Category Archives: science policy

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.

Deadline extension (travel grants and poster abstracts) for alternate testing strategies (ATS) of nanomaterials workshop

It seems there have been a couple of deadline extensions (to August 1, 2014) for the September 15-16, 2014 ‘Workshop to Explore How a Multiple Models Approach can Advance Risk Analysis of Nanoscale Materials’ in Washington, DC (first mentioned in my July 10, 2014 posting featuring a description of the workshop). You can go here to submit a poster abstract (from any country) and you can go here if you’re a student or young professional (from any country) in search of a $500 travel award.

I managed to speak to one of the organizers, Lorraine Sheremeta, (Assistant Director, Ingenuity Lab, University of Alberta and co-author a July 9, 2014 Nanowerk Spotlight article about the workshop). Lorraine (Lori) kindly spoke to me about the upcoming workshop, which she described as an academic conference,.

As I understand what she told me, the hosts for the September 15-16, 2014 Workshop to Explore How a Multiple Models Approach can Advance Risk Analysis of Nanoscale Materials in Washington, DC want to attract a multidisciplinary group of people to grapple with a few questions. First, they want to establish a framework for establishing which are the best test methods for nanomaterials. Second, they are trying to move away from animal testing and want to establish which methods are equal to or better than animal testing. Thirdly, they want to discuss what they are going to do with the toxicological data  that we have  been collecting on nanomaterials for years now.

Or, as she and her colleague from the Society of Risk Analysis (Jo Anne Shatkin) have put in it in their Nanowerk Spotlight article:

… develop a report on the State of the Science for ATS for nanomaterials, catalogue of existing and emerging ATS [alternate testing strategies] methods in a database; and develop a case study to inform workshop deliberations and expert recommendations

The collaborative team behind this event includes, the University of Alberta’s Ingenuity Lab, the Society for Risk Analysis, Environment Canada, Health Canada, and the Organization for Economic Co-operation and Development (OECD) Working Party on Manufactured Nanomaterials (WPMN) .

The speaker lineup isn’t settled at this time although they have confirmed Vicki Stone of Heriot-Watt University in Scotland (from her university bio page),

Vicki Stone, Professor of Toxicology, studies the effects of nanomaterials on humans and environmentally relevant species.  Current research projects investigate the mechanism of toxicity of a range of nanomaterials in cells of the immune system (macrophages and neutrophils), liver (hepatocytes) , gastrointestinal tract, blood vessels (endothelium) and lung.  She is interested in interactions between nanomaterials, proteins and lipids, and how this influences subsequent toxicity.  Current projects also develop in vitro alternatives using microfluidics as well as high resolution imaging of individual nanomaterials in 3D and over time.  In addition Vicki collaborates with ecotoxicologists to investigate the impacts of nanomaterials on aquatic organisms. Vicki coordinated a European project to identify the research priorities to develop an intelligent testing strategy for nanomaterials (www.its-nano.eu).

Vicki is Director of the Nano Safety Research Group at Heriot-Watt University, Edinburgh, and Director of Toxicology for SAFENANO (www.safenano.org). She has acted as the Editor-in-chief of the journal Nanotoxicology (http://informahealthcare.com/nan) for 6 years (2006-2011). Vicki has also published over 130 publications pertaining to particle toxicology over the last 16 years and has provided evidence for the government commissioned reports published by the Royal Society (2003) and the on Environmental Pollution (2008).  Vicki was previously a member of the UK Government Committee on the Medical Effects of Air Pollution (COMEAP) and an advisory board member for the Center for the Environmental Implications of NanoTechnology (CEINT; funded by the US Environmental Protection Agency)).

A representative from PETA (People for the Ethical Treatment of Animals) will also be speaking. I believe that will be Amy Clippinger (from the PETA website’s Regulatory Testing webpage; scroll down about 70% of the way),

Science adviser Amy Clippinger has a Ph.D. in cellular and molecular biology and genetics and several years of research experience at the University of Pennsylvania.

PETA representatives have been to at least one other conference on the topic of nano, toxicology, and animal testing as per my April 24, 2014 posting about NANOTOX 2014 in Turkey,

Writing about nanotechnology can lead you in many different directions such as the news about PETA (People for the Ethical Treatment of Animals) and its poster presentation at the NanoTox 2014 conference being held in Antalya, Turkey from April 23 – 26, 2014. From the April 22, 2014 PETA news release on EurekAlert,

PETA International Science Consortium Ltd.’s nanotechnology expert will present a poster titled “A tiered-testing strategy for nanomaterial hazard assessment” at the 7th International Nanotoxicology Congress [NanoTox 2014] to be held April 23-26, 2014, in Antalya, Turkey.

Dr. Monita Sharma will outline a strategy consistent with the 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy,” which recommends use of non-animal methods involving human cells and cell lines for mechanistic pathway–based toxicity studies.

There is a lot of interest internationally in improving how we test for toxicity of nanomaterials. As well, the drive to eliminate or minimize as much as possible the use of animals in testing seems to be gaining momentum.

Good luck to everyone submitting a poster abstract and/or an application for a travel grant!

In case you don’t want to scroll up, the SRA nano workshop website is here.

Canada-US joint Regulatory Cooperation Council nanotechnology initiative completed and Canada endorses OECD nanomaterials recommendation

Thanks to Lynn Bergeson’s July 9, 2014 posting on Nanotechnology Now, I learned the Canada-US joint Regulatory Cooperation Council (RCC) nanotechnology initiative has completed its work and will be filing final reports later this summer (2014).

I have featured the RCC here in at least three postings, a Dec. 3, 2012 posting, a June 26, 2013 posting, and a January 21, 2014 posting. Briefly, the RCC was first announced in 2011 and is intended to harmonize Canadian and US regulatory frameworks in a number of areas including, agriculture and food, transportation, personal care products and pharmaceuticals and more. Significantly, nanotechnology was also part of their portfolio.

The latest information about RCC doings was obtained from the Canadian government’s 2014 summer issue of the Chemicals Management Plan (CMP) Progress Report (a second thank you for Bergeson for information about this publication),

The Canada-U.S. Regulatory Cooperation Council Nanotechnology Initiative is now complete. Canada and the U.S. are implementing the new approaches and lessons learned in risk assessments of nanomaterials. An important outcome of the initiative is the development of consistent policy principles on the regulatory oversight of nanomaterials, which have now been endorsed by the Government of Canada. Watch for the publication of the final reports from the Canada-U.S. Regulatory Cooperation Council Nanotechnology Initiative this summer. The reports will include recommendations about ways in which Canada and the U.S. can align their nanomaterial regulatory work, including the application of consistent risk assessment approaches and methodologies and identifying categories of nanomaterials.

