Monthly Archives: March 2015

Chameleon-like artificial skin

A March 12, 2015 news item on phys.org describes artificial skin inspired by chameleons,

Borrowing a trick from nature, engineers from the University of California at Berkeley have created an incredibly thin, chameleon-like material that can be made to change color—on demand—by simply applying a minute amount of force.

This new material-of-many-colors offers intriguing possibilities for an entirely new class of display technologies, color-shifting camouflage, and sensors that can detect otherwise imperceptible defects in buildings, bridges, and aircraft.

“This is the first time anybody has made a flexible chameleon-like skin that can change color simply by flexing it,” said Connie J. Chang-Hasnain, a member of the Berkeley team and co-author on a paper published today in Optica, The Optical Society’s (OSA) new journal.

A March 12, 2015 OSA news release (also on EurekAlert), which originated the news item, provides more information about this structural color project,

The colors we typically see in paints, fabrics, and other natural substances occur when white, broad spectrum light strikes their surfaces. The unique chemical composition of each surface then absorbs various bands, or wavelengths of light. Those that aren’t absorbed are reflected back, with shorter wavelengths giving objects a blue hue and longer wavelengths appearing redder and the entire rainbow of possible combinations in between. Changing the color of a surface, such as the leaves on the trees in autumn, requires a change in chemical make-up.

Recently, engineers and scientists have been exploring another approach, one that would create designer colors without the use of chemical dyes and pigments. Rather than controlling the chemical composition of a material, it’s possible to control the surface features on the tiniest of scales so they interact and reflect particular wavelengths of light. This type of “structural color” is much less common in nature, but is used by some butterflies and beetles to create a particularly iridescent display of color.

Controlling light with structures rather than traditional optics is not new. In astronomy, for example, evenly spaced slits known as diffraction gratings are routinely used to direct light and spread it into its component colors. Efforts to control color with this technique, however, have proved impractical because the optical losses are simply too great.

The authors of the Optica paper applied a similar principle, though with a radically different design, to achieve the color control they were looking for. In place of slits cut into a film they instead etched rows of ridges onto a single, thin layer of silicon. Rather than spreading the light into a complete rainbow, however, these ridges — or bars — reflect a very specific wavelength of light. By “tuning” the spaces between the bars, it’s possible to select the specific color to be reflected. Unlike the slits in a diffraction grating, however, the silicon bars were extremely efficient and readily reflected the frequency of light they were tuned to.

Fascinatingly, the reflected colors can be selected (from the news release),

Since the spacing, or period, of the bars is the key to controlling the color they reflect, the researchers realized it would be possible to subtly shift the period — and therefore the color — by flexing or bending the material.

“If you have a surface with very precise structures, spaced so they can interact with a specific wavelength of light, you can change its properties and how it interacts with light by changing its dimensions,” said Chang-Hasnain.

Earlier efforts to develop a flexible, color shifting surface fell short on a number of fronts. Metallic surfaces, which are easy to etch, were inefficient, reflecting only a portion of the light they received. Other surfaces were too thick, limiting their applications, or too rigid, preventing them from being flexed with sufficient control.

The Berkeley researchers were able to overcome both these hurdles by forming their grating bars using a semiconductor layer of silicon approximately 120 nanometers thick. Its flexibility was imparted by embedding the silicon bars into a flexible layer of silicone. As the silicone was bent or flexed, the period of the grating spacings responded in kind.

The semiconductor material also allowed the team to create a skin that was incredibly thin, perfectly flat, and easy to manufacture with the desired surface properties. This produces materials that reflect precise and very pure colors and that are highly efficient, reflecting up to 83 percent of the incoming light.

Their initial design, subjected to a change in period of a mere 25 nanometers, created brilliant colors that could be shifted from green to yellow, orange, and red – across a 39-nanometer range of wavelengths. Future designs, the researchers believe, could cover a wider range of colors and reflect light with even greater efficiency.

Here’s a link to and a citation for the paper,

Flexible photonic metastructures for tunable coloration by Li Zhu, Jonas Kapraun, James Ferrara, and Connie J. Chang-Hasnain. Optica, Vol. 2, Issue 3, pp. 255-258 (2015)
http://dx.doi.org/10.1364/OPTICA.2.000255

This paper is open access (for now at least).

Final note: I recently wrote about research into how real chameleons are able to effect colour changes in a March 16, 2015 post.

Two Irelands-US research initiative: UNITE

Happy St. Patrick’s Day on March 17, 2015! Researchers, building on an earlier collaborative effort (FOCUS), have announced a new US-Ireland initiative, from a March 9, 2015 news item on Nanowerk,

A three-year US-Ireland collaborative scientific project aims to reduce power consumption and increase battery life in mobile devices. Researchers will explore new semiconducting materials in the miniaturisation of transistors which are essential to all portable devices.

Leading researchers from the Republic of Ireland (Tyndall National Institute & Dublin City University), Northern Ireland (Queens University Belfast) and the US (University of Texas at Dallas) – each funded by their respective government agencies – are collaborating to develop ultra-efficient electronic materials through the UNITE project: Understanding the Nature of Interfaces in Two-Dimensional Electronic Devices.

A March 9, 2015 (?) Tyndall National Institute press release, which originated the news item, details the project, the researchers, and the hoped for applications,

UNITE will create and test the properties of atomically-thin, 2-dimensional layers of semiconductors called, Transition Metal Dichalcogenides or TMD’s for short. These layers are 100,000 times smaller than the smallest thing the human eye can see. The properties these materials have displayed to date suggest that they could facilitate extremely efficient power usage and high performance computing.

