Category Archives: science policy

Ishiguro’s robots and Swiss scientist question artificial intelligence at SXSW (South by Southwest) 2017

It seems unexpected to stumble across presentations on robots and on artificial intelligence at an entertainment conference such as South by South West (SXSW). Here’s why I thought so, from the SXSW Wikipedia entry (Note: Links have been removed),

South by Southwest (abbreviated as SXSW) is an annual conglomerate of film, interactive media, and music festivals and conferences that take place in mid-March in Austin, Texas, United States. It began in 1987, and has continued to grow in both scope and size every year. In 2011, the conference lasted for 10 days with SXSW Interactive lasting for 5 days, Music for 6 days, and Film running concurrently for 9 days.

Lifelike robots

The 2017 SXSW Interactive featured separate presentations by Japanese roboticist, Hiroshi Ishiguro (mentioned here a few times), and EPFL (École Polytechnique Fédérale de Lausanne; Switzerland) artificial intelligence expert, Marcel Salathé.

Ishiguro’s work is the subject of Harry McCracken’s March 14, 2017 article for Fast Company (Note: Links have been removed),

I’m sitting in the Japan Factory pavilion at SXSW in Austin, Texas, talking to two other attendees about whether human beings are more valuable than robots. I say that I believe human life to be uniquely precious, whereupon one of the others rebuts me by stating that humans allow cars to exist even though they kill humans.

It’s a reasonable point. But my fellow conventioneer has a bias: It’s a robot itself, with an ivory-colored, mask-like face and visible innards. So is the third participant in the conversation, a much more human automaton modeled on a Japanese woman and wearing a black-and-white blouse and a blue scarf.

We’re chatting as part of a demo of technologies developed by the robotics lab of Hiroshi Ishiguro, based at Osaka University, and Japanese telecommunications company NTT. Ishiguro has gained fame in the field by creating increasingly humanlike robots—that is, androids—with the ultimate goal of eliminating the uncanny valley that exists between people and robotic people.

I also caught up with Ishiguro himself at the conference—his second SXSW—to talk about his work. He’s a champion of the notion that people will respond best to robots who simulate humanity, thereby creating “a feeling of presence,” as he describes it. That gives him and his researchers a challenge that encompasses everything from technology to psychology. “Our approach is quite interdisciplinary,” he says, which is what prompted him to bring his work to SXSW.

A SXSW attendee talks about robots with two robots.

If you have the time, do read McCracken’t piece in its entirety.

You can find out more about the ‘uncanny valley’ in my March 10, 2011 posting about Ishiguro’s work if you scroll down about 70% of the way to find the ‘uncanny valley’ diagram and Masahiro Mori’s description of the concept he developed.

You can read more about Ishiguro and his colleague, Ryuichiro Higashinaka, on their SXSW biography page.

Artificial intelligence (AI)

In a March 15, 2017 EPFL press release by Hilary Sanctuary, scientist Marcel Salathé poses the question: Is Reliable Artificial Intelligence Possible?,

In the quest for reliable artificial intelligence, EPFL scientist Marcel Salathé argues that AI technology should be openly available. He will be discussing the topic at this year’s edition of South by South West on March 14th in Austin, Texas.

Will artificial intelligence (AI) change the nature of work? For EPFL theoretical biologist Marcel Salathé, the answer is invariably yes. To him, a more fundamental question that needs to be addressed is who owns that artificial intelligence?

“We have to hold AI accountable, and the only way to do this is to verify it for biases and make sure there is no deliberate misinformation,” says Salathé. “This is not possible if the AI is privatized.”

AI is both the algorithm and the data

So what exactly is AI? It is generally regarded as “intelligence exhibited by machines”. Today, it is highly task specific, specially designed to beat humans at strategic games like Chess and Go, or diagnose skin disease on par with doctors’ skills.

On a practical level, AI is implemented through what scientists call “machine learning”, which means using a computer to run specifically designed software that can be “trained”, i.e. process data with the help of algorithms and to correctly identify certain features from that data set. Like human cognition, AI learns by trial and error. Unlike humans, however, AI can process and recall large quantities of data, giving it a tremendous advantage over us.

Crucial to AI learning, therefore, is the underlying data. For Salathé, AI is defined by both the algorithm and the data, and as such, both should be publicly available.

Deep learning algorithms can be perturbed

Last year, Salathé created an algorithm to recognize plant diseases. With more than 50,000 photos of healthy and diseased plants in the database, the algorithm uses artificial intelligence to diagnose plant diseases with the help of your smartphone. As for human disease, a recent study by a Stanford Group on cancer showed that AI can be trained to recognize skin cancer slightly better than a group of doctors. The consequences are far-reaching: AI may one day diagnose our diseases instead of doctors. If so, will we really be able to trust its diagnosis?

These diagnostic tools use data sets of images to train and learn. But visual data sets can be perturbed that prevent deep learning algorithms from correctly classifying images. Deep neural networks are highly vulnerable to visual perturbations that are practically impossible to detect with the naked eye, yet causing the AI to misclassify images.