The 2014 CMP summer issue offers a second tidbit of information. This time it’s about Canada and the OECD,

Canada has endorsed a recommendation from the Organisation for Economic Co-operation and Development’s Council on the Safety Testing and Assessment of Manufactured Nanomaterials. The recommendation states that countries “apply the existing international and national chemical regulatory frameworks or other management systems, adapted to take into account the specific properties of manufactured nanomaterials.” The recommendation was based on the work of the Organisation for Economic Co-operation and Development’s Working Party on Manufactured Nanomaterials, which is a harmonization effort to inform regulatory programs regarding the environmental and health and safety implications of manufactured nanomaterials.

For enthusiasts, Canada’s Chemicals Management Plan progress report is expected to be published twice/year. There are now two issues available, the first with a Dec. 30, 2013 publication date. Here’s more about the CMP progress reports,

The Chemicals Management Plan Progress Report has been created to keep stakeholders and other interested parties up to date on the activities and programs related to Canada’s Chemicals Management Plan (CMP). The report is produced jointly by Environment Canada and Health Canada and will be published twice a year. It will report on advances in major initiatives and highlight key activities related to the Government of Canada’s recent work under the CMP. It will also inform you about coming events, dates of interest and how to get involved.

We encourage you to share the reports with anyone who may be interested. We also welcome your feedback or suggestions. We can be reached at [email protected]

Anyone interested in more information about the RCC (Regulatory Cooperation Council) and its nanotechnology efforts can find it here.

Nanotechnology Policy and Regulation in Canada, Australia, the European Union, the UK, and the US: a timeline for us all

The Timeline: Nanotechnology Policy and Regulation in Canada, Australia, the European Union, the United Kingdom, and the United States (PDF; h/t July 10, 2014 news item on Nanowerk) issued by the University of Ottawa’s Institute for Science, Society and Policy (ISSP) takes as its starting point the invention of the field emission microscope in 1936 by Erwin Wilhelm Müller.

This fascinating 40 pp document seems comprehensive to me. While the title suggests otherwise, there are a few mentions of events involving Asian countries and they also include the Berkeley bylaw governing nanotechnology manufacture in the city. From the Timeline, p. 16 (Note: The formatting has been changed significantly),

The City of Berkeley (US)
December 2006

The Berkeley Municipal Code is amended to introduce new measures regarding manufactured nanomaterial health and safety

These amendments require facilities that manufacture or use nanomaterials to disclose in writing which nanomaterials are being used as well as the current toxicology of the materials reported (to the extent known) and to further describe how the facility will safely handle, monitor, contain, dispose, track inventory, prevent releases and mitigate such materials.

Berkeley is currently the only municipal government in the United States to regulate nanotechnology

While searching a month ago (June 2014), I was having difficulty finding information online about the Berkeley bylaw, so this was a delightful surprise.

There is (arguably) an omission and that is the Yale Law School Cultural Cognition Project. The Yale researchers have done some influential work about emerging technologies, including a special nanotechnology project devised in the aftermath of the Berkeley bylaw. Their focus then and now has been on public perceptions and attitudes as they affect policy.

Given how many public perception projects there have been and the timeline’s specific focus on regulation and policy, it’s understandable that not many have been included in the timeline.

Still, I was curious to see if the 2012 nanosunscreen debacle in Australia would be included in the timeline. It was not and, given that this incident didn’t directly involve policy or regulation, it’s understandable. Still, I would like to suggest its inclusion in future iterations. (For the curious, my Feb. 9, 2012 posting titled: Unintended consequences: Australians not using sunscreens to avoid nanoparticles? offers a summary and links to this story about an Australian government survey and some unexpected and dismaying results.)

The timeline appears to have a publication date of April 2014 and was compiled by Alin Charrière and Beth Dunning. It is a ‘living’ document so it will be updated in the future. If you have any comments, [email protected] (I will be sending mine soon.)

It is one of a series which includes two other technologies, Synthetic biology and Bioenergy, at this point (July 10, 2014). You can go here for more about the ISSP.

Finally, bravo and bravo to Charrière and Dunning for a job well done.

Science, Scotland, and independence

A referendum on Scotland’s independence will take place later this year on Sept, 18, 2014 and. in the meantime, there’s a great deal of discussion about what a ‘yes’ vote might mean. Canadians will be somewhat familiar with this process having experienced two ‘sovereignty’ referendum votes (1980 and 1995, respectively) in the province of Québec and two 1948 referendums (the first result was inconclusive) in Newfoundland where they chose between dominion status and joining the Canadian confederation (Referendums in Canada Wikipedia entry).

One of the features of Québec’s sovereignty or independence proposals is a desire to retain the financial advantages of being party to a larger,established country while claiming new advantages available to an independent constituency or as they say ‘having one’s cake and eating it too’.

While there are many, many historical, cultural and other differences between the situations in Québec and Scotland, it is not entirely surprising to note that there is at least one area where the Scottish/UK debates seem to be emulating the Québec/Canada debates and that is the desire to retain the advantages of being part of the UK with regard to science research funding.

According to a Dec. 2013 (?) posting of the UK’s Economic and Social Research Council (ESRC) ‘Future of the UK and Scotland’ blog two reports discussing the subject of science research funding in the context of Scotland’s proposed independence were launched in November 2013,

In November [2013], two papers were published regarding the future of Scotland. The first, ‘Scotland analysis: Science and research’, written by the UK government, and unveiled by David Willetts, UK Science Minister earlier in November, focuses solely on the issues related to science and research in Scotland,  whereas the second one, a Scottish Government White Paper, addresses a whole range of issues associated with independence in Scotland with a brief discussion of the futures of science and higher education in Scotland (Chapter 5- Education, Skills and Employment).

