Category Archives: science policy

Julie Payette, Canada’s Governor General, takes on science deniers and bogus science at 2017 Canadian Science Policy Conference

On the first day of the 2017 Canadian Science Policy Conference (Nov. 1 -3, 2017 in Ottawa, Ontario), Governor General Julie Payette’s speech encouraged listeners to grapple with science deniers, fake news, and more (from a Nov. 2, 2017 article by Mia Rabson in the Huffington Post, Canada edition),

Payette was the keynote speaker at the ninth annual Canadian Science Policy Convention in Ottawa Wednesday night [Nov. 1, 2017] where she urged her friends and former colleagues to take responsibility to shut down the misinformation about everything from health and medicine to climate change and even horoscopes that has flourished with the explosion of digital media.

“Can you believe that still today in learned society, in houses of government, unfortunately, we’re still debating and still questioning whether humans have a role in the Earth warming up or whether even the Earth is warming up, period,” she asked, her voice incredulous.

She generated giggles and even some guffaws from the audience when she said too many people still believe “taking a sugar pill will cure cancer if you will it good enough and that your future and every single one of the people here’s personalities can be determined by looking at planets coming in front of invented constellations.”

Payette was trained as a computer engineer and later became an astronaut and licensed pilot and in 1999 was the first Canadian to board the International Space Station.

Mia Rabson in another Nov. 2, 2017 article (this time for 680news.com) presents responses to the speech from various interested parties,

According to popular Canadian astrologer Georgia Nicols, Canada’s Governor General should be doing what she can to “keep the peace” with loved ones today and avoid the “planetary vibe” that is urging people to engage in power struggles and disputes.

The advice, contained in Julie Payette’s Nov. 2 [2017] horoscope on Nicols’ website, might have come a day late, though Payette likely wouldn’t have listened to it anyway.

The Governor General made clear in a speech to scientists at an Ottawa convention Wednesday she has a very low opinion of the validity of horoscopes, people who believe in creationism or those who don’t believe in climate change.

Emmett Macfarlane, a political professor at the University of Waterloo said nothing stops a governor general from stating opinions and while there have been unwritten traditions against it, Payette’s most recent predecessors did not always hold their tongues.

Conservative political strategist Alise Mills said Payette went way over the line with her speech, which she characterized as not only political but “mean-spirited.”

“I definitely agree science is key but I think there is a better way to do that without making fun of other people,” Mills said.

There isn’t a lot of data on horoscope and astrology beliefs in Canada but a 2005 Gallup poll suggested around one in four Canadians believed in astrology.

Prime Minister Justin Trudeau didn’t seem to have any issue with what Payette said, saying his government and Canadians understand the value of science.

Mills said Payette wasn’t just promoting science, she was mocking people with religious beliefs, and specifically, evangelical Christians who don’t believe evolutionary science.

Astrologer Nicols said she had “no wish to take on a woman who is as accomplished as Julie Payette,” whom she notes is a “feisty Libra with three planets in Scorpio.”

But she did suggest Payette would be better to stick to what she knows.

“Astrology is not the stuff of horoscopes in newspapers, albeit I do write them,” wrote Nicols in an e-mail. “It is actually a complex study based on mathematics. Not fairy dust falling from the stars.”

There is one thing I find a bit surprising, Payette doesn’t seem to have taken on the vaccination issue. In any event, it looks like the conference had an exciting start.

Model-type coding

By model, I mean Karlie Kloss whose computer coding camp project was profiled in an August 31, 2017 article by Elizabeth Segran for Fast Company (Note: Links have been removed),

It all started on a whim. Four years ago, supermodel Karlie Kloss decided to take an intensive coding course at New York Flatiron School. She had never written a lick of code in her life, but she wanted to see what the fuss about coding was all about. Between runway shows in Paris and Milan, and magazine shoots in London and New York, she would sit down with her instructor, Avi Flombaum, and learn the basics of Ruby on Rails.

“It was sheer curiosity that led me to take that class,” the 25-year-old Kloss tells Fast Company. “But it was really eye-opening to learn about the hardware and the software that goes into the tech we use every day.”

As a successful model, Kloss didn’t have any immediate reason to learn how to code, but she soon realized the activity could bring sweet rewards–literally. “One of the first things I learned how to program was a drone that could pick up a cookie on one side of the room and deliver it to the other side of the room,” she says with a twinkle in her eye. “It’s still one of my favorite things I’ve learned to do with code.”

Around 2012, coding bootcamps like the Flatiron course began popping up all over the country with the promise of equipping people with no prior training with the basics of computer science. In Kloss’s case, she was surprised to discover that coding wasn’t an impenetrable skill. “It’s a language just like any other language,” she says. “And the way our world is going, learning to code should be just as important as learning your mother tongue.”

There’s a persistent narrative in our culture that women are less inclined to pursue computer science. This was evident in the infamous Google memo, in which an employee, James Damore, claimed that women are genetically less inclined to code. This hasn’t been Kloss’s experience, though. She’s encountered many young women who are just as curious as she is about the technology that surrounds them. “They are aware of the power of these technical skills and how they are shaping the world today,” Kloss says. “These young women grew up with this technology embedded and they’re not scared to try building things. They are more forward-thinking than we sometimes give them credit for.”

Back in 2014, Kloss put out a call on her social media channels, asking if there were like-minded young women out there who wanted to code but didn’t have access to a course. She received an avalanche of responses from young women and ultimately offered scholarships to 21 young women to attend a two-week summer camp at the Flatiron School.

Three years later, Kloss says that this initiative–called Kode With Klossy–has grown and evolved. So far, more than 400 girls age 13 to 18 have gone through the Kode With Klossy summer camps. Kloss can now track where these students have ended up, and the results have been impressive. One of the original beneficiaries just won the grand prize at the TechCrunch Disrupt Hackathon, together with three other high school girls. (The team beat out 750 engineers with a virtual reality app that can help treat and diagnose ADHD efficiently.) …

There’s a bit more about Kloss and her camps, although it’s mostly about Kloss’s career, in a June 2017 article by Laura Brown for In Style magazine.

You can find Kode with Klossy here; the efforts are concentrated in the US. For anyone interested in coding initiatives in Canada, there’s Ladies learning Code, which offers both girls only and co-ed opportunities amongst others. Also, the Canadian federal government is getting in on the act with a $50M programme as I noted in my June 16, 2017 posting,

Government officials are calling the new $50M programme to teach computer coding skills to approximately 500,000 Canadian children from kindergarten to grade 12, CanCode (h/t June 14, 2017 news item on phys.org). Here’s more from the June 14, 2017 Innovation, Science and Economic Development Canada news release,,

Young Canadians will get the skills they need for the well-paying jobs of the future as a result of a $50-million program that gives them the opportunity to learn coding and other digital skills.

The Honourable Navdeep Bains, Minister of Innovation, Science and Economic Development, together with the Honourable Kirsty Duncan, Minister of Science, today launched CanCode, a new program that, over the next two years, will give 500,000 students from kindergarten to grade 12 the opportunity to learn the in-demand skills that will prepare them for future jobs.

The program also aims to encourage more young women, Indigenous Canadians and other under-represented groups to pursue careers in science, technology, engineering and math. In addition, it will equip 500 teachers across the country with the training and tools to teach digital skills and coding.

 Getting back to Segran’s article about Kloss’s coding camps, the writer describes the current approach to coding camps in the US,

The problem, she [Kloss] believes, is access. Many middle and high schools don’t offer coding courses, although this is slowly changing. And when they are offered, they tend to be oversubscribed by male students, creating an uncomfortable imbalance in the classroom. Then there are the popular coding bootcamps, such as the one that Kloss took, but they often come with hefty price tags: Tuition can cost upward of $1,000 a week. There have also been questions about how sustainable the coding bootcamp business model really is, since several companies, like The Iron Yard and Dev Bootcamp, have had to shut down recently.

I guess we’ll see what happens with the Canadian $50M in the next few years and whether it proves a more effective approach (i.e., government and not-for-profit) than the individual business and not-for-profit efforts seen in the US.

Announcing Canada’s Chief Science Advisor: Dr. Mona Nemer

Thanks to the Canadian Science Policy Centre’s September 26, 2017 announcement (received via email) a burning question has been answered,

After great anticipation, Prime Minister Trudeau along with Minister Duncan have announced Canada’s Chief Science Advisor, Dr. Mona Nemer, [emphasis mine]  at a ceremony at the House of Commons. The Canadian Science Policy Centre welcomes this exciting news and congratulates Dr. Nemer on her appointment in this role and we wish her the best in carrying out her duties in this esteemed position. CSPC is looking forward to working closely with Dr. Nemer for the Canadian science policy community. Mehrdad Hariri, CEO & President of the CSPC, stated, “Today’s historic announcement is excellent news for science in Canada, for informed policy-making and for all Canadians. We look forward to working closely with the new Chief Science Advisor.”

In fulfilling our commitment to keep the community up to date and informed regarding science, technology, and innovation policy issues, CSPC has been compiling all news, publications, and editorials in recognition of the importance of the Federal Chief Science Officer as it has been developing, as you may see by clicking here.

We invite your opinions regarding the new Chief Science Advisor, to be published on our CSPC Featured Editorial page. We will publish your reactions on our website, sciencepolicy.ca on our Chief Science Advisor page.

Please send your opinion pieces to editorial@sciencepolicy.ca.

Here are a few (very few) details from the Prime Minister’s (Justin Trudeau) Sept. 26, 2017 press release making the official announcement,

The Government of Canada is committed to strengthen science in government decision-making and to support scientists’ vital work.

In keeping with these commitments, the Prime Minister, Justin Trudeau, today announced Dr. Mona Nemer as Canada’s new Chief Science Advisor, following an open, transparent, and merit-based selection process.  