Tyndall’s lead researcher Dr. Paul Hurley explains that, “materials that we are currently reliant on, such as silicon, are soon expected to reach the limit of their performance. If we want to continue to increase performance, while maintaining or even reducing power consumption, it is important to explore these new TMD materials.”

The application of these materials in transistors could prolong the battery charge life of portable devices and phones, as well as having applications in larger more power intensive operations like data storage and server centres. This will have obvious environmental benefits through the reduction of electrical energy consumed by information and communication technologies as well as benefitting consumers.

UNITE builds on a previous highly successful US-Ireland collaborative project between these academic research partners called FOCUS. The success of this project played a role in demonstrating why funders should back the new project, including training for five graduate students in the USA and Ireland, as well as student exchanges between the Institutes, which will provide a broader scientific and cultural experience for the graduates involved.

The press release goes on to describe FOCUS, the researchers’ prior collaborative project,

UNITE builds on a previous highly successful US-Ireland collaborative project between these academic research partners called FOCUS. The success of this project played a role in demonstrating why funders should back the new project, including training for five graduate students in the USA and Ireland, as well as student exchanges between the Institutes, which will provide a broader scientific and cultural experience for the graduates involved.

A March 13, 2015 (?) Tyndall National Institute press release describes both an event to celebrate the success enjoyed by FOCUS and gives specifics about the achievements,

FOCUS, a US-Ireland collaborative project will be presented as a research success highlight to An Taoiseach Enda Kenny on St. Patrick’s Day along with industry and academic leaders, at a Science Foundation Ireland (SFI) event in Washington DC. The event is to celebrate the SFI St. Patrick’s Day Science Medal Award and is an important occasion on the St. Patrick’s Day schedule in the USA.

Funded under the US-Ireland R&D Partnership Programme, FOCUS (Future Oxides and Channel Materials for Ultimate Scaling) linked researchers in Tyndall National Institute (Dr Paul Hurley), Dublin City University (Prof. Greg Hughes), Queen’s University Belfast (Dr David McNeill) and the University of Texas at Dallas (Prof. Robert Wallace).

Billions of silicon-based transistors are crammed onto a single chip and used in billions of electronic devices around the world such as computers, laptops and mobile phones. The FOCUS project group investigated if it was possible to use alternative materials to silicon in the active channels of transistors to improve their energy efficiency and battery life.

The consortium explored using Germanium and Indium-Gallium-Arsenide in combination with high dielectric constant oxides as a viable alternative to silicon. Their research was able to improve the electronic properties of these alternative semiconductor/oxide interfaces to the level needed for practical device applications and the outcomes of their research have now moved to industry for practical application.

The key achievements from the project include:

  • Strong collaboration with Intel USA and Intel Ireland resulting in Paul Hurley receiving the Intel Outstanding Researcher Award in 2012
  • Presentation of the project findings at the annual Intel European Research and Innovation Conference
  • 3 Postdocs trained and 5 PhDs awarded in areas of strong interest to semiconductor manufacturers
  • 35 journal papers published
  • 2011 article on InGaAs surface treatment optimisation listed as one of the top 10 most cited articles in the Journal of Applied Physics in 2012
  • 10 invited presentations at key scientific conferences
  • University research partnership established between Tyndall National Institute and University of Texas at Dallas
  • Project highlighted in Irish press, The Times of India and The Irish Voice
  • Visit by the Consul General of Ireland to University of Texas at Dallas
  • Numerous students and staff exchanges between all partner institutions

Good luck to the UNITE project!

Poetry in Vancouver (Canada), Barcelona, and elsewhere; The Analysis of Beauty video documentation

Vancouver

Wednesday, March 18: Lunch Poems at SFU | Erín Moure and Andrew McEwan

Time: 12pm
Place: Teck Gallery, Harbour Centre, 515 West Hastings St.

Cost: Free. No registration required.

Erín Moure writes in English and Galician and translates poetry from French, Galician, Spanish and Portuguese into English by, among others, Nicole Brossard, Chus Pato and Fernando Pessoa. Her work also appears in short films, theatre, and musical compositions.

Andrew McEwan is the author of the book, Repeater, shortlisted for the Gerald Lampert Award, which employs the ASCII binary code for letters to create poetry that has been described as “mesmerizingly lyrical and theoretically rigorous.”

You can find the webpage for this particular event here; it includes some additional biographical information.

Barcelona and more

I received poetry news from Zata* Banks* of PoetryFilm back in February 2015. While some of the events have occurred there are still these to come,

March 2015

  • Two PoetryFilm presentations at CCCB Barcelona, 18-19 March 2015
  • Zata will present an academic talk, The PoetryFilm Archive 2002-2015, at the AHRC-funded Pararchive conference at Leeds University, 27-28 March 2015
  • Zata to judge the Read Our Lips poetry film competition organised by Apples and Snakes, 28 March 2015

April 2015

  • PoetryFilm at the Alchemy Film & Moving Image Festival, Hawick, Scotland, 16-19 April 2015
  • PoetryFilm event at the sound acts festival in Athens, Greece, 24-26 April 2015
  • PoetryFilm event at the Wenlock Poetry Festival, UK, 24-26 April 2015

May 2015

  • PoetryFilm at Cannes Film Festival 2015, Cannes, France

June 2015

August 2015

  • Exhibition of artworks in Denmark, 9-21 August 2015

For anyone unfamiliar with Zata* Banks*(from the PoetryFilm’s About page),

Zata Kitowski is the founder and director of PoetryFilm, an international research art project launched in 2002. The PoetryFilm project explores semiotics and meaning-making within the poetry film artform, celebrating experimental poetry films and other avant-garde text/image/sound screening and performance material. PoetryFilm was founded through Zata’s personal practice as a writer and as an artist, and through an interest in the creation and perception of emotion and meaning.

