Monthly Archives: June 2015

Portraying the unglamorous side of scientific research

Daniel Stier has produced an eye-opening book of photographs depicting scientific research as it is performed by the multitude of scientists who don’t have access to the beautiful, gleaming laboratories depicted in magazines and film.

Courtesy: Daniel Stier

Courtesy: Daniel Stier

You can find this image along with more from volume one of Stier’s book, Ways of Knowing. According to Stier’s website (images from volume one), it is available for pre-orders.

Unfortunately, Stier doesn’t offer much information about the images he’s chosen to share from volume one but there is a June 12, 2015 article by Meg Miller for Fast Company that fills in a few blanks about the project and the image she’s chosen to highlight,

… “We think of lab coats, high-tech equipment—the realities couldn’t be more different.” In the Ergonomics department of the Technische Universitaet Munich, for example, Stier photographed a professor hanging horizontally from an aluminum structure, suspended by wires attached to velcro straps. He looks like he’s trapped in some sort of ’50s-era torture device. Science: glamorous, it ain’t.

It’s nice to be reminded from time to time that science is still practiced in homely and makeshift circumstances.

Construction and nanotechnology research in Scandinavia

I keep hearing about the possibilities for better (less polluting, more energy efficient, etc.) building construction materials but there never seems to be much progress.  A June 15, 2015 news item on Nanowerk, which suggests some serious efforts are being made in Scandinavia, may help to explain the delay,

It isn’t cars and vehicle traffic that produce the greatest volumes of climate gas emissions – it’s our own homes. But new research will soon be putting an end to all that!

The building sector is currently responsible for 40% of global energy use and climate gas emissions. This is an under-communicated fact in a world where vehicle traffic and exhaust emissions get far more attention.

In the future, however, we will start to see construction materials and high-tech systems integrated into building shells that are specifically designed to remedy this situation. Such systems will be intelligent and multifunctional. They will consume less energy and generate lower levels of harmful climate gas emissions.

With this objective in mind, researchers at SINTEF are currently testing microscopic nanoparticles as insulation materials, applying voltages to window glass and facades as a means of saving energy, and developing solar cells that prevent the accumulation of snow and ice.

Research Director Susie Jahren and Research Manager Petra Rüther are heading SINTEF’s strategic efforts in the field of future construction materials. They say that although there are major commercial opportunities available in the development of green and low carbon building technologies, the construction industry is somewhat bound by tradition and unable to pay for research into future technology development. [emphasis mine]

A June 15, 2015 SINTEF (Scandinavia’s largest independent research organisation) news release on the Alpha Galileo website, which originated the news item, provides an overview of the research being conducted into nanotechnology-enabled construction materials (Note: I have added some heads and ruthlessly trimmed from the text),

[Insulation]

SINTEF researcher Bente Gilbu Tilset is sitting in her office in Forskningsveien 1 in Oslo [Norway]. She and her colleagues are looking into the manufacture of super-insulation materials made up of microscopic nanospheres.

“Our aim is to create a low thermal conductivity construction material “, says Tilset. “When gas molecules collide, energy is transferred between them. If the pores in a given material are small enough, for example less than 100 nanometres in diameter, a molecule will collide more often with the pore walls than with other gas molecules. This will effectively reduce the thermal conductivity of the gas. So, the smaller the pores, the lower the conductivity of the gas”, she says.

[Solar cells]

As part of the project “Bygningsintegrerte solceller for Norge” (Building Integrated Photovoltaics, BIPV Norway), researchers from SINTEF, NTNU, the IFE [IFE Group, privately owned company, located in Sweden] and Teknova [company created by the Nordic Institute for Studies in Innovation {NIFU}, located in Norway], are planning to look into how we can utilise solar cells as integral housing construction components, and how they can be adapted to Norwegian daylight and climatic conditions.

One of the challenges is to develop a solar cell which prevents the accumulation of snow and ice. The cells must be robust enough to withstand harsh wind and weather conditions and have lifetimes that enable them to function as electricity generators.

[Energy]

Today, we spend 90 per cent of our time indoors. This is as much as three times more than in the 1950s. We are also letting less daylight into our buildings as a result of energy considerations and construction engineering requirements. Research shows that daylight is very important to our health, well-being and biological rhythms. It also promotes productivity and learning. So the question is – is it possible to save energy and get the benefits of greater exposure to daylight?

Technologies involving thermochromic, photochromic and electrochromic pigments can help us to control how sunlight enters our buildings, all according to our requirements for daylight and warmth from the sun.

Self-healing concrete

Every year, between 40 and 120 million Euros are spent in Europe on the maintenance of bridges, tunnels and construction walls. These time-consuming and costly activities have to be reduced, and the project CAPDESIGN is aiming to make a contribution in this field.

The objective of the project is to produce concrete that can be ‘restored’ after being exposed to loads and stresses by means of self-healing agents that prevent the formation of cracks. The method involves mixing small capsules into the wet concrete before it hardens. These remain in the matrix until loads or other factors threaten to crack it. The capsules then burst and the self-healing agents are released to repair the structure.