Both papers testify to the strength of the Scottish science base and the contribution of Scottish universities to the UK research base as a whole. …

However, when it comes to the independence debate, the two papers present contrasting positions. The UK government paper highlights the disproportionate level of funding and research support that Scottish universities receive compared to the rest of the UK, warning that the funding will not continue at the same level in an independent Scotland. According to the paper, while Scotland only contributes 8% to the GDP, it receives 13% of the research funding from various funding bodies. Should Scotland go independent, the paper argues, the UK research funding flow will stop and it will be up to the Scottish Funding Council to decide whether to keep public research funding at present levels. [emphasis mine]…

Adopting a different perspective, the Scottish Government White Paper argues that it will be in the interest of both sides to remain in a ‘common research area’, which shares research councils, access to facilities, and peer reviewing. According to this paper, Scotland universities have made a huge input to UK research and the research councils have been partly funded by Scottish taxpayers. Therefore, Scotland will seek to remain in the ‘common research area‘ and will negotiate a formula to continue funding research councils based on population, but with Scottish research institutes receiving lower or higher funding support based on their research performance. [emphases mine]

… The Scottish Government White Paper presents an ideal research system which maintains the positive aspects of the current system but eliminates other features (for example, attracting international research talent through modifying immigration policy). [emphasis mine] …

At a workshop, organised by the ESRC Innogen Centre in November [2013] and attended by Scottish-based industrialists, academics, policy agencies and senior research managers, there was considerable debate about uncertainties such as these. There were real worries about how the current high levels of research funding could be continued and how Scotland would be able to compete on research

A July 5, 2014 news item on BBC (British Broadcasting Corporation) News online mentions the latest doings in this area of Scotland’s independence debate,

Medical and scientific research across the UK would suffer if Scotland votes for independence, according to the heads of three academic institutions.

The claim was made by the presidents of the Royal Society, the British Academy and the Academy of Medical Sciences.

Sir Paul Nurse, Lord Stern and Sir John Tooke said scientific collaboration would be damaged by a “Yes” vote.

In a joint letter to The Times newspaper, the three academics also claimed that maintaining existing levels of research in Scotland would cost Scottish taxpayers more should the country leave the UK.

They wrote: “Scotland has long done particularly well through its access to UK research funding.

“If it turns out that an independent Scotland has to form its own science and research budget, maintaining these levels of research spending would cost the Scottish taxpayer significantly more.”

They went on to state that the strong links and collaborations which exist across the UK “would be put at risk”, with any new system aiming to restore these links “likely to be expensive and bureaucratic”.

The presidents wrote: “We believe that if separation were to occur, research not only in Scotland but also the rest of the UK would suffer.

However Academics for Yes, a pro-independence group which comprises 60 academics from Scottish universities, said a “Yes” vote would protect the country’s universities and allow research priorities to be determined.

Its spokesman, Professor Bryan MacGregor from the University of Aberdeen, said: “On the one hand, we have the UK and England contexts of cuts in research and science funding, high student fees with unsustainable loan funding, an immigration policy that is preventing and deterring international student recruitment and the possibility of an exit from the EU and its research funding.

“And, on the other, we have a Scottish government committed to funding research, to free access to universities for residents and to attracting international students.

Earlier this year a group of 14 clinical academics and scientists put their names to an open letter raising “grave concerns that the country does not sleepwalk into a situation that jeopardises its present success in the highly-competitive arena of biomedical research”.

But the Scottish government, which currently provides about a third of research funds, has argued there is no reason why the current UK-wide structure for funding could not continue post-independence.

Kieron Flanagan in a Feb. 12, 2013 posting on the Guardian political science blog explored the possibilities (Note: Links have been removed),

Let’s face it: few people on either side of the Scottish independence debate are likely to be swayed by arguments about the impacts independence might have on scientific research. Yet science is a policy area where major changes would follow from a “Yes” vote for an independent Scotland. Nonetheless, the commentator Colin Macilwain passionately argued that Scottish science is ready to go it alone in a recent Nature opinion column.

… an independent Scotland could choose to continue to subscribe to the UK research councils in the same way that associated non-EU countries pay to take part in the European research programmes. It would have a strong moral claim to continued access, and it would be difficult to see how a UK government could refuse such an arrangement. Continued access to the existing research councils would allow Scotland to ensure that a diverse range of funding sources remains available to its scientists, and might also help encourage UK research charities to continue to fund research in the country.

So, while Macilwain is certainly right that Scottish science can go it alone, those working in Scottish science may conclude that the additional costs of running a small country research system, the additional risks of maintaining autonomy for funding decisions in a much smaller political world, and the consequent reduction in diversity of funding streams together outweigh the attractions of building a whole new research system from scratch.

While I think Flanagan is quite right when he says the impact that a ‘Yes’ vote will have on science funding and research in Scotland is unlikely to sway anyone’s vote, it’s fascinating to observe the discussion. I don’t believe that any such specific concerns about science and research funding have ever arisen in the context of the Québec referendums. If someone knows otherwise, please drop a line in the comments.

In any event, I can’t help but wonder what impact a ‘Yes’ vote will have on other independence movements both in Canada (Québec certainly and Alberta possibly, where mumbles about independence are sometimes heard) and elsewhere.

A new science advice network launched in the European Union

On June 23, 2014, the Euroscience Open Forum (in Copenhagen) saw the launch of a new pan-European science advice network. From a June 23, 2014 account by James Wilsdon (more about him in a moment) for the Guardian,

This afternoon, at the Euroscience Open Forum in Copenhagen, a new pan-EU network of government science advisers will hold its first meeting. Senior scientific representatives from twelve member states, including the UK’s Sir Mark Walport, will discuss how to strengthen the use of evidence in EU policymaking and improve coordination between national systems, particularly during emergencies, such as when clouds of volcanic ash from Iceland grounded flights across Europe in 2011.

Today’s [June 24, 2014] meeting is indeed the product of dedication: a painstaking 18-month effort by Glover [Anne Glover, chief scientific adviser to the outgoing President of the European commission, José Manuel Barroso] to persuade member states of the benefits of such a network. One of the challenges she has faced is the sheer diversity of models for scientific advice across Europe: while the UK, Ireland and (until recently) Czech Republic have a government chief scientist, several countries – including Portugal, Denmark, Finland and Greece – prefer to use an advisory committee. In another handful of member states, including Italy, Spain and Sweden, science advice is provided by civil servants. Others, such as Austria, Hungary and the Netherlands, look to the president of the national academy of science to perform the role. The rest, including France and Germany, use a hybrid of these models, or none at all.

The new network intends to respect this diversity, and not advance one approach as preferable to the others. (Indeed, it could be particularly counter-productive to promote the UK model in the current EU climate.)

Interestingly, Wilsdon goes on to note that a Chief Science Adviser for the European Union is a relatively new position having been in existence for two years (as of 2014) and there is no certainty that the new president (not yet confirmed) of the European Union will continue with the practice.

Wilsdon also mentions an international science advice conference to take place in New Zealand in August 2014. You can find out more about it in my April 8, 2014 posting where I noted that Wilsdon is one of the speakers or you can go directly to the conference website,  2014 Science Advice to Governments; a global conference for leading practitioners.

Getting back to James Wilsdon, this is the description they have for him at the Guardian,

James Wilsdon is professor of science and democracy at SPRU (Science and Technology Policy Research), University of Sussex. From 2008 to 2011 he was director of science policy at the Royal Society.