Since 2002, PoetryFilm has produced over 60 events at cinemas, galleries, literary festivals and academic institutions – including Tate Britain, The ICA, Southbank Centre, Cannes Film Festival, CCCB Barcelona, O Miami, and Curzon Cinemas (see Past Events page for more). Talks about PoetryFilm include sessions for MA Creative Writing at Warwick University, MA Filmmaking at The National Film & Television School, and MA Visual Communication at The Royal College of Art. Zata has also judged poetry film prizes at the Southbank Centre and Zebra Festival in Berlin.

PoetryFilm is supported by Arts Council England, who recently funded the cataloguing of the entire PoetryFilm Archive, which at present contains over 500 international artworks. In March 2015 Zata will contribute an academic  presentation about this archive to an AHRC-funded conference at Leeds University. PoetryFilm is an accredited member of Film Hub London, part of the BFI Audience Network, and holds a trademark awarded by the Intellectual Property Office.

There is more about the CCCB appearance in Barcelona on this webpage,

PoetryFilm will present two programmes at the Kosmopolis Amplified Literature Festival at CCCB Barcelona on 19 and 20 March 2015. 

Both programmes are listed below.

Programme 1:

Reversed Mirror Eduardo Kac / 1997, 7’, V.O.
Lunar Tides Susan Trangmar / Regne Unit, 2014, 9’, V.O.
Sandpiper John Scott / Canadà, 2014, 3’30’’, V.O.
Full Stop Zata Kitowski [now Banks]* / Regne Unit, 2014, 4’30’’, V.O.
Turbines in January Kate Sweeney i Colette Bryce / Regne Unit, 2013, 2’, V.O.
Self-Evident Things Piotr Bosacki / Polònia, 2013, 10’, V.O.S.Anglès
Dream Poem Dann Casswell / Regne Unit, 2006, 1’30’’, V.O.
Afterlight Timothy David Orme / Estats Units, 2013, 3’, V.O.
The Portrait of Jean Genet Disinformation / Regne Unit, 2014, 3’, V.O.
Solstice Samuel Levack i Jennifer Lewandowski / Regne Unit, 2013, 3’, S.D.

Programme 2:

The Man With Wheels Poeta: Billy Childish; director: Eugene Doyen / Regne Unit, 1990, 7’, V.O.
Proem Poeta: Hart Crane; directora: Suzie Hanna / Regne Unit, 2013, 4’, V.O.
You Be Mother Sarah Pucill / Regne Unit, 1990, 7’, S.D.
About Owls Poeta: Geoffrey Grigson / Regne Unit, 1968-2014, 1’, V.O.
Cut-Up Experiment VIII: Timers Run On Poeta i directora: Zata Kitowski / Regne Unit, 2007, 7’, V.O.
The Analysis of Beauty Produït per Disinformation / Regne Unit, 2000, 4’, S.D.
Just Midnight Poeta: Robert Lax; animadora: Susanne Wiegner / Alemanya, 2013, 4’, V.O.

The latest Analysis of Beauty video documentation, as opposed to what’s being included in PoetryFilm’s programme 2 in Barcelona, is from 2014.  I mentioned the 2014 installation of the Analysis of Beauty at the festival of sonic art being held in Edinburgh at some length in my Nov. 13, 2014 posting. Accordingly, this excerpt from the event page on the rorsharchaudio.com website includes only information about the latest documentation,

Art in Scotland and Summerhall TV made this video about the “The Analysis of Beauty” sound and video installation (see earlier post) which ran for 2 weeks, up to 29 Nov 2014, in the Georgian Gallery at Talbot Rice in Edinburgh. The actual sound featured in “The Analysis of Beauty” exhibit focussed on sine-waves with a core frequency of 40Hz, with the effect that (inevitably) the in-situ audio proved almost impossible to record for this video. For the most accurate representation of the gallery sound, please play the MP3 file below, listening through good quality external hi-fi loudspeakers or headphones (not laptop speakers).

As for the influence of William Hogarth’s ideas about “The Analysis of Beauty” and “Serpentine Line” etc, the evolution of this exhibit, which premiered at Kettle’s Yard gallery in 2000, is described in the Summerhall TV video. …

Enjoy!

*’Zlata’ corrected to ‘Zata’ and ‘Kitowski’ changed to ‘Banks’ so that I now have the correct first name and updated last name on Oct. 27, 2015.

Brain-like computing with optical fibres

Researchers from Singapore and the United Kingdom are exploring an optical fibre approach to brain-like computing (aka neuromorphic computing) as opposed to approaches featuring a memristor or other devices such as a nanoionic device that I’ve written about previously. A March 10, 2015 news item on Nanowerk describes this new approach,

Computers that function like the human brain could soon become a reality thanks to new research using optical fibres made of speciality glass.

Researchers from the Optoelectronics Research Centre (ORC) at the University of Southampton, UK, and Centre for Disruptive Photonic Technologies (CDPT) at the Nanyang Technological University (NTU), Singapore, have demonstrated how neural networks and synapses in the brain can be reproduced, with optical pulses as information carriers, using special fibres made from glasses that are sensitive to light, known as chalcogenides.

