Monthly Archives: November 2020

Saskatoon synchrotron gets dirty

“Some synchrotrons don’t want to have any dirt in their beamlines, so it makes it more difficult to analyze soil samples …”

Also known as the Canadian Light Source (CLS), the synchrotron in Saskatoon was used to analyze soil from Hawaii according to a Nov. 5, 2020 CLS news release (also received via email) by Erin Matthews,

With its warm weather and sandy beaches, Hawaii is a magnet for tourists every year. This unique ecosystem also attracts soil scientists interested in what surprises may lie beneath their feet.

In a recent paper published in Geoderma, European researchers outline how they used the rich soils of Hawaii to study the critical movement of phosphorous through the environment. By better understanding the amount and type of phosphorus in the soil, they can help crops become more successful and maintain the health of our ecosystems for years to come.

The project was led by Agroscope scientist Dr. Julian Helfenstein, Prof. Emmanuel Frossard with the Institute of Agricultural Sciences, ETH Zurich; and Dr. Christian Vogel, a researcher at the Federal Institute for Materials Research and Testing in Berlin.

The team used the Canadian Light Source (CLS) at the University of Saskatchewan to help analyze the different types of phosphorus in their samples and track their origins.

“Some synchrotrons don’t want to have any dirt in their beamlines, so it makes it more difficult to analyze soil samples,” Vogel said. That is why the team went to the CLS, a facility that prioritizes agricultural research and welcomes soil science projects. [emphasis mine] Vogel analyzed the samples using different spectroscopy techniques on the VLS-PGM beamline at CLS, which uses extremely bright light.

Phosphorus generally comes from apatite found in the bedrock, Helfenstein explained. So, the group was surprised to discover that some of the phosphorus in their weathered Hawaiian  Hawaiian topsoil samples had originated from dust that was deposited by air currents. This dust, and the phosphorus contained within, traveled thousands of kilometers before settling on the island.

Researchers would expect to find apatite in soils in dry areas where it would not get washed away by rainfall. So, finding evidence of apatite in wet soils amazed the scientists.

“On the wet end of the gradient, these soils are extremely weathered so primary apatite was gone, but we still found these small grains of apatite in the soil co-located with quartz, suggesting that it’s coming from somewhere else. It’s not coming from the bottom, it’s coming from the air,” Helfenstein said.

The team collaborated with atmospheric physicists who used modeling to trace the backward trajectory of the dust, pinpointing the air currents that the dust had traveled in and the origin of the apatite.

Frossard explained that extended rainfall can lead to very old and weathered ecosystems that researchers would expect to collapse from limited phosphorus. However, if apatite comes from somewhere else, like dust carried on air currents, then you will see healthy, productive ecosystems. This helps to explain plant growth on highly weathered soils in Hawaii.

Frossard has worked on climate sequences for decades, including studying the climate gradient in the Canadian prairies, and has been following news from the CLS since its construction in 1999.

“What I see here is a very powerful instrument ­–– the fact they allow us to study soil is really something superb. It allows us to improve our knowledge in biology and in [the] chemistry of soil.” The team looks forward to unearthing more environmental secrets in the future.

Before getting to the citation and giving a second link to the paper, here’s a little more about Saskatchewan (Wikipedia entry), which explains why a synchrotron in that province might develop expertise in agricultural research and soil science projects (Note: Links have been removed),

Historically, Saskatchewan’s economy was primarily associated with agriculture, with wheat being the precious symbol on the province’s flag [emphasis mine]. Increasing diversification has resulted in agriculture, forestry, fishing, and hunting only making up 8.9% of the province’s GDP in 2018. Saskatchewan grows a large portion of Canada’s grain.[49] In 2017, the production of canola surpassed the production of wheat, which is Saskatchewan’s most familiar crop and the one most often associated with the province. Total net income from farming was $3.3 billion in 2017, which was $0.9 billion less than the income in 2016.[47] Other grains such as flax, rye, oats, peas, lentils, canary seed, and barley are also produced in the province. Saskatchewan is the world’s largest exporter of mustard seed.[50]Beef cattle production by a Canadian province is only exceeded by Alberta. In the northern part of the province, forestry is also a significant industry.[48]

Here’s a link to and a citation for the paper,

Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils by Christian Vogel, Julian Helfenstein, Michael S.Massey, Ryo Sekine, Ruben Kretzschmar, Luo Beiping, Thomas Peter, Oliver A.Chadwick, Federica Tamburini, Camille Rivard, Hannes Herzel, Christian Adam, Ana E.Pradas del Real, Hiram Castillo-Michel, Lucia Zuin, Dongniu Wang, Roberto Félix, Benedikt Lassalle-Kaiser, Emmanuel Frossard. Geoderma Volume 381, 1 January 2021, 114681 DOI: https://doi.org/10.1016/j.geoderma.2020.114681 Published first online: online 30 August 2020.