We know Canadians value science. As the new Chief Science Advisor, Dr. Nemer will help promote science and its real benefits for Canadians—new knowledge, novel technologies, and advanced skills for future jobs. These breakthroughs and new opportunities form an essential part of the Government’s strategy to secure a better future for Canadian families and to grow Canada’s middle class.

Dr. Nemer is a distinguished medical researcher whose focus has been on the heart, particularly on the mechanisms of heart failure and congenital heart diseases. In addition to publishing over 200 scholarly articles, her research has led to new diagnostic tests for heart failure and the genetics of cardiac birth defects. Dr. Nemer has spent more than ten years as the Vice-President, Research at the University of Ottawa, has served on many national and international scientific advisory boards, and is a Fellow of the Royal Society of Canada, a Member of the Order of Canada, and a Chevalier de l’Ordre du Québec.

As Canada’s new top scientist, Dr. Nemer will provide impartial scientific advice to the Prime Minister and the Minister of Science. She will also make recommendations to help ensure that government science is fully available and accessible to the public, and that federal scientists remain free to speak about their work. Once a year, she will submit a report about the state of federal government science in Canada to the Prime Minister and the Minister of Science, which will also be made public.

Quotes

“We have taken great strides to fulfill our promise to restore science as a pillar of government decision-making. Today, we took another big step forward by announcing Dr. Mona Nemer as our Chief Science Advisor. Dr. Nemer brings a wealth of expertise to the role. Her advice will be invaluable and inform decisions made at the highest levels. I look forward to working with her to promote a culture of scientific excellence in Canada.”
— The Rt. Hon. Justin Trudeau, Prime Minister of Canada

“A respect for science and for Canada’s remarkable scientists is a core value for our government. I look forward to working with Dr. Nemer, Canada’s new Chief Science Advisor, who will provide us with the evidence we need to make decisions about what matters most to Canadians: their health and safety, their families and communities, their jobs, environment and future prosperity.”
— The Honourable Kirsty Duncan, Minister of Science

“I am honoured and excited to be Canada’s Chief Science Advisor. I am very pleased to be representing Canadian science and research – work that plays a crucial role in protecting and improving the lives of people everywhere. I look forward to advising the Prime Minister and the Minister of Science and working with the science community, policy makers, and the public to make science part of government policy making.”
— Dr. Mona Nemer, Chief Science Advisor, Canada

Quick Facts

  • Dr. Nemer is also a Knight of the Order of Merit of the French Republic, and has been awarded honorary doctorates from universities in France and Finland.
  • The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.

Nemers’ Wikipedia entry does not provide much additional information although you can find out a bit more on her University of Ottawa page. Brian Owens in a Sept. 26, 2017 article for the American Association for the Advancement of Science’s (AAAS) Science Magazine provides a bit more detail, about this newly created office and its budget

Nemer’s office will have a $2 million budget, and she will report to both Trudeau and science minister Kirsty Duncan. Her mandate includes providing scientific advice to government ministers, helping keep government-funded science accessible to the public, and protecting government scientists from being muzzled.

Ivan Semeniuk’s Sept. 26, 2017 article for the Globe and Mail newspaper about Nemer’s appointment is the most informative (that I’ve been able to find),

Mona Nemer, a specialist in the genetics of heart disease and a long time vice-president of research at the University of Ottawa, has been named Canada’s new chief science advisor.

The appointment, announced Tuesday [Sept. 26, 2017] by Prime Minister Justin Trudeau, comes two years after the federal Liberals pledged to reinstate the position during the last election campaign and nearly a decade after the previous version of the role was cut by then prime minister Stephen Harper.

Dr. Nemer steps into the job of advising the federal government on science-related policy at a crucial time. Following a landmark review of Canada’s research landscape [Naylor report] released last spring, university-based scientists are lobbying hard for Ottawa to significantly boost science funding, one of the report’s key recommendations. At the same time, scientists and science-advocacy groups are increasingly scrutinizing federal actions on a range of sensitive environment and health-related issues to ensure the Trudeau government is making good on promises to embrace evidence-based decision making.

A key test of the position’s relevance for many observers will be the extent to which Dr. Nemer is able to speak her mind on matters where science may run afoul of political expediency.

Born in 1957, Dr. Nemer grew up in Lebanon and pursued an early passion for chemistry at a time and place where women were typically discouraged from entering scientific fields. With Lebanon’s civil war making it increasingly difficult for her to pursue her studies, her family was able to arrange for her to move to the United States, where she completed an undergraduate degree at Wichita State University in Kansas.

A key turning point came in the summer of 1977 when Dr. Nemer took a trip with friends to Montreal. She quickly fell for the city and, in short order, managed to secure acceptance to McGill University, where she received a PhD in 1982. …

It took a lot of searching to find out that Nemer was born in Lebanon and went to the United States first. A lot of immigrants and their families view Canada as a second choice and Nemer and her family would appear to have followed that pattern. It’s widely believed (amongst Canadians too) that the US is where you go for social mobility. I’m not sure if this is still the case but at one point in the 1980s Israel ranked as having the greatest social mobility in the world. Canada came in second while the US wasn’t even third or fourth ranked.

It’s the second major appointment by Justin Trudeau in the last few months to feature a woman who speaks French. The first was Julie Payette, former astronaut and Québecker, as the upcoming Governor General (there’s more detail and a whiff of sad scandal in this Aug. 21, 2017 Canadian Broadcasting Corporation online news item). Now there’s Dr. Mona Nemer who’s lived both in Québec and Ontario. Trudeau and his feminism, eh? Also, his desire to keep Québeckers happy (more or less).

I’m not surprised by the fact that Nemer has been based in Ottawa for several years. I guess they want someone who’s comfortable with the government apparatus although I for one think a little fresh air might be welcome. After all, the Minister of Science, Kirsty Duncan, is from Toronto which between Nemer and Duncan gives us the age-old Canadian government trifecta (geographically speaking), Ottawa-Montréal-Toronto.

Two final comments, I am surprised that Duncan did not make the announcement. After all, it was in her 2015 mandate letter.But perhaps Paul Wells in his acerbic June 29, 2017 article for Macleans hints at the reason as he discusses the Naylor report (review of fundamental science mentioned in Semeniuk’s article and for which Nemer is expected to provide advice),

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

Second,  our other science minister, Navdeep Bains, Minister of Innovation, Science  and Economic Development does not appear to have been present at the announcement. Quite surprising given where her office will located (from the government’s Sept. 26, 2017 press release in Quick Facts section ) “The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.”

Finally, Wells’ article is well worth reading in its entirety and for those who are information gluttons, I have a three part series on the Naylor report, published June 8, 2017,

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

London gets its first Chief Digital Officer (CDO)

A report commissioned from 2thinknow by Business Insider ranks the 25 most high-tech cities in the world (Vancouver, Canada rates as 14th on this list) is featured in an Aug. 25, 2017 news item on the Daily Hive; Vancouver,

The ranking was selected on 10 factors related to technological advancement, which included the number of patents filed per capita, startups, tech venture capitalists, ranking in other innovation datasets, and level of smartphone use.

Topping the list, which was released this month, is San Fransisco’s “Silicon Valley,” which “wins in just about every category.” New York comes in second place, followed by London [UK; emphasis mine], Los Angeles, and Seoul.

Intriguingly, London’s Mayor Sadiq Khan announced a new Chief Digital Officer for the city just a few days later. From an August 29, 2017 news item by Michael Moore for Beta News,

Theo Blackwell, a former cabinet member at Camden Council, will take responsibility for helping London continue to be the technology powerhouse it has become over the past few years.

Mr Blackwell will work closely with the Mayor’s office, particularly the Smart London Board, to create a new “Smart London Plan” that looks to outline how the capital can benefit from embracing new technologies, with cybersecurity, open data and connectivity all at the forefront.

He will also look to build collaboration across London’s boroughs when it comes to public technology schemes, and encourage the digital transformation of public services.

“The new chief digital officer post is an amazing opportunity to make our capital even more open to innovation, support jobs and investment and make our public services more effective,” he said in a statement.

An August 25, 2017 Mayor of London press release, which originated the news item, provides a more detailed look at the position and the motives for creating it,

The Mayor of London, Sadiq Khan, has today (25 August [2017]) appointed Theo Blackwell as the capital’s first ever Chief Digital Officer (CDO).

As London’s first CDO, Theo will play a leading role in realising the Mayor’s ambition to make London the world’s smartest city, ensuring that the capital’s status as a global tech hub helps transform the way public services are designed and delivered, making them more accessible, efficient and responsive to the needs of Londoners. The appointment fulfils a key manifesto commitment made by the Mayor.

He joins the Mayor’s team following work at GovTech accelerator Public Group, advising start-ups on the growing market in local public services, and was previously Head of Policy & Public Affairs for the video games industry’s trade body, Ukie – where he ran a ‘Next Gen Skills’ campaign to get coding back on the curriculum.

Theo brings more than 20 years of experience in technology and digital transformation in both the public and private sector.  In his role as cabinet member for finance, technology and growth at Camden Council, Theo has established Camden as London’s leading digital borough through its use of public data – and this year they received national recognition as Digital Leaders ‘Council of the year’.

Theo also sits on the Advisory Board of Digital Leaders and is a director of Camden Town Unlimited, a Business Improvement District which pioneered new start-up incubation in ‘meanwhile’ space.

Theo will work closely with the Mayor’s Smart London Board to develop a new Smart London Plan, and will play a central role in building collaboration across London’s boroughs, and businesses, to drive the digital transformation of public services, as well as supporting the spread of innovation through common technology standards and better data-sharing.

Theo will also promote manifesto ambitions around pan-London collaboration on connectivity, digital inclusion, cyber-security and open data. He will also focus on scoping work for the London Office for Technology & Innovation that was announced by the Mayor at London Tech Week.