“The project, funded under Singapore’s Agency for Science, Technology and Research (A*STAR) Advanced Optics in Engineering programme, was conducted within The Photonics Institute (TPI), a recently established dual institute between NTU and the ORC.”

A March 10, 2015 University of Southampton press release (also on EurekAlert), which originated the news item, describes the nature of the problem that the scientists are trying address (Note: A link has been removed),

Co-author Professor Dan Hewak from the ORC, says: “Since the dawn of the computer age, scientists have sought ways to mimic the behaviour of the human brain, replacing neurons and our nervous system with electronic switches and memory. Now instead of electrons, light and optical fibres also show promise in achieving a brain-like computer. The cognitive functionality of central neurons underlies the adaptable nature and information processing capability of our brains.”

In the last decade, neuromorphic computing research has advanced software and electronic hardware that mimic brain functions and signal protocols, aimed at improving the efficiency and adaptability of conventional computers.

However, compared to our biological systems, today’s computers are more than a million times less efficient. Simulating five seconds of brain activity takes 500 seconds and needs 1.4 MW of power, compared to the small number of calories burned by the human brain.

Using conventional fibre drawing techniques, microfibers can be produced from chalcogenide (glasses based on sulphur) that possess a variety of broadband photoinduced effects, which allow the fibres to be switched on and off. This optical switching or light switching light, can be exploited for a variety of next generation computing applications capable of processing vast amounts of data in a much more energy-efficient manner.

Co-author Dr Behrad Gholipour explains: “By going back to biological systems for inspiration and using mass-manufacturable photonic platforms, such as chalcogenide fibres, we can start to improve the speed and efficiency of conventional computing architectures, while introducing adaptability and learning into the next generation of devices.”

By exploiting the material properties of the chalcogenides fibres, the team led by Professor Cesare Soci at NTU have demonstrated a range of optical equivalents of brain functions. These include holding a neural resting state and simulating the changes in electrical activity in a nerve cell as it is stimulated. In the proposed optical version of this brain function, the changing properties of the glass act as the varying electrical activity in a nerve cell, and light provides the stimulus to change these properties. This enables switching of a light signal, which is the equivalent to a nerve cell firing.

The research paves the way for scalable brain-like computing systems that enable ‘photonic neurons’ with ultrafast signal transmission speeds, higher bandwidth and lower power consumption than their biological and electronic counterparts.

Professor Cesare Soci said: “This work implies that ‘cognitive’ photonic devices and networks can be effectively used to develop non-Boolean computing and decision-making paradigms that mimic brain functionalities and signal protocols, to overcome bandwidth and power bottlenecks of traditional data processing.”

Here’s a link to and a citation for the paper,

Amorphous Metal-Sulphide Microfibers Enable Photonic Synapses for Brain-Like Computing by Behrad Gholipour, Paul Bastock, Chris Craig, Khouler Khan, Dan Hewak. and Cesare Soci. Advanced Optical Materials DOI: 10.1002/adom.201400472
Article first published online: 15 JAN 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

For anyone interested in memristors and nanoionic devices, here are a few posts (from this blog) to get you started:

Memristors, memcapacitors, and meminductors for faster computers (June 30, 2014)

This second one offers more details and links to previous pieces,

Memristor, memristor! What is happening? News from the University of Michigan and HP Laboratories (June 25, 2014)

This post is more of a survey including memristors, nanoionic devices, ‘brain jelly, and more,

Brain-on-a-chip 2014 survey/overview (April 7, 2014)

One comment, this brain-on-a-chip is not to be confused with ‘organs-on-a-chip’ projects which are attempting to simulate human organs (Including the brain) so chemicals and drugs can be tested.

Making x-ray measurements more accurate

Apparently the method for establishing x-ray measurements is from the 1970s and the folks at the US National Institute of Standards and Technology (NIST) feel it’s time for a new technique. From a March 9, 2015 NIST news release (also on EurekAlert),

Criminal justice, cosmology and computer manufacturing may not look to have much in common, but these and many other disparate fields all depend on sensitive measurements of X-rays. Scientists at the National Institute of Standards and Technology (NIST) have developed a new method* to reduce uncertainty in X-ray wavelength measurement that could provide improvements awaited for decades.

Accurate measurement of X-ray wavelengths depends critically on the ability to measure angles very precisely and with very little margin for error. NIST’s new approach is the first major advance since the 1970s in reducing certain sources of error common in X-ray angle measurement.

Many of us associate X-rays with a doctor’s office, but the uses for these energetic beams go far beyond revealing our skeletons. The ability to sense X-rays at precise wavelengths allows law enforcement to detect and identify trace explosives, or astrophysicists to better understand cosmic phenomena. It all comes down to looking very closely at the X-ray spectrum and measuring the precise position of lines within it. Those lines represent specific wavelengths–which are associated with specific energies–of X-rays that are emitted by the subject being studied. Each material has its own, unique X-ray “fingerprint.”

But a slight error in angle measurement can skew the results, with consequences for quantum theories, research and manufacturing. “While many fields need good X-ray reference data, many of the measurements that presently fill standard reference databases are not great–most data were taken in the 1970s and are often imprecise,” says NIST’s Larry Hudson.

X-ray wavelengths are measured by passing the beam through special crystals and very carefully measuring the angle that exiting rays make with the original beam. While the physics is different, the technique is analogous to the way a prism will split white light into different colors coming out at different angles.