This paper is open access.

*(sigh) Just spotted this error in the head “Sakatoon.” This has been changed to “Saskatoon” as of May 10, 2022.

A Vancouver (Canada) connection to the Pfizer COVID-19 vaccine

Canada’s NanoMedicines Innovation Network (NMIN) must have been excited over the COVID-19 vaccine news (Pfizer Nov. 9, 2020 news release) since it’s a Canadian company (Acuitas Therapeutics) that is providing the means of delivering the vaccine once it enters the body.

Here’s the company’s president and CEO [chief executive officer], Dr. Thomas Madden explaining his company’s delivery system (from Acuitas’ news and events webpage),

For anyone who might find a textual description about the vaccine helpful, I have a Nov. 9, 2020 article by Adele Peters for Fast Company,

… a handful of small biotech companies began scrambling to develop vaccines using an as-yet-unproven technology platform that relies on something called messenger RNA [ribonucleic acid], usually shortened to mRNA …

Like other vaccines, mRNA vaccines work by training the immune system to recognize a threat like a virus and begin producing antibodies to protect itself. But while traditional vaccines often use inactivated doses of the organisms that cause disease, mRNA vaccines are designed to make the body produce those proteins itself. Messenger RNA—a molecule that contains instructions for cells to make DNA—is injected into cells. In the case of COVID-19, mRNA vaccines provide instructions for cells to start producing the “spike” protein of the new coronavirus, the protein that helps the virus get into cells. On its own, the spike protein isn’t harmful. But it triggers the immune system to begin a defensive response. As Bill Gates, who has supported companies like Moderna and BioNTech through the Gates Foundation, has described it, “you essentially turn your body into its own manufacturing unit.”

Amy Judd’s Nov. 9, 2020 article for Global news online explains (or you can just take another look at the video to refresh your memory) how the Acuitas technology fits into the vaccine picture,

Vancouver-based Acuitas Therapeutics, a biotechnology company, is playing a key role through a technology known as lipid nanoparticles, which deliver messenger RNA into cells.

“The technology we provide to our partners is lipid nanoparticles and BioNTech and Pfizer are developing a vaccine that’s using a messenger RNA that tells our cells how to make a protein that’s actually found in the COVID-19 virus,” Dr. Thomas Madden, president and CEO of Acuitas Therapeutics, told Global News Monday [Nov. 9, 2020].

“But the messenger RNA can’t work by itself, it needs a delivery technology to protect this after it’s administered and then to carry it into the cells where it can be expressed and give rise to an immune response.”

Madden said they like to think of the lipid nanoparticles as protective wrapping around a fragile glass ornament [emphasis mine] being shipped to your house online. That protective wrapping would then make sure the ornament made it to your house, through your front door, then unwrap itself and leave in your hallway, ready for you to come and grab it when you came home.

Acuitas Therapeutics employs 29 people and Madden said he believes everyone is feeling very proud of their work.

“Not many people are aware of the history of this technology and the fact that it originated in Vancouver,” he added.

“Dr. Pieter Cullis was one of the key scientists who brought together a team to develop this technology many, many years ago. UBC and Vancouver and companies associated with those scientists have been at the global centre of this technology for many years now.

“I think we’ve been looking for a light at the end of the tunnel for quite some time. I think everybody has been hoping that a vaccine would be able to provide the protection we need to move out of our current situation and I think this is now a confirmation that this hope wasn’t misplaced.”

Nanomedicine in Vancouver

For anyone who’s curious about the Canadian nanomedicine scene, you can find out more about it on Canada’s NanoMedicines Innovation Network (NMIN) website. They recently held a virtual event (Vancouver Nanomedicine Day) on Sept. 17, 2020 (see my Sept. 11, 2020 posting for details), which featured a presentation about Aquitas’ technology.

Happily, the organizers have posted videos for most of the sessions. Dr. Ying Tam of Acuitas made this presentation (about 22 mins. running time) “A Novel Vaccine Approach Using Messenger RNA‐Lipid Nanoparticles: Preclinical and Clinical Perspectives.” If you’re interested in that video or any of the others go to the NanoMedicines Innovation Network’s Nanomedicine Day 2020 webpage.

Acuitas Therapeutics can be found here.

