Category Archives: science policy

Canadian scientists in a national protest on May 19, 2015 and some thoughts on a more nuanced discussion about ‘science muzzles’

For anyone unfamiliar with Canada’s science muzzle, government scientists are not allowed to speak directly to the media and all requests must be handled by the communications department in the ministry. For one of the odder consequences of that policy, there’s my Sept. 16, 2010 posting about a scientist who wasn’t allowed to talk to media about his research on a 13,000 year old flood that took place in the Canadian North. Adding insult to injury, his international colleagues were giving out all kinds of interviews.

Here’s a more recent incident (h/t Speaking Up For Canadian Science, May 20, 2015) recounted in a May 19, 2015 news item by  Nicole Mortillaro for CTV (Canadian television) news online ,

“Unlike Canadian scientists, I don’t have to ask permission to talk to you.”

That was one of the first things National Oceanic and Atmospheric Administration (NOAA) scientist Pieter Tans said when I called to reach him for comment about rising carbon dioxide levels reaching historic levels.

The topic itself was controversial: climate change is a hot-button topic for many. But getting in touch with NOAA was easy. In total, there were five email exchanges, all providing information about the topic and the arrangement of the interview.

Compare that to trying to get response from a Canadian federal department.

While I’ve had many frustrating dealings with various federal agencies, my most recent experience came as I was working on a story about ways Canadians could protect themselves as severe weather season approached. I wanted to mention the new federal national emergency warning system, Alert Ready. I reached out to Environment Canada for more information.

You’d think the federal government would want to let Canadians know about a new national emergency warning system and they do, in their fashion. For the whole story, there’s Mortillaro’s piece (which has an embedded video and more) but for the fast version, Mortillaro contacted the communications people a day before her Friday deadline asking for a spokesperson. The communications team missed the deadline although they did find a spokesperson who would be available on the Monday. Strangely or not, he proved to be hesitant to talk about the new system.

Getting back to the science muzzle protest of 2015 and the muzzle itself, there’s a May 17, 2015 article by Ivan Semeniuk for the Globe and Mail providing more detail about the muzzle and the then upcoming protest organized by the Professional Institute of the Public Service of Canada (PIPSC) currently in contract negotiations with the federal government. (Echoing what I said in my Dec. 4, 2014 posting about the contract negotiations, the union is bargaining for the right to present science information which is unprecedented in Canada (and, I suspect, internationally). Back to Semeniuk’s article,

With contract negotiations set to resume this week, there will also be a series of demonstrations for the Ottawa area on Tuesday to focus attention on the issue.

If successful, the effort could mark a precedent-setting turn in what the government’s critics portray as a struggle between intellectual independence and political prerogative.

“Our science members said to us: What’s more important than anything else is our ability to do our jobs as professionals,” said Peter Bleyer, an adviser with the Professional Institute of the Public Service of Canada, whose membership includes some 15,000 scientists and engineers.

Government scientists have always been vulnerable to those who hold the reins of power, but tensions have grown under the Conservatives. After the Tories enacted a wave of research program and facility cancellations in 2012, stories began to emerge of researchers who were blocked from responding to media requests about their work.

The onerous communications protocols apply even for stories about scientific advancements that are likely to reflect positively on the federal government. Last month [April 2015], after it was announced that Canada would become a partner in the Thirty Meter Telescope, The Globe and Mail had to appeal to the Prime Minister’s Office to facilitate an interview with the National Research Council astronomer leading the development of the telescope’s sophisticated adaptive-optics system.

Federal Information Commissioner Suzanne Legault is currently conducting an investigation into complaints that scientists have been muzzled by the Conservative government.

As Semeniuk notes at the end of his article in a quote from the US-based Union of Concerned Scientists’ representative, the problem is not new and not unique to Canada. For a ‘not unique’ example, the UK government seems to be interested in taking a similar approach to ‘muzzling’ scientists, according to an April 1, 2015 post by Glyn Moody for Techdirt (Note: Links have been removed),

Techdirt has been following for a while Canada’s moves to stop scientists from speaking out about areas where the facts of the situation don’t sit well with the Canadian government’s dogma-based policies. Sadly, it looks like the UK is taking the same route. It concerns a new code for the country’s civil servants, which will also apply to thousands of publicly-funded scientists. As the Guardian reports:

Under the new code, scientists and engineers employed at government expense must get ministerial approval before they can talk to the media about any of their research, whether it involves GM crops, flu vaccines, the impact of pesticides on bees, or the famously obscure Higgs boson.

The fear — quite naturally — is that ministers could take days before replying to requests, by which time news outlets will probably have lost interest. As a result of this change, science organizations have sent a letter to the UK government, expressing their “deep concern” about the code. …

As for ‘not new’, there’s always a tension between employer and employee about what constitutes free speech. Does an employee get fired for making gross, sexist comments in their free time at a soccer game? The answer in Ontario, Canada is yes according to a May 14, 2015 article by Samantha Leal for Marie Claire magazine. Presumably there will be a law suit and we will find out if the firing is legally acceptable. Or more cynically, this may prove to be a public relations ploy designed to spin the story in the employer’s favour while the employee takes some time off and returns unobtrusively at a later date.

I have a couple of final comments about free speech and employers’ and employees’ rights and responsibilities.First, up until the muzzles were applied, the Canadian government and its scientists seemed to have had a kind of unspoken agreement as to what constituted fair discussion of scientific research in the media. I vaguely recall a few kerfuffles over the years but nothing major. (If someone can recall an incident where a scientist working for the Canadian government seriously embarrassed it, please let me know in the comments.)  So, this relatively new enthusiasm for choking off  media coverage of Canadian science research seems misplaced at best. Unfortunately, it has exacerbated standard tensions about what employees can and can’t say to new heights. Attempting to entrench the right to share science research in a bureaucratic process (a union contract) seems weirdly similar to the Harper government’s approach, which like the union’s proposition added a bureaucratic layer.

As for my second thought, I’m wondering how many people who cheered that soccer fan’s firing for making comments (albeit sexist comments) in his free time are protesting for free speech for Canadian government scientists.

It comes down to* matters of principle. Which ones do we want to follow and when do we apply them? Do principles apply only for those people and ideas we find acceptable?

I just wish there was a little more nuance brought to the ‘science muzzle in Canada’ discussion so we might veer away from heightened adversarial relationships between the government and its scientists.

* The phrase was originally published as “to a matters of principle …” and was corrected on May 22, 2015.

Kenya and a draft nanotechnology policy

I don’t often stumble across information about Kenya’s nanotechnology efforts (my last was in a Sept. 1, 2011 posting) but I’m going include my latest find here even though I can’t track down the original source for the information. From an April 29, 2015 news item on SpyGhana (original source: Xinhua News Agency,  official press agency of the People’s Republic of China),

The Kenyan government will soon adopt a comprehensive policy to promote use of nanotechnology in diverse fields like medicine, agriculture, manufacturing and environment.

“Nanotechnology as a science promises more for less. The competitive edge for Kenya as a developing nation lies in robust investments in this technology,” Njeri Wamae, chairman of National Commission for Science, Technology and Innovation (NACOSTI), said in Nairobi.

Nanotechnology is relatively new in Kenya though the government has prioritized its development through research, training and setting up of supportive infrastructure.

Wamae noted that enactment of a nanotechnology policy will position Kenya as a hub for emerging technologies that would revolutionalize key sectors of the economy.

Policy briefs from Kenya’s scientific research body indicates that globally, nanotechnology was incorporated into manufacturing goods worth over 30 billion U.S. dollars in 2005.

The briefs added that nanotechnology related business was worth 2.6 trillion dollars by 2015. Kenya has borrowed best practices from industrialized countries and emerging economies to develop nanotechnology.

Professor Erastus Gatebe, an official at Kenya Industrial Research and Development Institute (KIRDI), noted that China and India offers vital lessons on harnessing nanotechnology to propel industrial growth.

This draft policy seems to be the outcome of a number of initiatives including Nanotechnologies for Development in India, Kenya and the Netherlands: Towards a Framework for Democratic Governance of Risks in Developing Countries, WOTRO (2010 – 2014) from the African Technology Policy Studies (ATPS) Network,

The ATPS has secured funding for a new Integrated Program (IP) on “Nanotechnologies for Development in India, Kenya and the Netherlands: Towards a Framework for Democratic Governance of Risks in Developing Countries, January 2010 – 2014, in liaison with partners in Europe and India. This IP which is led by Prof. Wiebe Bijker of the University of Maastricht, the Netherlands addresses the inevitable risks and benefits associated with emerging technologies, such as nanotechnology through a triangulation of PhD and Post-Doctoral positions drawn from Africa (2), India (1) and the Netherlands (2) based at the University of Maastricht but address core areas of the nanotechnology governance in Africa, India and the Netherlands. The program will be coordinated by Prof. Wiebe Bijker, the University of Maastricht, in the Netherlands; with the University of Hyderabad, India; the ATPS and the University of Nairobi, Kenya as partners.

