Monthly Archives: June 2023

Treating cardiac arrhythmia with light: a graphene tattoo

An April 17, 2023 news item on Nanowerk announced research into a graphene cardiac implant/tattoo,

Researchers led by Northwestern University and the University of Texas at Austin (UT) have developed the first cardiac implant made from graphene, a two-dimensional super material with ultra-strong, lightweight and conductive properties.

Similar in appearance to a child’s temporary tattoo, the new graphene “tattoo” implant is thinner than a single strand of hair yet still functions like a classical pacemaker. But unlike current pacemakers and implanted defibrillators, which require hard, rigid materials that are mechanically incompatible with the body, the new device softly melds to the heart to simultaneously sense and treat irregular heartbeats. The implant is thin and flexible enough to conform to the heart’s delicate contours as well as stretchy and strong enough to withstand the dynamic motions of a beating heart.

Caption: Graphene implant on tattoo paper. Credit: Ning Liu/University of Texas at Austin

An April 17, 2023 Northwestern University news release (also on EurekAlert), which originated the news item, provides more detail about the research, graphene, and the difficulties of monitoring a beating heart, Note: Links have been removed,

After implanting the device into a rat model, the researchers demonstrated that the graphene tattoo could successfully sense irregular heart rhythms and then deliver electrical stimulation through a series of pulses without constraining or altering the heart’s natural motions. Even better: The technology also is optically transparent, allowing the researchers to use an external source of optical light to record and stimulate the heart through the device.

The study will be published on Thursday (April 20 [2023]) in the journal Advanced Materials. It marks the thinnest known cardiac implant to date.

“One of the challenges for current pacemakers and defibrillators is that they are difficult to affix onto the surface of the heart,” said Northwestern’s Igor Efimov, the study’s senior author. “Defibrillator electrodes, for example, are essentially coils made of very thick wires. These wires are not flexible, and they break. Rigid interfaces with soft tissues, like the heart, can cause various complications. By contrast, our soft, flexible device is not only unobtrusive but also intimately and seamlessly conforms directly onto the heart to deliver more precise measurements.”

An experimental cardiologist, Efimov is a professor of biomedical engineering at Northwestern’s McCormick School of Engineering and professor of medicine at Northwestern University Feinberg School of Medicine. He co-led the study with Dmitry Kireev, a research associate at UT. Zexu Lin, a Ph.D. candidate in Efimov’s laboratory, is the paper’s first author.

Miracle material

Known as cardiac arrhythmias, heart rhythm disorders occur when the heart beats either too quickly or too slowly. While some cases of arrhythmia are not serious, many cases can lead to heart failure, stroke and even sudden death. In fact, complications related to arrythmia claim about 300,000 lives annually in the United States. Physicians commonly treat arrhythmia with implantable pacemakers and defibrillators that detect abnormal heartbeats and then correct rhythm with electrical stimulation. While these devices are lifesaving, their rigid nature may constrain the heart’s natural motions, injure soft tissues, cause temporary discomfort and induce complications, such as painful swelling, perforations, blood clots, infection and more.

With these challenges in mind, Efimov and his team sought to develop a bio-compatible device ideal for conforming to soft, dynamic tissues. After reviewing multiple materials, the researchers settled on graphene, an atomically thin form of carbon. With its ultra-strong, lightweight structure and superior conductivity, graphene has potential for many applications in high-performance electronics, high-strength materials and energy devices.

“For bio-compatibility reasons, graphene is particularly attractive,” Efimov said. “Carbon is the basis of life, so it’s a safe material that is already used in different clinical applications. It also is flexible and soft, which works well as an interface between electronics and a soft, mechanically active organ.”

Hitting a beating target

At UT, study co-authors Dimitry Kireev and Deji Akinwande were already developing graphene electronic tattoos (GETs) with sensing capabilities. Flexible and weightless, their team’s e-tattoos adhere to the skin to continuously monitor the body’s vital signs, including blood pressure and the electrical activity of the brain, heart and muscles.

But, while the e-tattoos work well on the skin’s surface, Efimov’s team needed to investigate new methods to use these devices inside the body — directly onto the surface of the heart.

“It’s a completely different application scheme,” Efimov said. “Skin is relatively dry and easily accessible. Obviously, the heart is inside the chest, so it’s difficult to access and in a wet environment.”

The researchers developed an entirely new technique to encase the graphene tattoo and adhere it to the surface of a beating heart. First, they encapsulated the graphene inside a flexible, elastic silicone membrane — with a hole punched in it to give access to the interior graphene electrode. Then, they gently placed gold tape (with a thickness of 10 microns) onto the encapsulating layer to serve as an electrical interconnect between the graphene and the external electronics used to measure and stimulate the heart. Finally, they placed it onto the heart. The entire thickness of all layers together measures about 100 microns in total.

The resulting device was stable for 60 days on an actively beating heart at body temperature, which is comparable to the duration of temporary pacemakers used as bridges to permanent pacemakers or rhythm management after surgery or other therapies.

Optical opportunities

Leveraging the device’s transparent nature, Efimov and his team performed optocardiography — using light to track and modulate heart rhythm — in the animal study. Not only does this offer a new way to diagnose and treat heart ailments, the approach also opens new possibilities for optogenetics, a method to control and monitor single cells with light. 

While electrical stimulation can correct a heart’s abnormal rhythm, optical stimulation is more precise. With light, researchers can track specific enzymes as well as interrogate specific heart, muscle or nerve cells.

“We can essentially combine electrical and optical functions into one biointerface,” Efimov said. “Because graphene is optically transparent, we can actually read through it, which gives us a much higher density of readout.”

The University of Texas at Austin issued an April 18, 2023 news release and as you would expect the focus is on their researchers, Note 1: I’ve removed many but not all of the redundancies between the two news releases; Note 2: A link has been removed,

A new cardiac implant made from graphene, a two-dimensional super material with ultra-strong, lightweight and conductive properties, functions like a classic pacemaker with some major improvements.

A team led by researchers from The University of Texas at Austin and Northwestern University developed the implantable derivative from wearable graphene-based electronic tattoo, or e-tattoo – graphene biointerface. The device, detailed in the journal Advanced Materials, marks the thinnest known cardiac implant to date.

“It’s very exciting to take our e-tattoo technology and use it as an implantable device inside the body,” said Dmitry Kireev, a postdoctoral research associate in the lab of professor Deji Akinwande’s lab at UT Austin who co-led the research. “The fact that is much more compatible with the human body, lightweight, and transparent, makes this a more natural solution for people dealing with heart problems.”