Vancouver (Canada) Biennale and #ArtProject2020, a free virtual art & technology expo from November 11th to 15th, 2020

It’s a bit odd that the organizers for an event held in Canada would arrange to have Remembrance Day for the opening day and not make any acknowledgements. (For those not familiar with it, here’s more about Remembrance Day (Wikipedia entry) and there’s more here on the Canadian Broadcasting Corporation’s [CBC] Remembrance Day 2020 webpage and on this Nov. 10, 2020 ‘Here’s everything you need to know about the poppy’ article for the Daily Hive.)

The event description is quite exciting and the poster image is engaging, although ….

Courtesy: Vancouver Biennale

Did they intend for the blocks to the left and right (gateway to the bridge?) to look like someone holding both hands giving you the finger on each side? Now that I’ve seen it, I can’t ‘unsee’ it.

Moving on, there’s more information about the expo from a Nov. 9, 2020 Vancouver Biennale announcement (received via email),

The Vancouver Biennale announces a global invitation to #ArtProject2020, a free virtual art and technology expo about how the latest technologies are influencing the art world. The expo will run from November 11th to 15th and feature over 80 international speakers and 40 events offering accessible information and educational resources for digital art. Everyone with a personal or professional interest in art and technology, including curators, galleries, museums, artists, collectors, innovators, experience designers, and futurists will find the expo fascinating and is invited to register. Trilingual programming in English, Spanish, and Chinese will be available.

To reserve a free ticket and see the complete speaker list and schedule, visit www.artproject.io.

Curated by New York-based Colombian artist Jessica Angel, the expo will accompany the Vancouver Biennale’s first exhibition of tokenized art with new works by Jessica Angel, Dina Goldstein, Diana Thorneycroft, and Kristin McIver. Tokenized art is powered by blockchain technology and has redefined digital artwork ownership, allowing artists and collectors the benefit of true digital scarcity. The exhibition will be launched via the blockchain marketplace, Ephimera.

About the Expo

Panel Discussions, Artist Talks, Keynote Speakers: Innovators, curators, legal experts, and artists working at the leading edge of digital art will cover topics including What Is Cryptoart?, Finding Opportunity in the Digital, Women Leading the Art and Tech Movement, The Art of Immersion, Decentralising Power and Resources in the Art World, and Tools for Artists and Collectors. Speakers include The Whitney Museum, Victoria & Albert Museum, Christie’s, Foundation for Art and Blockchain, SuperRare, and Art in America.

Learning: Barrier-free educational workshops will teach participants about using open-source and accessible innovative tools to create, monetize, and collect digital art. Workshops are integrated with various blockchain projects to drive adoption through experience. Featured presenters include Ephimera, Status, and MakerDAO. Indigenous Matriachs 4 will present from the Immersive Knowledge Transfer series for XR media creators, artists, and storytellers from diverse cultural communities.

Activities: A Crypto-Art Puzzle will drop clues every day of the event, and the Digital Art Battle will challenge artists to draw live. This gamified experience will offer winners rewards in different tokens. Participates can also join the Rare AF team on a Virtual Gallery Tour through the Metaverse, where gallery owners will share the inspirations behind their virtual spaces.

Anchoring the virtual expo is a future physical installation by Jessica Angel. Cleverly titled Voxel Bridge, this public artwork will transform the area underneath Vancouver’s Cambie Street Bridge into a three-layered immersive experience to transport visitors between physical and digital worlds. Working with the vastness of the concrete bridge as first layer, Angel adds her site-specific installation as a second layer, and completes the experience with augmented reality enhancements over the real world as the third and final layer. The installation is slated for completion in Spring 2021 as part of the Vancouver Biennale Exhibition.

“I never want to see the Biennale stuck in the past, presenting only static sculpture in an ever-changing world. We work with what comes next, the yet unknown, and we want to go where the future is heading and where public art has, perhaps, always been going. I am excited for this expo and the next chapter of the Biennale.”  – Barrie Mowatt, Founder & Artistic Director of Vancouver Biennale

“Art is a mobilizing force with the power to bridge seemingly dissimilar worlds, and Voxel Bridge exhibits this capacity. This expo transcends the enjoyment of art into a unifying and experimenting effort, that enables blockchain technology and established art institutions to examine ways of interaction. Join us in the virtual public space, to learn, and to cultivate new forms of participation.”             – Jessica Angel, Artist

Do check the schedule: http://www.artproject.io/ (keep scrolling) and don’t forget it’s free in exchange for your registration information. Enjoy!