Nanotechnology events and discussions played in important role in Kenya’s 2013 National Science, Technology and Innovation (ST&I) Week by Daphne Molewa (on the South African Agency for Science and Technology Advancement [SAASTA] website),

The National Science, Technology and Innovation (ST&I) Week, organised by the Ministry of Higher Education, Science and Technology, is a major event on the annual calendar of the Kenyan Government.

The theme for 2013, “Science, Technology and Innovation for the realisation of Kenya’s Vision 2030 and beyond” is aligned with the national vision to transform Kenya into a newly industrialised, middle-income country providing a high-quality life to all its citizens in a safe and secure environment by the year 2030. pemphasis mine]

Nanotechnology, the science of the future

SAASTA representatives Mthuthuzeli Zamxaka and Sizwe Khoza were invited to participate in this year’s festival in Nairobi [Kenya] on behalf of the Nanotechnology Public Engagement Programme (NPEP).

Zamxaka delivered a stirring presentation titled Nanotechnology Public Engagement: The Case of South Africa. He introduced the topic of nanotechnology, focusing on engagement, outreach and awareness. …

Zamxaka touched on a number of nanotechnologies that are currently being applied, such as the research conducted by the Johns Hopkins University in Maryland on biodegradable nano-sized particles that can easily slip through the body’s sticky and viscous mucus secretions to deliver a sustained-release medication cargo. It is believed that these nanoparticles, which degrade over time into harmless components, could one day carry life-saving drugs to patients suffering from dozens of health conditions, including diseases of the eye, lung, gut or female reproductive tract.

For anyone interested , look here for Kenya’s Vision 2030. Harkening back to the first news item and the mention of NACOSTI, Kenya’s National Commission for Science, Technology and Innovation, it can be found here.

2015 Canadian federal budget and science

Think of this post as a digest of responses to and analyses of the ‘science component’ of the Canadian federal government’s 2015 budget announcement made on April 21, 2015 by Minister of Finance, Joe Oliver. First off the mark, the Canadian Science Policy Centre (CSPC) has featured some opinions about the budget and its impact on Canadian science in an April 27, 2015 posting,

Jim Woodgett
Director, Lunenfeld-Tanenbaum Research Institute of Sinai Health System

Where’s the Science Beef in Canadian Budget 2015?

Andrew Casey
President and CEO, BIOTECanada

Budget 2015: With the fiscal balance restored where to next?

Russ Roberts
Senior Vice President – Tax & Finance, CATA Alliance

Opinion on 2015 Federal Budget

Ron Freeman
CEO of Innovation Atlas Inc. and Research Infosource Inc. formerly co-publisher of RE$EARCH MONEY and co-founder of The Impact Group

Workman-Like Budget Preserves Key National Programs

Paul Davidson
President, Universities Canada

A Reality Check on Budget 2015

Dr. Kamiel Gabriel
Associate Provost of Research and Graduate Programs at the University of Ontario Institute of Technology (UOIT), Science Adviser and Assistant Deputy Minister (ADM) of Research at the Ontario Ministry of Research & Innovation

The 2015 Federal Budget Targets Key Segments of Voters

I suggest starting with Woodgett’s piece as he points out something none of the others who chose to comment on the amount of money dedicated to the tricouncil funding agencies (Canadian Institutes of Health Research [CIHR], Natural Sciences and Engineering Research Council [NSERC], and Social Sciences and Humanities Research Council [SSHRC]) seemed to have noticed or deemed important,

The primary source of science operating funds are provided by the tricouncils, CIHR/NSERC and SSHRC, which, when indirect costs and other flow through dollars (e.g. CRCs) are included, accounts for about $2.5 billion in annual funding. There are no new dollars added to the tricouncil budgets this year (2015/16) but there is a modest $46 million to be added in 2016/17 – $15 million to CIHR and NSERC, $7.5 million to SSHRC and the rest in indirects. [emphases mine] This new money, though, is largely ear-marked for new initiatives, such as the CIHR Strategy on Patient Oriented Research ($13 million) and an anti-microbial resistant infection program ($2 million). Likewise for NSERC and SSHRC although NSERC enjoys around $16 million relief in not needing to support industrial postgraduate scholarships as this responsibility moves to MITACS with no funding loss at NSERC. Alex Usher of Higher Education Strategy Associates, estimates that, taking inflation into account, tricouncil funding will be down 9% since 2008. [emphasis mine] It is hardly surprising that funding applications to these agencies are under enormous competitive pressure. At CIHR, the last open operating grant competition yielded unprecedented low success rates of ~14% along with across-the-board budget cuts of grants that were funded of 26%. This agency is in year 1 of major program reforms and has very little wiggle-room with its frozen budget.

To be fair, there are sources other than the tricouncil for science funding although their mandate is for ‘basic’ science, more or less. Over the last few years, there’s been a greater emphasis on tricouncil funding that produces economic results and this is in line international trends.

Getting back to the CSPC’s opinions, Davidson’s piece, notes some of that additional funding,

With $1.33 billion earmarked for the Canada Foundation for Innovation [CFI], Budget 2015 marks the largest single announcement of Canadian research infrastructure funding. This is something the community prioritized, given the need for state-of-the-art equipment, labs, digital tools and high-speed technology to conduct, partner and share research results. This renewed commitment to CFI builds on the globally competitive research infrastructure that Canadians have built over the last 15 years and enables our researchers to collaborate with the very best in the world. Its benefits will be seen in universities across the country and across disciplines. Key research infrastructure investments – from digital to major science infrastructure – support the broad spectrum of university research, from theoretical and discovery to pre-competitive and applied.

The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.

While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government.

Another agency which seems to have received its funding directly from the federal government is the Council of Canadian Academies (CCA), From an April 22, 2015 news release,

The Council of Canadian Academies welcomes the federal government’s announcement of new funding for in-depth, authoritative, evidence-based assessments. Economic Action Plan 2015 allocated $15 million over five years [$3M per year] for the Council of Canadian Academies.

“This is welcome news for the Council and we would like to thank the Government for this commitment. Over the past 10 years the Council has worked diligently to produce high quality reports that support policy and decision-making in numerous areas,” said Janet Bax, Interim President. “We appreciate the support from Minister Holder and his predecessors, Minsters Goodyear and Rickford, for ensuring meaningful questions have been referred to the Council for assessment.” [For anyone unfamiliar with the Canadian science minister scene, Ed Holder, current Minister of State for Science and Technology, and previous Conservative government ministers, Greg Rickford and Gary Goodyear]

As of March 31st, 2015 the Council has published 31 reports on topics as diverse as business innovation, the future of Canadian policing models, and improving medicines for children. The Council has worked with over 800 expert volunteers from across Canada and abroad. These individuals have given generously of their time and as a result more than $16 million has been leveraged in volunteer support. The Council’s work has been used in many ways and had an impact on national policy agendas and strategies, research programs, and supported stakeholders and industry groups with forward looking action plans.

“On behalf of the Board of Governors I would like to extend our thanks to the Government,” said Margaret Bloodworth, Chair of the Board of Governors.  “The Board is now well positioned to consider future strategic directions for the organization and how best to further expand on the Council’s client base.”

The CCA news is one of the few item about social science funding, most observers such as Ivan Semeniuk in an April 27, 2015 article for the Globe and Mail, are largely focused on the other sciences,

Last year [2014], that funding [for the tricouncil agencies] amounted to about$2.7-billion, and this year’s budget maintains that. Because of inflation and increasing competition, that is actually a tightening of resources for rank-and-file scientists at Canada’s universities and hospitals. At the same time, those institutions are vying for a share of a $1.5-billion pot of money called the Canada First Research Excellence Fund, which the government unveiled last year and is aimed at helping push selected projects to a globally competitive level.

“This is all about creating an environment where our research community can grow,” Ed Holder, Minister of State for Science and Technology, told The Globe and Mail.

One extra bonus for science in this year’s budget is a $243.5-million commitment to secure Canada’s partnership in the Thirty Meter Telescope, a huge international observatory that is slated for construction on a Hawaiian mountain top. Given its high price-tag, many thought it unlikely that the Harper government would go for the project. In the end, the telescope likely benefited from the fact that had the Canada committed less money, most of the economic returns associated with building it would flow elsewhere.