Hitting a beating target

At UT Austin, Akinwande and his team had been developing e-tattoos using graphene for several years, with a variety of functions, including monitoring body signals. Flexible and weightless, their team’s e-tattoos adhere to the skin to continuously monitor the body’s vital signs, including blood pressure and the electrical activity of the brain, heart and muscles.

But, while the e-tattoos work well on the skin’s surface, the researchers needed to find new ways to deploy these devices inside the body — directly onto the surface of the heart.

“The conditions inside the body are very different compared to affixing a device to the skin, so we had to re-imagine how we package our e-tattoo technology,” said Akinwande, a professor in the Chandra Family Department of Electrical and Computer Engineering.  

The researchers developed an entirely new technique to encase the graphene tattoo and adhere it to the surface of a beating heart. …

Here’s a link to and a citation for the paper,

Graphene Biointerface for Cardiac Arrhythmia Diagnosis and Treatment by Zexu Lin, Dmitry Kireev, Ning Liu, Shubham Gupta, Jessica LaPiano, Sofian N. Obaid, Zhiyuan Chen, Deji Akinwande, Igor R. Efimov. Advanced Materials Volume 35, Issue 22 June 1, 2023 2212190 DOI: https://doi.org/10.1002/adma.202212190 First published online: 25 March 2023

This paper is open access.

Neuromorphic engineering: an overview

In a February 13, 2023 essay, Michael Berger who runs the Nanowerk website provides an overview of brainlike (neuromorphic) engineering.

This essay is the most extensive piece I’ve seen on Berger’s website and it covers everything from the reasons why scientists are so interested in mimicking the human brain to specifics about memristors. Here are a few excerpts (Note: Links have been removed),

Neuromorphic engineering is a cutting-edge field that focuses on developing computer hardware and software systems inspired by the structure, function, and behavior of the human brain. The ultimate goal is to create computing systems that are significantly more energy-efficient, scalable, and adaptive than conventional computer systems, capable of solving complex problems in a manner reminiscent of the brain’s approach.

This interdisciplinary field draws upon expertise from various domains, including neuroscience, computer science, electronics, nanotechnology, and materials science. Neuromorphic engineers strive to develop computer chips and systems incorporating artificial neurons and synapses, designed to process information in a parallel and distributed manner, akin to the brain’s functionality.

Key challenges in neuromorphic engineering encompass developing algorithms and hardware capable of performing intricate computations with minimal energy consumption, creating systems that can learn and adapt over time, and devising methods to control the behavior of artificial neurons and synapses in real-time.

Neuromorphic engineering has numerous applications in diverse areas such as robotics, computer vision, speech recognition, and artificial intelligence. The aspiration is that brain-like computing systems will give rise to machines better equipped to tackle complex and uncertain tasks, which currently remain beyond the reach of conventional computers.

It is essential to distinguish between neuromorphic engineering and neuromorphic computing, two related but distinct concepts. Neuromorphic computing represents a specific application of neuromorphic engineering, involving the utilization of hardware and software systems designed to process information in a manner akin to human brain function.

One of the major obstacles in creating brain-inspired computing systems is the vast complexity of the human brain. Unlike traditional computers, the brain operates as a nonlinear dynamic system that can handle massive amounts of data through various input channels, filter information, store key information in short- and long-term memory, learn by analyzing incoming and stored data, make decisions in a constantly changing environment, and do all of this while consuming very little power.

The Human Brain Project [emphasis mine], a large-scale research project launched in 2013, aims to create a comprehensive, detailed, and biologically realistic simulation of the human brain, known as the Virtual Brain. One of the goals of the project is to develop new brain-inspired computing technologies, such as neuromorphic computing.

The Human Brain Project has been funded by the European Union (1B Euros over 10 years starting in 2013 and sunsetting in 2023). From the Human Brain Project Media Invite,

The final Human Brain Project Summit 2023 will take place in Marseille, France, from March 28-31, 2023.

As the ten-year European Flagship Human Brain Project (HBP) approaches its conclusion in September 2023, the final HBP Summit will highlight the scientific achievements of the project at the interface of neuroscience and technology and the legacy that it will leave for the brain research community. …

One last excerpt from the essay,

Neuromorphic computing is a radical reimagining of computer architecture at the transistor level, modeled after the structure and function of biological neural networks in the brain. This computing paradigm aims to build electronic systems that attempt to emulate the distributed and parallel computation of the brain by combining processing and memory in the same physical location.

This is unlike traditional computing, which is based on von Neumann systems consisting of three different units: processing unit, I/O unit, and storage unit. This stored program architecture is a model for designing computers that uses a single memory to store both data and instructions, and a central processing unit to execute those instructions. This design, first proposed by mathematician and computer scientist John von Neumann, is widely used in modern computers and is considered to be the standard architecture for computer systems and relies on a clear distinction between memory and processing.

I found the diagram Berger Included with von Neumann’s design contrasted with a neuromorphic design illuminating,

A graphical comparison of the von Neumann and Neuromorphic architecture. Left: The von Neumann architecture used in traditional computers. The red lines depict the data communication bottleneck in the von Neumann architecture. Right: A graphical representation of a general neuromorphic architecture. In this architecture, the processing and memory is decentralized across different neuronal units(the yellow nodes) and synapses(the black lines connecting the nodes), creating a naturally parallel computing environment via the mesh-like structure. (Source: DOI: 10.1109/IS.2016.7737434) [downloaded from https://www.nanowerk.com/spotlight/spotid=62353.php]

Berger offers a very good overview and I recommend reading his February 13, 2023 essay on neuromorphic engineering with one proviso, Note: A link has been removed,

Many researchers in this field see memristors as a key device component for neuromorphic engineering. Memristor – or memory resistor – devices are non-volatile nanoelectronic memory devices that were first theorized [emphasis mine] by Leon Chua in the 1970’s. However, it was some thirty years later that the first practical device was fabricated in 2008 by a group led by Stanley Williams [sometimes cited as R. Stanley Williams] at HP Research Labs.

Chua wasn’t the first as he, himself, has noted. Chua arrived at his theory independently in the 1970s but Bernard Widrow theorized what he called a ‘memistor’ in the 1960s. In fact “Memristors: they are older than you think” is a May 22, 2012 posting which featured an article “Two centuries of memristors” by Themistoklis Prodromakis, Christofer Toumazou and Leon Chua published in Nature Materials.

Most of us try to get it right but we don’t always succeed. It’s always good practice to read everyone (including me) with a little skepticism.