London already has more than 47,000 digital technology companies, employing approximately 240,000 people. It is forecast that the number of tech companies will increase by a third and a further 44,500 jobs will have been created by 2026.

The capital is also racing ahead with new technologies, using it for ticketing and contactless on the transport network, while the London Datastore is an open resource with vast amounts of data about all areas of the city, and tech start-ups have used this open data to create innovative new apps.

The Mayor of London, Sadiq Khan, said:

I am determined to make London the world’s leading ‘smart city’ with digital technology and data at the heart of making our capital a better place to live, work and visit. We already lead in digital technology, data science and innovation and I want us to make full use of this in transforming our public services for Londoners and the millions of visitors to our great city.

I am delighted to appoint Theo Blackwell as London’s first Chief Digital Officer, and I know he will use his experience working in the technology sector and developing public services to improve the lives of all Londoners.

Theo Blackwell said:

The new Chief Digital Officer post is an amazing opportunity to make our capital even more open to innovation, support jobs and investment and make our public services more effective. The pace of change over the next decade requires public services to develop a stronger relationship with the tech sector.  Our purpose is to fully harness London’s world-class potential to make our public services faster and more reliable at doing things we expect online, but also adaptable enough to overcome the capital’s most complex challenges.

Antony Walker, Deputy CEO of techUK, said:

techUK has long argued that London needed a Chief Digital Officer to ensure that London makes the best possible use of new digital technologies. The appointment of Theo Blackwell is good news for Londoners. The smart use of new digital technologies can improve the lives of people living in or visiting London. Theo Blackwell brings a deep understanding of both the opportunities ahead and the challenges of implementing new digital technologies to address the city’s most pressing problems. This appointment is an important step forward to London being at the forefront of tech innovation to create smart places and communities where citizens want to live, work and thrive.

Councillor Claire Kober, Chair of London Councils, said:

The appointment of London’s first Chief Digital Officer fills an important role providing needed digital leadership for London’s public services.  Theo will bring his longstanding experience working with other borough leaders, which I think is critical as we develop new approaches to developing, procuring and scaling the best digital solutions across the capital.

Robin Knowles, Founder and CEO of Digital Leaders, said:

Theo Blackwell has huge experience and is a fabulous appointment as the capital’s first Chief Digital Officer.  He will do a great job for London.

Doteveryone founder, Baroness Martha Lane Fox, said:

Digital leadership is a major challenge for the public sector, as the new Chief Digital Officer for London Theo’s track-record delivering real change in local government and his work in the tech sector brings real experience to this role.

Mike Flowers, First Chief Analytics Officer for New York City and Chief Analytics Officer at Enigma Technologies, said:

Theo is a pragmatic visionary with that rare combination of tech savvy and human focus that the task ahead of him requires. I congratulate Mayor Khan on his decision to trust him with this critical role, and I’m very happy for the residents of London whose lives will be improved by the better use of data and technology by their government. Theo gets results.

It’s always possible that there’s a mastermind involved in the timing of these announcements but sometimes they’re just a reflection of a trend. Cities have their moments just like people do and it seems like London may be on an upswing. From an August 18 (?), 2017 opinion piece by Gavin Poole (Chief Executive Officer, Here East) for ITProPortal,

Recently released data from London & Partners indicates that record levels of venture capital investment are flooding into the London tech sector, with a record £1.1 billion pounds being invested since the start of the year. Strikingly, 2017 has seen a fourfold increase in investment compared with 2013. This indicates that, despite Brexit fears, London retains its crown as Europe’s number one tech hub for global investors but we must make sure that we keep that place by protecting access to the world’s best talent.

As the tech sector continues to outperform the rest of the UK economy, London’s place in it will become all the more important. When London does well, so too does the rest of the UK. Mega-deals from challenger brands like Monzo and Improbable, and the recent opening of Europe’s newest technology innovation destination, Plexal, at Here East have helped to cement the tech sector’s future in the medium-term. Government too has recognised the strength of the sector; earlier this month the Department for Culture, Media and Sport rebranded as the Department for Digital, Culture, Media and Sport. This name change, 25 years after the department’s creation, signifies how much things have developed. There is now also a Minister of State for Digital who covers everything from broadband and mobile connectivity to the creative industries. This visible commitment by the Government to put digital at the heart of its agenda should be welcomed.

There are lots of reasons for London’s tech success: start-ups and major corporates look to London for its digital and geographical connectivity, the entrepreneurialism of its tech talent and the vibrancy of its urban life. We continue to lead Europe on all of these fronts and Sadiq Khan’s #LondonIsOpen campaign has made clear that the city remains welcoming and accessible. In fact, there’s no shortage of start-ups proclaiming the great things about London. Melissa Morris, CEO and Founder, Lantum, a company that recently secured £5.3 in funding in London said “London is the world’s coolest city – it attracts some of the most interesting people from across the world… We’ve just closed a round of funding, and our plans are very much about growth”.

As for Vancouver, we don’t have any science officers or technology officers or anything of that ilk. Our current mayor, Gregor Robertson, who pledged to reduce homelessness almost 10 years ago has experienced a resounding failure with regard to that pledge but his greenest city pledge has enjoyed more success. As far as I’m aware the mayor and the current city council remain blissfully uninvolved in major initiatives to encourage science and technology efforts although there was a ‘sweetheart’ real estate deal for local technology company, Hootsuite. A Feb. 18, 2014 news item on the CBC (Canadian Broadcasting Corporation) website provides a written description of the deal but there is also this video,

Robertson went on to win his election despite the hint of financial misdoings in the video but there is another election* coming in 2018. The city official in the video, Penny Ballem was terminated in September 2015 *due to what seemed to be her attempts to implement policy at a pace some found disconcerting*. In the meantime, the Liberal party which made up our provincial government until recently (July 2017) was excoriated for its eagerness to accept political money and pledged to ‘change the rules’ as did the parties which were running in opposition. As far as I’m aware, there have been no changes that will impace provincial or municipal politicians in the near future.

Getting back to government initiatives that encourage science and technology efforts in Vancouver, there is the Cascadia Innovation Corridor. Calling it governmental is a bit of a stretch as it seems to be a Microsoft initiative that found favour with the governments of Washington state and the province of British Columbia; Vancouver will be one of the happy recipients. See my Feb. 28, 2017 posting and August 28, 2017 posting for more details about the proposed Corridor.

In any event, I’d like to see a science policy and at this point I don’t care if it’s a city policy or a provincial policy.

*’elections’ corrected to ‘election’ and ‘due to what seemed to be her attempts to implement policy at a pace some found disconcerting’ added for clarity on August 31, 2017.

High speed rail link for Cascadia Innovation Corridor

In a Feb. 28, 2017 posting I featured an announcement about what I believe is the first  project from the British Columbia (province of Canada) and Washington State (US) government’s joint Cascadia Innovation Corridor initiative:  the Cascadia Analytics Cooperative, During the telephone press conference a couple of the participants joked about hyperloop (transportation pods in vacuum tubes) and  being able to travel between Vancouver (Canada) and Seattle (US) in minutes. It seems that might not have been quite the joke I assumed. Kenneth Chan in an Aug. 14, 2017 posting for the Daily Hive announced a high-speed rail feasibility study is underway (Note: Links have been removed),

According to KUOW public radio, the study began in late-July and will be conducted by a consultant at a cost of US$300,000 – down from the budgeted USD$1 million when the study was first announced earlier this year in Governor Jay Inslee’s proposed state budget. The budget bill proposed Washington State stations at locations such as Bellingham, Everett, SeaTac International Airport, Tacoma, Olympia, and Vancouver, Washington.

The idea has received the full backing of Washington State-based Microsoft, which supported the study with an additional $50,000 contribution. [emphasis mine] Engineering consultancy firm CH2M, which has offices in Vancouver, Seattle, and Portland, has been contracted to perform the study.

Interest in such a rail link is spurred from the Cascadia Innovation Corridor agreement signed by the government leaders of BC and Washington State last fall. The agreement committed both jurisdictions to growing the Vancouver-Seattle corridor into a tech corridor and innovation hub and improving transportation connections, such as high-speed rail.

“Why not a high speed train from Vancouver to Seattle to Portland? If we lived in Europe it would already be there,” said Brad Smith, Microsoft President and Chief Legal Officer, at a recent Portland conference on regional policy. “We need to raise our sights and our ambition level as a region.”

Microsoft is very interested in facilitating greater ease of movement, a development which causes me to to feel some unease as mentioned in my February 28, 2017 posting,

I look forward to hearing more about the Cascadia Urban Analytics Cooperative and the Cascadia Innovation Corridor as they develop. This has the potential to be very exciting although I do have some concerns such as MIcrosoft and its agendas, both stated and unstated. After all, the Sept. 2016 meeting was convened by Microsoft and its public affairs/lobbying group and the topic was innovation, which is code for business and as hinted earlier, business is not synonymous with social good. Having said that I’m not about to demonize business either. I just think a healthy dose of skepticism is called for. Good things can happen but we need to ensure they do.

Since February 2017, the government in British Columbia has changed hands and is now led by James Horgan of the New Democratic Party. Like Christy Clark and the Liberals before them, this provincial government does not have any science policy, a ministry of science (senior or junior), or any evidence of independent science advice. There has been (and may still be, it’s hard to tell) a Premier’s Technology Council, a BC Innovation Council (formerly the Science Council of BC), and #BCTECH Strategy which hie more to business and applied science than an inclusive ‘science strategy’ with attendant government agencies.

Canadian science policy news and doings (also: some US science envoy news)

I have a couple of notices from the Canadian Science Policy Centre (CSPC), a twitter feed, and an article in online magazine to thank for this bumper crop of news.

 Canadian Science Policy Centre: the conference

The 2017 Canadian Science Policy Conference to be held Nov. 1 – 3, 2017 in Ottawa, Ontario for the third year in a row has a super saver rate available until Sept. 3, 2017 according to an August 14, 2017 announcement (received via email).