The budget also reflects the Harper government’s preference for tying funding to partnerships with industry. A promised increase of $46-million for the granting councils next year will be largely for spurring collaborations between academic researchers and industrial partners rather than for basic research.

Whether or not science becomes an issue in the upcoming election campaign, some research advocates say the budget shows that the government’s approach to science is still too narrow. While it renews necessary commitments to research infrastructure, they fear not enough money will be left for people doing the kind of work that expands knowledge but does not always produce an immediate economic return.

An independent analysis of the 2015 budget prepared by Higher Education Strategy Associates, a Toronto based consulting firm, shows that when inflation is factored in, the money available for researchers through the granting councils has been in decline since 2009.

Canadian scientists are the not only ones feeling a pinch. Neal V. Patel’s April 27, 2015 article (originally published on Wired) on the Slate website discusses US government funding in an attempt to contextualize science research crowdfunding (Note: A link has been removed),

In the U.S., most scientific funding comes from the government, distributed in grants awarded by an assortment of federal science, health, and defense agencies. So it’s a bit disconcerting that some scientists find it necessary to fund their research the same way dudebros raise money for a potato salad. Does that migration suggest the current grant system is broken? If it is, how can we ensure that funding goes to legitimate science working toward meaningful discoveries?

On its own, the fact that scientists are seeking new sources of funding isn’t so weird. In the view of David Kaiser, a science historian at MIT, crowdfunding is simply the latest “pendulum swing” in how scientists and research institutions fund their work. Once upon a time, research at MIT and other universities was funded primarily by student tuition and private philanthropists. In 1919, however, with philanthropic investment drying up, MIT launched an ambitious plan that allowed local companies to sponsor specific labs and projects.

Critics complained the university had allowed corporate interests to dig their claws into scientific endeavors and befoul intellectual autonomy. (Sound familiar?) But once WWII began, the U.S. government became a force for funding, giving huge wartime grants to research groups nationwide. Federal patronage continued expanding in the decades after the war.

Seventy years later, that trend has reversed: As the federal budget shrinks, government investment in scientific research has reached new lows. The conventional models for federal grants, explains University of Iowa immunologist Gail Bishop, “were designed to work such that 25 to 30 percent of studies were funded. Now it’s around 10 percent.”

I’m not sure how to interpret the Canadian situation in light of other jurisdictions. It seems clear that within the Canadian context for government science funding that research funding is on a downward trend and has been going down for a few years (my June 2, 2014 posting). That said, we have another problem and that’s industrial research and development funding (my Oct. 30, 2013 posting about the 2013 OECD scorecard for science and technology; Note: the scorecard is biannual and should be issued again in 2015). Businesses don’t pay for research in Canada and it appears the Conservative and previous governments have not been successful in reversing that situation even marginally.

“No badge? No water!” at the Trottier Observatory opening (Simon Fraser University, Canada)

Being refused a sip of water at a media event is one of those experiences that has you shaking your head in bemusement.  The event was held at Simon Fraser University (SFU)  on Friday, April 17, 2015* (today) between 10:30 and 11:30 am PST to celebrate the opening of the Trottier Observatory and Courtyard. Here’s how it was billed in the April 15, 2015 SFU media advisory I received,

What better way to celebrate the lead up to International Astronomy Week than the grand opening of a new observatory at Simon Fraser University?

Media are cordially invited to the grand opening of the Trottier Observatory and Science Courtyard, happening this Friday, April 17. This facility represents the most recent commitment by Lorne Trottier and Louise Rousselle Trottier towards science education at SFU.

A private event to formally open the observatory and recognize donor support will take place at SFU’s Burnaby campus on Friday, April 17 from 10:30-11:30 a.m. Members of the Trottier Family will be in attendance along with Government and other key VIPs. SFU will also host a public “Star Party” event to celebrate the grand opening during the evening.

SFU Physics professor Howard Trottier and his brother Lorne Trottier will be available for interviews on Friday, April 17th from 9:30-10:15 AM and from 11:30-12:30 PM.

WHAT:

–       Grand-opening of the Trottier Observatory and Science Courtyard

WHEN:

–       Friday, April 17

–       10:30-11:30 AM (Private Opening Ceremony and Site Tour)

7:00-11:00 PM (Public Star Party-currently full)

WHERE:

–       SFU’s Burnaby campus, 8888 University Drive, Burnaby, in front of Strand Hall

I hadn’t realized I was supposed to RSVP and so arrived to learn that I needed a badge to sit in the area for invited guests. Sadly, there was no fence to indicate where I might be free to stand. There were chairs for guests and it was very important that I not stand behind the chairs. This was a special standing zone for people with badges who could sit or stand wherever they liked. I, on the other hand, was allowed to stand back further in some mythical zone (about 18 inches away from the invited zone) where the unwashed were allowed to gaze longingly at the invitees.

Getting back to the observatory, a lot of thought seems to have been put into the design inside and outside. Unfortunately, there aren’t many details available as I can’t find anything more than this (scroll down about 75% of the way for the fact sheet) in the way of backgrounders, An April 12, 2015 article by Shawn Conner for the Vancouver Sun offers some details,

The facility features a large dome housing a 0.7-metre diameter (27-inch) reflector telescope, bigger than the one at the HR MacMillan Space Centre.

The observatory, Trottier [Howard Trottier, physics professor at SFU] says, is much more advanced since he visited his first one while in middle school.

“There’ve been a number of revolutions in telescopes,” the 55-year-old said. “Manufacturing costs are lower, much bigger telescopes are built. Even portable telescopes can be really quite big on a scale that was impossible when I was first into astronomy.”

One of the observatory’s features is a digital feed that community groups and schools across Canada can remotely access and deploy. Schools in B.C. will be invited to tender proposals to run the telescope from wherever they are.

Apparently, the plantings outside the observatory have an astronomical meaning. More immediately communicative are a series of four incised plaques which show the northern and southern skies in the autumn and spring respectively. Stone benches nearby also have meaning although what that might be is a mystery. Perhaps more information will become available online at SFU’s Trottier Observatory webspace.

As for my sip of water, I was gobsmacked when I was refused after standing in the sun for some 40 minutes or more (and a 1 hour transit trip) by Tamra Morley of SFU. Only invited people with badges were to be allowed water. She did note that there was water on campus elsewhere for me, although no directions were forthcoming.

Amusingly, Ms. Morley (who stood about 5’8″ in her shoes)* flung her arms out to either side making a barrier of her body while refusing me. For the record, on a good day I’m 5’4″. I’m also female and over the age of 60. And, there was more than enough water, coffee, and tea for invited and uninvited guests.

These things happen. Sometimes, the person just isn’t having  good day or is overzealous.

One final note, I met Kennedy Stewart, Member of Parliament and the New Democratic Party’s science critic at the event. He’s busy preparing for the upcoming election (either Spring or Fall 2015*) and hoping to get science policy included on the party’s 2015* election platform. I wish him good luck!

* ‘April 17, 2017′ changed to ‘April 17, 2015′; ‘Spring or Fall 2017′ changed to ‘Spring or Fall 2015′; ‘the party’s 2017 election platform’ changed to ‘the party’s 2015′ election platform and (who stood about 5’8″ in her shoes) added on April 17, 2015 at 1630 PST. Yikes, I seem invested in the year 2017.

Canadian Science Policy Conference Call for Proposals

I missed the first call for the 7th annual Canadian Science Policy Conference but luckily it has been extended to either May 1, 2015 (on the website) or May 8, 2015 (in the news release). First, here are some details about where and when the conference is being held (from the Canadian Science Policy Conference (CSPC) April 10, 2015 news release),

The 7th Canadian Science Policy Conference (CSPC) is returning to the nation’s capital after four years. This year the CSPC will be held in Ottawa, Ontario, on November 25-27th, 2015, at the Delta Ottawa City Centre Hotel. The CSPC draws representatives from the business, government, academic and research, media, non-profit, and education sectors across Canada to discuss the present and future of Canadian science, technology, and innovation policy.