Physics in James Joyce’s Ulysses and physics amongst the penguins

So James Joyce included some physics in his novel, Ulysses (serialized in The Little Review from March 1918 to December1920 and published as a novel in February 1922)?

That’s not the only surprise. Apparently, penguins perform some interesting feats from a physics perspective. I have two stories about penguin physics with the latest research being published in June 2023.

Let’s start with literature.

James Joyce, Ulysses, and 19th century physics

This article came to my attention in April 2023 but the material is from 2021/22. Thankfully, since it’s a literature topic, timing doesn’t matter quite as much as it does for other topics. From a December 22, 2021 American Institute of Physics news release highlights an intriguing article in The Physics Teacher,

James Joyce’s book “Ulysses” is widely considered a 20th-century literary masterpiece. It also contains a surprising amount of 19th-century classical physics, according to Harry Manos, faculty member at Los Angeles City College.

“Ulysses” chronicles the ordinary life of the protagonist Leopold Bloom over a single day in 1904. In The Physics Teacher, by AIP Publishing, Manos reveals several connections that have not been analyzed before in the Joycean literature between classic physics prevalent during that time and various passages of the book.

“‘Ulysses’ exemplifies what physics students and teachers should realize — namely, physics and literature are not mutually exclusive,” Manos said.

Manos shows how Joyce uses the optics of concave and convex mirrors to metaphorically parallel “Ulysses” with Homer’s “Odyssey,” and how Joyce uses physics to show Bloom’s strengths and weaknesses in science.

Here’s a link to and a citation for the paper,

Physics in James Joyce’s Ulysses by Harry Manos. The Physics Teacher 60, 6–10 (2022) DOI: https://doi.org/10.1119/5.0028832 Published online: January 1, 2022

This paper is behind a paywall but there is a freely available abstract

Ulysses by James Joyce (1882–1941) has a surprising amount of 19th-century, classical physics. The physics community is familiar with the name James Joyce mainly through the word “quark” (onomatopoeic for the sound of a duck or seagull), which Murray Gell-Mann (1929-2019 – Physics Nobel Prize 1969) sourced from Joyce’s Finnegan’s Wake. Ulysses, however, was ranked number one in 1998 on the Modern Library “100 Best Novels” list and is, in whole or in part, in the literature curriculum in university English departments worldwide. The fact that Ulysses contains so much classical physics should not be surprising. Joyce’s friend Eugene Jolas observed: “the range of subjects he [Joyce] enjoyed discussing was a wide one … [including] certain sciences, particularly physics, geometry, and mathematics.” Knowing physics can enhance everyone’s understanding of this novel and enrich its entertainment value. Ulysses exemplifies what physics students (science and non-science majors) and physics teachers should realize, namely, physics and literature are not mutually exclusive.

In addition to the December 22, 2021 American Institute of Physics news release which provides some detail about the physics in Ulysses, there’s Jennifer Ouellette’s April 2, 2023 article for Ars Technica where in addition to the material in the news release, she adds some intriguing information, Note: Links have been removed,

In Chapter 15 (“Circe”), one of the characters says, “You can call me up by sunphone any old time”—a phrase that also appears in Joyce’s handwritten notes for the chapter. While Manos was unable to trace a specific source for this term, there was a similar device that had been invented some 20 years earlier: Alexander Graham Bell’s photophone, co-invented with his assistant Charles Sumner Tainter.

Unlike the telephone, which relies on electricity, the photophone transmitted sound on a beam of light. Bell’s voice was projected through the instrument to a mirror, causing similar vibrations in the mirror. When he directed sunlight into the mirror, it captured and projected the mirror’s vibrations via reflection, which were then transformed back into sound at the receiving end of the projection. Bell’s device never found immediate application, but it’s arguably the progenitor to modern fiber-optic telecommunications.

There are several other instances of physics (both correct and incorrect/outdated) mentioned in Ulysses, per Manos, including Bloom misunderstanding the science of X-rays; his confusion over parallax; trying to figure out the source of buoyancy in the Dead Sea; ruminating on Archimedes’ “burning glass”; seeing rainbow colors in a water spray; and pondering why he hears the ocean when he places a seashell to his ear. Manos believes introducing literature like Ulysses into physics courses could be a boon for non-majors, as well as encouraging physics and engineering students to learn more about literature.

In fact, Manos notes that an earlier 1995 paper introduced a handy introductory physics problem involving distance, velocity, and time. Ulysses opens with Stephen Dedalus and his roommate, Buck Mulligan, standing at the Martello tower overlooking a bay at Sandy Cove. …

Now onto …

Penguin physics

Two stories, two research teams, and six months separate their papers.

A February 7, 2023 news item on phys.org features work from a team of Japanese scientists studying how penguins turn in the water, Note: A link has been removed,

Penguins constitute a fascinating family of flightless birds, that although somewhat clumsy on land, are extremely talented swimmers. Their incredible maneuverability in water has captivated biologists for decades, with the first hydrodynamic studies on their swimming dating back to the 1970s.

Although a rare few studies have clarified some of the physics behind penguins’ dexterity, most of them have focused on forward swimming rather than turning. While one may argue that existing studies on the turning mechanisms of flying birds could shed some light on this topic, water is 800 hundred times denser than air, and thus the turning mechanisms employed are presumably very different between these media.

In an effort to bridge this knowledge gap, a pair of Japanese scientists from Tokyo Institute of Technology (Tokyo Tech), including Associate Professor Hiroto Tanaka, recently conducted a study. The main goal of this work, which was published in Journal of Experimental Biology, was to gain a better understanding of the three dimensional (3D) kinematics and hydrodynamic forces that enable penguins to turn underwater.

Penguin Physics: Understanding the Mechanisms of Underwater Turning Maneuvers in Penguins
Credit: Tokyo Institute of Technology

A February 8, 2023 Tokyo Institute of Technology (Tokyo Tech) press release, which originated the news item, describes the research in more technical detail,

The researchers recorded two sessions of gentoo penguins (Pygoscelis papua) free swimming in a large water tank at Nagasaki Penguin Aquarium, Japan, using a dozen or more underwater cameras. Then, thanks to a technique called 3D direct linear transformation, they were able to integrate data from all the footage and conduct detailed 3D motion analyses by tracking various points on the penguins’ bodies and wings.

Armed with these data, the researchers then established a mathematical 3D body model of the penguins. This model covered the orientation and angles of the body, the different positions and motions of the wings during each stroke, the associated kinematic parameters and hydrodynamic forces, and various turning metrics. Through statistical analyses and comparisons with the experimental data, the researchers validated the model and gained insight into the role of the wings and other body movements during turning.