In future implementations of AI-assisted medical diagnostic tools, these perturbations pose a serious threat. More generally, the perturbations are real and may already be affecting the filtered information that reaches us every day. These vulnerabilities underscore the importance of certifying AI technology and monitoring its reliability.

h/t phys.org March 15, 2017 news item

As I noted earlier, these are not the kind of presentations you’d expect at an ‘entertainment’ festival.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

Canada’s strength in regenerative medicine

Urgh! I will scream if I see the phrase “Canada punches above its weight” or some variant thereof one more time. Please! Stop the madness! The latest culprit is the Canadian Council of Academies in the title for its March 9, 2017 news release on EurekAlert,

Canada continues to punch above its weight in the field of regenerative medicine

A new workshop report, Building on Canada’s Strengths in Regenerative Medicine, released today [March 9, 2017] by the Council of Canadian Academies (CCA), confirms that Canadian researchers continue to be recognized as scientific leaders in the field of regenerative medicine and stem cell science.

“Overall, the evidence shows that Canadian research in regenerative medicine continues to be strong,” said Dr. Janet Rossant, FRSC, Chair of the Workshop Steering Committee and President and Scientific Director of the Gairdner Foundation. “While Canadian research is both of high quality and highly cited, it is our collaborative culture, enhanced by our national networks that keeps Canada leading in this field.”

Since the discovery of stem cells in the early 1960s by Canadian scientists Drs. James Till and Ernest McCulloch, significant advancements in regenerative medicine have followed, many by Canadian researchers and practitioners. The appeal of regenerative medicine lies in its curative approach. It replaces or regenerates human cells, tissues, or organs to restore or establish normal function using stem cells. A well-known example of regenerative medicine is the use of bone marrow transplants for leukemia. Although Canada has been historically strong in the field of regenerative medicine, experts caution that we must not lose momentum.

“Canada has been a leader in the field of regenerative medicine for decades, but maintaining this excellence requires ongoing efforts including continued stable and strategic investment in researchers, collaborative networks, and infrastructure,” Dr. Rossant notes. “Several countries are investing heavily in regenerative medicine and stem cell science. Canada has a real opportunity to stay ahead of the curve and remain at the forefront of this field, but it will require us to harness key opportunities now.” [emphasis mine]

The workshop report identifies several opportunities to strengthen the regenerative medicine community in Canada. Opportunities identified as particularly promising focus on:

* formalizing the coordination among regenerative medicine initiatives and key players to speak with one voice on common priorities;

* establishing long-term and stable support for current networks, including those focused on commercialization, to help address the so-called “valley of death” that exists when translating research discoveries to clinical and industry settings;

* enhancing coordination and alignment between the federal regulatory system and provincial healthcare systems; and

* supporting existing manufacturing infrastructure and growing the regenerative medicine industry in Canada to provide jobs for highly-skilled personnel while also benefiting the Canadian economy.

The workshop participants also considered several specific opportunities such as:

* enhancing coordination of Canada’s regenerative medicine clinical trial sites to enable sharing of best practices related to funding, design, and recruitment;

* continued support for cross-training programs to ensure future generations of Canadian researchers have wide-ranging skills suited to the multidisciplinary nature of regenerative medicine;

* new incentives that encourage partnerships between research institutions and industry; and

* increasing efforts related to public engagement and outreach.

“Sometimes becoming excellent is easier than maintaining excellence,” said Dr. Eric M. Meslin, FCAHS, President and CEO of the Council of Canadian Academies. “This is why taking stock of Canada’s place in the regenerative medicine landscape at a point in time is important, especially where the science is moving quickly; it helps those in the field understand the opportunities and will contribute to the ongoing policy discussion in Canada.”

This report was released a few weeks in advance of the federal budget (due tomorrow Wednesday, March 22, 2017). That’s a coincidence, yes?  Interestingly, the 2017 iteration is supposed to be an ‘innovation’ budget, i.e.. designed to stimulate the tech sector if a March 20, 2017 article by David Cochrane for CBC (Canadian Broadcasting Corporation) news online is to be believed. Nowhere in the article is there any mention of regenerative medicine or science, for that matter.

You can download the full report (60 pp.) from the Building on Canada’s Strengths in Regenerative Medicine webpage on the CCA website.

Algorithms in decision-making: a government inquiry in the UK

Yesterday’s (Feb. 28, 2017) posting about the newly launched Cascadia Urban Analytics Cooperative grew too big to include interesting tidbits such as this one from Sense about Science, (from a Feb. 28, 2017 announcement received via email),

The House of Commons science and technology select committee announced
today that it will launch an inquiry into the use of algorithms in
decision-making […].

Our campaigns and policy officer Dr Stephanie Mathisen brought this
important and under-scrutinised issue to the committee as part of their
#MyScienceInquiry initiative; so fantastic news that they are taking up
the call.

A Feb. 28, 2017 UK House of Commons Science and Technology Select Committee press release gives more details about the inquiry,

The Science and Technology Committee is launching a new inquiry into the use of algorithms in public and business decision making.

In an increasingly digital world, algorithms are being used to make decisions in a growing range of contexts. From decisions about offering mortgages and credit cards to sifting job applications and sentencing criminals, the impact of algorithms is far reaching.

How an algorithm is formulated, its scope for error or correction, the impact it may have on an individual—and their ability to understand or challenge that decision—are increasingly relevant questions.