Should you be interested in submitting a proposal, here are the themes and formats to consider,

CSPC 2015 themes are:

The Impact of Transformative and Converging Technologies on Private Sector Innovation and Productivity

Big Science in Canada: Realizing the Benefits

Transformation of Science, Society and Research in the Digital Age: Open Science, Participation, Security and Confidentiality

Science and Innovation for Development

Evidence-Based Decision Making: The Challenge of Connecting Science and Policy Making

CSPC 2015 Panel Format (Streams)

Green Paper Discussions

Case Studies

Lightning/TED-type Talks

Interactive Learning Session

Debate Format

At Issue Format

Proposals are welcome from organizations and individuals from across all sectors and disciplines. This year CSPC encourages proposals with a future oriented approach, a focus on solutions to challenges, and using interactive formats.

You can found out more about the evaluation criteria and the formats on the Canadian Science Policy Conference Call for Proposals webpage. As for the deadline, I’m making the assumption that the date on the website (May 1, 2015) is the one to work towards.

Bring back the mandatory Canadian long form census: a long shot private member’s bill in Parliament

It’s been over four years since I last mentioned the mandatory Canadian long form census, a topic which seems to be enjoying some new interest. For those unfamiliar or whose memory of the controversy is foggy, here’s a brief description of the situation. The mandatory aspect of the long form census was abolished by the Conservative government despite serious opposition from core Conservative supporters in the business community and at least two of the Prime Minister’s own cabinet members. There’s more about the discussion at the time in my July 20, 2010 posting (scroll down about 25% of the way).

Thanks to David Bruggeman’s Feb. 1, 2015 post cleverly titled, Counting The Impact Of How A Government Counts, on his Pasco Phronesis blog, I can update the situation (Note: Links have been removed).

Back in 2010, the Canadian government opted to make the long form portion of its 2011 census voluntary.  Researchers who use the data in their work, and policymakers who use the data to make decisions were concerned about how a voluntary survey would impact the resulting data.

As expected, the early analysis suggests that the lower quality data will lead to higher spending. …

Ted Hsu, Liberal member of Parliament (MP), introduced Bill C-626 An Act to amend the Statistics Act (appointment of Chief Statistician and long-form census in Sept. 2014 when it received its first reading. Last week, Jan. 29, 2015, the bill received its second reading and was referred to committee according to this Bill C-626 webpage on the openparliament.ca website. I’m excerpting portions of Ted Hsu’s Jan. 29, 2015 (?)  comments from the House of Commons floor, (from openparliament.ca’s Bill C-626 webpage; Note: Links have been removed),

Today I rise to present my private member’s bill, Bill C-626. It is a bill that reflects the belief that people must have trustworthy information about themselves to govern themselves wisely.

Indeed, the Prime Minister himself said in his recent speech to the United Nations:

…vital statistics are critical.

You can’t manage what you can’t measure.

We parliamentarians should aspire to safeguard the integrity and quality of fundamental information about the people of Canada, whom we endeavour to serve. Is that not what we seek when we pray at the beginning of each day in the House of Commons: Grant us wisdom, knowledge, and understanding to preserve the blessings of this country for the benefit of all, and to make good laws and wise decisions?

However, the quality of national statistics has been compromised. In 2011, the voluntary national household survey replaced the long form census. Researchers have publicly called that survey worthless.

What are some of the effects? In May 2014, the Progressive Conservative premier of New Brunswick said that the elimination of the long form census makes it hard to track the outcomes of the province’s poverty program. That is, it is hard to figure out what New Brunswick got from the money spent to help the poor.

National household survey data were too meaningless to be published for 25% of Canada’s towns and cities because of low response rates, rising to 30% in Newfoundland and Labrador’s and 40% in Saskatchewan.

All levels of government and the private sector have been handicapped by bad data here in Canada. What is worse is that the one mandatory long form census forms an essential anchor that is needed to adjust for errors in many other voluntary surveys. We have lost that data anchor.

Why is the voluntary national household survey so poor? The problem is that certain groups of people tended not to fill out the voluntary survey. Rural residents, single parents, one-person households, renters, the very rich, the poor, and younger people all tended not to complete the national household survey. The result is a biased and misleading picture of Canada and Canadians. This is what scientists call a systematic error. A systematic error, unlike a random error, cannot be corrected by sending out more census forms.

This systematic error is eliminated if everyone who receives a long form survey fills it out. Not filling out the long form census is a disservice to the country. That is why filling out the census should be considered a civic duty.

In 2011, the government went ahead and sent out more voluntary surveys to compensate for the lower response rate. This inflated the cost of the census by approximately $20 million, but it gave us poorer information. Avoiding such waste is another reason we should restore the mandatory long form census.

More importantly, making business and investment decisions and managing the economy and the affairs of the people all require trustworthy information about the people. That is why, just this past summer, the Canadian Chamber of Commerce passed a policy resolution calling for the restoration of the mandatory long form census. That is why, in 2010, groups such as the Canadian Association for Business Economics, the Canadian Federation of Independent Business, the Conference Board of Canada, and the Toronto Region Board of Trade opposed the elimination of the mandatory long form census.

Let me say this again. The Canadian Chamber of Commerce, the Canadian Association for Business Economics, the Canadian Federation of Independent Business, the Conference Board of Canada, and the Toronto Region Board of Trade want the mandatory long form census.

It’s well worth reading all of the comments as they run both pro and con. BTW, kudos to the openparliament.ca website for making information about legislation and the legislative process so accessible!

The Globe & Mail newspaper ran a Nov. 6, 2014 editorial about six weeks after the bill was first introduced,

Bill C-626, a private member’s bill that would restore the mandatory long-form census and shield the Chief Statistician of Canada from political interference, has no chance of becoming law. It was introduced by a Liberal MP, Ted Hsu, and has limited support in Parliament. Even more foreboding, its adoption would require the Harper government [Stephen Harper, Prime Minister, Canada] to do something it loathes: admit an error.

But an error it was – and a now well-documented one – for the government to eliminate the mandatory long-form census in 2010 and replace it with the voluntary National Household Survey.

To be fair, I don’t know of any government that admits its errors easily but, even by those standards, the Harper government seems extraordinarily loathe to do so.

More of the new National Household Survey’s shortcomings come to light in a Jan. 29, 2015 article by Tavia Grant for the Globe & Mail,

The cancellation of the mandatory long-form census has damaged research in key areas, from how immigrants are doing in the labour market to how the middle class is faring, while making it more difficult for cities to ensure taxpayer dollars are being spent wisely, planners and researchers say.

Statistics Canada developed a voluntary survey after Ottawa cancelled the long-form census in 2010. Many had warned that the switch would mean lower response rates and policies based on an eroded understanding of important trends. Now researchers – from city planners to public health units – say they have sifted through the 2011 data and found it lacking.

Their comments come as a private member’s bill to reinstate the mandatory long-form census will be debated in the House of Commons Thursday [Jan. 29, 2015]. The bill, expected to be voted on next week, has slim odds of passing, given the Conservative majority. But it is drawing attention to the impact of the switch, which has created difficulties in determining income-inequality trends, housing needs and whether low-income families are getting adequate services.

The impact isn’t just on researchers. Cities, such as Toronto, say it’s become more expensive and requires more staffing to obtain data that’s of lower quality. …

Sara Mayo, social planner at the Social Planning and Research Council of Hamilton [Ontario], says the result of the census changes has been less data for more money. “In terms of fiscal prudence, this made no sense. Why would any government want to pay more for worse-quality data?” [emphasis mine]

Many, many people noted in 2010 that we would be paying more for lower quality data. Adding insult to injury, the cancellation was not made due to a huge public outcry demanding the end of the mandatory long form census, In fact, as I noted earlier, many of Stephen Harper’s core supporters were not in favour of his initiative.

Moving on to Ted Hsu for a moment, I was interested to note that he will not be running for election later this year (2015) according to an Aug.7, 2014 article on thestar.com website. For now, according to his Wikipedia entry, Hsu is the the Liberal Party’s Critic for Science and Technology, Post-Secondary Education, Federal Economic Development Agency for Southern Ontario and Federal Economic Development Initiative in Northern Ontario. By training, Hsu is a physicist.

While no one seems to hold much hope for Hsu’s bill, there is a timeline provided for its passage through Parliament before the final vote (from tedshu.ca’s C-626 webpage),

First reading: September 22, 2014
First hour of second reading debate: November 7, 2014
Second hour of second reading debate: January 29, 2015
Second reading vote to send the bill to committee: February 4, 2015
Committee hearings: March-April (expected)
Report Stage to vote on any amendments and the report from committee: April 2015 (expected)
Final hour of debate and third reading vote to send the bill to the Senate: April 2015 (expected)

According to the openparliament.ca website the Jan. 29, 2015 reading was the one where the bill was sent to committee but Ted Hsu’s site suggests that today’s Feb. 4, 2015 reading  is when the vote to send the bill to committee will be held.