Congratulations to Molly Shoichet (her hydrogels are used in regenerative medicine and more) for winning the $1 million Gerhard Herzberg Canada Gold Medal

I imagine that most anyone who’s been in contact with Ms. Shoichet is experiencing a thrill on hearing this morning’s (November 10, 2020) news about winning Canada’s highest honour for science and engineering research. (Confession: she, very kindly, once gave me a brief interview for a posting on this blog, more about that later).

Why Molly Shoichet won the Gerhard Herzberg Canada Gold Medal

Emily Chung’s Nov. 10, 2020 news item on the Canadian Broadcasting Corporation (CBC) website announces the exciting news (Note: Links have been removed),

A Toronto chemical engineering professor has won the $1 million Gerhard Herzberg Canada Gold Medal, the country’s top science prize, for her work designing gels that mimic human tissues.

The Natural Sciences and Engineering Research Council of Canada (NSERC) announced Tuesday [Nov. 10, 2020] that Molly Shoichet, professor of chemical engineering and applied chemistry and Canada Research Chair in Tissue Engineering at the University of Toronto is this year’s recipient of the award, which recognizes “sustained excellence” and “overall influence” of research conducted in Canada in the natural sciences or engineering.

Shoichet’s hydrogels are used for drug development and  delivery and regenerative medicine to heal injuries and treat diseases.

NSERC said Shoichet’s work has led to the development of several “game-changing” applications of such materials. They “delivered a crucial breakthrough” by allowing cells to be grown in three dimensions as they do in the body, rather than the two dimensions they typically do in a petri dish.

Hydrogels are polymer materials — materials such as plastics, made of repeating units — that become swollen with water.

“If you’ve ever eaten Jell-o, that’s a hydrogel,” Shoichet said. Slime and the absorbent material inside disposable diapers are also hydrogels.

Shoichet was born in Toronto, and studied science and engineering at the Massachusetts Institute of Technology and the University of Massachusetts Amherst. After graduating, she worked in the biotech industry alongside “brilliant biologists,” she said. She noticed that the biologists’ research was limited by what types of materials were available.

As an engineer, she realized she could help by custom designing materials for biologists. She could make materials specifically suit their needs, to answer their specific questions by designing hydrogels to mimic particular tissues.

Her collaborations with biologists have also generated three spinoff companies, including AmacaThera, which was recently approved to run human trials of a long-acting anesthetic delivered with an injectable hydrogel to deal with post-surgical pain.

Shoichet noted that drugs given to deal with that kind of pain lead to a quarter of opioid addictions, which have been a deadly problem in Canada and around the world.

“What we’re really excited about is not only meeting that critical need of providing people with greater pain relief for a sustained period of time, but also possibly putting a dent in the operation,” she said. 

Liz Do’s Nov. 10, 2020 University of Toronto news release provides more details (Note: Links have been removed),

The  Herzberg Gold Medal is awarded by the Natural Sciences and Engineering Research Council (NSERC) in recognition of research contributions characterized by both excellence and influence.

“I was completely overwhelmed when I was told the good news,” says Shoichet. “There are so many exceptional people who’ve won this award and I admire them. To think of my peers putting me in that same category is really incredible.”

A pioneer in regenerative medicine, tissue engineering and drug delivery, Shoichet and her team are internationally known for their discovery and innovative use of 3D hydrogels.

“One of the challenges facing drug screening is that many of the drugs discovered work well in the lab, but not in people, and a possible explanation for this discrepancy is that these drugs are discovered in environments that do not reflect that of the body,” explains Shoichet.

Shoichet’s team has invented a series of biomaterials that provide a soft, three-dimensional environment in which to grow cells. These hydrogels — water-swollen materials — better mimic human tissue than hard two-dimensional plastic dishes that are typically used. “Now we can do more predictive drug screening,” says Shoichet.

Her lab is using these biomaterials to discover drugs for breast and brain cancer and a rare lung disease. Shoichet’s lab has been equally innovative in regenerative medicine strategies to promote repair of the brain after stroke and overcome blindness.

“Everything that we do is motivated by answering a question in biology, using our engineering and chemistry tools to answer those questions,” says Shoichet.

“The hope is that our contributions will ultimately make a positive impact in the cancer community and in treating diseases for which we can only slow the progression rather than stop and reverse, such as with blindness.”