This topic was pitched to the Committee by Dr Stephanie Mathisen (Sense about Science) through the Committee’s ‘My Science Inquiry’ open call for inquiry suggestions, and has been chosen as the first subject for the Committee’s attention following that process. It follows the Committee’s recent work on Robotics and AI, and its call for a standing Commission on Artificial Intelligence.

Submit written evidence

The Committee would welcome written submissions by Friday 21 April 2017 on the following points:

  • The extent of current and future use of algorithms in decision-making in Government and public bodies, businesses and others, and the corresponding risks and opportunities;
  • Whether ‘good practice’ in algorithmic decision-making can be identified and spread, including in terms of:
    —  The scope for algorithmic decision-making to eliminate, introduce or amplify biases or discrimination, and how any such bias can be detected and overcome;
    — Whether and how algorithmic decision-making can be conducted in a ‘transparent’ or ‘accountable’ way, and the scope for decisions made by an algorithm to be fully understood and challenged;
    — DThe implications of increased transparency in terms of copyright and commercial sensitivity, and protection of an individual’s data;
  • Methods for providing regulatory oversight of algorithmic decision-making, such as the rights described in the EU General Data Protection Regulation 2016.

The Committee would welcome views on the issues above, and submissions that illustrate how the issues vary by context through case studies of the use of algorithmic decision-making.

You can submit written evidence through the algorithms in decision-making inquiry page.

I looked at the submission form and while it assumes the submitter is from the UK, there doesn’t seem to be any impediment to citizens of other countries from making a submission. Since there is some personal information included as part of the submission, there is a note about data protection on the Guidance on giving evidence to a Select Committee of the House of Commons webpage.

US report on Women, minorities, and people with disabilities in science and engineerin

A Jan. 31, 2017 news item on ScienceDaily announces a new report from the US National Science Foundation’s (NSF) National Center for Science and Engineering Statistics (NCSES),

The National Center for Science and Engineering Statistics (NCSES) today [Jan. 31, 2017,] announced the release of the 2017 Women, Minorities, and Persons with Disabilities in Science and Engineering (WMPD) report, the federal government’s most comprehensive look at the participation of these three demographic groups in science and engineering education and employment.

The report shows the degree to which women, people with disabilities and minorities from three racial and ethnic groups — black, Hispanic and American Indian or Alaska Native — are underrepresented in science and engineering (S&E). Women have reached parity with men in educational attainment but not in S&E employment. Underrepresented minorities account for disproportionately smaller percentages in both S&E education and employment

Congress mandated the biennial report in the Science and Engineering Equal Opportunities Act as part of the National Science Foundation’s (NSF) mission to encourage and strengthen the participation of underrepresented groups in S&E.

A Jan. 31, 2017 NSF news release (also on EurekAlert), which originated the news item, provides information about why the report is issued every two years and provides highlights from the 2017 report,

“An important part of fulfilling our mission to further the progress of science is producing current, accurate information about the U.S. STEM workforce,” said NSF Director France Córdova. “This report is a valuable resource to the science and engineering policy community.”

NSF maintains a portfolio of programs aimed at broadening participation in S&E, including ADVANCE: Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers; LSAMP: the Louis Stokes Alliances for Minority Participation; and NSF INCLUDES, which focuses on building networks that can scale up proven approaches to broadening participation.

The digest provides highlights and analysis in five topic areas: enrollment, field of degree, occupation, employment status and early career doctorate holders. That last topic area includes analysis of pilot study data from the Early Career Doctorates Survey, a new NCSES product. NCSES also maintains expansive WMPD data tables, updated periodically as new data become available, which present the latest S&E education and workforce data available from NCSES and other agencies. The tables provide the public access to detailed, field-by-field information that includes both percentages and the actual numbers of people involved in S&E.

“WMPD is more than just a single report or presentation,” said NCSES Director John Gawalt. “It is a vast and unique information resource, carefully curated and maintained, that allows anyone (from the general public to highly trained researchers) ready access to data that facilitate and support their own exploration and analyses.”

Key findings from the new digest include:

  • The types of schools where students enroll vary among racial and ethnic groups. Hispanics, American Indians or Alaska Natives and Native Hawaiians or Other Pacific Islanders are more likely to enroll in community colleges. Blacks and Native Hawaiian or Other Pacific Islanders are more likely to enroll in private, for profit schools.
  • Since the late 1990s, women have earned about half of S&E bachelor’s degrees. But their representation varies widely by field, ranging from 70 percent in psychology to 18 percent in computer sciences.
  • At every level — bachelor’s, master’s and doctorate — underrepresented minority women earn a higher proportion of degrees than their male counterparts. White women, in contrast earn a smaller proportion of degrees than their male counterparts.
  • Despite two decades of progress, a wide gap in educational attainment remains between underrepresented minorities and whites and Asians, two groups that have higher representation in S&E education than they do in the U.S. population.
  • White men constitute about one-third of the overall U.S. population; they comprise half of the S&E workforce. Blacks, Hispanics and people with disabilities are underrepresented in the S&E workforce.
  • Women’s participation in the workforce varies greatly by field of occupation.
  • In 2015, scientists and engineers had a lower unemployment rate compared to the general U.S. population (3.3 percent versus 5.8 percent), although the rate varied among groups. For example, it was 2.8 percent among white women in S&E but 6.0 percent for underrepresented minority women.