Time is running out, you have until September 3rd until prices go up from the SuperSaver rate.

Savings off the regular price with the SuperSaver rate:
Up to 26% for General admission
Up to 29% for Academic/Non-Profit Organizations
Up to 40% for Students and Post-Docs

Before giving you the link to the registration page and assuming that you might want to check out what is on offer at the conference, here’s a link to the programme. They don’t seem to have any events celebrating Canada’s 150th anniversary although they do have a session titled, ‘The Next 150 years of Science in Canada: Embedding Equity, Delivering Diversity/Les 150 prochaine années de sciences au Canada:  Intégrer l’équité, promouvoir la diversité‘,

Enhancing equity, diversity, and inclusivity (EDI) in science, technology, engineering and math (STEM) has been described as being a human rights issue and an economic development issue by various individuals and organizations (e.g. OECD). Recent federal policy initiatives in Canada have focused on increasing participation of women (a designated under-represented group) in science through increased reporting, program changes, and institutional accountability. However, the Employment Equity Act requires employers to act to ensure the full representation of the three other designated groups: Aboriginal peoples, persons with disabilities and members of visible minorities. Significant structural and systemic barriers to full participation and employment in STEM for members of these groups still exist in Canadian institutions. Since data support the positive role of diversity in promoting innovation and economic development, failure to capture the full intellectual capacity of a diverse population limits provincial and national potential and progress in many areas. A diverse international panel of experts from designated groups will speak to the issue of accessibility and inclusion in STEM. In addition, the discussion will focus on evidence-based recommendations for policy initiatives that will promote full EDI in science in Canada to ensure local and national prosperity and progress for Canada over the next 150 years.

There’s also this list of speakers . Curiously, I don’t see Kirsty Duncan, Canada’s Minister of Science on the list, nor do I see any other politicians in the banner for their conference website  This divergence from the CSPC’s usual approach to promoting the conference is interesting.

Moving onto the conference, the organizers have added two panels to the programme (from the announcement received via email),

Friday, November 3, 2017
10:30AM-12:00PM
Open Science and Innovation
Organizer: Tiberius Brastaviceanu
Organization: ACES-CAKE

10:30AM- 12:00PM
The Scientific and Economic Benefits of Open Science
Organizer: Arij Al Chawaf
Organization: Structural Genomics

I think this is the first time there’s been a ‘Tiberius’ on this blog and teamed with the organization’s name, well, I just had to include it.

Finally, here’s the link to the registration page and a page that details travel deals.

Canadian Science Policy Conference: a compendium of documents and articles on Canada’s Chief Science Advisor and Ontario’s Chief Scientist and the pre-2018 budget submissions

The deadline for applications for the Chief Science Advisor position was extended to Feb. 2017 and so far, there’s no word as to whom it might be. Perhaps Minister of Science Kirsty Duncan wants to make a splash with a surprise announcement at the CSPC’s 2017 conference? As for Ontario’s Chief Scientist, this move will make province the third (?) to have a chief scientist, after Québec and Alberta. There is apparently one in Alberta but there doesn’t seem to be a government webpage and his LinkedIn profile doesn’t include this title. In any event, Dr. Fred Wrona is mentioned as the Alberta’s Chief Scientist in a May 31, 2017 Alberta government announcement. *ETA Aug. 25, 2017: I missed the Yukon, which has a Senior Science Advisor. The position is currently held by Dr. Aynslie Ogden.*

Getting back to the compendium, here’s the CSPC’s A Comprehensive Collection of Publications Regarding Canada’s Federal Chief Science Advisor and Ontario’s Chief Scientist webpage. Here’s a little background provided on the page,

On June 2nd, 2017, the House of Commons Standing Committee on Finance commenced the pre-budget consultation process for the 2018 Canadian Budget. These consultations provide Canadians the opportunity to communicate their priorities with a focus on Canadian productivity in the workplace and community in addition to entrepreneurial competitiveness. Organizations from across the country submitted their priorities on August 4th, 2017 to be selected as witness for the pre-budget hearings before the Committee in September 2017. The process will result in a report to be presented to the House of Commons in December 2017 and considered by the Minister of Finance in the 2018 Federal Budget.

NEWS & ANNOUNCEMENT

House of Commons- PRE-BUDGET CONSULTATIONS IN ADVANCE OF THE 2018 BUDGET

https://www.ourcommons.ca/Committees/en/FINA/StudyActivity?studyActivityId=9571255

CANADIANS ARE INVITED TO SHARE THEIR PRIORITIES FOR THE 2018 FEDERAL BUDGET

https://www.ourcommons.ca/DocumentViewer/en/42-1/FINA/news-release/9002784

The deadline for pre-2018 budget submissions was Aug. 4, 2017 and they haven’t yet scheduled any meetings although they are to be held in September. (People can meet with the Standing Committee on Finance in various locations across Canada to discuss their submissions.) I’m not sure where the CSPC got their list of ‘science’ submissions but it’s definitely worth checking as there are some odd omissions such as TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)), Genome Canada, the Pan-Canadian Artificial Intelligence Strategy, CIFAR (Canadian Institute for Advanced Research), the Perimeter Institute, Canadian Light Source, etc.

Twitter and the Naylor Report under a microscope

This news came from University of British Columbia President Santa Ono’s twitter feed,

 I will join Jon [sic] Borrows and Janet Rossant on Sept 19 in Ottawa at a Mindshare event to discuss the importance of the Naylor Report

The Mindshare event Ono is referring to is being organized by Universities Canada (formerly the Association of Universities and Colleges of Canada) and the Institute for Research on Public Policy. It is titled, ‘The Naylor report under the microscope’. Here’s more from the event webpage,

Join Universities Canada and Policy Options for a lively discussion moderated by editor-in-chief Jennifer Ditchburn on the report from the Fundamental Science Review Panel and why research matters to Canadians.

Moderator

Jennifer Ditchburn, editor, Policy Options.

Jennifer Ditchburn

Editor-in-chief, Policy Options

Jennifer Ditchburn is the editor-in-chief of Policy Options, the online policy forum of the Institute for Research on Public Policy.  An award-winning parliamentary correspondent, Jennifer began her journalism career at the Canadian Press in Montreal as a reporter-editor during the lead-up to the 1995 referendum.  From 2001 and 2006 she was a national reporter with CBC TV on Parliament Hill, and in 2006 she returned to the Canadian Press.  She is a three-time winner of a National Newspaper Award:  twice in the politics category, and once in the breaking news category. In 2015 she was awarded the prestigious Charles Lynch Award for outstanding coverage of national issues. Jennifer has been a frequent contributor to television and radio public affairs programs, including CBC’s Power and Politics, the “At Issue” panel, and The Current. She holds a bachelor of arts from Concordia University, and a master of journalism from Carleton University.

@jenditchburn

Tuesday, September 19, 2017

 12-2 pm

Fairmont Château Laurier,  Laurier  Room
 1 Rideau Street, Ottawa

 rsvp@univcan.ca

I can’t tell if they’re offering lunch or if there is a cost associated with this event so you may want to contact the organizers.

As for the Naylor report, I posted a three-part series on June 8, 2017, which features my comments and the other comments I was able to find on the report:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

One piece not mentioned in my three-part series is Paul Wells’ provocatively titled June 29, 2017 article for MacLean’s magazine, Why Canadian scientists aren’t happy (Note: Links have been removed),

Much hubbub this morning over two interviews Kirsty Duncan, the science minister, has given the papers. The subject is Canada’s Fundamental Science Review, commonly called the Naylor Report after David Naylor, the former University of Toronto president who was its main author.

Other authors include BlackBerry founder Mike Lazaridis, who has bankrolled much of the Waterloo renaissance, and Canadian Nobel physicist Arthur McDonald. It’s as blue-chip as a blue-chip panel could be.

Duncan appointed the panel a year ago. It’s her panel, delivered by her experts. Why does it not seem to be… getting anywhere? Why does it seem to have no champion in government? Therein lies a tale.

Note, first, that Duncan’s interviews—her first substantive comment on the report’s recommendations!—come nearly three months after its April release, which in turn came four months after Duncan asked Naylor to deliver his report, last December. (By March I had started to make fun of the Trudeau government in print for dragging its heels on the report’s release. That column was not widely appreciated in the government, I’m told.)

Anyway, the report was released, at an event attended by no representative of the Canadian government. Here’s the gist of what I wrote at the time:

 

Naylor’s “single most important recommendation” is a “rapid increase” in federal spending on “independent investigator-led research” instead of the “priority-driven targeted research” that two successive federal governments, Trudeau’s and Stephen Harper’s, have preferred in the last 8 or 10 federal budgets.

In English: Trudeau has imitated Harper in favouring high-profile, highly targeted research projects, on areas of study selected by political staffers in Ottawa, that are designed to attract star researchers from outside Canada so they can bolster the image of Canada as a research destination.

That’d be great if it wasn’t achieved by pruning budgets for the less spectacular research that most scientists do.

Naylor has numbers. “Between 2007-08 and 2015-16, the inflation-adjusted budgetary envelope for investigator-led research fell by 3 per cent while that for priority-driven research rose by 35 per cent,” he and his colleagues write. “As the number of researchers grew during this period, the real resources available per active researcher to do investigator-led research declined by about 35 per cent.”

And that’s not even taking into account the way two new programs—the $10-million-per-recipient Canada Excellence Research Chairs and the $1.5 billion Canada First Research Excellence Fund—are “further concentrating resources in the hands of smaller numbers of individuals and institutions.”

That’s the context for Duncan’s remarks. In the Globe, she says she agrees with Naylor on “the need for a research system that promotes equity and diversity, provides a better entry for early career researchers and is nimble in response to new scientific opportunities.” But she also “disagreed” with the call for a national advisory council that would give expert advice on the government’s entire science, research and innovation policy.