Shoichet is also an advocate for and advisor on the fields of science and engineering. She has advised both federal and provincial governments through her service on Canada’s Science, Technology and Innovation Council and the Ontario Research Innovation Council. From 2014 to 2018, she was the Senior Advisor to the President on Science & Engineering Engagement at the University of Toronto. She is the co-founder of Research2Reality [emphasis mine], which uses social media to promote innovative research across the country. She also served as Ontario’s first Chief Scientist [emphasis mine], with a mandate to advance science and innovation in the province.

Shoichet is the only person to be elected a fellow of all three of Canada’s National Academies and is a foreign member of the U.S. National Academy of Engineering, and fellow of the Royal Society (UK) — the oldest and most prestigious academic society.

Doug Ford (premier of Ontario) and Molly Shoichet

She did serve as Ontario’s first Chief Scientist—for about six months (Nov. 2017 – July 2018). Molly Shoichet was fired when a new provincial government was elected in the summer of 2018. Here’s more about the incident from a July 4, 2018 article by Ryan Maloney for huffingtonpost.ca (Note: Links have been removed),

New Ontario Premier Doug Ford has fired the province’s first chief scientist.

Dr. Molly Shoichet, a renowned biomedical engineer who teaches at the University of Toronto, was appointed in November [2017] to advise the government and ensure science and research were at the forefront of decision-making.

Shoichet told HuffPost Canada in an email that the she does not believe the decision was about her, and “I don’t even know whether it was about this role.” She said she is disappointed but honoured to have served Ontarians, even for a short time.

Ford’s spokesman, Simon Jefferies told The Canadian Press Wednesday that the government is starting the process of “finding a suitable and qualified replacement.” [emphasis mine]

The move comes just days after Ford’s Progressive Conservatives officially took power in Canada’s largest province with a majority government.

Almost a year later, there was no replacement in sight according to a June 24, 2019 opinion piece by Kimberly Girling (then the Research and Policy Director of the Evidence for Democracy not-for-profit) for the star.com,

Premier Doug Ford, I’m concerned for your government.

I know you feel it too. Last week, one year into your mandate and faced with sharply declining polls after your first provincial budget, you conducted a major cabinet shuffle. This shuffle is clearly an attempt to “put the right people in the right place at the right time” and improve the outcomes of your cabinet. But I’m still concerned.

Since your election, your caucus has made many bold decisions. Unfortunately, it seems many are Ontarians unhappy with most of these decisions, and I’m not sure the current shuffle is enough to fix this.

[] I think you’re missing someone.

What about a Chief Scientist?

It isn’t a radical idea. Actually, you used to have one. Ontario’s first Chief Scientist, Dr. Molly Shoichet, was appointed to advise the government on science policy and champion science and innovation for Ontario. However, when your government was elected, you fired Dr. Shoichet within the first week.

It’s been a year, and so far we haven’t seen any attempts to fill this vacant position. [emphasis mine]

I wonder if Doug Ford and his crew regret the decision to fire Shoichet especially now that the province is suffering from a new peak in rising COVID-19 case numbers. These days government could do with a little bit of good news.

The only way we might ever know is if Doug Ford writes a memoir (in about 20 or 30 years from now).

Molly Shoichet, Research2Reality, and FrogHeart

A May 11, 2015 posting announced the launch of Research2Reality and it’s in this posting that I have a few comments from Molly Shoichet about co-founding a national science communication project. Given how busy she was at the time, I was amazed she took a few minutes to speak to me and took more time to make it possible for me to interview Raymond Laflamme (then director of the Institute for Quantum Computing at the University of Waterloo [Ontario]) and a prominent physicist.

Here are the comments Molly Shoichet offered (from the May 11, 2015 posting),

“I’m very excited about this and really hope that other people will be too,” says Shoichet. The audience for the Research2Reality endeavour is for people who like to know more and have questions when they see news items about science discoveries that can’t be answered by investigating mainstream media programmes or trying to read complex research papers.

This is a big undertaking. ” Mike [Mike MacMillan, co-founder] and I thought about this for about two years.” Building on the support they received from the University of Toronto, “We reached out to the vice-presidents of research at the top fifteen universities in the country.” In the end, six universities accepted the invitation to invest in this project,

Five years later, it’s still going.

Finally: Congratulations Molly Shoichet!

City University of Hong Kong (CityU) and its anti-bacterial graphene face masks

This looks like interesting work and I think the integration of visual images and embedded video in the news release (on the university website) is particularly well done. I won’t be including all the graphical information here as my focus is the text.