The main findings of the study were related to how penguins generate centripetal force to assist their turns. They achieve this, in part, is by maintaining outward banking, which means that they tilt their bodies such that their belly faces inward. In powered turns—those in which the penguin flaps its wings—the majority of changes in direction occur during the upstroke, whereas the forward thrust occurs during the downstroke. In addition, it turns out that penguins flap their wings with a certain asymmetry during powered turns. “We found contralateral differences in wing motion; the wing on the inside of the turn becomes more elevated during the upstroke than the other,” explains Assoc. Prof. Tanaka, “Quasi-steady calculations of wing forces confirmed that this asymmetry in wing motion with the outward banking contributes to the generation of centripetal force during the upstroke. In the following downstroke, the inside wing generates thrust and counter yaw torque to brake the turning.”

Overall, these findings contribute to a greater understanding of how penguins turn when swimming, which is relevant from both biological and engineering standpoints. However, Assoc. Prof. Tanaka remarks that these findings bring but one piece to the puzzle: “The mechanisms of various other maneuvers in penguins, such as rapid acceleration, pitch up and down, and jumping out of the water, are still unknown. Our study serves as the basis for further understanding of more complex maneuvers.”

Let us hope future research helps fully clarify how penguins achieve their mesmerizing aquatic prowess!

Here’s a link to and a citation for the paper,

Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force by Natsuki Harada and Hiroto Tanaka. J Exp Biol (2022) 225 (24): jeb244124. DOI: https://doi.org/10.1242/jeb.244124 Published online December 22, 2022

This paper is open access.

Penguins are the fastest swimming birds and this team published a paper about their propulsion six months after the ‘turning’ team according to a June 20, 2023 news item on phys.org,

Penguins aren’t just cute: they’re also speedy. Gentoo penguins are the fastest swimming birds in the world, and that ability comes from their unique and sophisticated wings.

Researchers from the University of Chinese Academy of Sciences, Chinese Academy of Sciences, and King Mongkut’s Institute of Technology Ladkrabang [KMITL or KMIT Ladkrabang; Thailand] developed a model to explore the forces and flow structures created by penguin wings underwater. They determined that wing feathering is the main factor for generating thrust. Their findings have been published in the journal Physics of Fluids.

An American Institute of Physics June 20, 2022 news release (also on EurekAlert), which originated the news item, provides further explanation of how penguins are able to achieve their swimming speed,

Penguin wings, aka flippers, bear some resemblance to airplane wings covered with scaly feathers. To maximize efficiency underwater instead of in the air, penguin wings are shorter and flatter than those of flying birds.

The animals can adjust swimming posture by active wing feathering (changing the angle of their wings to reduce resistance), pitching, and flapping. Their dense, short feathers can also lock air between the skin and water to reduce friction and turbulence.

“Penguins’ superior swimming ability to start/brake, accelerate/decelerate, and turn swiftly is due to their freely waving wings. They allow penguins to propel and maneuver in the water and maintain balance on land,” said author Prasert Prapamonthon. “Our research team is always curious about sophisticated creatures in nature that would be beneficial to mankind.”

The hydrodynamic model takes in information about the flapping and feathering of the wings, including amplitude, frequency, and direction, and the fluid parameters, such as velocity and viscosity. Using the immersed boundary method, it solves for the motion of the wing and the thrust, lift, and lateral forces.

To establish the movement of wings across species, researchers use the ratio of wing flapping speed to forward speed. This value avoids any differences between air and water. Additionally, the authors define an angle of thrust, determined by the angle of the wings. Both of these parameters have a significant impact on the penguin’s thrust.

“We proposed the concept of angle of thrust, which explains why finned wings generate thrust: Thrust is primarily determined by the angle of attack and the relative angle of the wings to the forward direction,” said Prapamonthon. “The angle of thrust is an important concept in studying the mechanism of thrust generated by flapping motion and will be useful for designing mechanical wing motion.”

These findings can guide the design of aquatic vehicles by quickly estimating propulsion performance without high experimental or computational costs.

In the future, the team plans to examine a more realistic 3D penguin model. They will incorporate different wing properties and motion, such as starting, braking, turning, and jumping in and out of water.

Here’s a link to and a citation for the paper,

Hydrodynamic performance of a penguin wing: Effect of feathering and flapping by Hao Zhanzhou (郝占宙), Yin Bo (银波), Prasert Prapamonthon, Yang Guowei (杨国). Physics of Fluids 35 (6), 061907 (2023) DOI: https://doi.org/10.1063/5.0147776 Published online: June 20, 2023

This paper is open access.

Reducing microplastic pollution from when you wash your clothes with a new coating

A January 26, 2023 University of Toronto news release (also found on EurekAlert and here but published on January 30, 2023) by Safa Jinje announced a coating the minimizes the amount of microplastic entering the water when your clothes are washed, Note: Links have been removed,

A team of University of Toronto Engineering researchers, led by Professor Kevin Golovin, have designed a solution to reduce the amount of microplastic fibres that are shed when clothes made of synthetic fabrics are washed.   

In a world swamped by fast fashion — an industry that produces a high-volume of cheaply made clothing at an immense cost to the environment — more than two-thirds of clothes are now made of synthetic fabrics. 

When clothes made from synthetic fabrics, such as nylon, polyester, acrylic and rayon, are washed in washing machines, the friction caused by cleaning cycles produces tiny tears in the fabric. These tears in turn cause microplastic fibres measuring less than 500 micrometres in length to break off and make their way down laundry drains to enter waterways.   

Once microplastics end up in oceans and freshwater lakes and rivers, the particles are difficult to remove and will take decades or more to fully break down. The accumulation of this debris in bodies of water can threaten marine life. It can also become part of the human food chain through its presence in food and tap water, with effects on human health that are not yet clear.  

Governments around the world have been looking for ways to minimize the pollution that comes from washing synthetic fabrics. One example is washing machine filters, which have emerged as a leading fix to stop microplastic fibres from entering waterways. In Ontario, legislative members have introduced a bill that would require filters in new washing machines in the province.  

“And yet, when we look at what governments around the world are doing, there is no trend towards preventing the creation of microplastic fibres in the first place,” says Golovin.  

“Our research is pushing in a different direction, where we actually solve the problem rather than putting a Band-Aid on the issue.”   

Golovin and his team have created a two-layer coating made of polydimethylsiloxane (PDMS) brushes, which are linear, single polymer chains grown from a substrate to form a nanoscale surface layer.  