At SINTEF, researchers are working with the material that makes up the capsule shells. The shell has to be able to protect the self-healing agent in the capsules for an extended period and then, under the right conditions, break down and release the agents in response to the formation of cracks caused by temperature, pH, or a load or stress resulting from an impact or shaking. At the same time, the capsules must not impair the ductility or the mechanical properties of the newly-mixed concrete.

You’ll notice most of the research seems to be taking place in Norway. I suspect that is due to the story having come from a joint Norwegian Norwegian University of Science and Technology (NTNU)/SINTEF, website, Gemini.no/en. Anyone wishing to test their Norwegian readings skills need only omit ‘/en’ from the URL.

Tanzanian research into nanotechnology-enabled water filters

Inexpensive 99.9999…% filtration of metals, bacteria, and viruses from water is an accomplishment worthy of a prize as the UK’s Royal Academy of Engineering noted by awarding its first ever International Innovation Prize of £25,000 ($38,348 [USD?]) to Askwar Hilonga, a Tanzanian academic and entrepreneur. A June 11, 2015 article by Sibusiso Tshabalala for Quartz.com describes the water situation in Tanzania and Hilonga’s accomplishment (Note: Links have been removed),

Despite Tanzania’s proximity to three major lakes almost half of it’s population cannot access potable water.

Groundwater is often the alternative, but the supply is not always clean. Mining waste (pdf, pg 410) and toxic drainage systems easily leak into fresh groundwater, leaving the water contaminated.

Enter Askwar Hilonga: a 38-year old chemical engineer PhD and entrepreneur. With 33 academic journal articles on nanotechnology to his name, Hilonga aims to solve Tanzania’s water contamination problems by using nanotechnology to customize water filters.

There are other filters available (according to Tshabalala’s article) but Hilonga’s has a unique characteristic in addition to being highly efficient and inexpensive,

Purifying water using nanotechnology is hardly a new thing. In 2010, researchers at the Yi Cui Lab at Stanford University developed a synthetic “nanoscanvenger” made out of two silver layers that enable nanoparticles to disinfect water from contaminating bacteria.

What makes Hilonga’s water filter different from the Stanford-developed “nanoscavenger”, or the popular LifeStraw developed by the Swiss-based health innovation company Vestergaard 10 years ago?

“It is customized. The filter can be tailored for specific individual, household and communal use,” says Hilonga.

A June 2, 2015 news item about the award on BBC (British Broadcasting Corporation) online describes how the filter works,

The sand-based water filter that cleans contaminated drinking water using nanotechnology has already been trademarked.

“I put water through sand to trap debris and bacteria,” Mr Hilonga told the BBC’s Newsday programme about the filter.

“But sand cannot remove contaminants like fluoride and other heavy metals so I put them through nano materials to remove chemical contaminants.”

Hilonga describes the filter in a little more detail in his May 30, 2014 video submitted for for the UK Royal Academy of Engineering’s prize (Africa Prize for Engineering Innovation)

Finalists for the prize (there were four) received a six month mentorship which included help to develop the technology further and with business plans. Hilonga has already enabled 23 entrepreneurs to develop nanofilter businesses, according to the Tshabalala article,

Through the Gongali Model Company, a university spin-off company which he co-founded, Hilonga has already enabled 23 entrepreneurs in Karatu to set up their businesses with the filters, and local schools to provide their learners with clean drinking water.

With this prize money, Hilonga will be able to lower the price of his filter ($130 [USD?) according to the BBC news item.

Congratulations to Dr. Hilonga and his team! For anyone curious about the Gongali Model Company, you can go here.

Discovering why your teeth aren’t perfectly crack-resistant

This helps make your teeth crack-resistant?

Caption: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. Credit: JB Forien @Charité

Caption: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. Credit: JB Forien @Charité

A June 10, 2015 Helmholtz Zentrum Berlin (HZB) press release (also on EurekAlert) explains how the illustration above relates to the research,

Human teeth have to serve for a lifetime, despite being subjected to huge forces. But the high failure resistance of dentin in teeth is not fully understood. An interdisciplinary team led by scientists of Charite Universitaetsmedizin Berlin has now analyzed the complex structure of dentin. At the synchrotron sources BESSY II at HZB, Berlin, Germany, and the European Synchrotron Radiation Facility ESRF, Grenoble, France, they could reveal that the mineral particles are precompressed.

The internal stress works against crack propagation and increases resistance of the biostructure.

Engineers use internal stresses to strengthen materials for specific technical purposes. Now it seems that evolution has long ‘known’ about this trick, and has put it to use in our natural teeth. Unlike bones, which are made partly of living cells, human teeth are not able to repair damage. Their bulk is made of dentin, a bonelike material consisting of mineral nanoparticles. These mineral nanoparticles are embedded in collagen protein fibres, with which they are tightly connected. In every tooth, such fibers can be found, and they lie in layers, making teeth tough and damage resistant. Still, it was not well understood, how crack propagation in teeth can be stopped.