ETA Feb. 4, 2014 1420 PDT: Apparently, city governments are weighing in the discussion, from a Feb. 3, 2015 article by Tavia Grant and Elizabeth Church for the Globe & Mail,

The debate over the demise of the mandatory long-form census has reached the city level in Canada, where mayors and local officials say the cancellation has hampered the ability to plan and support the needs of their communities.

Toronto Mayor John Tory told The Globe and Mail he plans to raise the issue at the big city mayors’ meeting this week.

Across the country, cities are feeling the impact of the census changes, said Brad Woodside, president of the Federation of Canadian Municipalities and mayor of Fredericton [New Brunswick].

“We’ve heard from our members that the change to the new National Household Survey [NHS] is impacting their ability to effectively plan and monitor the changing needs of their communities,” he said in an e-mailed statement to The Globe. “We support all efforts to increase the reliability of the data from the census.”

A website that lobbies for more accessible data, called Datalibre.ca, lists 11 individuals and organizations that supported the government’s decision to scrap the census and 488 who oppose it. Those who were against the move include 42 cities – from Red Deer to Montreal, Victoria and Fredericton.

Regina’s mayor said the loss of detailed data is a concern. He wants the long-form reinstated.

In Vancouver, city planner Michael Gordon said the end of the mandatory census is a “significant issue,” hampering the ability to analyze infrastructure needs, such as transportation planning, along with housing, particularly affordable housing. Mr. Gordon, president of the Canadian Institute of Planners, has found some data from NHS “fishy,” and says there has been a “very disappointing” impact in the ability to provide sound advice based on factual information.

Unfortunately, I haven’t been able to find any information as to whether today’s vote to send this bill committee was successful or not.

ETA Feb. 5, 2015 0840 PDT: The bill did not make it past the second reading, from a Feb. 4, 2015 news item (posted at 2000 hours EDT) on the Huffington Post,

Liberal MP Ted Hsu’s drive to resurrect the long-form census has come to an end.

His private member’s bill to bring back the long-form census and bolster the independence of the chief statistician was voted down on second reading in the Commons on Wednesday.

Part 2 (b) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Carrying on from part 2 (a) of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC).

One of the most intriguing aspects of this assessment was the reliance on an unpublished inventory of Canadian science outreach initiatives (informal science education) that was commissioned by the Korean Foundation for the Advancement of Science and Creativity,

The system of organizations, programs, and initiatives that supports science culture in any country is dynamic. As a result, any inventory provides only a snapshot at a single point in time, and risks quickly becoming out of date. No sustained effort has been made to track public science outreach and engagement efforts in Canada at the national or regional level. Some of the Panel’s analysis relies on data from an unpublished inventory of public science communication initiatives in Canada undertaken in 2011 by Bernard Schiele, Anik Landry, and Alexandre Schiele for the Korean Foundation for the Advancement of Science and Creativity (Schiele et al., 2011). This inventory identified over 700 programs and organizations across all provinces and regions in Canada, including over 400 initiatives related to museums, science centres, zoos, or aquariums; 64 associations or NGOs involved in public science outreach; 49 educational initiatives; 60 government policies and programs; and 27 media programs. (An update of this inventory completed by the Panel brings the total closer to 800 programs.) The inventory is used throughout the chapter [chapter five] to characterize different components of the Canadian system supporting public science outreach, communication, and engagement. (p. 130 PDF; p. 98 print)

I’m fascinated by the Korean interest and wonder if this due to perceived excellence or to budgetary considerations. The cynic in me suspects the Korean foundation was interested in the US scene but decided that information from the Canadian scene would be cheaper to acquire and the data could be extrapolated to give a perspective on the US scene.

In addition to the usual suspects (newspapers, television, radio, science centres, etc.), the Expert Panel did recognize the importance of online science sources (they would have looked foolish if they hadn’t),

Canadians are increasingly using the internet to seek out information relating to science. This activity can take the form of generalized searches about science-related issues or more targeted forms of information acquisition. For example, Canadians report using the internet to seek out information on health and medical issues an average of 47 times a year, or nearly every week. Other forms of online exposure to scientific content also appear to be common. For example, 46% of Canadians report having read a blog post or listserv related to science and technology at least once in the last three months, and 62% having watched an online video related to science and technology.

An increasing reliance on the internet as the main source of information about science and technology is consistent with the evolution of the media environment, as well as with survey data from other countries. Based on the Panel’s survey, 17% of Canadians, for example, report reading a printed newspaper daily, while 40% report reading about the news or current events online every day. (p. 13/2 PDF; p. 100/1 print)

In common with the rest of the world, Canadians are producing and enjoying science festivals,

In Canada there are two established, large-scale science festivals. Science Rendezvous [founded in 2008 as per its Wikipedia entry] takes place in about 20 cities across the country and combines a variety of programming to comprise a day-long free event (Science Rendezvous, 2013).

The annual Eureka! Festival in Montréal (see Figure 5.6 [founded in 2007 as per its program list]) has over 100 activities over three days; it attracted over 68,000 attendees in 2012 (Eureka! Festival, 2013). More science festivals have recently been created. The University of Toronto launched the Toronto Science Festival in fall 2013 (UofT, 2013), and Beakerhead, a new festival described as a “collision of art and culture, technology, and engineering,” was launched in 2013 in Calgary (Beakerhead, 2013). Two Canadian cities have also recently won bids to host STEMfest (Saskatoon in 2015 and Halifax in 2018), an international festival of science, technology, engineering, and mathematics (Global STEM States, 2014). (pp. 145/6 PDF; pp. 113/4 PDF)

The assessment notes have a grand total of five radio and television programmes devoted to science: The Nature of Things, Daily Planet, Quirks and Quarks, Découverte, and Les années lumière (p. 150 PDF; p. 118 print) and a dearth of science journalism,

Dedicated science coverage is notably absent from the majority of newspapers and other print journalism in Canada. As shown in Table 5.3, none of the top 11 newspapers by weekly readership in Canada has a dedicated science section, including nationals such as The Globe and Mail and National Post. Nine of these newspapers have dedicated technology sections, which sometimes contain sub-sections with broader coverage of science or environment stories; however, story coverage tends to be dominated by technology or business (or gaming) stories. Few Canadian newspapers have dedicated science journalists on staff, and The Globe and Mail is unique among Canadian papers in having a science reporter, a medicine and health reporter, and a technology reporter. (p. 152 PDF; p. 120 print)

Not stated explicitly in the assessment is this: those science and technology stories you see in the newspaper are syndicated stories, i.e., written by reporters for the Associated Press, Reuters, and other international press organizations or simply reprinted (with credit) from another newspaper.

The report does cover science blogging with this,

Science blogs are another potential source of information about developments in science and technology. A database compiled by the Canadian Science Writers’ Association, as of March of 2013, lists 143 Canadian science blogs, covering all areas of science and other aspects of science such as science policy and science culture (CSWA, 2013). Some blogs are individually authored and administered, while others are affiliated with larger networks or other organizations (e.g., Agence Science-Presse, PLOS Blogs). Canadian science blogger Maryse de la Giroday has also published an annual round-up of Canadian science blogs on her blog (www.frogheart.ca) for the past three years, and a new aggregator of Canadian science blogs was launched in 2013 (www.scienceborealis.ca). [emphases mine]

Data from the Panel’s survey suggest that blogs are becoming a more prominent source of information about science and technology for the general public. As noted at the beginning of the chapter, 46% of Canadians report having read a blog post about science or technology at least once in the past three months. Blogs are also influencing the way that scientific research is carried out and disseminated. A technical critique in a blog post by Canadian microbiologist Rosie Redfield in 2010, for example, catalyzed a widely publicized debate on the validity of a study published in Science, exploring the ability of bacteria to incorporate arsenic into their DNA. The incident demonstrated the potential impact of blogs on mainstream scientific research. CBC highlighted the episode as the Canadian science story of the year (Strauss, 2011), and Nature magazine identified Redfield as one of its 10 newsmakers of the year in 2011 as a result of her efforts to replicate the initial study and publicly document her progress and results (Hayden, 2011).

