Tag Archives: Nils Petersen

The Canadian nano scene as seen by the OECD (Organization for Economic Cooperation and Development)

I’ve grumbled more than once or twice about the seemingly secret society that is Canada’s nanotechnology effort (especially health, safety, and environment issues) and the fact that I get most my information from Organization for Economic Cooperation and Development (OECD) documents. That said, thank you to Lynne Bergeson’s April 8, 2016 post on Nanotechnology Now for directions to the latest OECD nano document,

The Organization for Economic Cooperation and Development recently posted a March 29, 2016, report entitled Developments in Delegations on the Safety of Manufactured Nanomaterials — Tour de Table. … The report compiles information, provided by Working Party on Manufactured Nanomaterials (WPMN) participating delegations, before and after the November 2015 WPMN meeting, on current developments on the safety of manufactured nanomaterials.

It’s an international roundup that includes: Australia, Austria, Belgium, Canada, Germany, Japan, Korea, the Netherlands, Switzerland, Turkey, United Kingdom, U.S., and the European Commission (EC), as well as the Business and Industry Advisory Committee to the OECD (BIAC) and International Council on Animal Protection in OECD Programs (ICAPO).

As usual, I’m focusing on Canada. From the DEVELOPMENTS IN DELEGATIONS ON THE SAFETY OF MANUFACTURED NANOMATERIALS – TOUR DE TABLE Series on the Safety of Manufactured Nanomaterials No. 67,

CANADA
National  developments  on  human  health  and  environmental  safety  including  recommendations, definitions, or discussions related to adapting or applying existing regulatory systems or the drafting of new laws/ regulations/amendments/guidance materials A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with  a  public  comment  period  ending on  May  17,  2015. The proposed approach outlines the Government’s plan to address nanomaterials considered in commerce in Canada (on  Canada’s  public inventory).  The  proposal is a stepwise  approach to  acquire  and  evaluate information,  followed  by  any  necessary  action. A  follow-up  stakeholder  workshop  is  being  planned  to discuss  next  steps  and  possible  approaches  to prioritize  future  activities. The  consultation document  is available at: http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1D804F45-1

A mandatory information gathering survey was published on July 25, 2015. The purpose of the survey is to collect information to determine the commercialstatus of certain nanomaterials in Canada. The survey targets  206  substances  considered  to  be  potentially  in commerce  at  the  nanoscale. The  list  of  206 substances was developed using outcomes from the Canada-United States Regulatory Cooperation Council (RCC)  Nanotechnology  Initiative  to  identify nanomaterial  types. These  nanomaterial  types  were  cross-referenced  with  the Domestic  Substances  List to  develop  a  preliminary  list  of  substances  which are potentially intentionally manufactured at the nanoscale. The focus of the survey aligns with the Proposed Approach to  Address  Nanoscale  Forms  of  Substances  on  the Domestic  Substances  List (see  above)  and certain  types  of  nanomaterials  were  excluded  during the  development  of  the  list  of  substances. The information  being  requested  by  the  survey  includes substance  identification,  volumes,  and  uses.  This information will feed into the Government’s proposed approach to address nanomaterials on the Domestic Substances List. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php

Information on:

a.risk  assessment  decisions, including  the  type  of:  (a)  nanomaterials  assessed; (b) testing recommended; and (c) outcomes of the assessment;

Four substances were notified to the program since the WPMN14 – three surface modified substances and  one  inorganic  substance.  No  actions,  including  additional  data requests,  were  taken  due  to  low expected  exposures  in  accordance  with  the New  Substances  Notifications  Regulations  (Chemicals and Polymers) (NSNR) for two of the substances.  Two of the substances notified were subject to a Significant New Activity Notice. A Significant New Activity notice is an information gathering tool used to require submission  of  additional  information  if  it  is suspected  that  a  significant  new  activity  may  result in  the substance becoming toxic under the Canadian Environmental Protection Act, 1999.

b.Proposals, or modifications to previous regulatory decisions

As  part  of  the  Government’s  Chemicals  Management Plan,  a  review  is  being  undertaken  for  all substances  which  have  been  controlled through  Significant  New  Activity  (SNAc)  notices (see  above).  As part  of  this  activity,  the  Government  is  reviewing past  nanomaterials  SNAc  notices  to  see  if  new information  is  available  to  refine  the  scope  and information  requirements.    As  a  result  of  this  review, 9 SNAc  notices  previously  in  place  for  nanomaterials have  been  rescinded.    This  work  is  ongoing,  and  a complete review of all nanomaterial SNAcs is currently planned to be completed in 2016.