A Sept. 10, 2020 City University of Hong Kong (CityU) press release (also on EurekAlert) announces a greener, more effective face mask,

Face masks have become an important tool in fighting against the COVID-19 pandemic. However, improper use or disposal of masks may lead to “secondary transmission”. A research team from City University of Hong Kong (CityU) has successfully produced graphene masks with an anti-bacterial efficiency of 80%, which can be enhanced to almost 100% with exposure to sunlight for around 10 minutes. Initial tests also showed very promising results in the deactivation of two species of coronaviruses. The graphene masks are easily produced at low cost, and can help to resolve the problems of sourcing raw materials and disposing of non-biodegradable masks.

The research is conducted by Dr Ye Ruquan, Assistant Professor from CityU’s Department of Chemistry, in collaboration with other researchers. The findings were published in the scientific journal ACS Nano, titled “Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask“.

Commonly used surgical masks are not anti-bacterial. This may lead to the risk of secondary transmission of bacterial infection when people touch the contaminated surfaces of the used masks or discard them improperly. Moreover, the melt-blown fabrics used as a bacterial filter poses an impact on the environment as they are difficult to decompose. Therefore, scientists have been looking for alternative materials to make masks.

Converting other materials into graphene by laser

Dr Ye has been studying the use of laser-induced graphene [emphasis mine] in developing sustainable energy. When he was studying PhD degree at Rice University several years ago, the research team he participated in and led by his supervisor discovered an easy way to produce graphene. They found that direct writing on carbon-containing polyimide films (a polymeric plastic material with high thermal stability) using a commercial CO2 infrared laser system can generate 3D porous graphene. The laser changes the structure of the raw material and hence generates graphene. That’s why it is named laser-induced graphene.

Graphene is known for its anti-bacterial properties, so as early as last September, before the outbreak of COVID-19, producing outperforming masks with laser-induced graphene already came across Dr Ye’s mind. He then kick-started the study in collaboration with researchers from the Hong Kong University of Science and Technology (HKUST), Nankai University, and other organisations.

Excellent anti-bacterial efficiency

The research team tested their laser-induced graphene with E. coli, and it achieved high anti-bacterial efficiency of about 82%. In comparison, the anti-bacterial efficiency of activated carbon fibre and melt-blown fabrics, both commonly-used materials in masks, were only 2% and 9% respectively. Experiment results also showed that over 90% of the E. coli deposited on them remained alive even after 8 hours, while most of the E. coli deposited on the graphene surface were dead after 8 hours. Moreover, the laser-induced graphene showed a superior anti-bacterial capacity for aerosolised bacteria.

Dr Ye said that more research on the exact mechanism of graphene’s bacteria-killing property is needed. But he believed it might be related to the damage of bacterial cell membranes by graphene’s sharp edge. And the bacteria may be killed by dehydration induced by the hydrophobic (water-repelling) property of graphene.

Previous studies suggested that COVID-19 would lose its infectivity at high temperatures. So the team carried out experiments to test if the graphene’s photothermal effect (producing heat after absorbing light) can enhance the anti-bacterial effect. The results showed that the anti-bacterial efficiency of the graphene material could be improved to 99.998% within 10 minutes under sunlight, while activated carbon fibre and melt-blown fabrics only showed an efficiency of 67% and 85% respectively.

The team is currently working with laboratories in mainland China to test the graphene material with two species of human coronaviruses. Initial tests showed that it inactivated over 90% of the virus in five minutes and almost 100% in 10 minutes under sunlight. The team plans to conduct testings with the COVID-19 virus later.

Their next step is to further enhance the anti-virus efficiency and develop a reusable strategy for the mask. They hope to release it to the market shortly after designing an optimal structure for the mask and obtaining the certifications.

Dr Ye described the production of laser-induced graphene as a “green technique”. All carbon-containing materials, such as cellulose or paper, can be converted into graphene using this technique. And the conversion can be carried out under ambient conditions without using chemicals other than the raw materials, nor causing pollution. And the energy consumption is low.

“Laser-induced graphene masks are reusable. If biomaterials are used for producing graphene, it can help to resolve the problem of sourcing raw material for masks. And it can lessen the environmental impact caused by the non-biodegradable disposable masks,” he added.

Dr Ye pointed out that producing laser-induced graphene is easy. Within just one and a half minutes, an area of 100 cm² can be converted into graphene as the outer or inner layer of the mask. Depending on the raw materials for producing the graphene, the price of the laser-induced graphene mask is expected to be between that of surgical mask and N95 mask. He added that by adjusting laser power, the size of the pores of the graphene material can be modified so that the breathability would be similar to surgical masks.