The impact of online information sources, however, is not limited to blogs, with 42% of Canadians reporting having heard about a science and technology news story though social media sources like Twitter and Facebook in the last three months. And, as noted earlier, the internet is often used to search for information about specific science and technology topics, both for general issues such as climate change, and more personalized information on medical and health issues.(pp. 153/4 PDF; pp. 121/2 print)

Yes, I got a shout out as did Rosie Redfield. We were the only two science bloggers namechecked. (Years ago, the Guardian newspaper was developing a science blog network and the editor claimed he couldn’t find many female science bloggers after fierce criticism of its first list of bloggers. This was immediately repudiated not only by individuals but someone compiled a list of hundreds of female science bloggers.) Still, the perception persists and I’m thrilled that the panel struck out in a different direction. I was also pleased to see Science Borealis (a Canadian science blog aggregator) mentioned. Having been involved with its founding, I’m also delighted its first anniversary was celebrated in Nov. 2014.

I doubt many people know we have a science press organization in Canada, Agence Science-Presse, but perhaps this mention in the assessment will help raise awareness in Canada’s English language media,

Founded in 1978 with the motto Parce que tout le monde s’intéresse à la science (“because everyone is interested in science”), Agence Science-Presse is a not-for-profit organization in Quebec that supports media coverage of science by distributing articles on scientific research or other topical science and technology issues to media outlets in Canada and abroad. The organization also supports science promotion activities aimed at youth. For example, it currently edits and maintains an aggregation of blogs designed for young science enthusiasts and science journalists (Blogue ta science). (p. 154 PDF; p. 122)

The final chapter (the 6th) of the assessment makes five key recommendations for ‘Cultivating a strong science culture':

  1. Support lifelong science learning
  2. Make science inclusive
  3. Adapt to new technologies
  4. Enhance science communication and engagement
  5. Provide national or regional leadership

Presumably the agriculture reference in the chapter title is tongue-in-cheek. Assuming that’s not one of my fantasies, it’s good to see a little humour.

On to the first recommendation, lifelong learning,

… Science centres and museums, science programs on radio and television, science magazines and journalism, and online resources can all help fulfil this function by providing accessible resources for adult science learning, and by anticipating emerging information needs based on topical issues.

Most informal science learning organizations already provide these opportunities to varying degrees; however, this conception of the relative roles of informal and formal science learning providers differs from the traditional understanding, which often emphasizes how informal environments can foster engagement in science (particularly among youth), thereby triggering additional interest and the later acquisition of knowledge (Miller, 2010b). [emphasis mine] Such a focus may be appropriate for youth programming, but neglects the role that these institutions can play in ongoing education for adults, who often seek out information on science based on specific, well-defined interests or needs (e.g., a medical diagnosis, a newspaper article on the threat of a viral pandemic, a new technology brought into the workplace) (Miller, 2012). [emphases mine] Informal science learning providers can take advantage of such opportunities by anticipating these needs, providing useful and accessible information, and then simultaneously building and deepening knowledge of the underlying science through additional content.

I’m glad to see the interest in adult informal science education although the emphasis on health/medical and workplace technology issues suggests the panel underestimates, despite the data from its own survey, Canadians’ curiosity about and interest in science and technology. The panel also underestimates the tenacity with which many gatekeepers hold to the belief that no one is interested in science. It took me two years before a local organizer would talk to me about including one science-themed meeting in his programme (the final paragraph in my April 14, 2014 post describes some of the process  and my April 18, 2014 post describes the somewhat disappointing outcome). In the end, it was great to see a science-themed ‘city conversation’ but I don’t believe the organizer found it to be a success, which means it’s likely to be a long time before there’s another one.

The next recommendation, ‘Making science inclusive’, is something that I think needs better practice. If one is going to be the change one wants to see that means getting people onto your expert panels that reflect your inclusiveness and explaining to your audience how your expert panel is inclusive.

The ‘Adapting to new technologies’ recommendation is where I expected to see some mention of the social impact of such emerging technologies as robotics, nanotechnology, synthetic biology, etc. That wasn’t the case,

Science culture in Canada and other countries is now evolving in a rapidly changing technological environment. Individuals are increasingly turning to online sources for information about science and technology, and science communicators and the media are also adapting to the new channels of communication and outreach provided over the internet. As people engage more with new forms of technology in their home and work lives, organizations may be able to identify new ways to take advantage of available technologies to support learning and foster science interest and engagement. At the same time, as noted in Chapter 2, this transition is also challenging traditional models of operation for many organizations such as science centres, museums, and science media providers, forcing them to develop new strategies.

Examples of the use of new technologies to support learning are now commonplace. Nesta, an innovation-oriented organization based in the United Kingdom, conducted a study investigating the extent to which new technologies are transforming learning among students (Luckin et al., 2012) (p. 185 PDF; p. 153 print)

Admittedly, the panel was not charged with looking too far into the future but it does seem odd that in a science culture report there isn’t much mention (other than a cursory comment in an early chapter) of these emerging technologies and the major changes they are bringing with them. If nothing else, the panel might have wanted to make mention of artificial intelligence how the increasing role of automated systems may be affecting science culture in Canada. For example, in my July 16, 2014 post I made described a deal Associated Press (AP) signed with a company that automates the process of writing sports and business stories. You may well have read a business story (AP contracted for business stories) written by an artificial intelligence system or, if you prefer the term, an algorithm.

The recommendation for ‘Enhancing science communication and engagement’ is where I believe the Expert Panel should be offered a bouquet,

… Given the significance of government science in many areas of research, government science communication constitutes an important vector for increasing public awareness and understanding about science. In Canada current policies governing how scientists working in federal departments and agencies are allowed to interact with the media and the public have come under heavy criticism in recent years …

Concerns about the federal government’s current policies on government scientists’ communication with the media have been widely reported in Canadian and international
press in recent years (e.g., Ghosh, 2012; CBC, 2013c; Gatehouse, 2013; Hume, 2013; Mancini, 2013; Munro, 2013). These concerns were also recently voiced by the editorial board of Nature (2012), which unfavourably compared Canada’s current approach with the more open policies now in place in the United States. Scientists at many U.S. federal agencies are free to speak to the media without prior departmental approval, and to
express their personal views as long as they clearly state that they are not speaking on behalf of the government. In response to such concerns, and to a formal complaint filed by the Environmental Law Clinic at the University of Victoria and Democracy Watch, on April 2, 2013 Canada’s Information Commissioner launched an investigation into whether current policies and policy instruments in seven federal departments and agencies are “restricting or prohibiting government scientists from speaking with or sharing research with the media and the Canadian public” (OICC, 2013).

Since these concerns have come to light, many current and former government scientists have discussed how these policies have affected their interactions with the media. Marley Waiser, a former scientist with Environment Canada, has spoken about how that department’s policies prevented her from discussing her research on chemical pollutants in Wascana Creek near Regina (CBC, 2013c). Dr. Kristi Miller, a geneticist with the Department of Fisheries and Oceans, was reportedly prevented from speaking publicly about a study she published in Science, which investigated whether a viral infection might be the cause of declines in Sockeye salmon stocks in the Fraser River (Munro, 2011).

According to data from Statistics Canada (2012), nearly 20,000 science and technology professionals work for the federal government. The ability of these researchers to communicate with the media and the Canadian public has a clear bearing on Canada’s science culture. Properly supported, government scientists can serve as a useful conduit for informing the public about their scientific work, and engaging the public in discussions about the social relevance of their research; however, the concerns reported above raise questions about the extent to which current federal policies in Canada are limiting these opportunities for public communication and engagement. (pp. 190/1 PDF; p. 158/9 print)

Kudos for including the information and for this passage as well,

Many organizations including science centres and museums, research centres, and even governments may be perceived as having a science promotion agenda that portrays only the benefits of science. As a result, these organizations are not always seen as promoters of debate through questioning, which is a crucial part of the scientific process. Acknowledging complexity and controversy is another means to improve the quality of public engagement in science in a range of different contexts. (p. 195 PDF; p. 163 print)

One last happy note, which is about integrating the arts and design into the STEM (science, technology, engineering, and mathematics communities),

Linking Science to the Arts and Design U.S. advocates for “STEM to STEAM” call for an incorporation of the arts in discussions of science, technology, engineering, and mathematics in an effort to “achieve a synergistic balance” (Piro, 2010). They cite positive outcomes such as cognitive development, reasoning skills, and concentration abilities. Piro (2010) argues that “if creativity, collaboration, communication, and critical thinking — all touted as hallmark skills for 21st-century success — are to be cultivated, we need to ensure that STEM subjects are drawn closer to the arts.” Such approaches offer new techniques to engage both student and adult audiences in science learning and engagement opportunities.

What I find fascinating about this STEM to STEAM movement is that many of these folks don’t seem to realize is that until fairly recently the arts and sciences recently have always been closely allied.  James Clerk Maxwell was also a poet, not uncommon amongst 19th century scientists.