Experiments conducted by the team showed that this coating can significantly reduce microfibre shedding of nylon clothing after repeated laundering. The researchers share their findings in a new paper published in Nature Sustainability

“My lab has been working with this coating on other surfaces, including glass and metals, for a few years now,” says Golovin. “One of the properties we have observed is that it is quite slippery, meaning it has very low friction.” 

PDMS is a silicon-based organic polymer that is found in many household products. Its presence in shampoos makes hair shiny and slippery. It is also used as a food additive in oils to prevent liquids from foaming when bottled. 

Dr. Sudip Kumar Lahiri, a postdoctoral researcher in Golovin’s lab and lead author of the study, had the idea that if they could reduce the friction that occurs during wash cycles with a PDMS-based fabric finish, then that could stop fibres from rubbing together and breaking off during laundering.  

One of the biggest challenges the researchers faced during their study was ensuring the PDMS brushes stayed on the fabric. Lahiri, who is a textile engineer by trade, developed a molecular primer based on his understanding of fabric dyes.  

Lahiri reasoned that the type of bonding responsible for keeping dyed apparel colourful after repeated washes could work for the PDMS coating as well.  

Neither the primer nor the PDMS brushes work separately to decrease the microplastic-fibre shedding. But together, they created a strong finish that reduced the release of microfibres by more than 90% after nine washes.  

“PDMS brushes are environmentally friendly because they are not derived from petroleum like many polymers used today,” says Golovin, who was awarded a Connaught New Researcher award for this work.  

“With the addition of Sudip’s primer, our coating is robust enough to remain on the garment and continue to reduce micro-fibre shedding over time.”  

Since PDMS is naturally a hydrophobic (water-repellent) material, the researchers are currently working on making the coating hydrophilic, so that coated fabrics will be better able to wick away sweat. The team has also expanded the research to look beyond nylon fabrics, including polyester and synthetic-fabric blends.  

“Many textiles are made of multiple types of fibres,” says Golovin. “We are working to formulate the correct polymer architecture so that our coating can durably adhere to all of those fibres simultaneously.” 

Here’s a link to and a citation for the paper,

Polydimethylsiloxane-coated textiles with minimized microplastic pollution by Sudip Kumar Lahiri, Zahra Azimi Dijvejin & Kevin Golovin. Nature Sustainability (2023) DOI: https://doi.org/10.1038/s41893-022-01059-4 Published: 26 January 2023

This paper is behind a paywall.

Learning and remembering like a human brain: nanowire networks

It’s all about memory in this April 21, 2023 news item on Nanowerk, Note: A link has been removed,

An international team led by scientists at the University of Sydney has demonstrated nanowire networks can exhibit both short- and long-term memory like the human brain.

The research has been published today in the journal Science Advances (“Neuromorphic learning, working memory, and metaplasticity in nanowire networks”), led by Dr Alon Loeffler, who received his PhD in the School of Physics, with collaborators in Japan.

An April 24, 2023 University of Sydney (Australia) press release (also on EurekAlert but published April 21, 2023), which originated news item, offers more detail about the research,

“In this research we found higher-order cognitive function, which we normally associate with the human brain, can be emulated in non-biological hardware,” Dr Loeffler said.

“This work builds on our previous research in which we showed how nanotechnology could be used to build a brain-inspired electrical device with neural network-like circuitry and synapse-like signalling.

“Our current work paves the way towards replicating brain-like learning and memory in non-biological hardware systems and suggests that the underlying nature of brain-like intelligence may be physical.”

Nanowire networks are a type of nanotechnology typically made from tiny, highly conductive silver wires that are invisible to the naked eye, covered in a plastic material, which are scattered across each other like a mesh. The wires mimic aspects of the networked physical structure of a human brain.

Advances in nanowire networks could herald many real-world applications, such as improving robotics or sensor devices that need to make quick decisions in unpredictable environments.

“This nanowire network is like a synthetic neural network because the nanowires act like neurons, and the places where they connect with each other are analogous to synapses,” senior author Professor Zdenka Kuncic, from the School of Physics, said.

“Instead of implementing some kind of machine learning task, in this study Dr Loeffler has actually taken it one step further and tried to demonstrate that nanowire networks exhibit some kind of cognitive function.”

To test the capabilities of the nanowire network, the researchers gave it a test similar to a common memory task used in human psychology experiments, called the N-Back task.

For a person, the N-Back task might involve remembering a specific picture of a cat from a series of feline images presented in a sequence. An N-Back score of 7, the average for people, indicates the person can recognise the same image that appeared seven steps back.

When applied to the nanowire network, the researchers found it could ‘remember’ a desired endpoint in an electric circuit seven steps back, meaning a score of 7 in an N-Back test.

“What we did here is manipulate the voltages of the end electrodes to force the pathways to change, rather than letting the network just do its own thing. We forced the pathways to go where we wanted them to go,” Dr Loeffler said.

“When we implement that, its memory had much higher accuracy and didn’t really decrease over time, suggesting that we’ve found a way to strengthen the pathways to push them towards where we want them, and then the network remembers it.

“Neuroscientists think this is how the brain works, certain synaptic connections strengthen while others weaken, and that’s thought to be how we preferentially remember some things, how we learn and so on.”

The researchers said when the nanowire network is constantly reinforced, it reaches a point where that reinforcement is no longer needed because the information is consolidated into memory.

“It’s kind of like the difference between long-term memory and short-term memory in our brains,” Professor Kuncic said.

“If we want to remember something for a long period of time, we really need to keep training our brains to consolidate that, otherwise it just kind of fades away over time.

“One task showed that the nanowire network can store up to seven items in memory at substantially higher than chance levels without reinforcement training and near-perfect accuracy with reinforcement training.”

COI [Conflict of Interest] Statement

Professor Zdenka Kuncic is with Emergentia [can be found here], Inc. The authors declare that they have no other competing interests.

Caption: Neural network (left) nanowire network (right) Credit: Loeffler et al.

I have a link to and citation for the paper in Science Advances (another link and citation follows),

Neuromorphic learning, working memory, and metaplasticity in nanowire networks by Alon Loeffler, Adrian Diaz-Alvarez, Ruomin Zhu, Natesh Ganesh, James M. Shine, Tomonobu Nakayama, and Zdenka Kuncic. Science Advances 21 Apr 2023 Vol 9, Issue 16 DOI: 10.1126/sciadv.adg3289

This paper is open access.

Never having seen this organization’s (Zenodo.org) setup before I’m a little confused by it,

Neuromorphic Learning, Working Memory and Metaplasticity in Nanowire Networks by Loeffler, Alon; Diaz-Alvarez, Adrian; Zhu, Ruomin; Ganesh, Natesh; Shine, James. M; Nakayama, Tomonobu; Kuncic, Zdenka, https://zenodo.org/record/7633958#.ZEv_2EnMKpo Published: February 12, 2023

I’m not sure if they’re including an early version of the article (I don’t think so) but they do have other files, which are open access and they reference the Science Advances study published in April 2023.