Information related to good practice documents

The Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals, [emphasis mine] initiated  in  April 2014, is  now at Committee  Draft  (CD)  3-month  ISO ballot, closing    Aug 31, 2015. Ballot comments will be addressed during JWG2 Measurement and Characterization working  group meetings  at  the 18th Plenary  of  ISO/TC229, Nanotechnologies,  being held in Edmonton, Alberta, Sep. 28 – Oct. 2, 2015.

Research   programmes   or   strategies   designed   to  address   human   health   and/   or environmental safety aspects of nanomaterials

Scientific research

Environment Canada continues to support various academic and departmental research projects. This research has to date included studying fate and effects of nanomaterials in the aquatic, sediment, soil, and air  compartments. Funding  in  fiscal  2015-16  continues  to  support  such  projects,  including  sub-surface transportation, determining key physical-chemical parameters to predict ecotoxicity, and impacts of nano-silver [silver nanoparticles]  addition  to  a  whole  lake  ecosystem [Experimental Lakes Area?]. Environment  Canada  has  also  partnered  with  the National Research  Council  of  Canada  recently  to  initiate  a project  on  the  development  of  test  methods  to identify surfaces of nanomaterials for the purposes of regulatory identification and to support risk assessments. In addition,  Environment  Canada  is  working  with  academic laboratories in  Canada  and  Germany  to  prepare guidance to support testing of nanoparticles using the OECD Test Guideline for soil column leaching.

Health  Canada  continues  its  research  efforts  to  investigate  the  effects  of  surface-modified  silica nanoparticles. The   aims   of   these   projects   are  to:   (1) study the importance of size and surface functionalization;  and  (2)  provide a genotoxic profile and  to  identify  mechanistic  relationships  of  particle properties  to  elicited  toxic  responses.  A manuscript reporting  the in  vitro genotoxic,  cytotoxic and transcriptomic  responses  following  exposure  to  silica  nanoparticles  has  recently  been  submitted to  a  peer reviewed journal and is currently undergoing review. Additional manuscripts reporting the toxicity results obtained to date are in preparation.

Information on public/stakeholder consultations;

A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with a  public  comment  period ending  on May  17,  2015  (see Question  1).  Comments  were  received  from approximately  20  stakeholders  representing  industry and industry  associations,  as  well  as  non-governmental  organizations. These  comments  will  inform  decision making to address nanomaterials in commerce in Canada.

Information on research or strategies on life cycle aspects of nanomaterials

Canada, along with Government agencies in the United States, Non-Governmental Organizations and Industry,  is  engaged  in  a  project  to  look  at releases  of  nanomaterials  from  industrial  consumer  matrices (e.g., coatings). The objectives of the NanoRelease Consumer Products project are to develop protocols or
methods (validated  through  interlaboratory  testing) to  measure  releases  of  nanomaterials  from  solid matrices as a result of expected uses along the material life cycle for consumer products that contain the nanomaterials. The  project  is  currently  in  the  advanced  stages  of Phase  3  (Interlaboratory  Studies).  The objectives of Phase 3 of the project are to develop robust methods for producing and collecting samples of CNT-epoxy  and  CNT-rubber  materials  under  abrasion  and  weathering scenarios,  and  to  detect  and quantify, to the extent possible, CNT release fractions. Selected laboratories in the US, Canada, Korea and the European Community are finalising the generation and analysis of sanding and weathering samples and the    results    are    being    collected    in    a   data    hub    for    further    interpretation    and    analysis.