He’s also known in Canada as a member of the Council of Canadian Academies Expert Panel on The State of Canada’s Science Culture as per my Feb. 22, 2013 posting. The report is due this year and I expect it will be delivered in the Fall, just in time for the Canadian Science Policy Conference, Oct. 15 -17, 2014.

Finally, you might want to check out Wilsdon’s Twitter feed (https://twitter.com/jameswilsdon) for the latest on European science policy endeavours.

Canada Science and Technology Museums Corporation welcomes Alex Benay as president and chief executive officer (CEO)

The search took over one year as the Canada Science and Technology Museums Corporation (CSTMC) cast about for a new president and CEO in the wake of previous incumbent Denise Amyot’s departure. From the June 17, 2014 CSTMC announcement,

The Canada Science and Technology Museums Corporation (CSTMC) welcomes the appointment by the Minister of Canadian Heritage and Official Languages, the Honourable Shelly Glover, of Alex Benay as its new President and CEO. Mr Benay will assume the role beginning July 2, 2014 for a 5-year term.

“This is excellent news,” said Dr Gary Polonsky, Chair of the CSTMC Board of Trustees. “Alex Benay is an exceptional leader with the capacity to heighten the CSTMC profile as the only national museum institution entirely dedicated to tracking Canada’s rich history and heritage in science, technology and innovation.”

“Alex’s appointment demonstrates the government’s support toward our museums”, added Dr Polonsky. “I wish to recognize Minister Glover’s leadership in this nomination process and express our gratitude for the appointment of a leader with vast experience in managing people, processes and resources. Alex’s significant networks in the private and public sectors in Canada and internationally, and leadership experience with Canada’s digital industry, will be great assets in developing the Corporation.”

Mr Benay was previously Vice-President, Government Affairs and Business Development at Open Text, Canada’s largest software company since 2011.

As President and CEO, Mr Benay will be responsible for the CSTMC’s day-to-day operations and a staff of about 225 employees and an annual budget of $33 million. The CSTMC includes the Canada Agriculture and Food Museum, the Canada Aviation and Space Museum, and the Canada Science and Technology Museum. Collectively, they are responsible for preserving and protecting Canada’s scientific and technological heritage, while also promoting, celebrating, and sharing knowledge of that heritage and how it impacts Canadians’ daily lives.

I took a look at Mr. Benay’s LinkedIn profile and found this,

President and Chief Executive Officer
Canada Science and Technology Museums Corporation

Government Agency; 201-500 employees; Museums and Institutions industry

June 2014 – Present (1 month) Ottawa, Canada Area

VP, Government Relations
OpenText

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

August 2012 – June 2014 (1 year 11 months) Ottawa

VP, Enterprise Software and Cloud Services
Maplesoft Group

Privately Held; 51-200 employees; Information Technology and Services industry

March 2012 – August 2012 (6 months) Canada

VP, Government Relations
OpenText

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

July 2011 – March 2012 (9 months) Ottawa, Ontario

Manage government relations including :
- trade relations
- trade promotion
- global strategic investment programs (G20, Commonwealth, etc.)
- senior level delegations and engagements
- manage government grant and industry investment programs
- Etc.

Provide company wide government thought leadership and strategic planning

Director, Industry Marketing
Open Text

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

August 2010 – March 2012 (1 year 8 months) Ottawa, Ontario

Responsible for marketing and communication strategies for OpenText’s major industry sectors, enabling field sales and providing thought leadership in key priority sectors.

Director, Eastern Canadian Sales
Open Text

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

January 2010 – August 2010 (8 months) Ottawa, Ontario

Responsible for all product, solutions and services sales for Ottawa, Québec and the Maritimes.

Senior Director, Customer Enablement
Open Text

Public Company; 5001-10,000 employees; OTEX; Computer Software industry

2009 – 2010 (1 year) Ottawa, Ontario

Responsible, throughout the Canadian public sector (including healtcare), for all professional services delivery, establishing a national training program, managing partner relations, pubic speaking engagements, technical support and overall existing customer relations.
Strong focus on strategic communications and planning throughout the Canadian Public Sector.

Director, Information Management
Canadian International Development Agency

Government Agency; 1001-5000 employees; Government Administration industry

2006 – 2009 (3 years) Gatineau, Québec

Responsible for all information and communications aspects within the organisation : enterprise technologies, communication strategies, strategic planning, etc. Including all policy, operational and management aspects of managing organisational information and knowledge

Director, Policy
Canadian International Development Agency

Government Agency; 1001-5000 employees; International Affairs industry

2004 – 2006 (2 years)

Define ICT policy framework for CIDA
coordinate with central agencies and other large multilateral organisations

Senior Program Manager
Canadian International Development Agency

Government Agency; 1001-5000 employees; International Affairs industry

2003 – 2004 (1 year)

Managed all information and communications elements for the Multilateral Programs Branch. Responsible for relations with United Nations, World Bank, etc.; ensuring all systems (technical and human) were properly enabling multilateral development; developed large and complex global engagement and communications strategies pertaining to Canadian multilateralism

Manager, Information, Communications and Knowledge Management
Natural Resources Canada

Government Agency; 1001-5000 employees; Government Administration industry

2001 – 2003 (2 years)

Responsible for the Energy Sector information, communication and knowledge management strategies, thought leadership, events, strategic planning and operational management.

Information Services Officer
Department of Foreign Affairs and International Trade

2000 – 2001 (1 year)

Provide global briefing and communications support to various senior Foreign Affairs and International Trade Ministers, Deputy Ministers and Assistant Deputy Ministers

Medical Assistant
Canadian Armed Forces

Government Agency; 10,001+ employees; Military industry

1999 – 2001 (2 years)

Medical Assistant duties included : emergency response, first aid, suturing, orderly duties, basic military training, etc.

Archival Assistant
Library and Archives Canada

Government Agency; 1001-5000 employees; Government Administration industry

1998 – 2000 (2 years)

He certainly brings an interesting and peripatetic work history to the position. Given his previous work record and that he looks to be relatively young (I estimate he’s a few years shy of 40), my most optimistic prediction is that he will last five to six years in this job, assuming he makes it past his first six months.

Alex Benay, president and CEO of the Canada Science and Technology Museums Corporation

Alex Benay, president and CEO of the Canada Science and Technology Museums Corporation

Getting back to his work record, I’m not sure how Mr. Benay manged to be both an archival assistant for Library and Archives Canada and a medical assistant for the Canadian Armed Forces from 1999 – 2000. (Possibly he was working in the Reserves, which, as I understand it, requires weekends and the occasional longterm stint easily contained within one’s work vacation.) There is one other niggling thing, wouldn’t 1998 – 2000 be three years not two?