For more information, including access to the digest and data tables, see the updated WMPD website.

Caption: In 2015, women and some minority groups were represented less in science and engineering (S&E) occupations than they were in the US general population.. Credit: NSF

Internship at the Nanotechnology Industries Association in Brussels (Belgium)

The deadline for your resumé is March 12, 2017. Here are the details from the posting in a Nanotechnology Industries Association (NIA) Feb. 15, 2017 press release (also on the EurActiv job site),

The Nanotechnology Industries Association (NIA) is the leading voice of the nanotechnology industries. On behalf of membership across Europe and around the world, we support the development of nanotech innovations that improve the lives of consumers, preserve our environment and advance our world.

NIA and our Members are committed to the safe, sustainable and beneficial use of nanotechnology and nanomaterials across all industries. We believe in fostering a better understanding of nanotechnology’s important role in society and building a positive global environment for nanotech innovation.

Internship

The NIA has an opportunity for a person to join us from March 2017 and play a core role in our Brussels office plus European travel.  The successful candidate will undertake tasks including:

·       Support for our work within regulatory development for the nanotechnology sector

·       Mapping and networking within the Brussels community associated with nanotechnology

·       Support for NIA communications, including website redevelopment, plus event administration

·       Contribute towards the publication of a nanotechnology report in Q3 2017

·       Support for EC [European Commission] project delivery with the NIA team

·       Secondment to Spanish research centre for a minimum of 1 month as part pf EC project – business and regulatory research activities

We offer

The candidate will have the opportunity to join a motivated small team and gain direct, in depth experience with industry actors in the tasks of delivering nanotechnology innovation within a robust regulatory framework.  The candidate will develop a cv with task leadership

Minimum 6 month placement with possibility to renew for an additional 6 months

The internship is reimbursed – details provided on request

Your profile

·       Minimum degree level within nanotechnology or associated discipline

·       Interested in regulatory development within technology sectors

·       Minimum two languages including fluent written and spoken English

·       Self-motivated and able to perform under pressure of deadlines and events

·       Proficient with Microsoft Office, social media and website maintenance

·       Strong work ethic and willingness to work across the NIA team

Interested?

Please send a detailed cv with covering letter to claire.skentelbery@nanotechia.org by March 12.

I found more information on the NIA website’s Who we are page,

The Nanotechnology Industries Association (NIA) is the sector-independent, responsible voice for the industrial nanotechnologies supply chains.

NIA supports the ongoing innovation and commercialisation of the next generation of technologies and promotes their safe and reliable advancement.

Through NIA’s constant involvement in a number of international organisations, members of the Nanotechnology Industries Association are represented on globally influential fora, such the OECD Working Party on Manufactured Nanomaterials, and the OECD Working Party on Nanotechnology, as well as national and international advisory groups and standardisation committees, such as ISO/TC 229 and CEN/TC 352.

NIA was formed in 2005 in the UK by a group of companies from a variety of industry sectors, including healthcare, chemicals, automotive, materials processing, and consumer products. In September 2008, the NIA opened its international NIA office in Brussels (Belgium), whilst maintaining an independent UK-national representation through NIA-UK based in London. Globally the only industry-focused trade association in nanotechnology, NIA provides a uniquely consolidated perspective derived from a multi-disciplinary membership which operates across a wide range of markets and industrial sectors.

NIA Membership is made up of many varied companies, all of which at different stages of their commercial existence and with a variety of interests in the large range of technologies that derive their benefit from the nanoscale. In NIA, these companies have a representative association to:

  • create a clear single ‘voice’ on behalf of the industries’ views,
  • to interface with governments,
  • to be a source for consultation on regulation and standards,
  • to engage with the public,
  • to communicate the benefits of nanotechnologies,
  • to interact with the media, and
  • to inform the public debate on nanotechnology.

Good luck!

Wars (such as they are) on science

I hinted in a Jan. 27, 2017 posting (scroll down abotu 15% of the way) that advice from Canadians with regard to an ‘American war on science’ might not be such a good idea. It seems that John Dupuis (mentioned in the Jan. 27, 2017 posting) has yet more advice for our neighbours to the south in his Feb. 5, 2017 posting (on the Confessions of a Science Librarian blog; Note: A link has been removed),

My advice? Don’t bring a test tube to a Bunsen burner fight. Mobilize, protest, form partnerships, wrote op-eds and blog posts and books and articles, speak about science at every public event you get a chance, run for office, help out someone who’s a science supporter run for office.

Don’t want your science to be seen as political or for your “objectivity” to be compromised? Too late, the other side made it political while you weren’t looking. And you’re the only one that thinks you’re objective. What difference will it make?

Don’t worry about changing the other side’s mind. Worry about mobilizing and energizing your side so they’ll turn out to protest and vote and send letters and all those other good things.

Worried that you will ruin your reputation and that when the good guys come back into power your “objectivity” will be forever compromised? Worry first about getting the good guys back in power. They will understand what you went through and why you had to mobilize. And they never thought your were “objective” to begin with.