Additional details about the project can be found at the project website: http://www.ilsi.org/ResearchFoundation/RSIA/Pages/NanoRelease1.aspx

Under the OECD Working Party on Resource Productivity and Waste (WPRPW), the expert group on waste containing nanomaterials has developed four reflection papers on the fate of nanomaterials in waste treatment  operations.  Canada  prepared the  paper  on  the  fate  of  nanomaterials in  landfills;  Switzerland on the  recycling  of  waste  containing  nanomaterials;  Germany  on  the  incineration  of  waste  containing nanomaterials;  and  France  on  nanomaterials  in wastewater  treatment.  The  purpose  of  these  papers is to provide  an  overview  of  the  existing  knowledge  on the  behaviour  of  nanomaterials  during  disposal operations and identify the information gaps. At the fourth meeting of the WPRPW that took place on 12-14 November 2013, three of the four reflection papers were considered by members. Canada’s paper was presented and discussed at the fifth meeting of the WPRPRW that took place on 8-10 December 2014. The four  papers  were  declassified  by  EPOC  in  June  2015, and  an  introductory  chapter  was  prepared  to  draw these  papers  together. The introductory  chapter  and accompanying  papers  will  be  published in  Fall  2015. At  the sixth  meeting  of  the  WPRPW  in  June – July  2015,  the  Secretariat  presented  a  proposal  for an information-sharing  platform  that  would  allow  delegates  to  share research  and  documents  related  to nanomaterials. During a trial phase, delegates will be asked to use the platform and provide feedback on its use at the next meeting of the WPRPW in December 2015. This information-sharing platform will also be accessible to delegates of the WPMN.

Information related to exposure measurement and exposure mitigation.

Canada and the Netherlands are co-leading a project on metal impurities in carbon nanotubes. A final version  of  the  report  is  expected  to  be ready for WPMN16. All  research has  been completed (e.g. all components are published or in press and there was a presentation by Pat Rasmussen to SG-08 at the Face-to-Face Meeting in Seoul June 2015). The first draft will be submitted to the SG-08 secretariat in autumn 2015. Revisions  will  be  based  on  early  feedback  from  SG-08  participants.  The  next  steps  depend  on  this feedback and amount of revision required.

Information on past, current or future activities on nanotechnologies that are being done in co-operation with non-OECD countries.

A webinar between ECHA [European Chemicals Agency], the US EPA [Environmental Protection Agency] and Canada was hosted by Canada on April 16, 2015. These are  regularly  scheduled  trilateral  discussions  to keep  each  other  informed  of  activities  in  respective jurisdictions.

In  March 2015, Health  Canada  hosted  3  nanotechnology knowledge  transfer sessions  targeting Canadian  government  research  and  regulatory  communities  working  in  nanotechnology.  These  sessions were  an  opportunity  to  share  information  and perspectives  on  the  current  state  of  science supporting  the regulatory  oversight  of  nanomaterials with  Government.  Presenters  provided  detailed  outputs  from  the OECD WPMN including: updates on OECD test methods and guidance documents; overviews of physical-chemical properties, as well as their relevance to toxicological testing and risk assessment; ecotoxicity and fate   test   methods;   human   health   risk   assessment   and   alternative   testing   strategies;   and exposure measurement  and  mitigation.  Guest  speakers  included  Dr  Richard  C.  Pleus  Managing  Director  and  Director of Intertox, Inc and Dr. Vladimir Murashov Special Assistant on Nanotechnology to the Director of National Institute for Occupational Safety and Health (NIOSH).

On   March   4-5, 2015, Industry   Canada   and   NanoCanada co-sponsored  “Commercializing Nanotechnology  in  Canada”,  a  national  workshop  that brought  together  representatives  from  industry, academia and government to better align Canada’s efforts in nanotechnology.  This workshop was the first of  its  kind  in  Canada. It  also  marked  the  official  launch  of  NanoCanada (http://nanocanada.com/),  a national  initiative  that  is  bringing  together stakeholders  from  across  Canada  to  bridge  the  innovation  gap and stimulates emerging technology solutions.

It’s nice to get an update about what’s going on. Despite the fact this report was published in 2016 the future tense is used in many of the verbs depicting actions long since accomplished. Maybe this was a cut-and-paste job?

Moving on, I note the mention of the Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals (CNC). For those not familiar with CNC, the Canadian government has invested hugely in this material derived mainly from trees, in Canada. Other countries and jurisdictions have researched nanocellulose derived from carrots, bananas, pineapples, etc.