This is an asinine statement. When taking three months to read a report, it’s a good idea to read it. There is not a single line in Naylor’s overlong report that calls for the new body to make funding decisions. Its proposed name is NACRI, for National Advisory Council on Research and Innovation. A for Advisory. Its responsibilities, listed on Page 19 if you’re reading along at home, are restricted to “advice… evaluation… public reporting… advice… advice.”

Duncan also didn’t promise to meet Naylor’s requested funding levels: $386 million for research in the first year, growing to $1.3 billion in new money in the fourth year. That’s a big concern for researchers, who have been warning for a decade that two successive government’s—Harper’s and Trudeau’s—have been more interested in building new labs than in ensuring there’s money to do research in them.

The minister has talking points. She gave the same answer to both reporters about whether Naylor’s recommendations will be implemented in time for the next federal budget. “It takes time to turn the Queen Mary around,” she said. Twice. I’ll say it does: She’s reacting three days before Canada Day to a report that was written before Christmas. Which makes me worry when she says elected officials should be in charge of being nimble.

Here’s what’s going on.

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

A government that consistently buys into the market for intellectual capital at the very top of the price curve is a factory for producing white elephants. But don’t take my word for it. Ask Geoffrey Hinton [University of Toronto’s Geoffrey Hinton, a Canadian leader in machine learning].

“There is a lot of pressure to make things more applied; I think it’s a big mistake,” he said in 2015. “In the long run, curiosity-driven research just works better… Real breakthroughs come from people focusing on what they’re excited about.”

I keep saying this, like a broken record. If you want the science that changes the world, ask the scientists who’ve changed it how it gets made. This government claims to be interested in what scientists think. We’ll see.

Incisive and acerbic,  you may want to make time to read this article in its entirety.

Getting back to the ‘The Naylor report under the microscope’ event, I wonder if anyone will be as tough and direct as Wells. Going back even further, I wonder if this is why there’s no mention of Duncan as a speaker at the conference. It could go either way: surprise announcement of a Chief Science Advisor, as I first suggested, or avoidance of a potentially angry audience.

For anyone curious about Geoffrey Hinton, there’s more here in my March 31, 2017 post (scroll down about 20% of the way) and for more about the 2017 budget and allocations for targeted science projects there’s my March 24, 2017 post.

US science envoy quits

An Aug. 23, 2017article by Matthew Rosza for salon.com notes the resignation of one of the US science envoys,

President Donald Trump’s infamous response to the Charlottesville riots — namely, saying that both sides were to blame and that there were “very fine people” marching as white supremacists — has prompted yet another high profile resignation from his administration.

Daniel M. Kammen, who served as a science envoy for the State Department and focused on renewable energy development in the Middle East and Northern Africa, submitted a letter of resignation on Wednesday. Notably, he began the first letter of each paragraph with letters that spelled out I-M-P-E-A-C-H. That followed a letter earlier this month by writer Jhumpa Lahiri and actor Kal Penn to similarly spell R-E-S-I-S-T in their joint letter of resignation from the President’s Committee on Arts and Humanities.

Jeremy Berke’s Aug. 23, 2017 article for BusinessInsider.com provides a little more detail (Note: Links have been removed),

A State Department climate science envoy resigned Wednesday in a public letter posted on Twitter over what he says is President Donald Trump’s “attacks on the core values” of the United States with his response to violence in Charlottesville, Virginia.

“My decision to resign is in response to your attacks on the core values of the United States,” wrote Daniel Kammen, a professor of energy at the University of California, Berkeley, who was appointed as one five science envoys in 2016. “Your failure to condemn white supremacists and neo-Nazis has domestic and international ramifications.”

“Your actions to date have, sadly, harmed the quality of life in the United States, our standing abroad, and the sustainability of the planet,” Kammen writes.

Science envoys work with the State Department to establish and develop energy programs in countries around the world. Kammen specifically focused on renewable energy development in the Middle East and North Africa.

That’s it.

Masdar Institute and rainmaking

Water security, of course, is a key issue and of particular concern in many parts of the world including the Middle East. (In the Pacific Northwest, an area described as a temperate rain forest, there tends to be less awareness but even we are sometimes forced to ration water.) According to a July 5, 2017 posting by Bhok Thompson (on the Green Prophet website) scientists at the Masdar Institute of Science and Technology (in Abu Dhabi, United Arab Emirates [UA]E) have applied for a patent on a new technique for rainmaking,

Umbrella sales in the UAE may soon see a surge in pricing. Researchers at the Masdar Institute have filed for a provisional patent with the United States Patent and Trademark Office for their discovery – and innovative cloud seeding material that moves them closer to their goal of producing rain on demand. It appears to be a more practical approach than building artificial mountains.

Dr. Linda Zou is leading the project. A professor of chemical and environmental engineering, she is one of the first scientists to explore nanotechnology to enhance a cloud seeding material’s ability to produce rain. By filing a patent, the team is paving a way to commercialize their discovery, and aligning with Masdar Institute’s aim to position the UAE as a world leader in science and tech, specifically in the realm of environmental sustainability.

A January 31, 2017 posting by Erica Solomon for the Masdar Institute reveals more about the project,

The Masdar Institute research team that was one of the inaugural recipients of the US$ 5 million grant from the UAE Research Program for Rain Enhancement Science last year has made significant progress in their work as evidenced by the filing a provisional patent with the United States Patent and Trademark Office (USPTO).

By filing a patent on their innovative cloud seeding material, the research team is bringing the material in the pathway for commercialization, thereby supporting Masdar Institute’s goal of bolstering the United Arab Emirates’ local intellectual property, which is a key measure of the country’s innovation drive. It also signifies a milestone towards achieving greater water security in the UAE, as rainfall enhancement via cloud seeding can potentially increase rainfall between 10% to 30%, helping to refresh groundwater reserves, boost agricultural production, and reduce the country’s heavy reliance on freshwater produced by energy-intensive seawater desalination.

Masdar Institute Professor of Chemical and Environmental Engineering, Dr. Linda Zou, is the principal investigator of this research project, and one of the first scientists in the world to explore the use of nanotechnology to enhance a cloud seeding material’s ability to produce rain.

“Using nanotechnology to accelerate water droplet formation on a typical cloud seeding material has never been researched before. It is a new approach that could revolutionize the development of cloud seeding materials and make them significantly more efficient and effective,” Dr. Zou remarked.

Conventional cloud seeding materials are small particles such as pure salt crystals, dry ice and silver iodide. These tiny particles, which are a few microns (one-thousandth of a millimeter) in size, act as the core around which water condenses in the clouds, stimulating water droplet growth. Once the air in the cloud reaches a certain level of saturation, it can no longer hold in that moisture, and rain falls. Cloud seeding essentially mimics what naturally occurs in clouds, but enhances the process by adding particles that can stimulate and accelerate the condensation process.

Dr. Zou and her collaborators, Dr. Mustapha Jouiad, Principal Research Scientist in Mechanical and Materials Engineering Department, postdoctoral researcher Dr. Nabil El Hadri and PhD student Haoran Liang, explored ways to improve the process of condensation on a pure salt crystal by layering it with a thin coating of titanium dioxide.

The extremely thin coating measures around 50 nanometers, which is more than one thousand times thinner than a human hair. Despite the coating’s miniscule size, the titanium dioxide’s effect on the salt’s condensation efficiency is significant. Titanium dioxide is a hydrophilic photocatalyst, which means that when in contact with water vapor in the cloud, it helps to initiate and sustain the water vapor adsorption and condensation on the nanoparticle’s surface. This important property of the cloud seeding material speeds up the formation of large water droplets for rainfall.

Dr. Zou’s team found that the titanium dioxide coating improved the salt’s ability to adsorb and condense water vapor over 100 times compared to a pure salt crystal. Such an increase in condensation efficiency could improve a cloud’s ability to produce more precipitation, making rain enhancement operations more efficient and effective. The research will now move to the next stage of simulated cloud and field testing in the future.

Dr. Zou’s research grant covers two more years of research. During this time, her team will continue to study different design concepts and structures for cloud seeding materials inspired by nanotechnology.

To give you a sense of the urgent need for these technologies, here’s the title from my Aug. 24, 2015 posting, The Gaza is running out of water by 2016 if the United Nations predictions are correct. I’ve not come across any updates on the situation in the Gaza Strip but both Israel and Palestine have recently signed a deal concerning water. Dalia Hatuqa’s August 2017 feature on the water deal for Al Jazeera is critical primarily of Israel (as might be expected) but there are one or two subtle criticisms of Palestine too,

Critics have also warned that the plan does not address Israeli restrictions on Palestinian access to water and the development of infrastructure needed to address the water crisis in the occupied West Bank.

Palestinians in the West Bank consume only 70 litres of water per capita per day, well below what the World Health Organization recommends as a minimum (100).

In the most vulnerable communities in Area C – those not connected to the water network – that number further drops to 20, according to EWASH, a coalition of Palestinian and international organisations working on water and sanitation in the Palestinian territories.

The recent bilateral agreement, which does not increase the Palestinians’ quota of water in the Jordan River, makes an untenable situation permanent and guarantees Israel a lion’s share of its water, thus reinforcing the status quo, Buttu [Diana Buttu, a former adviser to the Palestinian negotiating team] said.

“They have moved away from the idea that water is a shared resource and instead adopted the approach that Israel controls and allocates water to Palestinians,” she added. “Israel has been selling water to Palestinians for a long time, but this is enshrining it even further by saying that this is the way to alleviate the water problem.”

Israeli officials say that water problems in the territories could have been addressed had the Palestinians attended the meetings of the joint committee. Palestinians attribute their refusal to conditions set by their counterparts, namely that they must support Israeli settlement water projects for any Palestinian water improvements to be approved.