Proof? The Canadian experience. After all, even the Guardian wants to talk about How science helped to swing the Canadian election? Two or four years from now, you want them to be writing articles about how science swung the US mid-term or presidential elections.

Dupuis goes on to offer a good set of links to articles about the Canadian experience written for media outlets from across the world.

The thing is, Stephen Harper is not Donald Trump. So, all this Canadian experience may not be as helpful as we or our neighbours to the south might like.

This Feb . 6, 2017 article by Daniel Engber for Slate.com gives a perspective that I think has been missed in this ‘Canadian’ discussion about the latest US ‘war on science’ (Note: Link have been removed),

An army of advocates for science will march on Washington, D.C. on April 22, according to a press release out last Thursday. The show of force aims to “draw attention to dangerous trends in the politicization of science,” the organizers say, citing “threats to the scientific community” and the need to “safeguard” researchers from a menacing regime. If Donald Trump plans to escalate his apparent assault on scientific values, then let him be on notice: Science will fight back.

We’ve been through this before. Casting opposition to a sitting president as resistance to a “war on science” likely helped progressives 10 or 15 years ago, when George W. Bush alienated voters with his apparent disrespect for climate science and embryonic stem-cell research (among other fields of study). The Bush administration’s meddling in research and disregard for expertise turned out to be a weakness, as the historian Daniel Sarewitz described in an insightful essay from 2009. Who could really argue with the free pursuit of knowledge? Democratic challengers made a weapon of their support for scientific progress: “Americans deserve a president who believes in science,” said John Kerry during the 2004 campaign. “We will end the Bush administration’s war on science, restore scientific integrity and return to evidence-based decision-making,” the Democratic Party platform stated four years later.

But what had been a sharp-edged political strategy may now have lost its edge. I don’t mean to say that the broad appeal of science has been on the wane; overall, Americans are about as sanguine on the value of our scientific institutions as they were before. Rather, the electorate has reorganized itself, or has been reorganized by Trump, in such a way that fighting on behalf of science no longer cuts across party lines, and it doesn’t influence as many votes beyond the Democratic base.

The War on Science works for Trump because it’s always had more to do with social class than politics. A glance at data from the National Science Foundation shows how support for science tracks reliably with socioeconomic status. As of 2014, 50 percent of Americans in the highest income quartile and more than 55 percent of those with college degrees reported having great confidence in the nation’s scientific leaders. Among those in the lowest income bracket or with very little education, that support drops to 33 percent or less. Meanwhile, about five-sixths of rich or college-educated people—compared to less than half of poor people or those who never finished high school—say they believe that the benefits of science outweigh the potential harms. To put this in crude, horse-race terms, the institution of scientific research consistently polls about 30 points higher among the elites than it does among the uneducated working class.

Ten years ago, that distinction didn’t matter quite so much for politics. …

… with the battle lines redrawn, the same approach to activism now seems as though it could have the opposite effect. In the same way that fighting the War on Journalism delegitimizes the press by making it seem partisan and petty, so might the present fight against the War on Science sap scientific credibility. By confronting it directly, science activists may end up helping to consolidate Trump’s support among his most ardent, science-skeptical constituency. If they’re not careful where and how they step, the science march could turn into an ambush.

I think Engber is making an important point and the strategies and tactics being employed need to be carefully reviewed.

As for the Canadian situation, things are indeed better now but my experience is that while we rarely duplicate the situation in the US, we often find ourselves echoing their cries, albeit years later and more faintly. The current leadership race for the Conservative party has at least one Trump admirer (Kelly Leitch see the section titled: Controversy) fashioning her campaign in light of his perceived successes. Our next so called ‘war on science’ could echo in some ways the current situation in the US and we’d best keep that in mind.

Political internship (Canada’s Liberal Party)

i don’t usually feature jobs for political parties but there appears to be a movement afoot in the US where scientists are possibly going to run for political office so it seems more à propos than usual. Before getting to the job information (for a Canadian political party), here’s more about the nascent scientists as politicians movement from a Jan. 25, 2017 article (Professor Smith Goes to Washington) by Ed Yong for The Atlantic (Note: Links have been removed),

For American science, the next four years look to be challenging. The newly inaugurated President Trump, and many of his Cabinet picks, have repeatedly cast doubt upon the reality of human-made climate change, questioned the repeatedly proven safety of vaccines. Since the inauguration, the administration has already frozen grants and contracts by the Environmental Protection Agency and gagged researchers at the US Department of Agriculture. Many scientists are asking themselves: What can I do?

And the answer from a newly formed group called 314 Action is: Get elected.

The organization, named after the first three digits of pi, is a political action committee that was created to support scientists in running for office. It’s the science version of Emily’s List, which focuses on pro-choice female candidates, or VoteVets, which backs war veterans. “A lot of scientists traditionally feel that science is above politics but we’re seeing that politics is not above getting involved in science,” says founder Shaughnessy Naughton. “We’re losing, and the only way to stop that is to get more people with scientific backgrounds at the table.”

Yong is a good writer and the article offers some insight into why scientists do or don’t involve themselves in the political process along with links for more information.