Finally, it was interesting to find out about the existence of  NanoCanada. In looking up the Contact Us page, I noticed Marie D’Iorio’s name. D’Iorio, as far as I’m aware, is still the Executive Director for Canada’s National Institute of Nanotechnology (NINT) or here (one of the National Research Council of Canada’s institutes). I have tried many times to interview someone from the NINT (Nils Petersen, the first NINT ED and Martha Piper, a member of the advisory board) and more recently D’Iorio herself only to be be met with a resounding silence. However, there’s a new government in place, so I will try again to find out more about the NINT, and, this time, NanoCanada.

Changing of the guard at Canada’s National Institute of Nanotechnology

The executive director (Nils Petersen) has passed on (to the University of Alberta’s science faculty), l9ng live the executive director (Marie D’Iorio) of Canada’s National Institute of Nanotechnology (NINT), long may she reign. (I think Queen Elizabeth II’s Diamond Jubilee may be getting to me.) From the May 31, 2012 news release on Market Wire,

An expert in nano-electronics will lead Canada’s National Institute for Nanotechnology (NINT) into its second decade. The NINT governing council has named Dr. Marie D’Iorio as its new Executive Director. Trained as a physicist, Dr. D’Iorio’s expertise is in nano-electronics. She had been acting as NINT’s interim Director General since last year.

NINT is one of the National Research Council Institutes,

During her time as acting Director General of NINT, Dr. D’Iorio led the strategic planning process for NINT’s second decade. The resulting plan aims to increase industrial collaboration and re-organize the Institute’s research and development activities into four application areas, including energy generation storage and hybrid nano-scale electronics.

“Nanotechnology can help Canadian companies be more competitive and NINT is key to them finding the right applications for their sector,” said John R McDougall, President of the National Research Council of Canada. “Marie D’Iorio’s mission is to expand NINT’s engagement with Canadian industry and help them benefit from the potential of small tech.”

McDougall’s comments come on the heels of the recommendations by the panel reviewing  Canada’s R&D (research and development) funding (mentioned in my May 29, 2012 posting),

Recommendation 4: Transform the institutes of the National Research Council (NRC) into a constellation of large-scale, sectoral collaboration R&D centres involving business, the university sector and the provinces while transferring public policy-related research activity to the appropriate federal agencies. (p. E12 print version, p. 26 PDF, Innovation Canada: A Call to Action)

I wonder if the panel was looking at the NINT as a model for the National Research Council’s other institutes (from the May 31, 2012 news release),

The National Institute for Nanotechnology is Canada’s leading research and technology development organization working at the nano-scale. Founded in 2001, it is a joint initiative of the National Research Council of Canada, the University of Alberta, the Government of Alberta and the Government of Canada. Its mission is to transform nanoscience ideas into novel, sustainable nanotechnology solutions with socioeconomic benefits for Canada and Alberta.

Interestingly, the National Research Council’s (NRC) president, John McDougall, is from Alberta, as is Prime Minister Stephen Harper,  (from the NRC’s McDougall biography webpage),

Mr. John R. McDougall, a leader in Canadian science and technology policy and innovation, was appointed as NRC’s President in April 2010.

Born and raised in Edmonton, Alberta and honoured as one of the province’s 50 most influential citizens, Mr. McDougall’s career spans many sectors, with a broad and far reaching range of accomplishments and roles to his credit.

Until recently, Mr. McDougall served as President and Chief Executive Officer of the Alberta Research Council (ARC), a position he has held for the past 12 years.

You can also find this  May 31, 2012 announcement on Nanowerk but it’s not yet (as of June 1, 2012 11:30 am PST) in the NINT’s News Section.

AAAS 2012 Saturday, Feb. 18, 2012 roundup: quantum computing, nanocellulose, religion & science in the classroom, and ESOF in Dublin

Strangely, I have an increased interest in quantum computing after attending a few session yesterday where I didn’t understand much of anything in detail. There was the ‘Quantum Computing: Current Status and Future Prospects” session where various speakers spoke eloquently about their discoveries and outstanding challenges. There was a plea for researcher to keep the field ‘open’ and not to focus exclusively on one line of research or one material (don’t focus solely graphene/silicon/carbon nanotubes/etc.) as the ‘holy grail’ of quantum computing. The other ‘quantum’ session, “Quantum Information Science and Technology: A Global Perspective,” featured researchers working in China, Singapore, Canada, Germany, and the US. Unfortunately, I only managed to attend part of the session. (One of the problems with conferences is the number of sessions being run simultaneously and trying to attend as much ass possible means makings all kinds of compromises. It’s a good problem to have.)