The crystal is typically mounted on a rotating device that spins the crystal to two different positions where a spectral line is observed. The angle between the two is measured–this is a neat geometry trick that determines the line’s position more precisely than a single measurement would, while also cancelling out some potential errors. One inevitable limit is the accuracy of the digital encoder, the device that translates the rotation of the crystal to an angle measurement.

The news release goes on to describe the new technique,

Hudson and his co-authors have found a way to dramatically reduce the error in that measurement. Their new approach uses laser beams bouncing off a mirrored polygon that is rotated on the same shaft that would carry the crystal. The approach allows the team to use additional mathematical shortcuts to their advantage. With new NIST sensing instrumentation and analysis, X-ray angles can now be measured routinely with an uncertainty of 0.06 arcseconds–an accuracy more than three times better than the uncalibrated encoder.

Hudson describes this reduction as significant enough to set world records in X-ray wavelength measurement. “If a giant windshield wiper stretched from Washington D.C. to New York City (364 kilometers) and were to sweep out the angle of one of these errors, its tip would move less than the width of a DVD,” he says.

What do these improvements mean for the fields that depend on X-ray sensing? For one thing, calibrating measurement devices to greater precision will provide better understanding of a host of newly designed materials, which often have complicated crystal structures that give rise to unusual effects such as high-temperature superconductivity. The team’s efforts will permit better understanding of the relationship between the structures and properties of novel materials.

Here’s a link to and a citation for the paper,

A simple method for high-precision calibration of long-range errors in an angle encoder using an electronic nulling by Mark N Kinnane, Lawrence T Hudson, Albert Henins, and Marcus H Mendenhall. Metrologia Volume 52 Number 2 doi:10.1088/0026-1394/52/2/244

This is an open access paper,

For anyone curious about arcseconds, you can find an explanation in this Wikipedia entry titled Minute of art. Briefly, imagine a 360 degree circle where one degree equals one arcminute and one arcsecond is 1/60 of that minute.

Nanomedicine living up to its promise?

Michael Berger has written a March 10, 2015 Nanowerk spotlight article reviewing nanomedicine’s  progress or lack thereof (Note: Links have been removed),

In early 2003, the European Science Foundation launched its Scientific Forward Look on Nanomedicine, a foresight study (report here ;pdf) and in 2004, the U.S. National Institute[s] of Health (NIH) published its Roadmap (now Common Fund) of the Nanomedicine Initiative. This program began in 2005 with a national network of eight Nanomedicine Development Centers. Now, in the second half of this 10-year program, the four centers best positioned to effectively apply their findings to translational studies were selected to continue receiving support.

A generally accepted definition of nanomedicine refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve.

Much of Berger’s article is based on Subbu Venkatraman’s, Director of the NTU (Nanyang Technological University)-Northwestern Nanomedicine Institute in Singapore, paper, Has nanomedicine lived up to its promise?, 2014 Nanotechnology 25 372501 doi:10.1088/0957-4484/25/37/372501 (Note: Links have been removed),

… Historically, the approval of Doxil as the very first nanotherapeutic product in 1995 is generally regarded as the dawn of nanomedicine for human use. Since then, research activity in this area has been frenetic, with, for example, 2000 patents being generated in 2003, in addition to 1200 papers [2]. In the same time period, a total of 207 companies were involved in developing nanomedicinal products in diagnostics, imaging, drug delivery and implants. About 38 products loosely classified as nanomedicine products were in fact approved by 2004. Out of these, however, a number of products (five in all) were based on PEG-ylated proteins, which strictly speaking, are not so much nanomedicine products as molecular therapeutics. Nevertheless, the promise of nanomedicine was being translated into funding for small companies, and into clinical success, so that by 2013, the number of approved products had reached 54 in all, with another 150 in various stages of clinical trials [3]. The number of companies and institutions had risen to 241 (including research centres that were working on nanomedicine). A PubMed search on articles relating to nanomedicine shows 7400 hits over 10 years, of which 1874 were published in 2013 alone. Similarly, the US patent office database shows 409 patents (since 1976) that were granted in nanomedicine, with another 679 applications awaiting approval. So judging by research activity and funding the field of nanomedicine has been very fertile; however, when we use the yardstick of clinical success and paradigm shifts in treatment, the results appear more modest.

Both Berger’s spotlight article and Venkatraman’s review provide interesting reading and neither is especially long.

Chameleons (male panther chameleons in particular)—colour revelation

Caption: These are male panther chameleons (Furcifer pardalis) photographed in Madagascar. Credit: © Michel Milinkovitch

Caption: These are male panther chameleons (Furcifer pardalis) photographed in Madagascar.
Credit: © Michel Milinkovitch

Researchers at Switzerland’s University of Geneva/Université de Genève (UNIGE) have revealed the mechanisms (note the plural) by which chameleons change their colour. From a March 10, 2015 news item on phys.org,

Many chameleons have the remarkable ability to exhibit complex and rapid color changes during social interactions. A collaboration of scientists within the Sections of Biology and Physics of the Faculty of Science from the University of Geneva (UNIGE), Switzerland, unveils the mechanisms that regulate this phenomenon.

In a study published in Nature Communications [March 10, 2015], the team led by professors Michel Milinkovitch and Dirk van der Marel demonstrates that the changes take place via the active tuning of a lattice of nanocrystals present in a superficial layer of dermal cells called iridophores. The researchers also reveal the existence of a deeper population of iridophores with larger and less ordered crystals that reflect the infrared light. The organisation of iridophores into two superimposed layers constitutes an evolutionary novelty and it allows the chameleons to rapidly shift between efficient camouflage and spectacular display, while providing passive thermal protection.