It seems their focus is data, from the About Zenodo webpage,

Every last detail

To fully understand and reproduce research performed by others, it is necessary to have all the details. In the digital age, that means all the digital artefacts, which are all welcomed in Zenodo.

To be an effective catch­-all, that eliminates barriers to adopting data sharing practices, Zenodo does not impose any requirements on format, size, access restrictions or licence. Quite literally we wish there to be no reason for researchers not to share!

Data, software and other artefacts in support of publications may be the core, but equally welcome are the materials associated with the conferences, projects or the institutions themselves, all of which are necessary to understand the scholarly process.

Don’t wait until the publication date!

Publication may happen months or years after completion of the research, so collecting together all the research artefacts at that stage to publish openly is often challenging. Zenodo therefore offers the possibility to house closed and restricted content, so that artefacts can be captured and stored safely whilst the research is ongoing, such that nothing is missing when they are openly shared later in the research workflow.

Additionally, to help publishing, research materials for the review process can be safely uploaded to Zenodo in restricted records and then protected links can be shared with the reviewers. Content can also be embargoed and automatically opened when the associated paper is published.

To support all these use cases, the simple web interface is supplemented by a rich API which allows third ­party tools and services to use Zenodo as a backend in their workflow.

A roly-poly (woodlouse) gold rush

This environmental monitoring story focused on the roly-poly was announced in an April 18, 2023 news item on Statnano,

The woodlouse goes by many names: roly-poly, pill bug, potato bug, tomato bug, butchy boy, cheesy bob, and chiggy pig, to name just a few. It is best known for contracting into a ball when agitated. This crustacean (yes, it’s a crustacean, not an insect) thrives in heavily metal-contaminated areas due to its specialized digestive organ, called a hepatopancreas, that stores and expels unwanted metals.

Metal nanoparticles are common in industrial and research plants. However, they can leach into the surrounding environment. Currently, little is known about the toxicity of metal nanoparticles for nearby organisms because detecting metal nanoparticles, particularly gold, requires microscopic, 3D imaging that cannot be done in the field

….

Caption: (a) Cartoon of a woodlouse depicting the hepatopancreas (HP) and the hind gut (HG). (b) Transmission overview of a single HP tubule, showing the helical structure. (c) Section from a HP tubule with the nuclei fluorescently labeled in blue. Credit: Iestyn Pope, Nuno G.C. Ferreira, Peter Kille, Wolfgang Langbein, and Paola Borri

An April 11, 2023 American Institute of Physics (AIP) news release (also on EurekAlert), which originated the news item, describes a new approach to detecting gold nanoparticles in roly-polys,

In Applied Physics Letters, by AIP Publishing, researchers from Cardiff University in the U.K. introduce a novel imaging method to detect gold nanoparticles in woodlice. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.

“Gold nanoparticles are used extensively for biological research applications owing to their biocompatibility and photostability and are available in a large range of shapes and sizes,” said author Wolfgang Langbein. “By using gold nanoparticles, which would not normally be present in the woodlice diet, we can study the journey of nanoparticles inside complex biological systems.”

The researchers developed an imaging method known as four-wave mixing microscopy, which flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles’ locations. Using this state-of-the-art technique, they locate the individual gold nanoparticles in the 3D cellular environment.

“By precisely pinpointing the fate of individual gold nanoparticles in the hepatopancreas of woodlice, we can gain a better understanding of how these organisms sequester and respond to metals ingested from the environment,” said Langbein. “Tracking this metal within these organisms is the first step enabling further study to determine, for example, if gold is collected within specific cells, or if it can interfere with the metabolisms in high doses.”

The use of gold nanoparticles in medical devices is increasing and with it, their abundance in the environment. This imaging technique will provide clarity into the little-understood mechanisms in the woodlice hepatopancreas and will also provide helpful environmental monitoring.

In the future, background-free four-wave mixing microscopy could be used to detect other metal nanoparticles and may be applied to organisms like fish larvae and even human cell cultures.

Here’s a link to and a citation for the paper,

Background-free four-wave mixing microscopy of small gold nanoparticles inside a multi-cellular organ by Iestyn Pope, Nuno G.C. Ferreira, Peter Kille, Wolfgang Langbein, and Paola Borri. Appl. Phys. Lett. 122, 153701 (2023) DOI: https://doi.org/10.1063/5.0140651Published online April 11, 2023

This paper is open access.

‘Polar bear wear’: 30% lighter than cotton and much warmer

For the same reason some people like ‘Christmas in July’ events, I like to occasionally feature a nonseasonal story. Especially since the area where I live is going through an unseasonal cold snap and will be followed shortly by anomalously hot temperatures. So, more or less fittingly, an April 10, 2023 news item announces a new fabric,

Three engineers at the University of Massachusetts Amherst have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on Polar bear fur. The results, published recently in the journal ACS Applied Materials and Interfaces, are already being developed into commercially available products. [ACS is American Chemical Society.]

Caption: Inspired by polar bears, this new textile creates an on-body “greenhouse” effect to keep you warm. Credit: Viola et al., 10.1021/acsami.2c23075

Nice to see a properly drawn polar bear. Back to the research, an April 10, 2023 University of Massachusetts Amherst news release (also on EurekAlert), which originated the news item, provides a brief history of the research and a few technical details about the current work, Note: Links have been removed,

Polar bears live in some of the harshest conditions on earth, shrugging off Arctic temperatures as low as -50 Fahrenheit. While the bears have many adaptations that allow them to thrive when the temperature plummets, since the 1940s scientists have focused on one in particular: their fur. How, the scientific community has asked, does a polar bear’s fur keep them warm?

Typically, we think that the way to stay warm is to insulate ourselves from the weather. But there’s another way: One of the major discoveries of the last few decades is that many polar animals actively use the sunlight to maintain their temperature, and polar bear fur is a well-known case in point.

Scientists have known for decades that part of the bears’ secret is their white fur. One might think that black fur would be better at absorbing heat, but it turns out that the polar bears’ fur is extremely effective at transmitting solar radiation toward the bears’ skin.

“But the fur is only half the equation,” says the paper’s senior author,  Trisha L. Andrew, associate professor of chemistry and adjunct in chemical engineering at UMass Amherst. “The other half is the polar bears’ black skin.”