The “NanoCellulose : An Abundant, Sustainable, Versatile Biopolymer” session was partly concurrent with the Euroscience Open Forum (ESOF) press briefing so I managed to hear only two of their (nanocellulose) speakers, Ted Wegman of the US Forest Service and Nils Petersen, Director General of Canada’s National Institute of Nanotechnology (NINT). Wegman presented an overview of nanocellulose research progress in the US and its potential use in many products while Petersen focussed on the NINT research team and their projects. Petersen did mention the overall Canadian scene somewhat summarily.It was not the presentation described in the programme and it had the air of something cobbled together out of well worn material.

ETA Feb.19.12 at 9:50 am: Wegman mentioned two nanocellulose plants being readied in the US, one being in the state of Maine (100Kg/day?)  and the other in the state of Wisconsin (opening in April/May 2012 and producing 20Kg/day). (I will check those numbers.)

The ESOF briefing promised some excitement at the July meeting in Dublin. They released their programming schedule and spoke at length about the science meeting and the related cultural activities being planned. (I’ll have more about that in a later posting.) The AAAS (American Association for the Advancement of Science) representative, Al Teich, noted that the US is having to grapple with a changing landscape regarding science and research (in other words, no longer being the ‘top dog’) and he explicitly stated that the ESOF meetings are fun. I guessed that from the previews (A tale of two cities and their science meetings: vibrant Dublin and sad sack Vancouver) but it’s nice to hear it confirmed.

One other thing, the “Beyond Evolution: Religious Questions in Science Classrooms” was one of those presentations I attended accidentally and I’m sorry I didn’t hear more. They were discussing science as process rather than doctrine and there was some discussion about the impact various religions had on scientific progress.

CelluForce (nanocrystalline cellulose) plant opens

Before launching into the news about its manufacturing plant, here’s a little information about the company itself, CelluForce, a joint venture between FPInnovations and Domtar, from the About CelluForce page,

The company is a joint venture of Domtar Corporation and FPInnovations and was created to manufacture NCC in the world’s first plant of its kind, located in Windsor, Québec.

I wrote about CelluForce in my June 6, 2011 posting around the time it was launched and now its raison d’être, the manufacturing plant, is operational. From the Dec. 13, 2011 news item on Nanowerk,

Members of the board, management and employees of CelluForce are pleased to announce the end of the construction phase and the start of operations at the first manufacturing plant for NanoCrystalline Cellulose (NCC) in the world.

For the last eight weeks, CelluForce has been progressively starting up the equipment for the first ever large-scale production of NCC. The nanomaterial will be produced in state-of-the-art facilities located at Domtar’s pulp and paper plant in Windsor, Quebec. Construction extended over a fourteen-month period. It required a total investment of $36M including the financial participation of both the Federal and Québec governments. The company is particularly pleased to have completed construction phase on time.

CelluForce President and CEO Jean Moreau declared, “Wood pulp is being delivered to the plant to test the new equipment and we are making progress on a daily basis. NCC will start to be produced by the end of the year, with production gradually increasing until it reaches a steady rhythm of 1,000 kg per day in 2012”.

For anyone who’s unfamiliar with NanoCrystalline Cellulose (NCC), I posted an interview with Dr. Richard Berry of FPInnovations who kindly answered some very basic questions on NCC in my Aug. 27, 2010 posting.

The opening of the CelluForce manufacturing plant is very exciting news given that Canadians have a worldwide lead in this research area. Being able to produce NCC in amounts that are meaningful at an industrial scale will make research easier not just in Canada but elsewhere too.

From the news item on Nanowerk,

CelluForce will, on a worldwide basis, market NanoCrystalline Cellulose for strength applications under the CelluForce Impact™ brand, and for optical applications of NCC under the CelluForce Allure™ brand.