Male chameleons are popular for their ability to change colorful adornments depending on their behaviour. If the mechanisms responsible for a transformation towards a darker skin are known, those that regulate the transition from a lively color to another vivid hue remained mysterious. Some species, such as the panther chameleon, are able to carry out such a change within one or two minutes to court a female or face a competing male.

A March 10, 2015 University of Geneva press release on EurekAlert (French language version is here on the university website), which originated the news item, explains the chameleon’s ability as being due to its ability to display structural colour,

Besides brown, red and yellow pigments, chameleons and other reptiles display so-called structural colors. «These colors are generated without pigments, via a physical phenomenon of optical interference. They result from interactions between certain wavelengths and nanoscopic structures, such as tiny crystals present in the skin of the reptiles», says Michel Milinkovitch, professor at the Department of Genetics and Evolution at UNIGE. These nanocrystals are arranged in layers that alternate with cytoplasm, within cells called iridophores. The structure thus formed allows a selective reflection of certain wavelengths, which contributes to the vivid colors of numerous reptiles.

To determine how the transition from one flashy color to another one is carried out in the panther chameleon, the researchers of two laboratories at UNIGE worked hand in hand, combining their expertise in both quantum physics and in evolutionary biology. «We discovered that the animal changes its colors via the active tuning of a lattice of nanocrystals. When the chameleon is calm, the latter are organised into a dense network and reflect the blue wavelengths. In contrast, when excited, it loosens its lattice of nanocrystals, which allows the reflection of other colors, such as yellows or reds», explain the physicist Jérémie Teyssier and the biologist Suzanne Saenko, co-first authors of the article. This constitutes a unique example of an auto-organised intracellular optical system controlled by the chameleon.

The press release goes on to note that the iridophores have another function,

The scientists also demonstrated the existence of a second deeper layer of iridophores. «These cells, which contain larger and less ordered crystals, reflect a substantial proportion of the infrared wavelengths», states Michel Milinkovitch. This forms an excellent protection against the thermal effects of high exposure to sun radiations in low-latitude regions.

The organisation of iridophores in two superimposed layers constitutes an evolutionary novelty: it allows the chameleons to rapidly shift between efficient camouflage and spectacular display, while providing passive thermal protection.

In their future research, the scientists will explore the mechanisms that explain the development of an ordered nanocrystals lattice within iridophores, as well as the molecular and cellular mechanisms that allow chameleons to control the geometry of this lattice.

Here’s a link to and a citation for the paper,

Photonic crystals cause active colour change in chameleons by Jérémie Teyssier, Suzanne V. Saenko, Dirk van der Marel, & Michel C. Milinkovitch. Nature Communications 6, Article number: 6368 doi:10.1038/ncomms7368 Published 10 March 2015

This article is open access.

Dunkin’ Donuts and nano titanium dioxide

It’s been a busy few days for titanium dioxide, nano and otherwise, as the news about its removal from powdered sugar in Dunkin’ Donuts products ripples through the nano blogosphere. A March 6, 2015 news item on Azonano kicks off the discussion with an announcement,

Dunkin’ Brands, the parent company of the Dunkin’ Donuts chain, has agreed to remove titanium dioxide, a whitening agent that is commonly a source of nanomaterials, from all powdered sugar used to make the company’s donuts. As a result of this progress, the advocacy group As You Sow has withdrawn a shareholder proposal asking Dunkin’ to assess and reduce the risks of using nanomaterials in its food products.

Here’s a brief recent history of Dunkin’ Donuts and nano titanium dioxide from my Aug. 21, 2014 posting titled, FOE, nano, and food: part two of three (the problem with research),

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As I understand it, Dunkin’ Donuts will be removing all titanium dioxide, nano-sized or other, from powdered sugar used in its products. It seems As You Sow’s promise to withdraw its July 2104 shareholder resolution is the main reason for Dunkin’ Donuts’ decision. While I was and am critical of Dunkin’ Donuts’ handling of the situation with As You Sow, I am somewhat distressed that the company seems to have acquiesced on the basis of research which is, at best, inconclusive.

Dr. Andrew Maynard, director of the University of Michigan Risk Science Centre, has written a substantive analysis of the current situation regarding nano titanium dioxide in a March 12, 2015 post on his 2020 Science blog (Note: Links have been removed),

Titanium dioxide (which isn’t the same thing as the metal titanium) is an inert, insoluble material that’s used as a whitener in everything from paper and paint to plastics. It’s the active ingredient in many mineral-based sunscreens. And as a pigment, is also used to make food products look more appealing.

Part of the appeal to food producers is that titanium dioxide is a pretty dull chemical. It doesn’t dissolve in water. It isn’t particularly reactive. It isn’t easily absorbed into the body from food. And it doesn’t seem to cause adverse health problems. It just seems to do what manufacturers want it to do – make food look better. It’s what makes the powdered sugar coating on donuts appear so dense and snow white. Titanium dioxide gives it a boost.

And you’ve probably been consuming it for years without knowing. In the US, the Food and Drug Administration allows food products to contain up to 1% food-grade titanium dioxide without the need to include it on the ingredient label. Help yourself to a slice of bread, a bar of chocolate, a spoonful of mayonnaise or a donut, and chances are you’ll be eating a small amount of the substance.