A new way to check the condition of the mask

To facilitate users to check whether graphene masks are still in good condition after being used for a period of time, the team fabricated a hygroelectric generator. It is powered by electricity generated from the moisture in human breath. By measuring the change in the moisture-induced voltage when the user breathes through a graphene mask, it provides an indicator of the condition of the mask. Experiment results showed that the more the bacteria and atmospheric particles accumulated on the surface of the mask, the lower the voltage resulted. “The standard of how frequently a mask should be changed is better to be decided by the professionals. Yet, this method we used may serve as a reference,” suggested Dr Ye.

Laser-induced graphene (LIG), Rice University, and Dr. Ye were mentioned here in a May 9, 2018 titled: Do you want that coffee with some graphene on toast?

Back to the latest research, read the caption carefully,

Research shows that over 90% of the E. coli deposited on activated carbon fibre (fig c and d) and melt-blown fabrics (fig e and f) remained alive even after 8 hours. In contrast, most of the E. coli deposited on the graphene surface (fig a and b) were dead. (Photo source: DOI number: 10.1021/acsnano.0c05330)

Here’s a link to and a citation for the paper,

Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask by Libei Huang, Siyu Xu, Zhaoyu Wang, Ke Xue, Jianjun Su, Yun Song, Sijie Chen, Chunlei Zhu, Ben Zhong Tang, and Ruquan Ye. ACS Nano 2020, 14, 9, 12045–12053 DOI: https://doi.org/10.1021/acsnano.0c05330 Publication Date:August 11, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Finding Ada (Lovelace) conference on Nov. 9 -11, 2020

The same folks who bring us Ada Lovelace Day in October each year also produce a conference. (For anyone unfamiliar with Ada Lovelace, a 19th century mathematician and computer scientist, there are more details here in my Oct. 13, 2014 posting.)

As for the conference, here’s more about the 2020 edition from the event page on the Finding Ada website,

The Finding Ada Conference is a fully online global conference for women in STEM and advocates for gender equality. It will be held on over 9/10/11 November, depending on your timezone, beginning at 9am on 10 November in Wellington, New Zealand, and ending 29 hours later at 5pm on the West Coast of America. Sign up for your free tickets now!

Join our headline speakers, Caroline Walker from J.P. Morgan, DeLisa Alexander from Red Hat and Chi Onwurah MP [UK], as well as over 45 other speakers from around the globe, for a fabulous day of talks, workshops, Q&As and interviews.

I found a few more details on this Finding Ada Conference (2020) webpage on the HopIn online events platform (Please special note of the times),

The Finding Ada Conference is a fully online global conference for women in STEM and advocates for gender equality. It will be held on Tuesday 10 November, beginning at 9am in Wellington, New Zealand [emphasis mine], and ending 29 hours later at 5pm on the West Coast of America [emphasis mine].

Panel discussions
Indigenous Women in STEM
Featuring:

  • Karlie Noon, astrophysicist
  • Aleisha Amohia, software developer
  • Johnnie Jae, journalist & technologist
  • Shawn Peterson of Native Girls Code
  • Eteroa Lafaele, software engineer

Our panellists will be talking about their experiences as indigenous women, how they got into STEM, the issues specific to their indigenous communities when it comes to encouraging girls into STEM, the role of organisations and institutions in supporting indigenous women in STEM and more.

Can Children’s Books Encourage More Girls into STEM?

Featuring:

  • Miriam Tocino, author Zerus & Ona
  • Kate Wilson, managing director of Nosy Crow
  • Lisa Rajan, author Tara Binns series
  • Dr Sheila Kanani, author of How to Be an Astronaut and Other Space Jobs

Our panellists will be asking what role books play in helping girls build an identity that includes STEM, whether books can really counter gender stereotypes, how we represent multiple axes of diversity, and talk a bit about how they came to write books for children.

I’ve only excerpted a portion of what’s on the page. The times are a bit confusing as this, too, is on the Hopin event webpage (directly under the title): to PST. You could try checking with the organizer here: suw@findingada.com.

Want a free course in science literacy? The University of Alberta has one for you

The folks at the University of Alberta have created a course for learning critical thinking skills where science is concerned. An Oct. 24, 2020 article by Nicole Bergot for the Edmonton Journal describes the course,

“The purpose of this course is to teach people about the process of science and how it is used to acquire knowledge,” course host Claire Scavuzzo, researcher in the Department of Psychology, said in a release. “By the end of the course, learners will be able to understand and use scientific evidence to challenge claims based on misinformation and engage the process of science to ask questions to build our knowledge.”

“With the uncertainty that comes with the current global COVID-19 pandemic we are seeing a general public distrust in science; ironically because of its self-correcting process,” said Scavuzzo.