I don’t think this video adds much information but it is very slick and entertaining,

Here’s a listing of applications that NCC can be used to produce (from the CelluForce Applications page),

NCC’s properties and many potential forms enable many uses, including:

  • Biocomposites for bone replacement and tooth repair
  • Pharmaceuticals and drug delivery
  • Additives for foods and cosmetics
  • Improved paper and building products
  • Advanced or “intelligent” packaging
  • High-strength spun fibres and textiles
  • Additives for coatings, paints, lacquers and adhesives
  • Reinforced polymers and innovative bioplastics
  • Advanced reinforced composite materials
  • Recyclable interior and structural components for the transportation industry
  • Aerospace and transportation structures
  • Iridescent and protective films
  • Films for optical switching
  • Pigments and inks
  • Electronic paper printers
  • Innovative coatings and new fillers for papermaking

One of the most notable attributes of this material is that it can be used to form iridescent coloured films that can be adjusted precisely, making it possible to revolutionize many applications, including, among others;

  • Security papers
  • Iridescent pigments
  • Switchable optical filters and barriers
  • Sunscreens
  • Cosmetics
  • Packaging
  • Coatings

I hope to hear more about CelluForce and its efforts with NCC.

On a somewhat related note, I wonder what’s happening with the NCC efforts in Alberta? I noted in my July 5, 2011 posting that an NCC pilot plant was being opened in that Canadian province but I haven’t heard anything since.

I also noted that there is going to be a session titled NanoCellulose: An Abundant, Sustainable, Versatile Biopolymer at the American Association for the Advancement of Science (AAAS) annual meeting in Vancouver this February 2012 featuring a researcher from Alberta.

Here’s the session description and speakers,

Saturday, February 18, 2012: 3:00 PM-4:30 PM

Room 220 (VCC West Building)

Nanocellulose is a generic name for a new family of novel fibrils derived from plant cell walls or bacteria. Just as cellulose has been an abundant natural resource for millennia with substantial contributions to the development of civilizations, the unique nanocelluloses are sustainable biopolymers poised to have a major role in improving the quality of human life in this century. A rapidly expanding field of nanocellulose science has emerged with pioneering results, leading some to predict that the field could parallel history, where the 1920s studies on cellulose contributed to the discovery of polymers and led to the origin of polymer science. Fibrillated, crystalline, and bacterial nanocelluloses have unsurpassed versatility and strength for composite materials, films, medical implants, drug delivery systems, and a biomaterial rivaling Kevlar, which is made from fossil fuels. With cellulosic biofuels becoming a competitive alternative to fossil fuels, research in enzymology is targeting high-value nanofibrillated cellulose as a biofuel co-product. This symposium will present current findings that bridge multidisciplines, from genomics of tree and plant breeding, plant cell wall structure and function, advanced techniques for characterizing cell walls and nanocellulose, and specialized methods for isolating nanofibrils, to novel biomaterials. The speakers represent three international science and technology centers at the forefront of this new wave of cellulose research.

Organizer:

Barbara Illman, U.S. Forest Service

Moderator:

Barbara Illman, U.S. Forest Service

Speakers:

Theodore Wegner, U.S. Forest Service
A World View of Nanocellulose

Nils Petersen, National Research Council Canada
Nano-Scale Devices for Nanocellulose

Ali Harlin, VTT Technical Research Center of Finland
Nanocellulosic Technologies: A Success Story

It looks interesting but I would have liked to have heard from an FPInnovations researcher and the Brazilian researchers who are working on nanocellulose fibres from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings) and Israeli researchers who are working on NCC foams (my Aug. 2, 2011 posting). These panels are always difficult to organize as you try to get everyone in the same room at the same time although the panel does seem to be focused on wood products as a source for NCC.  (If you search Ali Harlin on LinkedIn, you’ll find paper and wood products are Harlin’s area of expertise.)

I notice Nils Petersen, one of the speakers, who in addition to being a National Research Council (NRC) scientist is also the Director General for Canada’s National Institute of Nanotechnology located in Alberta.

Alberta’s Let’s Talk Nanoscience followup

Here’s a followup to the Feb.25, 2011 Let’s Talk Nanoscience event (mentioned in my Jan. 12, 2011 posting), from the Ryan Heise article on the University of Alberta Engineering Dept.’s webpage,

About 170 high school students from around Edmonton learned about nanotechnology and leading-edge research during the inaugural Let’s Talk NanoScience event at the U of A.