Interestingly, the company with which Benay has been most closely associated is OpenText whose Chairman, Tom Jenkins, led a  panel to review government funding programmes for research and development (R&D, a term often synonymous with science and technology). The resultant report is known familiarly as the Jenkins Report (Innovation Canada: A Call to Action; Review of Federal Support to R&D;–Expert Panel Report). I’m guessing Mr. Benay brings with him some important connections both corporately and governmentally, which could potentially extend to the University of British Columbia where Arvind Gupta (a member of Jenkins’ expert panel) is due to take up the reins as president when Stephen Toope officially vacates the position June 30, 2014.

I’m not sure how much insight one can derive from this March 6, 2014 article (for Canadian Government Executive) written by Mr. Benay while he was enjoying his second stint as VP Government Relations for Open Text,

With the rise of “smart power,” distinct from “hard” and “soft” power of traditional theories of international relations, the use of online collaboration has become an integral part of government communication.

Public sector employees who adopt partner-based collaboration models will find that they are able to effectively achieve their goals and generate results. Ideas shared through open-platform communication technologies, peer-to-peer networks, and enterprise-grade secure collaboration platforms can help foster greater dialogue and understanding between governments and citizens, ultimately leading to more effective attainment of foreign policy goals.

Increasingly, public-private partnerships are driving this new era of e-diplomacy.

As an example, governments worldwide are achieving tremendous success through their use of Public Service Without Borders (PSWB), the secure, cloud-enabled collaboration and social media environment developed in partnership with the Institute of Public Administration of Canada (IPAC).

Using secure social software solutions, PSWB helps to connect all levels of public service employees to one another to network, engage, share ideas and impart valuable lessons learned in such areas as governance, healthcare, technology and the environment. Whether via desktops or through mobile devices, participants can connect, network, plan and deliver exciting new partnerships and initiatives anytime, from anywhere in the world. This online collaboration platform ultimately fosters better, faster and more efficient services to all constituencies.

Another case in point is the G-20 Summit in Toronto. For the first time in history, policymakers from around the world were able to collaborate over secure social networking software in advance of and during the Toronto G-20 Summit. A confidential and secure social networking application was created to enhance the sharing of government leaders’ stances on important world financial issues. [emphasis mine]

Providing the secure, hosted social networking platform to G-8 and G-20 participants was in itself a collaboration between Open Text, the Canadian Digital Media Network (CDMN) – the organization that attracted high-tech companies to the event – and the then-called Canadian Department of Foreign Affairs and International Trade (DFAIT). [emphasis mine] In addition to secure Web access from anywhere in the world in real time, delegates were also able to access the application from their BlackBerrys, iPhones and iPads. The application supported multiple languages to enhance the ability of delegates to network productively.

The leap from ‘soft power’ in paragraphs one and two  to ‘public-private partnerships’ in paragraph three is a bit startling and suggests Benay’s tendency is towards ‘big picture’ thinking buttressed by a weakness for jumping from one idea to the next without much preparation. This is not a deal breaker as all leaders have weaknesses and a good one knows that sort of thing about him or herself so compensates for it.

Benay’s association with OpenText and, presumably, Jenkins suggests * strongly, when added to his article on public-private partnerships, that the CSTMC museums will be corporatized to a new degree. After all, it was Jenkins who delivered a report with recommendations to tie research funding more directly to business and economic needs. (This report was submitted to then Minister of State for Science and Technology, Gary Goodyear on Oct. 17, 2011 according to this Review of Federal Support to Research and Development  website. For those unfamiliar with the Canadian science and technology scene, this is considered a junior ministry and is part of the Industry Canada portfolio.) Since 2011, a number of these recommendations have been adopted, often accompanied by howls of despair (this May 22, 2013 posting delves into some of the controversies,which attracted attention by US observers).

I am somewhat intrigued by Benay’s experience with content management and digital media. I’m hopeful he will be using that experience to make some changes at the CSTMC such that it offers richer online and outreach experiences in the museums (Canada Agriculture and Food Museum, the Canada Aviation and Space Museum, and the Canada Science and Technology Museum) for those of us who are not resident in Ottawa. Amyot, during her* tenure, made some attempts (my Oct. 28, 2010 posting makes note of one such attempt) but they failed to take root for reasons not known* to me.

Returning to Benay’s old boss for a moment, Tom Jenkins has some connections of his own with regard to digital media and the military (from the OpenText Board of Directors page) ,

Mr. Jenkins was Chair of the Government of Canada’s military procurement review Panel which reported “Canada First: Leveraging Defence Procurement through Key Industrial Sectors (KICs) in February 2013 and reviewed the $490 Billion of federal public spending on defence to determine means by which the Canadian economy could benefit from military procurement.   Mr. Jenkins was Chair of the Government of Canada’s Research and Development Policy Review Panel which reported “Innovation Canada: A Call to Action” in October 2011 and reviewed the $7 Billion of federal public spending on research to assist the Canadian economy in becoming more innovative.   He was also chair of the November 2011 report to the Government of Canada on Innovation and Government Procurement.  He is also the Chair of the federal centre of excellence Canadian Digital Media Network (CDMN) which co-ordinates commercialization activity in the digital economy throughout Canada.  He is a member of the Canadian Government’s Advisory Panel on Open Government.  He is also an appointed member of the Social Sciences and Humanities Research Council of Canada (SSHRC), past appointed member of the Government of Canada’s Competition Policy Review Panel (the Wilson Panel) which reported “Compete to Win” in June 2008, and past appointed member of the Province of Ontario’s Ontario Commercialization Network Review Committee (OCN) which reported in February 2009.  … Mr. Jenkins is also one of the founders of Communitech – the Waterloo Region Technology Association.  Mr. Jenkins served as a commissioned officer in the Canadian Forces Reserve and he currently serves as Honorary Colonel of the Royal Highland Fusiliers of Canada (RHFC), a reserve infantry regiment in the Waterloo Region. [emphases mine]

Meanwhile, Mr. Benay’s appointment takes place within a larger context where the Council of Canadian Academies will be presenting two assessments with direct bearing on the CSTMC. The first, which is scheduled for release in 2014, is The State of Canada’s Science Culture (an assessment requested by the CSTMC which much later was joined by Industry Canada and Natural Resources Canada). The assessment is featured in my Feb. 22, 2013 posting titled: Expert panel to assess the state of Canada’s science culture—not exactly whelming. I will predict now that a main focus of this report will be on children, STEM (science, technology, engineering, and mathematics, and the economy (i.e., how do we get more children to study STEM topics?). Following on that thought, what better to way to encourage children than to give them good experiences with informal science education (code for science museums and centres).