***ETA Feb. 13, 2017: phys.org has published an article by Deborah Netburn (originally written for the Los Angeles Times) which offers some insight into scientists some of whom are involving themselves in politics for the first in their lives in a Feb. 13, 2017 news item titled ‘Science entering a new frontier: Politics‘.***

Science Borealis, the Canadian science blog aggregrator/community, has chimed in on the science and politics situation in the US with two blog postings on the topic. I wish they’d used titles that more accurately reflected the content but there’s Sarah Boon’s Jan. 24, 2017 posting, The War on Science: Can the US Learn From Canada? on her Watershed Moments blog, where she notes how different the situations are and how much Americans have already done and are doing to work on the issues,

When Donald Trump was first elected president of the United States, our editorial team at  Science Borealis talked about whether or not we should write an editorial supporting US scientists in what was likely going to become a fight for science. In the end we decided not to write it, for a number of reasons. For one thing, the likely impact of Trump on science remained a huge unknown. But for another thing, we thought US scientists were already well-prepared for a war on science. …

Unfortunately, Boon goes on to offer a collection of writings on the Canadian situation. I understand it’s well meant but I can’t help recalling people who rushed to comfort me in a difficult situation by recounting their own stories, at length. It wasn’t as helpful as they might have hoped.

John Dupuis’ Jan. 25, 2017 posting, The Trump War on Science: What Can the US Learn From Canada’s Experience? on his Confessions of a Science Librarian blog, is more egregiously titled but he goes on to provide links to resources for more information on the situation in the US. Although he, too, goes on to offer links to more about the Canadian situation.

One final observation, I have an objection to the term ‘war on science’; there was never a war on science in Canada. There was/is a war on certain kinds of science. In any event, here’s getting to the point of this posting.

Internship

For those scientific (stretching past political science students) types who think they might be interested in politics,  from the 2017 Liberal Party of Canada Internship Program page,

Are you a young Canadian with a love of politics? Are you passionate about serving your community, engaging with volunteers, and talking with Canadians about the issues that matter most? The Liberal Party of Canada is looking for hardworking young leaders to join Justin Trudeau’s team this summer, to help us continue to grow Canada’s Liberal movement from coast to coast to coast.

Whether it includes marching in the Vancouver Pride Parade, knocking on doors in Halifax, getting our message out to Canadians using social media, supporting our local Liberal associations in their communities, or learning directly from our campaign experts in Ottawa, an internship with the LPC is guaranteed to be an unforgettable summer! Our interns will have the opportunity to learn the foundations of organizing and campaigning directly from the people who paved our road to victory in 2015, and those who are already hard at work planning for the next election. With less than three years until the next general election, our team is looking for talented young Canadians to bring fresh and innovative ideas to the table.

You’ll gain valuable career experience, and get to know leading members of the Liberal team.

While every individual’s tasks and projects will be different, selected Liberal interns may work in areas including:

  • Communications and Media Relations
  • National Field – Campaigns
  • Social Media
  • Email Marketing
  • Graphic and Web Design
  • Local Field and Outreach
  • Riding Services
  • Party Operations
  • Finance and Accounting

Who: You! All Registered Liberals are encouraged to apply! We are looking for talented young Canadians from coast to coast to coast to work on Justin Trudeau’s team and become the next generation of leaders in the largest, most open, and most inclusive political movement in Canadian history.

Where: Most Interns will be placed in the Liberal Party of Canada National Office in Ottawa, and there also exciting opportunities available in our Regional Offices across the country. Please indicate in your application at least one city where you would be interested in working with our team.

When: Internship positions will run from Monday, May 1 to Friday, August 25. You must be available full-time for the duration of the internship.

This is a full-time, paid internship. [emphasis mine]

All applicants will receive an email of confirmation upon the submission of their application. Interviews will be conducted throughout the month of February. Due to a high volume of applications, only those who are selected for an interview will be contacted.

Apply now

Application Deadline: 11:59pm PST on Friday, February 10, 2017. [emphasis mine]

There is a FAQs (frequently asked questions) section on the the 2017 Liberal Party of Canada Internship Program page. Good luck!

Canadian Science Policy Conference inaugurates Lecture Series: Science Advice in a Troubled World

The Canadian Science Policy Centre (CSPC) launched a lecture series on Monday, Jan. 16, 2017 with Sir Peter Gluckman as the first speaker in a talk titled, Science Advice in a Troubled World. From a Jan. 18, 2017 CSPC announcement (received via email),

The inaugural session of the Canadian Science Policy Lecture Series was hosted by ISSP [University of Ottawa’s Institute for Science Society and Policy (ISSP)] on Monday January 16th [2017] at the University of Ottawa. Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand gave a presentation titled “Science Advise [sic] in a troubled world”. For a summary of the event, video and pictures please visit the event page.  

The session started with speeches by Monica Gattiner, Director, Institute for Science, Society and Policy, Jacques Frémont, President of the University of Ottawa as well as Mehrdad Hariri, CEO and President of the Canadian Science Policy Centre (CSPC).

The talk itself is about 50 mins. but there are lengthy introductions, including a rather unexpected (by me) reference to the recent US election from the president of the University of Ottawa, Jacques Frémont (formerly the head of Québec’s Human Rights Commission, where the talk was held. There was also a number of questions after the talk. So, the running time for the video 1 hr. 12 mins.