Andrew goes on to describe the concerns that groups such as You As Sow have (Note: Links have been removed),

For some years now, researchers have recognized that some powders become more toxic the smaller the individual particles are, and titanium dioxide is no exception. Pigment grade titanium dioxide – the stuff typically used in consumer products and food – contains particles around 200 nanometers in diameter, or around one five hundredth the width of a human hair. Inhale large quantities of these titanium dioxide particles (I’m thinking “can’t see your hand in front of your face” quantities), and your lungs would begin to feel it.

If the particles are smaller though, it takes much less material to cause the same effect.

But you’d still need to inhale very large quantities of the material for it to be harmful. And while eating a powdered donut can certainly be messy, it’s highly unlikely that you’re going to end up stuck in a cloud of titanium dioxide-tinted powdered sugar coating!

… Depending on what they are made of and what shape they are, research has shown that some nanoparticles are capable of getting to parts of the body that are inaccessible to larger particles. And some particles are more chemically reactive because of their small size. Some may cause unexpected harm simply because they are small enough to throw a nano-wrench into the nano-workings of your cells.

This body of research is why organizations like As You Sow have been advocating caution in using nanoparticles in products without appropriate testing – especially in food. But the science about nanoparticles isn’t as straightforward as it seems.

As Andrew notes,

First of all, particles of the same size but made of different materials can behave in radically different ways. Assuming one type of nanoparticle is potentially harmful because of what another type does is the equivalent of avoiding apples because you’re allergic to oysters.

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

He also probes the issue’s, nanoparticles, be they titanium dioxide or otherwise, and toxicity, complexity (Note: Links have been removed),

There’s a small possibility that we haven’t been looking in the right places when it comes to possible health issues. Maybe – just maybe – there could be long term health problems from this seemingly ubiquitous diet of small, insoluble particles that we just haven’t spotted yet. It’s the sort of question that scientists love to ask, because it opens up new avenues of research. It doesn’t mean that there is an issue, just that there is sufficient wiggle room in what we don’t know to ask interesting questions.

… While there is no evidence of a causal association between titanium dioxide in food and ill health, some studies – but not all by any means – suggest that large quantities of titanium dioxide nanoparticles can cause harm if they get to specific parts of the body.

For instance, there are a growing number of published studies that indicate nanometer sized titanium dioxide particles may cause DNA damage at high concentrations if it can get into cells. But while these studies demonstrate the potential for harm to occur, they lack information on how much material is needed, and under what conditions, for significant harm. And they tend to be associated with much larger quantities of material than anyone is likely to be ingesting on a regular basis.

They are also counterbalanced by studies that show no effects, indicating that there is still considerable uncertainty over the toxicity or otherwise of the material. It’s as if we’ve just discovered that paper can cause cuts, but we’re not sure yet whether this is a minor inconvenience or potentially life threatening. In the case of nanoscale titanium dioxide, it’s the classic case of “more research is needed.”

I strongly suggest reading Andrew’s post in its entirety either here on the University of Michigan website or here on The Conversation website.

Dexter Johnson in a March 11, 2015 post on his Nanoclast blog also weighs in on the discussion. He provides a very neat summary of the issues along with these observations (Note Links have been removed),

With decades of TiO2 being in our food supply and no reports of toxic reactions, it would seem that the threshold for proof is extremely high, especially when you combine the term “nano” with “asbestos”.

As You Sow makes sure to point out that asbestos is a nanoparticle. While the average diameter of an asbestos fiber is around 20 to 90 nm, their lengths varied between 200 nm and 200 micrometers.

The toxic aspect of asbestos was not its diameter, but its length. …

In addition to his summary Dexter highlights As You Sows attempt to link titanium dioxide nanoparticles to asbestos. I suggest reading his post for an informed description of what made asbestos so toxic (here) and why the linkage seems specious at this time.

For anyone interested in how As You Sow managed to introduce asbestos toxicity issues into a discussion about nano titanium dioxide and food products, there’s this from As You Sow’s FAQs (frequently asked questions) about nanomaterials in food page,

Why are nanomaterials in food important to investors?

When technology is used before ensuring that it is safe for humans and the environment, and before regulatory standards exist, companies can be exposed to significant financial, legal, and reputational risk. The limited studies that exist on nanomaterials, including nanoscale titanium dioxide*, have indicated that ingestion of these particles may pose health hazards.

The inaction of regulators does not protect companies, especially when the regulators themselves warn of the dangers of nanoparticles’ largely unknown risks. Draft guidance issued by the U.S. Food and Drug Administration raises questions about the safety of nanoparticles and demonstrates the general lack of knowledge about the technology and its effects. (1)

Asbestos litigation is a good example of the risks that can arise from using an emerging technology before it is proven safe. Use of asbestos (a nanomaterial) has created the longest, most expensive mass tort in national history with total U.S. costs now standing at over $250 billion. (2) If companies been asked to investigate and minimize or avoid risks prior to adopting asbestos technology, a sad and expensive chapter in worker harm could have been avoided.

* Titanium dioxide is a common pigment and FDA-approved food additive. It is used as a whitener, a dispersant, and a thickener.

While I don’t particularly appreciate fear-mongering as a tactic, the strategy of targeting investors and their concerns, seems to have helped As You Sow win its way.

Removing titanium dioxide nanoparticles from water may not be that easy

A March 10, 2015 news item on Nanowerk highlights some research into the removal of nanoscale titanium dioxide particles from water supplies (Note: A link has been removed),

The increased use of engineered nanoparticles (ENMs) in commercial and industrial applications is raising concern over the environmental and health effects of nanoparticles released into the water supply. A timely study that analyzes the ability of typical water pretreatment methods to remove titanium dioxide, the most commonly used ENM, is published in Environmental Engineering Science (“Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry”). The article is available free on the Environmental Engineering Science website until April 10, 2015.