In Canada one example of this approach is found in the work of Michael R. Hayden, who has conducted extensive genetic research on Huntington disease. In the lead-up to the 2000 Human Genome Project World Conference, Hayden commissioned Vancouver’s Electric Company Theatre to fuse “the spheres of science and art in a play that explored the implications of the revolutionary technology of the Human Genome Project” (ECT, n.d.). This play, The Score, was later adapted into a film. Hayden believes that his play “transforms the scientific ideas explored in the world of the laboratory into universal themes of human identity, freedom and creativity, and opens up a door for a discussion between the scientific community and the public in general” (Genome Canada, 2006). (p. 196 PDF; p. 164 print)

I’m not sure why the last recommendation presents an either/or choice, ‘Providing national or regional leadership’, while the following content suggests a much more fluid state,

…  it should be recognized that establishing a national or regional vision for science culture is not solely the prerogative of government. Such a vision requires broad support and participation from the community of affected stakeholders to be effective, and can also emerge from that community in the absence of a strong governmental role.

The final chapter (the seventh) restates the points the panel has made throughout its report. Unexpectedly, part 2 got bigger, ’nuff said.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as a Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

Science Culture: Where Canada Stands; an expert assessment, Part 3 of 3: where were …?

I did have some major issues with this report. I’ve already touched on the makeup of the Expert Panel in my Feb. 22, 2013 post (Expert panel to assess the state of Canada’s science culture—not exactly whelming). There could have been more women on the panel (also noted in part 2 of this commentary) and they could have included a few culture makers (writers, visual artists, performing artists). Also mentioned in part 2 of this commentary, it would have been nice to have seen a few people from the aboriginal communities and a greater age range represented on the panel or on advisory committees.

In a discussion about science culture, I am somewhat shocked that the Situating Science; Science in Human Contexts research cluster was never mentioned. From the programme’s About Us page,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

A Social Sciences and Humanities Research Council (SSHRC) seven-year programme devoted to Canada’s science culture and it wasn’t mentioned??? An oversight or a symptom of a huge disconnection within Canada’s science culture? I vote for disconnection but please do let me know what you think in the comments section.

As for the assessment’s packaging (cover, foreword, and final words), yikes! The theme colour (each CAC assessment has a theme colour; their policing assessment is blue) for Canada’s science culture is red, perhaps evoking the Canadian maple leaf on the flag. The picture on the cover depicts a very sweet, blond(e), white child with glasses too big for his/her face rimmed in thick black. Glasses are a long established symbol for nerds/intellectual people. So, it would seem Canada’s science culture is blond, nerdy, and, given the child’s clothing, likely male, though in this day and age not definitively so. Or perhaps the child’s hair is meant to signify the maple leaf on the flag with a reversed field (the cover) being red and the leaf being white.

The problem here is not a single image of a blond(e) child, the problem is the frequency with which blond(e) children are used to signify Canadians. Thankfully, advertising images are becoming more diverse but there’s still a long way to go.

There are also issues with the beginning and the end of the report. Two scientists bookend the report: both male, both physicists, one from the UK and the other from the US.

C. P. Snow and his 1959 lecture ‘Two Cultures’ about science and society is mentioned by the Expert Panel’s Chair, Arthur Carty (himself from the UK). In his foreword/message, Carty speculates about how C. P. Snow would respond to today’s science culture environment in a fashion that brings to mind William Lyon MacKenzie King, Canada’s Prime Minister from December 1921 – June 1926;  September 1926 – August 1930; and October 1935 – November 1948, Mackenzie King regularly communed with the dead. From the Wikipedia entry on William Lyon Mackenzie King (Note: Links have been removed),

Privately, he was highly eccentric, with his preference for communing with spirits, using seances and table-rapping, including those of Leonardo da Vinci, Sir Wilfrid Laurier, his dead mother, his grandfather William Lyon Mackenzie, and several of his Irish Terrier dogs, all named Pat except for one named Bob. He also claimed to commune with the spirit of the late President Roosevelt. He sought personal reassurance from the spirit world, rather than seeking political advice. Indeed, after his death, one of his mediums said that she had not realized that he was a politician. King asked whether his party would win the 1935 election, one of the few times politics came up during his seances. His occult interests were kept secret during his years in office, and only became publicized later. Historians have seen in his occult activities a penchant for forging unities from antitheses, thus having latent political import. In 1953, Time stated that he owned—and used—both an Ouija board and a crystal ball.

However, historian Charles Perry Stacey, author of the 1976 book A Very Double Life, which examined King’s secret life in detail, with work based on intensive examination of the King diaries, concluded, despite long-running interests in the occult and spiritualism, that King did not allow his beliefs to influence his decisions on political matters. Stacey wrote that King entirely gave up his interests in the occult and spiritualism during World War II.[80]

At the end of the report, Carty quotes Brian Greene, a US physicist,  p. 218 (PDF) thereby neatly framing Canada between the UK and the US,

However, as stated by physicist Brian Greene (2008), one of the simplest reasons for developing a stronger science culture is that doing so helps foster a fuller, richer experience of science itself:

Science is a way of life. Science is a perspective. Science is the process that takes us from confusion to understanding in a manner that’s precise, predictive, and reliable — a transformation, for those lucky enough to experience it, that is empowering and emotional. To be able to think through and grasp explanations — for everything from why the sky is blue to how life formed on earth — not because they are declared dogma, but because they reveal patterns confirmed by experiment and observation, is one of the most precious of human experiences.

Couldn’t we have found one Canadian thinker or perhaps a thinker from somewhere else on the globe? Assuming there’s a next time, I hope the approach evolves to something more reflective of Canadian society.

In the meantime there is more, much more in the assessment  including a discussion of science-based policy and including the arts to turn STEM (science, technology, engineering, and mathematics) to STEAM and I encourage you take a look at either the full version, the executive summary, or the abridged version, all of which can be found here.

Science Culture: Where Canada Stands; an expert assessment, Part 1 of 3: Canadians are doing pretty well

After almost two years, Science Culture: Where Canada Stands (256 pp. PDF; 222 pp. print) was released in August  2014 by the Council of Canadian Academies (CAC). The assessment as the CAC calls these reports was first mentioned here in a Dec. 19, 2012 post about the questions being asked and with a follow up Feb. 22, 2013 post when its Expert Panel was announced.

I believe this is the first document of its kind, i.e., assessing science culture in Canada, and it is very welcome. I have mixed feelings about the report; there’s some excellent content packaged in a rather unfortunate manner. (BTW, I was chuffed to find that my blog and I were mentioned in it.)

I will start with the good stuff first. The CAC has provided an infographic of how Canada compares to other countries where science culture is concerned,

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20rankings-cmyk.jpg]

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20rankings-cmyk.jpg]

It’s encouraging to see how well we’re doing globally although the report does note that some countries don’t have data for comparison and other countries’ may have older data (Canadian data gathered for this report is relatively recent as per one of the excerpts [further in this post] from Ivan Semeniuk’s August 28, 2014 Globe and Mail article) so the rankings may not reflect a truly accurate global ranking.

Here’s another infographic; this one describing Canadians’ attitudes towards and beliefs about science and technology,

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20national%20percentages%20infographic-cmyk.jpg]

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20national%20percentages%20infographic-cmyk.jpg]

As encouraging as these infographics are, Ivan Semeniuk (also namechecked in the report) notes some of the concerns broached in the assessment in his Aug, 28, 2014 Globe and Mail article,

From knowing what a molecule is to endorsing government support for basic research, Canadians as a whole display a clearer understanding of and a more positive attitude toward science than people in most other developed countries.

Overall, the report’s message is a positive one for Canada. “Canadians rank quite highly when it comes to science knowledge, attitudes and engagement in comparison with other countries in the world,” said Arthur Carty, chair of the panel that produced the report and a former national science adviser.

But despite high levels of interest, the report also reveals that in practical terms, most Canadians have an arm’s-length relationship with science. [emphasis mine] Only 20 per cent of first university degrees in Canada are awarded in science and engineering fields and only 30 per cent of employed Canadians work at science and technology related jobs – fewer than in the majority of other countries with a comparable standard of living.

It seems Semeniuk and the expert panel subscribe to the notion that formal science education is the only true measure of a ;close’ relationship with science. Neither party seems to take much comfort in the fact that Canadians keep up with science once their formal education (scientific or otherwise) is over (from Semeniuk’s article,

Among the most striking results from the survey is that Canada ranks first in science literacy, with 42 per cent of Canadians able to read and understand newspaper stories detailing scientific findings.