The second assessment is called Memory Institutions and the Digital Revolution and was requested by Library and Archives Canada (museums too perform archival functions). in the context of a Jan. 30,2014 posting about digitizing materials in Fisheries and Oceans Canada libraries I excerpted this from an earlier posting,

Library and Archives Canada has asked the Council of Canadian Academies to assess how memory institutions, which include archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges of the changing ways in which Canadians are communicating and working in the digital age.

Background

Over the past three decades, Canadians have seen a dramatic transformation in both personal and professional forms of communication due to new technologies. Where the early personal computer and word-processing systems were largely used and understood as extensions of the typewriter, advances in technology since the 1980s have enabled people to adopt different approaches to communicating and documenting their lives, culture, and work. Increased computing power, inexpensive electronic storage, and the widespread adoption of broadband computer networks have thrust methods of communication far ahead of our ability to grasp the implications of these advances.

These trends present both significant challenges and opportunities for traditional memory institutions as they work towards ensuring that valuable information is safeguarded and maintained for the long term and for the benefit of future generations. It requires that they keep track of new types of records that may be of future cultural significance, and of any changes in how decisions are being documented. As part of this assessment, the Council’s expert panel will examine the evidence as it relates to emerging trends, international best practices in archiving, and strengths and weaknesses in how Canada’s memory institutions are responding to these opportunities and challenges. Once complete, this assessment will provide an in-depth and balanced report that will support Library and Archives Canada and other memory institutions as they consider how best to manage and preserve the mass quantity of communications records generated as a result of new and emerging technologies.

The Council’s assessment is running concurrently with the Royal Society of Canada’s [RSC] expert panel assessment on Libraries and Archives in 21st century Canada. Though similar in subject matter, these assessments have a different focus and follow a different process. The Council’s assessment is concerned foremost with opportunities and challenges for memory institutions as they adapt to a rapidly changing digital environment. In navigating these issues, the Council will draw on a highly qualified and multidisciplinary expert panel to undertake a rigorous assessment of the evidence and of significant international trends in policy and technology now underway. The final report will provide Canadians, policy-makers, and decision-makers with the evidence and information needed to consider policy directions. In contrast, the RSC panel focuses on the status and future of libraries and archives, and will draw upon a public engagement process.

While this could be considered a curse, these are interesting times.

* ‘a’ removed from ‘a strongly’ and ‘strongly’ moved to closer proximity with ‘suggests’, ‘her’ added to ‘her tenure’ and ‘know’ corrected to ‘known’ on June 19, 2014 at 1200 hours PDT.

Recycling your cyclotron—medical isotopes for everyone—a step forward

Last year on June 9, 2013 Canada’s national laboratory for particle and nuclear physics, TRIUMF, announced a better way to produce medical isotopes. From my June 9, 2013 posting,

The possibility medical isotopes could be produced with cyclotrons  is dazzling, especially in light of the reports a few years ago when it was discovered that the Chalk River facility (Ontario, Canada), the source for one 1/3 of the world’s medical isotopes, was badly deteriorated (my July 2, 2010 posting). Today, Sunday, June 9, 2013, TRIUMF, Canada’s national laboratory for particle and nuclear physics, and its partners announced that they have devised a technique for producing medical isotopes that is not dependent on materials from nuclear reactors.  …

“The approach taken by our consortium has established the feasibility of producing appreciable quantities of Tc-99m on Canada’s existing cyclotron network. These same machines are also producing additional isotopes used in a growing number of alternative imaging procedures. The net effect is that Canada will remain on the forefront of medical-isotope technology for the foreseeable future,” said John Valliant, Scientific Director and CEO of the CPDC in Hamilton.

Exactly one year later on June 9, 2014 the team responsible for this new means of producing medical isotopes presented an update of their work at the Society of Nuclear Medicine and Molecular Imaging’s (SNMMI) annual conference (from a June 9, 2014 TRIUMF news release),,

… a Canadian team with members from TRIUMF, the BC Cancer Agency, the Centre for Probe Development & Commercialization, and Lawson Health Research Institute announced that they have dramatically advanced technology for addressing the medical-isotope crisis.  The key medical isotope, technetium-99m (Tc-99m), can now be produced in meaningful quantities on the world’s most popular cyclotrons, many of which are already installed across Canada and around the world.

Patients, doctors, and hospitals have been concerned about a supply shortage of the workhorse medical isotopes used in cardiac tests and cancer scans as the world moves away from uranium-based nuclear reactors to create these exotic, short-lived, life-saving compounds.  The Canadian team has demonstrated the successful production of Tc-99m on a standard cyclotron manufactured by GE Healthcare, confirming that this alternative technology can be used by roughly half of the world’s already-installed cyclotrons. [emphasis mine]

Speaking for the consortium, Dr. Frank Prato of the Lawson Health Research Institute said, “This achievement is based on the efforts of the entire team and showcases our progress; we have a technology that can be applied in jurisdictions across Canada and around the world to produce this important isotope.”

Last summer [2013], the team set a world record for production of the critical isotope, Tc-99m, on a Made-in-Canada medical cyclotron; today, the team showed record production of Tc-99m using a GE [General Electric] PETtrace cyclotron at the Lawson Health Research Institute in London, Ontario.  This demonstration, along with the work being done at a similar GE cyclotron in Hamilton, ON, validates the business proposition that conventional cyclotrons around the world can be upgraded to produce Tc-99m for their region.

The Government of Canada has articulated an intention to shift away from reactor-based production of medical isotopes in order to diversify the supply, remove uranium from the supply chain, and halt Canadian taxpayer subsidization of isotopes used in other countries.  [emphasis mine] Through a sequence of programs at the Natural Sciences and Engineering Research Council, the Canadian Institutes for Health Research, and now Natural Resources Canada, the Canadian government has invested in the research, development, and deployment of alternative accelerator-based technologies for the production of Tc-99m.

Next steps in deploying this technology for Canadian patients will include regulatory approval and working with provincial governments to make the choices required to diversify the supply chain and strengthen healthcare systems.  The Canadian team is working to license its proprietary technology and to be positioned to market and supply the essential ingredients to cyclotrons around the world to enable their Tc-99m production.

It’s good to know that this technology allows cyclotrons around the world to be used in the production of medical isotopes. I imagine it’s a great relief know you won’t have to rely on some other country’s production facilities. However, it would have nice to have seen a little less chest-beating. Yes, this technology was developed in Canada but you don’t have to keep repeating Canada/Canadian over and over and over.

As for the Government of Canada’s intention to “halt Canadian taxpayer subsidization of isotopes used in other countries,” that seems somewhat harsh, although not out of line with the Harper government’s ethos.

