has spent the past eight-plus years leading a team of researchers in studying people’s perceptions of the small-scale science with big-scale implications. Sponsored by the National Science Foundation, CNS enjoys national and worldwide recognition for the social science lens it holds up to physical and life sciences.

Earlier this year, Harthorn attended a meeting hosted by the Presidential Commission for the Study of Bioethical Issues. The commission’s chief focus was on the intersection of ethics and brain research, but Harthorn was invited to share her thoughts on the relationship between ethics and nanotechnology.

(You can find Harthorn’s February 2014 presentation to the Presidential Commission for the Study of Bioethical Issues here on their webcasts page.)

I have excerpted part of the Q&A (questions and answers) from Hoffman’s May 12, 2014 article but encourage you to read the piece in its entirety as it provides both a brief beginners’ introduction to nanotechnology and an insight into some of the more complex social impact issues presented by nano and other emerging technologies vis à vis neuroscience and human enhancement,

So there are some environmental concerns with nanomaterials. What are the ethical concerns? What came across at the Presidential Commission meeting? They’re talking about treatment of Alzheimer’s and neurological brain disorders, where the issue of loss of self is a fairly integral part of the disease. There are complicated issues about patients’ decision-making. Nanomaterials could be used to grow new tissues and potentially new organs in the future.

What could that mean for us? Human enhancement is very interesting. It provokes really fascinating discussions. In our view, the discussions are not much at all about the technologies but very much about the social implications. People feel enthusiastic initially, but when reflecting, the issues of equitable access and justice immediately rise to the surface. We [at CNS] are talking about imagined futures and trying to get at the moral and ethical sort of citizen ideas about the risks and benefits of such technologies. Before they are in the marketplace, [the goal is to] understand and find a way to integrate the public’s ideas in the development process.

Here again is a link to the article.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series:

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

* ‘neursocience’ corrected to ‘neuroscience’ on May 20, 2014.