Here’s a bit more information about Sir Peter, from the Science Advice in a Troubled World event page on the CSPC website,

Sir Peter Gluckman ONZ FRS is the first Chief Science Advisor to the Prime Minister of New Zealand, having been appointed in 2009. He is also science envoy and advisor to the Ministry of Foreign Affairs and Trade. He is chair of the International Network of Government Science Advice (INGSA), which operates under the aegis of the international Council of Science (ICSU). He chairs the APEC Chief Science Advisors and Equivalents group and is the coordinator of the secretariat of Small Advanced Economies Initiative.  In 2016 he received the AAAS award in Science Diplomacy. He trained as a pediatric and biomedical scientist and holds a Distinguished University Professorship at the Liggins Institute of the University of Auckland. He has published over 700 scientific papers and several technical and popular science books. He has received the highest scientific (Rutherford medal) and civilian (Order of New Zealand, limited to 20 living persons) honours in NZ and numerous international scientific awards. He is a Fellow of the Royal Society of London, a member of the National Academy of Medicine (USA) and a fellow of the Academy of Medical Sciences (UK).

I listened to the entire video and Gluckman presented a thoughtful, nuanced lecture in which he also mentioned Calestous Juma and his 2016 book, Innovation and Its Enemies (btw, I will be writing a commentary about Juma’s extraordinary effort). He also referenced the concepts of post-truth and post-trust, and made an argument for viewing evidence-based science as part of the larger policymaking process rather than the dominant or only factor. From the Science Advice in a Troubled World event page,

Lecture Introduction

The world is facing many challenges from environmental degradation and climate change to global health issues, and many more.  Societal relationships are changing; sources of information, reliable and otherwise, and their transmission are affecting the nature of public policy.

Within this context the question arises; how can scientific advice to governments help address these emerging issues in a more unstable and uncertain world?
The relationship between science and politics is complex and the challenges at their interface are growing. What does scientific advice mean within this context?
How can science better inform policy where decision making is increasingly made against a background of post-truth polemic?

I’m not in perfect agreement with Gluckman with regard to post-truth as I have been influenced by an essay of Steve Fuller’s suggesting that science too can be post-truth. (Fuller’s essay was highlighted in my Jan. 6, 2017 posting.)

Gluckman seems to be wielding a fair amount of influence on the Canadian scene. This is his second CSPC visit in the last few months. He was an invited speaker at the Eighth Annual CSPC conference in November 2016 and, while he’s here in Jan. 2017, he’s chairing the Canadian Institutes of Health Research (CIHR) International Panel on Peer Review. (The CIHR is one of Canada’s three major government funding agencies for the sciences.)

In other places too, he’s going to be a member of a panel at the University of Oxford Martin School in later January 2017. From the “Is a post-truth world a post-expert world?” event page on the Oxford Martin webspace,

Winston Churchill advised that “experts should be on tap but never on top”. In 2017, is a post-truth world a post-expert world? What does this mean for future debates on difficult policy issues? And what place can researchers usefully occupy in an academic landscape that emphasises policy impact but a political landscape that has become wary of experts? Join us for a lively discussion on academia and the provision of policy advice, examining the role of evidence and experts and exploring how gaps with the public and politicians might be bridged.

This event will be chaired by Achim Steiner, Director of the Oxford Martin School and former Executive Director of the United Nations Environment Programme, with panellists including Oxford Martin Visiting Fellow Professor Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand and Chair of the International Network for Government Science Advice; Dr Gemma Harper, Deputy Director for Marine Policy and Evidence and Chief Social Scientist in the Department for Environment, Food and Rural Affairs (Defra), and Professor Stefan Dercon, Chief Economist of the Department for International Development (DFID) and Professor of Economic Policy at the Blavatnik School of Government.

This discussion will be followed by a drinks reception, all welcome.

Here are the logistics should you be lucky enough to be able to attend (from the event page),

25 January 2017 17:00 – 18:15

Lecture Theatre, Oxford Martin School

34 Broad Street (corner of Holywell and Catte Streets)
Oxford
OX1 3BD

Registration ((right hand column) is free.

Finally, Gluckman has published a paper on the digital economy as of Nov. 2016, which can be found here (PDF).

Understanding nanotechnology with Timbits; a peculiarly Canadian explanation

For the uninitiated, Timbits are also known as donut holes. Tim Hortons, founded by ex-National Hockey League player Tim Horton who has since deceased, has taken hold in the Canada’s language and culture such that one of our scientists trying to to explain nanotechnology thought it would be best understood in terms of Timbits. From a Jan. 14, 2017 article (How nanotechnology could change our lives) by Vanessa Lu for thestar.com,

The future is all in the tiny.

Known as nanoparticles, these are the tiniest particles, so small that we can’t see them or even imagine how small they are.

University of Waterloo’s Frank Gu paints a picture of their scale.

“Take a Timbit and start slicing it into smaller and smaller pieces, so small that every Canadian — about 35 million of us — can hold a piece of the treat,” he said. “And those tiny pieces are still a little bigger than a nanoparticle.”