I hope some thought has been applied to the implications of this policy as it is implemented. For example, do all the countries that need and use medical isotopes produced in Canada have their own cyclotrons? If so, will they be forced to purchase Canadian technology? And, what about the countries that don’t have their own cyclotrons? Are they going to be left out in the cold?

As for taxpayers and subsidies, it should be noted that TRIUMF and, at least one of its partners, BC [British Columbia] Cancer Agency are heavily supported by taxpayers. For example, there’s this Feb. 11, 2014 TRIUMF funding announcement,

In its Economic Action Plan for 2014-2015 released today, the Government of Canada has renewed its commitment to TRIUMF’s existing world-leading research and international partnership activities. The budget secures a base level for existing operations, proposing $222 million for the five years beginning 2015-2016. [emphasis mine]  The announcement of this commitment comes a year in advance and gives TRIUMF a six-year planning horizon for the first time, a strategic advantage for Canada in the highly competitive world of international science.

If I understand things correctly, this is their base funding. There are many other programs and instances where TRIUMF gets additional funding as per this May 21, 2014 posting about a new NSERC program and its funding award to TRIUMF for the ISOSIM program which is jointly run with the University of British Columbia.

Getting back to this latest news release, it seems clear the consortium will be selling this technology although there’s no mention as to how this will be done. Have they created a company with this one mission in mind or are they going to make use of a business entity that is already in existence? And, should this be a successful endeavour, will taxpayers see their support/investment returned to them? Given the Canadian business model, it is much more likely that the company will be grown to a point where it becomes an attractive purchase to a business entity based in another country.

Canadian government spending on science and technology is down for the fourth year in a row

It seems there a steady downward trajectory where Canadian science and technology spending is concerned. Stephen Hui in a May 28, 2014 article for the Georgia Straight, breaks the latest news from Statistics Canada (Note: A link has been removed),

The Canadian government is expected to spend less money on science and technology in 2014-15 compared to the previous fiscal year, continuing a trend that began in 2011-12. [emphasis mine]

According to Statistics Canada, federal departments and agencies are projected to record $10.3 billion (all figures in current dollars) in science and tech expenditures in 2014-15, a decrease of 5.4 percent from 2013-14.

Federal science and tech spending peaked at $12 billion in 2010-11 and has declined every year since then.

In fact, an earlier July 30, 2013 news item in Huffington Post noted a decrease in the 2013-14 budget,

The federal agency says spending for the 2013-14 fiscal year is expected to decrease 3.3 per cent from the previous period, to $10.5 billion.

It adds research and development is expected to account for two-thirds of anticipated science and technology spending.

The finding is contained in Statistics Canada’s annual survey of all federal government departments and agencies believed to be performing or funding science and technology activities.

The survey, released Tuesday [July 2013], covers the period from Sept. 10, 2012 to Jan. 11, 2013.

Statistics Canada says spending on science and technology has been steadily decreasing since 2009-10. [emphasis mine]

According to Hui’s source, the Statistics Canada’s The Daily, May 28,2014: Federal government spending on science and technology, 2014/2015, the trend started in 2011/12. I’m not sure which specific Statistics Canada publication was the source for the Huffington Post’s start date for the decline.

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

If I understand this rightly, Canadian business spending on R&D has been steadily declining for more than a decade and, since 2010 or so, Canadian government spending is also steadily declining. Does anyone else see this as a problem?

The contrast with Brazil is startling. From a June 2, 2014 Institute of Physics news release (also on EurekAlert but dated as June 1, 2014),

As Brazil gets set to host the 2014 FIFA World Cup this month amid concerns about the amount of public money being used to stage the world’s largest sporting event, Physics World‘s editorial team reveals in a new special report how physicists are taking full advantage of the four-fold increase in science funding that the government has invested over the past 10 years.

Since this news comes from the physics community, the news release focuses on physics-related developments,

Negotiations are currently under way to make Brazil an associate member of the CERN particle-physics lab in Geneva, while the country is also taking a leading role in the Pierre Auger Observatory – an international project based in Argentina designed to study ultrahigh-energy cosmic rays. [emphasis mine]

Building is also under way to create a world-leading synchrotron source, Sirius and Brazil is poised to become the first non-European member of the European Southern Observatory.

Carlos Henrique de Brito Cruz, a physicist at the University of Campinas and scientific director at FAPESP – one of Brazil’s most important funding agencies – told Physics World that the expectation is for Brazilian scientists to take a leadership role in such large research projects “and not just watch as mere participants”.

Considering the first graduate programmes in physics did not emerge in Brazilian universities until 1960, the rise to becoming one of the leading participants in international collaborations has been a rapid one.

The reputation of Brazilian physics has grown in line with a massive increase in science funding, which rose from R$12bn (about £3bn) in 2000 to R$50bn (around £13bn) in 2011.

Brazil’s spending on R&D now accounts for 1.2% of the gross domestic product and 40% of the total funding comes from companies.

The Brazilian Physical Society has around 6000 members comprising almost all research physicists in the country, who wrote around 25 000 research articles in international science journals between 2007 and 2010.

A lack of funding in the past had forced Brazilian scientists to focus on cheaper, theoretical research, but this has now changed and there is an almost even split between theory and experiment at universities.

Yet Brazil still suffers from several long-standing problems, the most significant being the poor standard of science education in high schools. A combination of low pay and lack of recognition makes physics teaching an unpopular choice of occupation despite attempts to tackle the problem.

Even those students who do see physics as a career option end up struggling and under-prepared for the rigours of an undergraduate physics course. Vitor de Souza, an astrophysicist at the Physics Institute at São Carlos, which is part of the University of São Paulo, told Physics World that of the 120 students who start a four-year physics degree at his university, only 10-20 actually graduate.

Another problem in Brazil is a fundamental disconnect between academic research and industrial development, with universities not sure how to handle spin-off firms and companies suspicious of universities.

More broadly, physicists feel that Brazilian society does not recognize the value of science, and that this can only be overcome when the physics community becomes more ambitious and more audacious.

You can find the special issue of Physics World here (it is open access).

As I noted in this May 30, 2014 posting (and elsewhere) featuring the new Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA),,

The PCST [13th International Public Communication of Science and Technology Conference] international conference takes place every two years. The 2014 PCST conference took place in Salvador, Brazil. Conferences like this would seem to confirm the comments I made in a May 20, 2014 posting,

Returning to 2014, the [World Cup {soccer}] kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

While the science and technology community in Brazil has its concerns, I imagine most Canadian scientists would thrill to being the recipients of the funding bonanza of 1.2%  of the gross domestic product. According to the Conference Board of Canada, research and development spending in Canada was 0.8% of GDP for 2011 (from the Conference Board of Canada’s Public R&D spending webpage),

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

Did you notice, Canada the in 2011 was on the edge of getting a C grade along with the US? Meanwhile, if Brazil was listed, it would get top marks.