According to Israeli foreign ministry spokesman Emmanuel Nahshon, “There are many things to be done together to upgrade the water infrastructure in the PA. We are talking about old, leaking pipes, and a more rational use of water.” He also pointed to the illegal tapping into pipes, which he maintained Palestinians did because they did not want to pay for water. “This is something we’ve been wanting to do over the years, and the new water agreement is one of the ways to deal with that. The new agreement … is not only about water quotas; it’s also about more coherent and better use of water, in order to address the needs of the Palestinians.”

But water specialists say that the root cause of the problem is not illegal activity, but the unavailability of water resources to Palestinians and the mismanagement and diversion of the Jordan River.

Access to water is gong to be of increasing urgency should temperatures continue to rise as they have. In many parts of the world, potable water is not easy to find and if temperatures continue to rise areas that did have some water security will lose it and the potential for conflict rises hugely. Palestine and Israel may be a harbinger of what’s to come. As for the commodification of water, I have trouble accepting it; I think everyone has a right to water.

The US White House and its Office of Science and Technology Policy (OSTP)

It’s been a while since I first wrote this but I believe this situation has not changed.

There’s some consternation regarding the US Office of Science and Technology Policy’s (OSTP) diminishing size and lack of leadership. From a July 3, 2017 article by Bob Grant for The Scientist (Note: Links have been removed),

Three OSTP staffers did leave last week, but it was because their prearranged tenures at the office had expired, according to an administration official familiar with the situation. “I saw that there were some tweets and what-not saying that it’s zero,” the official tells The Scientist. “That is not true. We have plenty of PhDs that are still on staff that are working on science. All of the work that was being done by the three who left on Friday had been transitioned to other staffers.”

At least one of the tweets that the official is referring to came from Eleanor Celeste, who announced leaving OSTP, where she was the assistant director for biomedical and forensic sciences. “science division out. mic drop,” she tweeted on Friday afternoon.

The administration official concedes that the OSTP is currently in a state of “constant flux” and at a “weird transition period” at the moment, and expects change to continue. “I’m sure that the office will look even more different in three months than it does today, than it did six months ago,” the official says.

Jeffrey Mervis in two articles for Science Magazine is able to provide more detail. From his July 11, 2017 article,

OSTP now has 35 staffers, says an administration official who declined to be named because they weren’t authorized to speak to the media. Holdren [John Holdren], who in January [2017] returned to Harvard University, says the plunge in staff levels is normal during a presidential transition. “But what’s shocking is that, this far into the new administration, the numbers haven’t gone back up.”

The office’s only political appointee is Michael Kratsios, a former aide to Trump confidant and Silicon Valley billionaire Peter Thiel. Kratsios is serving as OSTP’s deputy chief technology officer and de facto OSTP head. Eight new detailees have arrived from other agencies since the inauguration.

Although there has been no formal reorganization of OSTP, a “smaller, more collaborative staff” is now grouped around three areas—science, technology, and national security—according to the Trump aide. Three holdovers from Obama’s OSTP are leading teams focused on specific themes—Lloyd Whitman in technology, Chris Fall in national security, and Deerin Babb-Brott in environment and energy. They report to Kratsios and Ted Wackler, a career civil servant who was Holdren’s deputy chief of staff and who joined OSTP under former President George W. Bush.

“It’s a very flat structure,” says the Trump official, consistent with the administration’s view that “government should be looking for ways to do more with less.” Ultimately, the official adds, “the goal is [for OSTP] to have “probably closer to 50 [people].”

A briefing book prepared by Obama’s outgoing OSTP staff may be a small but telling indication of the office’s current status. The thick, three-ring binder, covering 100 issues, was modeled on one that Holdren received from John “Jack” Marburger, Bush’s OSTP director. “Jack did a fabulous job of laying out what OSTP does, including what reports it owes Congress, so we decided to do likewise,” Holdren says. “But nobody came [from Trump’s transition team] to collect it until a week before the inauguration.”

That person was Reed Cordish, the 43-year-old scion of billionaire real estate developer David Cordish. An English major in college, Reed Cordish was briefly a professional tennis player before joining the family business. He “spent an hour with us and took the book away,” Holdren says. “He told us, ‘This is an important operation and I’ll do my best to see that it flourishes.’ But we don’t know … whether he has the clout to make that happen.”

Cordish is now assistant to the president for intragovernmental and technology initiatives. He works in the new Office of American Innovation led by presidential son-in-law Jared Kushner. That office arranged a recent meeting with high-tech executives, and is also leading yet another White House attempt to “reinvent” government.

Trump has renewed the charter of the National Science and Technology Council, a multiagency group that carries out much of the day-to-day work of advancing the president’s science initiatives. … Still pending is the status of the President’s Council of Advisors on Science and Technology [emphasis mine], a body of eminent scientists and high-tech industry leaders that went out of business at the end of the Obama administration.

Mervis’ July 12, 2017 article is in the form of a Q&A (question and answer) session with the previously mentioned John Holdren, director of the OSTP in Barack Obama’s administration,

Q: Why did you have such a large staff?

A: One reason was to cover the bases. We knew from the start that the Obama administration thought cybersecurity would be an important issue and we needed to be capable in that space. We also knew we needed people who were capable in climate change, in science and technology for economic recovery and job creation and sustained economic growth, and people who knew about advanced manufacturing and nanotechnology and biotechnology.

We also recruited to carry out specific initiatives, like in precision medicine, or combating antibiotic resistance, or the BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative. Most of the work will go on in the departments and agencies, but you need someone to oversee it.

The reason we ended up with 135 people at our peak, which was twice the number during its previous peak in the Clinton administration’s second term, was that this president was so interested in knowing what science could do to advance his agenda, on economic recovery, or energy and climate change, or national intelligence. He got it. He didn’t need to be tutored on why science and technology matters.

I feel I’ve been given undue credit for [Obama] being a science geek. It wasn’t me. He came that way. He was constantly asking what we could do to move the needle. When the first flu epidemic, H1N1, came along, the president immediately turned to me and said, “OK, I want [the President’s Council of Advisors on Science and Technology] to look in depth on this, and OSTP, and NIH [National Institutes of Health], and [the Centers for Disease Control and Prevention].” And he told us to coordinate my effort on this stuff—inform me on what can be done and assemble the relevant experts. It was the same with Ebola, with the Macondo oil spill in the Gulf, with Fukushima, where the United States stepped up to work with the Japanese.

It’s not that we had all the expertise. But our job was to reach out to those who did have the relevant expertise.

Q: OSTP now has 35 people. What does that level of staffing say to you?

A: I have to laugh.

Q: Why?

A: When I left, on 19 January [2017], we were down to 30 people. And a substantial fraction of the 30 were people who, in a sense, keep the lights on. They were the OSTP general counsel and deputy counsel, the security officer and deputy, the budget folks, the accounting folks, the executive director of NSTC [National Science and Technology Council].

There are some scientists left, and there are some scientists there still. But on 30 June the last scientist in the science division left.

Somebody said OSTP has shut down. But that’s not quite it. There was no formal decision to shut anything down. But they did not renew the contract of the last remaining science folks in the science division.

I saw somebody say, “Well, we still have some Ph.D.s left.” And that’s undoubtedly true. There are still some science Ph.D.s left in the national security and international affairs division. But because [OSTP] is headless, they have no direct connection to the president and his top advisers.

I don’t want to disparage the top people there. The top people there now are Michael Kratsios, who they named the deputy chief technology officer, and Ted Wackler, who was my deputy chief of staff and who was [former OSTP Director] Jack Marberger’s deputy, and who I kept because he’s a fabulously effective manager. And I believe that they are doing everything they can to make sure that OSTP, at the very least, does the things it has to do. … But right now I think OSTP is just hanging on.

Q: Why did some people choose to stay on?

A: A large portion of OSTP staff are borrowed from other agencies, and because the White House is the White House, we get the people we need. These are dedicated folks who want to get the job done. They want to see science and technology applied to advance the public interest. And they were willing to stay and do their best despite the considerable uncertainty about their future.

But again, most of the detailees, and the reason we went from 135 to 30 almost overnight, is that it’s pretty standard for the detailees to go back to their home agencies and wait for the next administration to decide what set of detailees it wants to advance their objects.

So there’s nothing shocking that most of the detailees went back to their home agencies. The people who stayed are mostly employed directly by OSTP. What’s shocking is that, this far into the new administration, that number hasn’t gone back up. That is, they have only five more people than they had on January 20 [2017].

As I had been wondering about the OSTP and about the President’s Council of Advisors on Science and Technology (PCAST), it was good to get an update.

On a more parochial note, we in Canada are still waiting for an announcement about who our Chief Science Advisor might be.

CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

After giving a basic explanation of the technology and some of the controversies in part 1 and offering more detail about the technology and about the possibility of designer babies in part 2; this part covers public discussion, a call for one and the suggestion that one is taking place in popular culture.

But a discussion does need to happen

In a move that is either an exquisite coincidence or has been carefully orchestrated (I vote for the latter), researchers from the University of Wisconsin-Madison have released a study about attitudes in the US to human genome editing. From an Aug. 11, 2017 University of Wisconsin-Madison news release (also on EurekAllert),

In early August 2017, an international team of scientists announced they had successfully edited the DNA of human embryos. As people process the political, moral and regulatory issues of the technology — which nudges us closer to nonfiction than science fiction — researchers at the University of Wisconsin-Madison and Temple University show the time is now to involve the American public in discussions about human genome editing.

In a study published Aug. 11 in the journal Science, the researchers assessed what people in the United States think about the uses of human genome editing and how their attitudes may drive public discussion. They found a public divided on its uses but united in the importance of moving conversations forward.