A March 10, 2015 Mary Ann Liebert, Inc., publishers news release (also on EurekAlert), which originated the news item, provides more details about the work (Note: A link has been removed),

Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon Walker, University of California, Riverside, suggest that current methods of water prefiltration treatment cannot adequately remove titanium dioxide ENMs. They describe the results of scaled-down tests to evaluate the effectiveness of three traditional methods—coagulation, flocculation, and sedimentation—in the article “Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry.”

“As nanoscience and engineering allow us to develop new exciting products, we must be ever mindful of associated consequences of these advances,” says Domenico Grasso, PhD, PE, DEE, Editor-in-Chief of Environmental Engineering Science and Provost, University of Delaware. “Professor Walker and her team have presented an excellent report raising concerns that some engineered nanomaterials may find their ways into our water supplies.”

“While further optimization of such treatment processes may allow for improved removal efficiencies, this study illustrates the challenges that we must be prepared to face with the emergence of new engineered nanomaterials,” says Sharon Walker, PhD, Professor of Chemical and Environmental Engineering, University of California, Riverside.

Here’s a link to and a citation for the paper,

Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry by Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon L. Walker. Environmental Engineering Science. doi:10.1089/ees.2014.0288.

This paper is freely available until April 10, 2015.

Interestingly Sharon Walker and Nichola Kinsinger recently co-authored a paper (mentioned in my March 9, 2015 post) about copper nanoparticles and water treatment which concluded this about copper nanoparticles in water supplies,

The researchers found that the copper nanoparticles, when studied outside the septic tank, impacted zebrafish embryo hatching rates at concentrations as low as 0.5 parts per million. However, when the copper nanoparticles were released into the replica septic tank, which included liquids that simulated human digested food and household wastewater, they were not bioavailable and didn’t impact hatching rates.

Taking these these two paper into account (and the many others I’ve read), there is no simple or universal answer to the question of whether or not ENPs or ENMs are going to pose environmental problems.

MMA (mixed martial arts) and nano silver wound dressings

I had never, ever expected to mention mixed martial arts (MMA) here but that’s one of the delightful aspects of writing about nanotechnology; you never know where it will take you. A March 9, 2015 news item on Azonano describes the wound situation for athletes and a new product,

..

As an MMA Champion athlete, Rich Franklin knows all too well about germs and how easily they spread. During training he dealt with them on a regular basis, but it wasn’t until the first time he had staph, did he realize these infections could cost him a victory. Now, working in a global setting, Franklin trains in locations around the world which leaves him exposed to a plethora of bacteria and fungi. So he teamed up with American Biotech Labs (ABL) to develop Armor Gel, nano silver-based, wound dressing gel that can stay active on the skin for up to seventy-two hours (3 days). Using patented nano silver technology, Armor Gel has been scientifically tested to reduce the levels of bacteria and other pathogens, while forming a protective barrier “armor” over the wound. By shielding the body from external bacterial, the body’s natural healing process can be expedited. Its use is recommended by doctors, trainers, coaches, and athletes alike.

A March 6, 2015 ABL news release on BusinessWire, which originated the news item, provides a little more detail about Armor Gel,

Engineered for today’s modern athletes, Armor Gel is safe, nontoxic and provides a personal first line of defense. Already proven to reduce the levels of MRSA, VRE, pseudomonas aeruginosa, E. coli, A. niger and Candida albicans, Armor Gel is formulated using a unique and patented 24 SilverSol Technology®.

American Biotech Labs (ABL) was started in 2002 as a nano silver biotech company with the goal of creating a more stable and powerful silver technology for consumer products. …

I am providing a link to the product website (neither the link nor this post are endorsements), you can find out more about Armor Gel here.

Armor Gel was announced previously in a Sept. 16, 2014 ABL news release on PR Newswire, At the time no mention was made of Rich Franklin, their MMA athlete,

American Biotech Labs, LLC, is pleased to announce the availability of three new silver hydrogel wound-dressing products.  The new products will allow American Biotech Labs (ABL) to market in the wound-care market focusing on ultimate sports and fitness, spa and health, and animal markets.

The new over-the-counter (OTC) products will have wound-dressing claims for minor cuts, lacerations, abrasions, 1st and 2nd degree burns, and skin irritations.  The products also have pathogen-inhibiting barrier claims against pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, MRSA and VRE, as well as fungi, such as Candida albicans and Aspergillus niger.  These new gels can provide a barrier that will help protect wounds for 24 to 72 hours.

The new products will be found under the names of Armor Gel™ (for the ultimate sports and fitness market), ASAP OTC™ (for the spa and health markets), and ASAP Pet Shield® (for the animal market).

Along with the release of these new products, ABL has formed a strategic alliance with Stuart Evey, founder and former chairman of ESPN, and Gary Bernstein, marketing executive and professional photographer and film maker.  ABL will utilize these talented individuals to help introduce these revolutionary new products to high-profile organizations in sports, pet stores, fashion and beauty, medical, and direct-marketing areas, etc.

Said Keith Moeller, ABL Director, “We are very grateful to the numerous top scientists, labs and universities that have helped move this amazing, patented, silver technology forward.  We believe that these products have the ability to impact the future of wound management worldwide.”

Note: Any statements released by American Biotech Labs, LLC that are forward looking are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995.  Editors and investors are cautioned that forward looking statements invoke risk and uncertainties that may affect the company’s business prospects and performance.

You can find out more about ABL and its entire product line here.