As Andrew explains it, polar bear fur is essentially a natural fiberoptic, conducting sunlight down to the bears’ skin, which absorbs the light, heating the bear. But the fur is also exceptionally good at preventing the now-warmed skin from radiating out all that hard-won warmth. When the sun shines, it’s like having a thick blanket that warms itself up, and then traps that warmth next to your skin.

What Andrew and her team have done is to engineer a bilayer fabric whose top layer is composed of threads that, like polar bear fur, conduct visible light down to the lower layer, which is made of nylon and coated with a dark material called PEDOT [Poly(3,4-ethylenedioxythiophene)]. PEDOT, like the polar bears’ skin, warms efficiently.

So efficiently, in fact, that a jacket made of such material is 30% lighter than the same jacket made of cotton yet will keep you comfortable at temperatures 10 degrees Celsius colder than the cotton jacket could handle, as long as the sun is shining or a room is well lit.

“Space heating consumes huge amounts of energy that is mostly fossil fuel-derived,” says Wesley Viola, the paper’s lead author, who completed his Ph.D. in chemical engineering at UMass and is now at Andrew’s startup, Soliyarn, LLC. “While our textile really shines as outerwear on sunny days, the light-heat trapping structure works efficiently enough to imagine using existing indoor lighting to directly heat the body. By focusing energy resources on the ‘personal climate’ around the body, this approach could be far more sustainable than the status quo.”

The research, which was supported by the National Science Foundation, is already being applied, and  Soliyarn has begun production of the PEDOT-coated cloth.

Here’s a link to and a citation for the paper,

Solar Thermal Textiles for On-Body Radiative Energy Collection Inspired by Polar Animals by Wesley Viola, Peiyao Zhao, and Trisha L. Andrew. ACS Appl. Mater. Interfaces 2023, 15, 15, 19393–19402 DOI: https://doi.org/10.1021/acsami.2c23075 Publication Date: April 5, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

You can find Soliyarn here.

Enabling a transparent wood battery that stores heat and regulates indoor temperature with lemons and coconuts

i’ve had transparent wood stories here before but this time it was the lemons and coconuts which captured my attention.

Peter Olsén and Céline Montanari, researchers in the Department of Biocomposites at KTH Royal Institute of Technology in Stockholm, say the new wood composite uses components of lemon and coconuts to both heat and cool homes. (Photo: David Callahan) Courtesy: KTH Royal Institute of Technology

From a March 30, 2023 news item on Nanowerk,

A building material that combines coconuts, lemons and modified wood could one day be enough to heat and cool your home. The three renewable sources provide the key components of a wood composite thermal battery, which was developed by researchers at KTH Royal Institute of Technology in Stockholm.

Researchers reported the development in the scientific journal, Small (“Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood”). Peter Olsén, researcher in the Department of Biocomposites at KTH, says the material is capable of storing both heat and cold. If used in housing construction, the researchers say that 100 kilos of the material can save about 2.5 kWh per day in heating or cooling—given an ambient temperature of 24 °C.

KTH researcher Céline Montanari says that besides sunlight, any heat source can charge the battery. “The key is that the temperature fluctuates around the transition temperature, 24 °C, which can of course be tailored depending on the application and location,” she says.

A March 30, 2023 KTH Royal Institute of Technology press release, which originated the news item, describes the roles that lemons and coconuts play,

The process starts with removing lignin from wood, which creates open pores in the wood cells walls, and removes color. Later the wood structure is filled with a citrus-based molecule—limonene acrylate—and coconut based molecule. Limonene acrylate transforms into a bio-based polymer when heated, restoring the wood’s strength and allowing light to permeate. When this happens the coconut molecule are trapped within the material, enabling the storage and release of energy.

“The elegance is that the coconut molecules can transition from a solid-to-liquid which absorbs energy; or from liquid-to-solid which releases energy, in much the same way that water freezes and melts,” Montanari says. But in the transparent wood, that transition happens at a more comfortable 24C

“Through this transition, we can heat or cool our surroundings, whichever is needed,” Olsén says

Olsén says that potential uses include exterior and interior building material for both transparency and energy saving – in exteriors and interiors. The first application of the product would be for interior spaces to regulate temperatures around the 24C mark to cool and to heat. More study is needed to develop it for exterior use.

And it’s not just for homes or buildings. “Why not as a future material in greenhouses?” he says. “When the sun shines, the wood becomes transparent and stores more energy, while at night it becomes cloudy and releases the heat stored during the day. That would help reduce energy consumption for heating and at the same time provide improved growth.”

A close-up look at the material produced in the study. Courtesy: KTH Royal Institute of Technology

Here’s a link to and a citation for the paper,

Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood by Céline Montanari, Hui Chen, Matilda Lidfeldt, Josefin Gunnarsson, Peter Olsén, Lars A. Berglund. Small Online Version of Record before inclusion in an issue 2301262 DOI: https://doi.org/10.1002/smll.202301262 First published online: 27 March 2023

This paper is open access.

June 23, 2023 is International Women in Engineering Day

Thanks to the OECD (Organisation for Economic Cooperation and Development) for a notice (received via email on June 16, 2023) about their upcoming International Women in Engineering Day on Friday, June 23, 2023, Note: I have information about more events and links to relevant organizations at the end of this post,

Are education policies doing enough to enhance career paths of women in STEM and nuclear science?

23 June, 2023

12h30 (Paris) [3:30 am PDT]

Female scientists and engineers pioneered the nuclear and radiological fields, with leaders and innovators such as Marie Skłodowska-Curie and Lise Meitner, among many others, establishing the foundation of modern nuclear science and technology. 
 
However, reports like The Persistence of Gender Gaps in Education and Skills still show the lack of girls in STEM (science, technology, engineering, and mathematics) careers. It also highlights the importance of enhancing the educational pipeline to attract, retain and maintain more women in the sectors. 
 
Join us on International Women in Engineering Day, where the OECD Directorate for Education and Skills and the Nuclear Energy Agency (NEA) will host an expert panel to look at the latest education initiatives contributing towards attracting more women in STEM and asking the question, “Are policymakers doing enough? 
 
Speakers include:  
– Marta Encinas-Martin, Senior Advisor Global Relations and OECD Education Gender Ambassador 
– Fiona Rayment, Chief Science and Technology Officer, National Nuclear Laboratory (United Kingdom) 
– Tatiana Ivanova, Head of Division, Nuclear Science and Education, Nuclear Energy Agency (NEA) 
 Moderated by William D. Magwood, IV, Director-General, OECD Nuclear Energy Agency (NEA) 

The June 23, 2023 OECD Education and Skills Today webinar registration page can be found here. For anyone not inclined to participate in a webinar at 3:30 am, the OECD does make them available afterwards. You can find out more about upcoming and previous webinars here on this OECD Education and Skills Today webpage. I clicked on a few of the previous webinars and they seem to run for approximately one hour.