“There are several pathways we can go down with gene editing,” says UW-Madison’s Dietram Scheufele, lead author of the study and member of a National Academy of Sciences committee that compiled a report focused on human gene editing earlier this year. “Our study takes an exhaustive look at all of those possible pathways forward and asks where the public stands on each one of them.”

Compared to previous studies on public attitudes about the technology, the new study takes a more nuanced approach, examining public opinion about the use of gene editing for disease therapy versus for human enhancement, and about editing that becomes hereditary versus editing that does not.

The research team, which included Scheufele and Dominique Brossard — both professors of life sciences communication — along with Michael Xenos, professor of communication arts, first surveyed study participants about the use of editing to treat disease (therapy) versus for enhancement (creating so-called “designer babies”). While about two-thirds of respondents expressed at least some support for therapeutic editing, only one-third expressed support for using the technology for enhancement.

Diving even deeper, researchers looked into public attitudes about gene editing on specific cell types — somatic or germline — either for therapy or enhancement. Somatic cells are non-reproductive, so edits made in those cells do not affect future generations. Germline cells, however, are heritable, and changes made in these cells would be passed on to children.

Public support of therapeutic editing was high both in cells that would be inherited and those that would not, with 65 percent of respondents supporting therapy in germline cells and 64 percent supporting therapy in somatic cells. When considering enhancement editing, however, support depended more upon whether the changes would affect future generations. Only 26 percent of people surveyed supported enhancement editing in heritable germline cells and 39 percent supported enhancement of somatic cells that would not be passed on to children.

“A majority of people are saying that germline enhancement is where the technology crosses that invisible line and becomes unacceptable,” says Scheufele. “When it comes to therapy, the public is more open, and that may partly be reflective of how severe some of those genetically inherited diseases are. The potential treatments for those diseases are something the public at least is willing to consider.”

Beyond questions of support, researchers also wanted to understand what was driving public opinions. They found that two factors were related to respondents’ attitudes toward gene editing as well as their attitudes toward the public’s role in its emergence: the level of religious guidance in their lives, and factual knowledge about the technology.

Those with a high level of religious guidance in their daily lives had lower support for human genome editing than those with low religious guidance. Additionally, those with high knowledge of the technology were more supportive of it than those with less knowledge.

While respondents with high religious guidance and those with high knowledge differed on their support for the technology, both groups highly supported public engagement in its development and use. These results suggest broad agreement that the public should be involved in questions of political, regulatory and moral aspects of human genome editing.

“The public may be split along lines of religiosity or knowledge with regard to what they think about the technology and scientific community, but they are united in the idea that this is an issue that requires public involvement,” says Scheufele. “Our findings show very nicely that the public is ready for these discussions and that the time to have the discussions is now, before the science is fully ready and while we have time to carefully think through different options regarding how we want to move forward.”

Here’s a  link to and a citation for the paper,

U.S. attitudes on human genome editing by Dietram A. Scheufele, Michael A. Xenos, Emily L. Howell, Kathleen M. Rose, Dominique Brossard1, and Bruce W. Hardy. Science 11 Aug 2017: Vol. 357, Issue 6351, pp. 553-554 DOI: 10.1126/science.aan3708

This paper is behind a paywall.

A couple of final comments

Briefly, I notice that there’s no mention of the ethics of patenting this technology in the news release about the study.

Moving on, it seems surprising that the first team to engage in germline editing in the US is in Oregon; I would have expected the work to come from Massachusetts, California, or Illinois where a lot of bleeding edge medical research is performed. However, given the dearth of financial support from federal funding institutions, it seems likely that only an outsider would dare to engage i the research. Given the timing, Mitalipov’s work was already well underway before the recent about-face from the US National Academy of Sciences (Note: Kaiser’s Feb. 14, 2017 article does note that for some the recent recommendations do not represent any change).

As for discussion on issues such as editing of the germline, I’ve often noted here that popular culture (including advertising with the science fiction and other dramas laid in various media) often provides an informal forum for discussion. Joelle Renstrom in an Aug. 13, 2017 article for slate.com writes that Orphan Black (a BBC America series featuring clones) opened up a series of questions about science and ethics in the guise of a thriller about clones. She offers a précis of the first four seasons (Note: A link has been removed),

If you stopped watching a few seasons back, here’s a brief synopsis of how the mysteries wrap up. Neolution, an organization that seeks to control human evolution through genetic modification, began Project Leda, the cloning program, for two primary reasons: to see whether they could and to experiment with mutations that might allow people (i.e., themselves) to live longer. Neolution partnered with biotech companies such as Dyad, using its big pharma reach and deep pockets to harvest people’s genetic information and to conduct individual and germline (that is, genetic alterations passed down through generations) experiments, including infertility treatments that result in horrifying birth defects and body modification, such as tail-growing.

She then provides the article’s thesis (Note: Links have been removed),

Orphan Black demonstrates Carl Sagan’s warning of a time when “awesome technological powers are in the hands of a very few.” Neolutionists do whatever they want, pausing only to consider whether they’re missing an opportunity to exploit. Their hubris is straight out of Victor Frankenstein’s playbook. Frankenstein wonders whether he ought to first reanimate something “of simpler organisation” than a human, but starting small means waiting for glory. Orphan Black’s evil scientists embody this belief: if they’re going to play God, then they’ll control not just their own destinies, but the clones’ and, ultimately, all of humanity’s. Any sacrifices along the way are for the greater good—reasoning that culminates in Westmoreland’s eugenics fantasy to genetically sterilize 99 percent of the population he doesn’t enhance.

Orphan Black uses sci-fi tropes to explore real-world plausibility. Neolution shares similarities with transhumanism, the belief that humans should use science and technology to take control of their own evolution. While some transhumanists dabble in body modifications, such as microchip implants or night-vision eye drops, others seek to end suffering by curing human illness and aging. But even these goals can be seen as selfish, as access to disease-eradicating or life-extending technologies would be limited to the wealthy. Westmoreland’s goal to “sell Neolution to the 1 percent” seems frighteningly plausible—transhumanists, who statistically tend to be white, well-educated, and male, and their associated organizations raise and spend massive sums of money to help fulfill their goals. …

On Orphan Black, denial of choice is tantamount to imprisonment. That the clones have to earn autonomy underscores the need for ethics in science, especially when it comes to genetics. The show’s message here is timely given the rise of gene-editing techniques such as CRISPR. Recently, the National Academy of Sciences gave germline gene editing the green light, just one year after academy scientists from around the world argued it would be “irresponsible to proceed” without further exploring the implications. Scientists in the United Kingdom and China have already begun human genetic engineering and American scientists recently genetically engineered a human embryo for the first time. The possibility of Project Leda isn’t farfetched. Orphan Black warns us that money, power, and fear of death can corrupt both people and science. Once that happens, loss of humanity—of both the scientists and the subjects—is inevitable.

In Carl Sagan’s dark vision of the future, “people have lost the ability to set their own agendas or knowledgeably question those in authority.” This describes the plight of the clones at the outset of Orphan Black, but as the series continues, they challenge this paradigm by approaching science and scientists with skepticism, ingenuity, and grit. …

I hope there are discussions such as those Scheufele and Brossard are advocating but it might be worth considering that there is already some discussion underway, as informal as it is.

-30-

Part 1: CRISPR and editing the germline in the US (part 1 of 3): In the beginning

Part 2: CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

Having included an explanation of CRISPR-CAS9 technology along with the news about the first US team to edit the germline and bits and pieces about ethics and a patent fight (part 1), this part hones in on the details of the work and worries about ‘designer babies’.

The interest flurry

I found three articles addressing the research and all three concur that despite some of the early reporting, this is not the beginning of a ‘designer baby’ generation.

First up was Nick Thieme in a July 28, 2017 article for Slate,

MIT Technology Review reported Thursday that a team of researchers from Portland, Oregon were the first team of U.S.-based scientists to successfully create a genetically modified human embryo. The researchers, led by Shoukhrat Mitalipov of Oregon Health and Science University, changed the DNA of—in MIT Technology Review’s words—“many tens” of genetically-diseased embryos by injecting the host egg with CRISPR, a DNA-based gene editing tool first discovered in bacteria, at the time of fertilization. CRISPR-Cas9, as the full editing system is called, allows scientists to change genes accurately and efficiently. As has happened with research elsewhere, the CRISPR-edited embryos weren’t implanted—they were kept sustained for only a couple of days.

In addition to being the first American team to complete this feat, the researchers also improved upon the work of the three Chinese research teams that beat them to editing embryos with CRISPR: Mitalipov’s team increased the proportion of embryonic cells that received the intended genetic changes, addressing an issue called “mosaicism,” which is when an embryo is comprised of cells with different genetic makeups. Increasing that proportion is essential to CRISPR work in eliminating inherited diseases, to ensure that the CRISPR therapy has the intended result. The Oregon team also reduced the number of genetic errors introduced by CRISPR, reducing the likelihood that a patient would develop cancer elsewhere in the body.

Separate from the scientific advancements, it’s a big deal that this work happened in a country with such intense politicization of embryo research. …

But there are a great number of obstacles between the current research and the future of genetically editing all children to be 12-foot-tall Einsteins.

Ed Yong in an Aug. 2, 2017 article for The Atlantic offered a comprehensive overview of the research and its implications (unusually for Yong, there seems to be mildly condescending note but it’s worth ignoring for the wealth of information in the article; Note: Links have been removed),

… the full details of the experiment, which are released today, show that the study is scientifically important but much less of a social inflection point than has been suggested. “This has been widely reported as the dawn of the era of the designer baby, making it probably the fifth or sixth time people have reported that dawn,” says Alta Charo, an expert on law and bioethics at the University of Wisconsin-Madison. “And it’s not.”

Given the persistent confusion around CRISPR and its implications, I’ve laid out exactly what the team did, and what it means.

Who did the experiments?