For years, consumers have seen the benefits of nanotechnology in everything from shrinking cellphones to ultrathin televisions. Apple’s iPhones have become more powerful as they have become smaller — where a chip now holds billions of transistors.

“As you go smaller, it creates less footprint and more power,” said Gu, who holds the Canada research chair in advanced targeted delivery systems. “FaceTime, Skype — they are all powered by nanotechnology, with their retina display.”

Lu wrote a second January 14, 2017 article (Researchers developing nanoparticles to purify water) for thestar.com,

When scientists go with their gut or act on a hunch, it can pay off.

For Tim Leshuk, a PhD student in nanotechnology at the University of Waterloo, he knew it was a long shot.

Leshuk had been working with Frank Gu, who leads a nanotechnology research group, on using tiny nanoparticles that have been tweaked with certain properties to purify contaminated water.

Leshuk was working on the process, treating dirty water such as that found in Alberta’s oilsands, with the nanoparticles combined with ultraviolet light. He wondered what might happen if exposed to actual sunlight.

“I didn’t have high hopes,” he said. “For the heck of it, I took some beakers out and put them on the roof. And when I came back, it was far more effective that we had seen with regular UV light.

“It was high-fives all around,” Leshuk said. “It’s not like a Brita filter or a sponge that just soaks up pollutants. It completely breaks them down.”

Things are accelerating quickly, with a spinoff company now formally created called H2nanO, with more ongoing tests scheduled. The research has drawn attention from oilsands companies, and [a] large pre-pilot project to be funded by the Canadian Oil Sands Innovation Alliance is due to get under way soon.

The excitement comes because it’s an entirely green process, converting solar energy for cleanup, and the nanoparticle material is reuseable, over and over.

It’s good to see a couple of articles about nanotechnology. The work by Tim Leshuk was highlighted here in a Dec. 1, 2015 posting titled:  New photocatalytic approach to cleaning wastewater from oil sands. I see the company wasn’t mentioned in the posting so, it must be new; you can find H2nanO here.

Discussion of a divisive topic: the Oilsands

As for the oilsands, it’s been an interesting few days with the Prime Minister’s (Justin Trudeau) suggestion that dependence would be phased out causing a furor of sorts. From a Jan. 13, 2017 article by James Wood for the Calgary Herald,

Prime Minister Justin Trudeau’s musings about phasing out the oilsands Friday [Jan. 13, 2017] were met with a barrage of criticism from Alberta’s conservative politicians and a pledge from Premier Rachel Notley that the province’s energy industry was “not going anywhere, any time soon.”

Asked at a town hall event in Peterborough [Ontario] about the federal government’s recent approval of Kinder Morgan’s Trans Mountain pipeline expansion, Trudeau reiterated his longstanding remarks that he is attempting to balance economic and environmental concerns.

“We can’t shut down the oilsands tomorrow. We need to phase them out. We need to manage the transition off of our dependence on fossil fuels but it’s going to take time and in the meantime we have to manage that transition,” he added.

Northern Alberta’s oilsands are a prime target for environmentalists because of their significant output of greenhouse gas emissions linked to global climate change.

Trudeau, who will be in Calgary for a cabinet retreat on Jan. 23 and 24 [2017], also said again that it is the responsibility of the national government to get Canadian resources to market.

Meanwhile, Jane Fonda, Hollywood actress, weighed in on the issue of the Alberta oilsands with this (from a Jan. 11, 2017 article by Tristan Hopper for the National Post),

Fort McMurrayites might have assumed the celebrity visits would stop after the city was swept first by recession, and then by wildfire.

Or when the provincial government introduced a carbon tax and started phasing out coal.

And surely, with Donald Trump in the White House, even the oiliest corner of Canada would shift to the activist back burner.

But no; here comes Jane Fonda.

“We don’t need new pipelines,” she told a Wednesday [Jan. 11, 2017] press conference at the University of Alberta where she also dismissed Prime Minister Justin Trudeau as a “good-looking Liberal” who couldn’t be trusted.

Saying that her voice was joined with the “Indigenous people of Canada,” Fonda explained her trip to Alberta by saying “when you’re famous you can help amplify the voices of people that can’t necessarily get a lot of press people to come out.”

Fonda is in Alberta at the invitation of Greenpeace, which has brought her here in support of the Treaty Alliance Against Tar Sands Expansion — a group of Canadian First Nations and U.S. tribes opposed to new pipelines to the Athabasca oilsands.

Appearing alongside Fonda, at a table with a sign reading “Respect Indigenous Decisions,” was Grand Chief Stewart Phillip, who, as leader of the Union of B.C. Indian Chiefs, has led anti-pipeline protests and litigation in British Columbia.

“The future is going to be incredibly litigious,” he said in reference to the approved expansion of the Trans-Mountain pipeline.

The event also included Grand Chief Derek Nepinak of the Assembly of Manitoba Chiefs, which is leading a legal challenge to federal approval of the Line 3 pipeline.

Although much of Athabasca’s oil production now comes from “steam-assisted gravity drainage” projects that requires minimal surface disturbance, on Tuesday Fonda took the requisite helicopter tour of a Fort McMurray-area open pit mine.

As you can see, there are not going to be any easy answers.