The question as to how much money is not enough for research and development (R&D) spending is complex and I don’t think it’s easily answered but it would be nice to see some discussion.

Competition, collaboration, and a smaller budget: the US nano community responds

Before getting to the competition, collaboration, and budget mentioned in the head for this posting, I’m supplying some background information.

Within the context of a May 20, 2014 ‘National Nanotechnology Initiative’ hearing before the U.S. House of Representatives Subcommittee on Research and Technology, Committee on Science, Space, and Technology, the US General Accountability Office (GAO) presented a 22 pp. précis (PDF; titled: NANOMANUFACTURING AND U.S. COMPETITIVENESS; Challenges and Opportunities) of its 125 pp. (PDF version report titled: Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health).

Having already commented on the full report itself in a Feb. 10, 2014 posting, I’m pointing you to Dexter Johnson’s May 21, 2014 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) where he discusses the précis from the perspective of someone who was consulted by the US GAO when they were writing the full report (Note: Links have been removed),

I was interviewed extensively by two GAO economists for the accompanying [full] report “Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health,” where I shared background information on research I helped compile and write on global government funding of nanotechnology.

While I acknowledge that the experts who were consulted for this report are more likely the source for its views than I am, I was pleased to see the report reflect many of my own opinions. Most notable among these is bridging the funding gap in the middle stages of the manufacturing-innovation process, which is placed at the top of the report’s list of challenges.

While I am in agreement with much of the report’s findings, it suffers from a fundamental misconception in seeing nanotechnology’s development as a kind of race between countries. [emphases mine]

(I encourage you to read the full text of Dexter’s comments as he offers more than a simple comment about competition.)

Carrying on from this notion of a ‘nanotechnology race’, at least one publication focused on that aspect. From the May 20, 2014 article by Ryan Abbott for CourthouseNews.com,

Nanotech Could Keep U.S. Ahead of China

WASHINGTON (CN) – Four of the nation’s leading nanotechnology scientists told a U.S. House of Representatives panel Tuesday that a little tweaking could go a long way in keeping the United States ahead of China and others in the industry.

The hearing focused on the status of the National Nanotechnology Initiative, a federal program launched in 2001 for the advancement of nanotechnology.

As I noted earlier, the hearing was focused on the National Nanotechnology Initiative (NNI) and all of its efforts. It’s quite intriguing to see what gets emphasized in media reports and, in this case, the dearth of media reports.

I have one more tidbit, the testimony from Lloyd Whitman, Interim Director of the National Nanotechnology Coordination Office and Deputy Director of the Center for Nanoscale Science and Technology, National Institute of Standards and Technology. The testimony is in a May 21, 2014 news item on insurancenewsnet.com,

Testimony by Lloyd Whitman, Interim Director of the National Nanotechnology Coordination Office and Deputy Director of the Center for Nanoscale Science and Technology, National Institute of Standards and Technology

Chairman Bucshon, Ranking Member Lipinski, and Members of the Committee, it is my distinct privilege to be here with you today to discuss nanotechnology and the role of the National Nanotechnology Initiative in promoting its development for the benefit of the United States.

Highlights of the National Nanotechnology Initiative

Our current Federal research and development program in nanotechnology is strong. The NNI agencies continue to further the NNI’s goals of (1) advancing nanotechnology R&D, (2) fostering nanotechnology commercialization, (3) developing and maintaining the U.S. workforce and infrastructure, and (4) supporting the responsible and safe development of nanotechnology. …

,,,

The sustained, strategic Federal investment in nanotechnology R&D combined with strong private sector investments in the commercialization of nanotechnology-enabled products has made the United States the global leader in nanotechnology. The most recent (2012) NNAP report analyzed a wide variety of sources and metrics and concluded that “… in large part as a result of the NNI the United States is today… the global leader in this exciting and economically promising field of research and technological development.” n10 A recent report on nanomanufacturing by Congress’s own Government Accountability Office (GAO) arrived at a similar conclusion, again drawing on a wide variety of sources and stakeholder inputs. n11 As discussed in the GAO report, nanomanufacturing and commercialization are key to capturing the value of Federal R&D investments for the benefit of the U.S. economy. The United States leads the world by one important measure of commercial activity in nanotechnology: According to one estimate, n12 U.S. companies invested $4.1 billion in nanotechnology R&D in 2012, far more than investments by companies in any other country.  …

There’s cognitive dissonance at work here as Dexter notes in his own way,

… somewhat ironically, the [GAO] report suggests that one of the ways forward is more international cooperation, at least in the development of international standards. And in fact, one of the report’s key sources of information, Mihail Roco, has made it clear that international cooperation in nanotechnology research is the way forward.

It seems to me that much of the testimony and at least some of the anxiety about being left behind can be traced to a decreased 2015 budget allotment for nanotechnology (mentioned here in a March 31, 2014 posting [US National Nanotechnology Initiative’s 2015 budget request shows a decrease of $200M]).

One can also infer a certain anxiety from a recent presentation by Barbara Herr Harthorn, head of UCSB’s [University of California at Santa Barbara) Center for Nanotechnology in Society (CNS). She was at a February 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (mentioned in parts one and two [the more substantive description of the meeting which also features a Canadian academic from the genomics community] of my recent series on “Brains, prostheses, nanotechnology, and human enhancement”). II noted in part five of the series what seems to be a shift towards brain research as a likely beneficiary of the public engagement work accomplished under NNI auspices and, in the case of the Canadian academic, the genomics effort.

The Americans are not the only ones feeling competitive as this tweet from Richard Jones, Pro-Vice Chancellor for Research and Innovation at Sheffield University (UK), physicist, and author of Soft Machines, suggests,

May 18

The UK has fewer than 1% of world patents on graphene, despite it being discovered here, according to the FT –

I recall reading a report a few years back which noted that experts in China were concerned about falling behind internationally in their research efforts. These anxieties are not new, CP Snow’s book and lecture The Two Cultures (1959) also referenced concerns in the UK about scientific progress and being left behind.

Competition/collaboration is an age-old conundrum and about as ancient as anxieties of being left behind. The question now is how are we all going to resolve these issues this time?

ETA May 28, 2014: The American Institute of Physics (AIP) has produced a summary of the May 20, 2014 hearing as part of their FYI: The AIP Bulletin of Science Policy News, May 27, 2014 (no. 93).