The event was put on by the Let’s Talk Science U of A chapter and the U of A Nanotechnology Group [Let’s Talk Science website], with support from the Faculty of Engineering, Faculty of Science, and the National Institute for Nanotechnology (NINT).

This year, the group decided to focus on individual institution’s strong points. For the U of A, that means being a leading centre for nanotechnology research.

Electrical and computer engineering PhD student Steven Jim [emphasis mine] from the Nanotechnology Group says raising awareness is especially important when funding is coming from the public.

“As scientists and researchers, we’re basically funded by the government—by taxpayers. So helping the public know what we’re doing is important,” Jim said.  [emphasis mine] “It’s something that’s often forgotten when you’re spending your life in a lab.”

The day was kicked off with two lectures. The first from Nils Petersen, director general of NINT [National Institute of Nanotechnology], explored why nanotechnology will be increasingly important. Petersen made three main points: it’s going to be everywhere, it’s going to be transformative within the next 50 years, and it’s going to be here forever. [emphasis mine] He encouraged the students to be conscious of how nanotechnology might affect them.

The second lecture by Jillian Buriak, a senior research officer with NINT, gave an overview of just what nanotechnology is. She engaged the students by hammering home just how small-scale nanotechnology is, as well as describing some of the ground breaking processes that are changing how people look at science and engineering.

After that, the students broke into groups for lab tours and smaller sessions with graduate students where they produced gold nano-particles.

Mr. Jim, I quite agree with you. As for Nils Petersen, I found that bit about nanotechnology “… being here forever” an odd statement and would have liked to have heard it in context. As for the other points, I understand that nanotechnology-enabled products are going to be everywhere (those products are already quite pervasive).  I also understand its “transformative” aspects in the same way I understand electricity’s transformative aspects. But nanotechnology will be here forever? I am intrigued.

Arts research at Canada’s National Institute of Nanotechnology and the University of Alberta

Big props to the University of Alberta’s Vice-President (Research), Lorne Babiuk and Associate Vice-President (Research), George Pavlich,,  who initiated the new Scholar in Residence for Arts Research in Nanotechnology project and to Heather Graves who has snagged the position. From the Jan. 11, 2011 article by Michael Davies-Venn for the University of Alberta’s Express News,

Establishing the Scholar in Residence for Arts Research in Nanotechnology is the latest initiative by the U of A to foster interdisciplinary research among scholars in the social sciences, humanities, engineering, creative arts and sciences. Lorne Babiuk, U of A vice-president (research), says the program furthers the university’s commitment to interdisciplinary research. “The aim is to broaden the impact of the National Institute for Nanotechnology, or NINT, across the full spectrum of disciplines on campus, into areas that aren’t normally a part of the nano-scientific process,” he said.

The National Institute of Nanotechnology’s (NINT) director also had a few things to say,

Nils Petersen, NINT’s director general, says the scholar in residence program adds value to the institute. “By having colleagues from the arts join us in telling our story, perhaps in non-traditional ways, we hope more Canadians will come to understand the potential of nanotechnology.”

I’m encouraged to see that he wants to have the nanotechnology story told. This is a change of heart. I first started (in 2008) trying to get an interview from Petersen and/or Martha Piper (who was on the board for two years) both of whom stonewalled my efforts (in Petersen’s case, I persisted for 3 or 4 months and in Piper’s case, it was two years [she kept promising]). Interestingly, the NINT website does not have a news release about this new arts scholar initiative on its website. You can check for yourself.

Getting back to the arts scholar herself, here’s a little bit about Heather Graves, University of Alberta professor,

Heather Graves, a U of A English and film studies researcher, will be the first to hold the position of Scholar in Residence for Arts Research in Nanotechnology when she begins working with her colleagues at NINT. She says she will examine how researchers in nanotechnology negotiate the ambiguities of language in their research.

“This is an opportunity to watch the discourse of the new field of nanotechnology emerge and the language usage negotiated among the experts involved,” said Graves. “One of the things we hope that nanotechnologists will get out of our examination is a vocabulary that they can use to talk about what they do.”

The scholar in residence program is a three-year pilot program, funded by Alberta Innovates Technology Futures.

I look forward to hearing more about this interdisciplinary initiative in the near future. Hopefully, they will list this project on the NINT website soon.