The comparatively high interest in science that Canadians express suggests they may be doing better than most at keeping up with the discoveries that have come along since their formal education ended. [emphasis mine] An emphasis on lifelong learning is important for cultivating a national science culture, the report’s authors say, because the leading edge of research is driven by knowledge that was not available 10 or 20 years ago.

The comparatively recent Canadian data, as mentioned earlier, may not provide a true picture of Canada’s ranking (from Semeniuk’s article),

But ongoing research by Dr. Miller [Jon Miller, a panel member and director of the International Center for the Advancement of Scientific Literacy at the University of Michigan] and others suggest that science literacy is on the rise everywhere, and therefore Canada’s high ranking could also be a function of how recently it was surveyed relative to other countries. Whatever the reason, the report’s numbers suggest there is more to be learned about precisely how Canadians are relating to science and how that is changing, says broadcaster and author Jay Ingram, who was also on the panel.

Getting on to the report/assessment proper, I do like the note of skepticism about the impact a strong science culture has on society given the somewhat hysterical claims made by some adherents to this philosophy,

Many claims have been advanced about the impacts of a strong science culture. Such claims are often plausible given the extent to which science and technology feature in most aspects of individual and social life. However, there is limited empirical evidence to substantiate these claims, and in some cases that evidence points to more complexity in the way these impacts are manifested than is typically acknowledged. Much of this evidence suggests that, while a stronger science culture may contribute to a range of personal or social benefits, it is not always in itself sufficient to ensure the realization of those benefits.(p. 24 PDF; p. xxii print]

It’s a thoughtfulness I very much appreciate.

The report offers a definition of science that could include social science but, given a rather egregious omission (more about that in part 3 of this commentary), does not appear to do so,

Science is a systematic means of discovery and exploration that enriches our collective understanding of the world and universe around us. It is a fundamental part of Canadian culture and society, implicated in nearly every aspect of individual and social life. (p. 34 PDF; p. 2 print)

I was intrigued to learn the term ‘science culture’ is specific to Canada,

One of the first challenges faced by the Panel was to define science culture. While often used in Canadian discussions of science and technology policy, the term is rarely defined with precision. It is most frequently used to convey the degree to which society and the public are broadly engaged in, and supportive of, science. For example, at the launch of Canada’s National Science and Technology Week in 1990, the then Minister for Science, William Winegard, stated that “a science culture means a society that embraces science, involves itself in the development, application and use of new technologies, and celebrates national achievements [in science] with pride and enthusiasm” (National Science and Technology Week, 1990).

The use of this term in Canada partly reflects Canada’s bilingual heritage. In other English-speaking countries, terms such as science literacy, public understanding of science, public engagement in science, and public communication of science are more common (Durant, 1993). These terms are not synonymous with each other, or with science culture. However, they are related concepts, representing a range of perspectives that have been applied to the study of how the public relates to, interacts with, and develops views about science and technology. Patterns in the use of these terms in the literature over time also reflect an evolution in the way in which scholars, scientists, and policy-makers discuss science and society issues (Bauer, 2009). In French, the preferred term is generally la culture scientifique or la culture scientifique et technique, and the use of these terms in Quebec may have contributed to the use of the English science culture throughout Canada.

Compared with science literacy or public understanding of science, science culture is a more expansive concept, encompassing different aspects of the relationship between society and science. (p. 39 PDF; p, 7 print)

Globally, discussions about science are necessary,

Public discussions about the role of science in society are now dominated by a number of critical issues. Debates about nuclear power, climate change, biotechnology, nanotechnology, and stem cells are common across many countries and have been frequently the source of both national and international studies. For example, concern about anthropogenic global warming has generated a significant amount of research on public perception and attitudes related to science and technology. … The global reach of many of these issues requires international policy responses involving coordination and alignment of many governments. Both government actions and media coverage of these issues can have an impact on public perception of science and technology on an international scale.

Specific events abroad can also have a major impact on science culture around the world. The crisis at the Fukushima nuclear plant in Japan in 2011, for example, caused widespread concern over nuclear safety across many countries and significantly affected public perception of the safety of these technologies (Kim et al., 2013). In Canada this event precipitated a review of all major nuclear facilities and the development of a four-year action plan to strengthen the safety of the nuclear industry (Canadian Nuclear Association, 2012; Canadian Nuclear Safety Commission, 2012) (pp. 46/7 PDF; pp. 14/5 print)

In a description of how new technologies are changing society and affecting the practice of science, the expert panel introduces the notion of ‘citizen science’ (Note: I agree with the notion and have a category for citizen science on this blog),

One such impact concerns how the public can participate in and contribute to scientific work. Canadian physicist Michael Nielsen argues that new possibilities for large-scale scientific collaboration resulting from web-based platforms can potentially transform the practice of science due to changes in how scientists collaborate, and to the development of online platforms for engaging the public in scientific research (Nielsen, 2012). “Citizen science” initiatives allow the public to contribute to many kinds of scientific activity, often through collaborative, web-based platforms … (p. 47 PDF; p. 15 print)

I was pleased to see that the influence of popular culture was also mentioned although I did feel it was a bit lacking,

First, popular culture can influence attitudes towards science and technology and perceptions of scientists and their role in society. The foundation of science is the acquisition of knowledge. Ungar (2000) argues that in some segments of society, attaining highly specialized knowledge is viewed as elitist. [emphasis mine] As such, it is sometimes popular to denigrate intellectualism in favour of a more egalitarian and conversational ethos, which may devalue the contributions of scientists. In a review of U.S. children’s educational science programs, Long and Steinke (1996) report that images of science have emphasized characteristics such as truth, fun, accessibility, and ubiquity. Scientists were portrayed through several stereotypes in these shows, ranging from being omniscient and elite to eccentric and antisocial. (p. 51 PDF; p. 19 print)

The panel adopted a rather interesting approach to a fairly complex topic and, in my view, gave it shorter shrift than it deserved. Frankly, the view that the science community is elitist has some merit. How do you like someone using the term ‘dumbing down’ in your presence?

Getting back to the assessment, I was happy to see that Québec was more or less given its due,

As the only Canadian province with a predominantly French-speaking population, Quebec has its own organizations dedicated to the promotion of science in the public (e.g., Association francophone pour le savoir); its own set of French- language science media organizations and programs (e.g., Agence Science-Presse, “Découverte,” “Le Code Chastenay”); French-language science museums and centres (e.g., Centre des sciences de Montréal); science festivals (e.g., Festival Eurêka!); and many other organizations and programs involved in supporting science culture and communication for the Francophone population. The formal science education and training system also differs in Quebec, given the role of institutions such as the collèges d’enseignement général et professionnel (CEGEP). The historical development of science culture in Quebec is also distinct from that of Anglophone Canada, more firmly rooted in French and European discourses about science, culture, and cultural policies (Chartrand et al., 1987; Schiele et al., 1994). As a result of these differences, past inquiries into science culture in Canada have often treated Quebec as separate from the rest of Canada, and the Quebec government has sponsored its own investigations into science culture in the province (e.g., CST, 2002a). (p. 53 PDF; p. 21 print)

I believe it’s the province with the most support of any for science culture and it cannot be an accident that Seed (a former Canadian and once successful English language science magazine and enterprise) was founded in Montréal, Québec.

The report also notes Aboriginal contributions to Canadian science culture,

Canada’s Aboriginal cultures also play a role in defining the science culture landscape in Canada, both through their own knowledge traditions and their impacts on science education and outreach. Aboriginal knowledge has also been incorporated into some provincial science curricula, and some science textbooks now teach students about both scientific and Aboriginal knowledge systems, as a result of the collaboration between ministries of education, Aboriginal Elders, and one Canadian publisher (Aikenhead & Elliott, 2010). Aboriginal knowledge and traditions have also had impacts on scientific research in Canada, with biologists, ecologists, climatologists, and geologists incorporating Aboriginal knowledge in their research in a number of ways … (pp. 53/4 PDF; pp. 21/2 print)

It would have been nice to know if any experts of Aboriginal origin were included in the expert panel and/or in the group of reviewers as it would have been nice to see more women in those groups. If you’re going to discuss diversity and opening things up then perhaps you should consider ‘being the change’ rather than simply discussing it.

The report also mentioned Canada’s ageing population never once suggesting there might be ways to integrate that population into the larger science culture. The report’s bias was definitely youthful. Again on the subject of ‘being the change’, it might have been interesting to include youth and seniors in an advisory capacity to the panel.

On to part 2 and part 3.