The report mentioned in the press release, “Gender, Education and Skills; The Persistence of Gender Gaps in Education and Skills” can be found here. Reading the HTML version online is free but getting a copy will cost you money. (The report was published on March 2, 2023.)

The OECD’s “Recommendation of the Council on Improving the Gender Balance in the Nuclear Sector” can be found here. After the recommendation was adopted on June 7, 2023, the OECD-Nuclear Energy Agency issued a June 8, 2023 press release about the new policy,

The 38 countries that are members of the Organisation for Economic Co-operation and Development (OECD) have agreed upon a new, focused approach to improve the gender balance in the nuclear sector. They call on national authorities and the industry to take action to increase the representation of women in the sector and enhance their contributions –especially in science, technology, engineering and mathematics (STEM) roles and leadership positions.

Currently, women make up just 20% of the nuclear science and engineering workforce in NEA [Nuclear Energy Agency] member countries and represent a very small fraction of upper management. They often experience hostility in their nuclear workplaces and negative career impacts due to pregnancy and family responsibilities. This absence of diversity and barriers to women’s full participation in the sector represents a loss of potential innovation and growth and a critical threat to the viability of the field.

William D. Magwood, IV, NEA Director-General, said:

“The persistent gender gap in the nuclear sector impacts the future viability of nuclear energy around the world. The NEA made it a priority to move beyond simply discussing the issue and to work with its member countries to develop a focused and specific policy framework to make a real difference to improve the gender balance in the nuclear sector. We expect to see that a broad range of organisations stand ready to work with governments to implement these policy recommendations.”

Governments are highly influential in the nuclear sector due to their extensive involvement in nuclear technology activities. The recommendations agreed by OECD countries will help attract more women to nuclear science and technology careers and remove barriers to their advancement in nuclear organisations.

NEA analyses highlight that total nuclear energy production needs to triple by 2050 for governments around the world to achieve net zero emissions. To achieve this, the nuclear sector must grow and diversify its workforce, but this will be extremely difficult unless it attracts more women.

The OECD Recommendation follows the recent NEA report Gender Balance in the Nuclear Sector which included the first publicly available international data on the topic.

Dr Fiona Rayment OBE, Chief Science and Technology Officer of the United Kingdom National Nuclear Laboratory and who chaired the NEA Task Group that oversaw the work, said:

“Nuclear power is primed to enable our energy security and net zero commitments to be realised, however, this requires recruitment and retention of a highly diverse workforce. As such, I am absolutely delighted to see the policy instrument on gender balance has been adopted by the OECD. This builds on the hard work and dedication of the NEA Gender Balance Task Group members, which will have a real impact on improving wider diversity ambitions across the nuclear sector internationally as we look ahead to the future.”

Plus they included this video,

Moving on …

More for International Women in Engineering Day 2023

The big deal is here at the international Women in Engineering Day website. Here’s more from their About page,

International Women in Engineering Day [INWED], brought to you by Women’s Engineering Society (WES) will celebrate its 10th year in 2023 and we’ll once again be promoting the amazing work that women engineers across the globe are doing. This year’s theme is #MakeSafetySeen. INWED gives women engineers around the world a profile when they are still hugely under-represented, with 2021 figures indicating that in the UK only 16.5% of engineers are women. As the only platform of its kind, it plays a vital role in encouraging more young women and girls to take up engineering careers.

You can find a listing of the 2023 INWED events from around the world here. It’s impressive. Sadly, I have to note that Canadian organizations do not seem to be participating this year.

I looked at a few local (to me) organizations, the Westcoast Women in Engineering, Science and Technology (WWEST) and Society for Women in Canadian Science and Technology (SCWIST) and, while both have active STEM programmes, found no mention of INWED 2023.

Smart fabric from University of Waterloo (Canada) responds to temperature and electricity

This textile from the University of Waterloo is intriguing,

Caption: An electric current is applied to an engineered smart fabric consisting of plastic and steel fibres. Credit: University of Waterloo

An April 24, 2023 news item on phys.org introduces this new material,

A new smart material developed by researchers at the University of Waterloo is activated by both heat and electricity, making it the first ever to respond to two different stimuli.

The unique design paves the way for a wide variety of potential applications, including clothing that warms up while you walk from the car to the office in winter and vehicle bumpers that return to their original shape after a collision.

An April 24, 2023 University of Waterloo news release (also on EurekAlert), which originated the news item, provides more detail, Note: A link has been removed,

Inexpensively made with polymer nano-composite fibres from recycled plastic, the programmable fabric can change its colour and shape when stimuli are applied.

“As a wearable material alone, it has almost infinite potential in AI, robotics and virtual reality games and experiences,” said Dr. Milad Kamkar, a chemical engineering professor at Waterloo. “Imagine feeling warmth or a physical trigger eliciting a more in-depth adventure in the virtual world.”

The novel fabric design is a product of the happy union of soft and hard materials, featuring a combination of highly engineered polymer composites and stainless steel in a woven structure. 

Researchers created a device similar to a traditional loom to weave the smart fabric. The resulting process is extremely versatile, enabling design freedom and macro-scale control of the fabric’s properties.

The fabric can also be activated by a lower voltage of electricity than previous systems, making it more energy-efficient and cost-effective. In addition, lower voltage allows integration into smaller, more portable devices, making it suitable for use in biomedical devices and environment sensors.

“The idea of these intelligent materials was first bred and born from biomimicry science,” said Kamkar, director of the Multi-scale Materials Design (MMD) Centre at Waterloo.

“Through the ability to sense and react to environmental stimuli such as temperature, this is proof of concept that our new material can interact with the environment to monitor ecosystems without damaging them.”

The next step for researchers is to improve the fabric’s shape-memory performance for applications in the field of robotics. The aim is to construct a robot that can effectively carry and transfer weight to complete tasks.

Here’s a link to and a citation for the paper,

Multi-Stimuli Dually-Responsive Intelligent Woven Structures with Local Programmability for Biomimetic Applications by Runxin Xu, Guanzheng Wu, Mengmeng Jiang, Shaojie Cao, Mahyar Panahi-Sarmad, Milad Kamkar, Xueliang Xiao. Nano-Micro Small DOI: https://doi.org/10.1002/smll.202207900 First published: 19 February 2023

This paper is open access.