The online course has no prerequisites, features guest lecturers, and can be completed at the learner’s own pace — roughly five weeks, with five to seven hours per week of study.

The five modules of the course are presented with practice quizzes, reflective quizzes, and interactive learning objects that are all available for free.

A University of Alberta Oct. 13, 2020 news release provides more detail,

We are often told not to believe everything we read online or see on TV—but how do we tell the difference between sensationalized statistics and a real scientific study? A new online course in Science Literacy offered by the University of Alberta is ready to help learners spot sound science—an increasingly relevant skill in today’s world of social media.

The course covers a variety of topics, Scavuzzo explained, and students will have the opportunity to learn how holistic wisdom is gained and practiced by Canadian First Nations, Indigenous, and Metis peoples, compared to the westernized process of science. They will also learn how to think critically about scientific claims from a variety of sources, learning how to differentiate science from pseudoscience.

“Students can expect to finish this course with well-polished critical thinking skills. Rather than ‘science knowledge’ students will build the skill of thinking scientifically, so they are ready to engage in the process of science,” said Scavuzzo. “It may expose some of your biases and it may also help you recognize the value of challenging your biases by being skeptical, asking questions, and evaluating evidence. It will change the way you interact with and absorb content on social media. It will make you realize that these skills can—and should—be used every day.”

Here’s the list of guest lecturers (from the University of Alberta Oct. 13, 2020 news release),

  • Timothy Caulfield, Canada Research Chair in Health Law and Policy and star of Netflix’s “A User’s Guide to Cheating Death” on pseudoscience
  • Dr. Torah Kachur, Scientist and CBC journalist on science communication (and miscommunication!)
  • Christian Nelson, citizen scientist and creator of Edmonton Weather Nerdery, on experimental design
  • Cree Elder Kokum Rose Wabasca on how traditional knowledge is used in indigenous practices.
  • Métis Elder Elmer Ghostkeeper on how indigenous knowledge informs scientific discovery.
  • Dr. David Rast, scientist and psychology expert, on uncertainty and decision making

You can get more details about this Science Literacy Massive Online Open Course (MOOC) here (scroll down to the bottom of the page for the Module Overview) and to click on the registration link. There’s one other thing, you can get certified in Science Literacy should you choose that option.

How do viruses and physics go together? Find out at a Nov. 4, 2020 Perimeter Institute (PI) virtual lecture

I got this announcement from an Oct. 29, 2020 Perimeter Institute (PI) Emmy Noether newsletter (received via email),

Catherne Beauchemin

A Physicist’s Adventures in Virology WEDNESDAY, NOVEMBER 4 at 7 pm ET [4 pm PT]

In recent years, there has been a rise in cynicism about many traditionally well-respected institutions – science, academia, news reporting, and even the concepts of experts and expertise more generally. Many people’s primary – or only – exposure to science is through biological or health science, especially during the COVID-19 pandemic.

In health research, rising cynicism has spawned the anti-vaccine movement, and a growing reliance on advice from peer networks rather than experts. In part, such movements are fuelled by several examples of provably false, so-called “scientific results,” coming about either through fraud or incompetence. While skepticism is crucial to science, cynicism rooted in a lack of trust can devalue scientific contributions.

In her lecture webcast, physicist Catherine Beauchemin will explore the erosion of trust in health research, presenting examples from influenza and COVID-19. …

I went to the A Physicist’s Adventures in Virology event and livestrream page to find this,

Two essential ingredients of the scientific method are skepticism and independent confirmation – the ability to glean for oneself whether an established theory or a new hypothesis is true or false. But not everyone has the capacity to perform the experiments to obtain such a confirmation.

Consider, for example, the costs of constructing your own Large Hadron Collider, or your ability as a non-expert to critically read and understand a scientific publication. In practice, acceptance of scientific theories is more often based on trust than on independent confirmation. When that trust is eroded, issues emerge.

Catherine Beauchemin is a Professor of Physics at Ryerson University and a Deputy Program Director in the RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program in Japan. For the last 18 years, she has been developing mathematical and computational descriptions of how viruses spread from cell to cell, a field she calls “virophysics.”

In her November 4 [2020] Perimeter Public Lecture webcast, Beauchemin will highlight some of the issues that have eroded trust in health research, presenting examples from influenza and COVID-19. She will show why she believes many of these issues have their root in the fact that hypotheses in health research are formulated as words rather than mathematical expressions – and why a dose of physics may be just the prescription we need.

Enjoy!