Shoukhrat Mitalipov is a Kazakhstani-born cell biologist with a history of breakthroughs—and controversy—in the stem cell field. He was the scientist to clone monkeys. He was the first to create human embryos by cloning adult cells—a move that could provide patients with an easy supply of personalized stem cells. He also pioneered a technique for creating embryos with genetic material from three biological parents, as a way of preventing a group of debilitating inherited diseases.

Although MIT Tech Review name-checked Mitalipov alone, the paper splits credit for the research between five collaborating teams—four based in the United States, and one in South Korea.

What did they actually do?

The project effectively began with an elevator conversation between Mitalipov and his colleague Sanjiv Kaul. Mitalipov explained that he wanted to use CRISPR to correct a disease-causing gene in human embryos, and was trying to figure out which disease to focus on. Kaul, a cardiologist, told him about hypertrophic cardiomyopathy (HCM)—an inherited heart disease that’s commonly caused by mutations in a gene called MYBPC3. HCM is surprisingly common, affecting 1 in 500 adults. Many of them lead normal lives, but in some, the walls of their hearts can thicken and suddenly fail. For that reason, HCM is the commonest cause of sudden death in athletes. “There really is no treatment,” says Kaul. “A number of drugs are being evaluated but they are all experimental,” and they merely treat the symptoms. The team wanted to prevent HCM entirely by removing the underlying mutation.

They collected sperm from a man with HCM and used CRISPR to change his mutant gene into its normal healthy version, while simultaneously using the sperm to fertilize eggs that had been donated by female volunteers. In this way, they created embryos that were completely free of the mutation. The procedure was effective, and avoided some of the critical problems that have plagued past attempts to use CRISPR in human embryos.

Wait, other human embryos have been edited before?

There have been three attempts in China. The first two—in 2015 and 2016—used non-viable embryos that could never have resulted in a live birth. The third—announced this March—was the first to use viable embryos that could theoretically have been implanted in a womb. All of these studies showed that CRISPR gene-editing, for all its hype, is still in its infancy.

The editing was imprecise. CRISPR is heralded for its precision, allowing scientists to edit particular genes of choice. But in practice, some of the Chinese researchers found worrying levels of off-target mutations, where CRISPR mistakenly cut other parts of the genome.

The editing was inefficient. The first Chinese team only managed to successfully edit a disease gene in 4 out of 86 embryos, and the second team fared even worse.

The editing was incomplete. Even in the successful cases, each embryo had a mix of modified and unmodified cells. This pattern, known as mosaicism, poses serious safety problems if gene-editing were ever to be used in practice. Doctors could end up implanting women with embryos that they thought were free of a disease-causing mutation, but were only partially free. The resulting person would still have many tissues and organs that carry those mutations, and might go on to develop symptoms.

What did the American team do differently?

The Chinese teams all used CRISPR to edit embryos at early stages of their development. By contrast, the Oregon researchers delivered the CRISPR components at the earliest possible point—minutes before fertilization. That neatly avoids the problem of mosaicism by ensuring that an embryo is edited from the very moment it is created. The team did this with 54 embryos and successfully edited the mutant MYBPC3 gene in 72 percent of them. In the other 28 percent, the editing didn’t work—a high failure rate, but far lower than in previous attempts. Better still, the team found no evidence of off-target mutations.

This is a big deal. Many scientists assumed that they’d have to do something more convoluted to avoid mosaicism. They’d have to collect a patient’s cells, which they’d revert into stem cells, which they’d use to make sperm or eggs, which they’d edit using CRISPR. “That’s a lot of extra steps, with more risks,” says Alta Charo. “If it’s possible to edit the embryo itself, that’s a real advance.” Perhaps for that reason, this is the first study to edit human embryos that was published in a top-tier scientific journal—Nature, which rejected some of the earlier Chinese papers.

Is this kind of research even legal?

Yes. In Western Europe, 15 countries out of 22 ban any attempts to change the human germ line—a term referring to sperm, eggs, and other cells that can transmit genetic information to future generations. No such stance exists in the United States but Congress has banned the Food and Drug Administration from considering research applications that make such modifications. Separately, federal agencies like the National Institutes of Health are banned from funding research that ultimately destroys human embryos. But the Oregon team used non-federal money from their institutions, and donations from several small non-profits. No taxpayer money went into their work. [emphasis mine]

Why would you want to edit embryos at all?

Partly to learn more about ourselves. By using CRISPR to manipulate the genes of embryos, scientists can learn more about the earliest stages of human development, and about problems like infertility and miscarriages. That’s why biologist Kathy Niakan from the Crick Institute in London recently secured a license from a British regulator to use CRISPR on human embryos.

Isn’t this a slippery slope toward making designer babies?

In terms of avoiding genetic diseases, it’s not conceptually different from PGD, which is already widely used. The bigger worry is that gene-editing could be used to make people stronger, smarter, or taller, paving the way for a new eugenics, and widening the already substantial gaps between the wealthy and poor. But many geneticists believe that such a future is fundamentally unlikely because complex traits like height and intelligence are the work of hundreds or thousands of genes, each of which have a tiny effect. The prospect of editing them all is implausible. And since genes are so thoroughly interconnected, it may be impossible to edit one particular trait without also affecting many others.

“There’s the worry that this could be used for enhancement, so society has to draw a line,” says Mitalipov. “But this is pretty complex technology and it wouldn’t be hard to regulate it.”

Does this discovery have any social importance at all?

“It’s not so much about designer babies as it is about geographical location,” says Charo. “It’s happening in the United States, and everything here around embryo research has high sensitivity.” She and others worry that the early report about the study, before the actual details were available for scrutiny, could lead to unnecessary panic. “Panic reactions often lead to panic-driven policy … which is usually bad policy,” wrote Greely [bioethicist Hank Greely].

As I understand it, despite the change in stance, there is no federal funding available for the research performed by Mitalipov and his team.

Finally, University College London (UCL) scientists Joyce Harper and Helen O’Neill wrote about CRISPR, the Oregon team’s work, and the possibilities in an Aug. 3, 2017 essay for The Conversation (Note: Links have been removed),

The genome editing tool used, CRISPR-Cas9, has transformed the field of biology in the short time since its discovery in that it not only promises, but delivers. CRISPR has surpassed all previous efforts to engineer cells and alter genomes at a fraction of the time and cost.

The technology, which works like molecular scissors to cut and paste DNA, is a natural defence system that bacteria use to fend off harmful infections. This system has the ability to recognise invading virus DNA, cut it and integrate this cut sequence into its own genome – allowing the bacterium to render itself immune to future infections of viruses with similar DNA. It is this ability to recognise and cut DNA that has allowed scientists to use it to target and edit specific DNA regions.

When this technology is applied to “germ cells” – the sperm and eggs – or embryos, it changes the germline. That means that any alterations made would be permanent and passed down to future generations. This makes it more ethically complex, but there are strict regulations around human germline genome editing, which is predominantly illegal. The UK received a licence in 2016 to carry out CRISPR on human embryos for research into early development. But edited embryos are not allowed to be inserted into the uterus and develop into a fetus in any country.

Germline genome editing came into the global spotlight when Chinese scientists announced in 2015 that they had used CRISPR to edit non-viable human embryos – cells that could never result in a live birth. They did this to modify the gene responsible for the blood disorder β-thalassaemia. While it was met with some success, it received a lot of criticism because of the premature use of this technology in human embryos. The results showed a high number of potentially dangerous, off-target mutations created in the procedure.

Impressive results

The new study, published in Nature, is different because it deals with viable human embryos and shows that the genome editing can be carried out safely – without creating harmful mutations. The team used CRISPR to correct a mutation in the gene MYBPC3, which accounts for approximately 40% of the myocardial disease hypertrophic cardiomyopathy. This is a dominant disease, so an affected individual only needs one abnormal copy of the gene to be affected.

The researchers used sperm from a patient carrying one copy of the MYBPC3 mutation to create 54 embryos. They edited them using CRISPR-Cas9 to correct the mutation. Without genome editing, approximately 50% of the embryos would carry the patients’ normal gene and 50% would carry his abnormal gene.

After genome editing, the aim would be for 100% of embryos to be normal. In the first round of the experiments, they found that 66.7% of embryos – 36 out of 54 – were normal after being injected with CRIPSR. Of the remaining 18 embryos, five had remained unchanged, suggesting editing had not worked. In 13 embryos, only a portion of cells had been edited.

The level of efficiency is affected by the type of CRISPR machinery used and, critically, the timing in which it is put into the embryo. The researchers therefore also tried injecting the sperm and the CRISPR-Cas9 complex into the egg at the same time, which resulted in more promising results. This was done for 75 mature donated human eggs using a common IVF technique called intracytoplasmic sperm injection. This time, impressively, 72.4% of embryos were normal as a result. The approach also lowered the number of embryos containing a mixture of edited and unedited cells (these embryos are called mosaics).

Finally, the team injected a further 22 embryos which were grown into blastocyst – a later stage of embryo development. These were sequenced and the researchers found that the editing had indeed worked. Importantly, they could show that the level of off-target mutations was low.

A brave new world?

So does this mean we finally have a cure for debilitating, heritable diseases? It’s important to remember that the study did not achieve a 100% success rate. Even the researchers themselves stress that further research is needed in order to fully understand the potential and limitations of the technique.

In our view, it is unlikely that genome editing would be used to treat the majority of inherited conditions anytime soon. We still can’t be sure how a child with a genetically altered genome will develop over a lifetime, so it seems unlikely that couples carrying a genetic disease would embark on gene editing rather than undergoing already available tests – such as preimplantation genetic diagnosis or prenatal diagnosis – where the embryos or fetus are tested for genetic faults.

-30-

As might be expected there is now a call for public discussion about the ethics about this kind of work. See Part 3.

For anyone who started in the middle of this series, here’s Part 1 featuring an introduction to the technology and some of the issues.