The press release goes on to describe the new research and the teams which investigated the role of the mineral nanoparticles with regard to compression and cracking,

Now researchers from Charite Julius-Wolff-Institute, Berlin have been working with partners from Materials Engineering Department of Technische Universitaets Berlin, MPI of Colloids and Interfaces, Potsdam and Technion – Israel Institute of Technology, Haifa, to examine these biostructures more closely. They performed Micro-beam in-situ stress experiments in the mySpot BESSY facility of HZB, Berlin, Germany and analyzed the local orientation of the mineral nanoparticles using the nano-imaging facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

When the tiny collagen fibers shrink, the attached mineral particles become increasingly compressed, the science team found out. “Our group was able to use changes in humidity to demonstrate how stress appears in the mineral in the collagen fibers, Dr. Paul Zaslansky from Julius Wolff-Institute of Charite Berlin explains. “The compressed state helps to prevents cracks from developing and we found that compression takes place in such a way that cracks cannot easily reach the tooth inner parts, which could damage the sensitive pulp. In this manner, compression stress helps to prevent cracks from rushing through the tooth.

The scientists also examined what happens if the tight mineral-protein link is destroyed by heating: In that case, dentin in teeth becomes much weaker. We therefore believe that the balance of stresses between the particles and the protein is important for the extended survival of teeth in the mouth, Charite scientist Jean-Baptiste Forien says. Their results may explain why artificial tooth replacements usually do not work as well as healthy teeth do: they are simply too passive, lacking the mechanisms found in the natural tooth structures, and consequently fillings cannot sustain the stresses in the mouth as well as teeth do. “Our results might inspire the development of tougher ceramic structures for tooth repair or replacement, Zaslansky hopes.

Experiments took place as part of the DFG project “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials (SPP1420).

Here’s a link to and a citation for the paper,

Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin by Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, and Paul Zaslansky. Nano Lett., 2015, 15 (6), pp 3729–3734 DOI: 10.1021/acs.nanolett.5b00143 Publication Date (Web): May 26, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Cornell University’s (US) immune organoid

A synthetic immune organ that produces antibodies has been developed at Cornell University. From a June 11, 2015 news item on Azonano,

Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism. The engineered organ has implications for everything from rapid production of immune therapies to new frontiers in cancer or infectious disease research.

The immune organoid was created in the lab of Ankur Singh, assistant professor of mechanical and aerospace engineering, who applies engineering principles to the study and manipulation of the human immune system. …

A June 10, 2015 Cornell University news release (also on EurekAlert) by Anne Ju, which originated the news item, describes how the organ/organoid functions,

The synthetic organ is bio-inspired by secondary immune organs like the lymph node or spleen. It is made from gelatin-based biomaterials reinforced with nanoparticles and seeded with cells, and it mimics the anatomical microenvironment of lymphoid tissue. Like a real organ, the organoid converts B cells – which make antibodies that respond to infectious invaders – into germinal centers, which are clusters of B cells that activate, mature and mutate their antibody genes when the body is under attack. Germinal centers are a sign of infection and are not present in healthy immune organs.

The engineers have demonstrated how they can control this immune response in the organ and tune how quickly the B cells proliferate, get activated and change their antibody types. According to their paper, their 3-D organ outperforms existing 2-D cultures and can produce activated B cells up to 100 times faster.

The immune organ, made of a hydrogel, is a soft, nanocomposite biomaterial. The engineers reinforced the material with silicate nanoparticles to keep the structure from melting at the physiologically relevant temperature of 98.6 degrees.

The organ could lead to increased understanding of B cell functions, an area of study that typically relies on animal models to observe how the cells develop and mature.

What’s more, Singh said, the organ could be used to study specific infections and how the body produces antibodies to fight those infections – from Ebola to HIV.

“You can use our system to force the production of immunotherapeutics at much faster rates,” he said. Such a system also could be used to test toxic chemicals and environmental factors that contribute to infections or organ malfunctions.

The process of B cells becoming germinal centers is not well understood, and in fact, when the body makes mistakes in the genetic rearrangement related to this process, blood cancer can result.

“In the long run, we anticipate that the ability to drive immune reaction ex vivo at controllable rates grants us the ability to reproduce immunological events with tunable parameters for better mechanistic understanding of B cell development and generation of B cell tumors, as well as screening and translation of new classes of drugs,” Singh said.

The researchers have provided an image of their work,

When exposed to a foreign agent, such as an immunogenic protein, B cells in lymphoid organs undergo germinal center reactions. The image on the left is an immunized mouse spleen with activated B cells (brown) that produce antibodies. At right, top: a scanning electron micrograph of porous synthetic immune organs that enable rapid proliferation and activation of B cells into antibody-producing cells. At right, bottom: primary B cell viability and distribution is visible 24 hours following encapsulation procedure. Courtesy: Cornell University

When exposed to a foreign agent, such as an immunogenic protein, B cells in lymphoid organs undergo germinal center reactions. The image on the left is an immunized mouse spleen with activated B cells (brown) that produce antibodies. At right, top: a scanning electron micrograph of porous synthetic immune organs that enable rapid proliferation and activation of B cells into antibody-producing cells. At right, bottom: primary B cell viability and distribution is visible 24 hours following encapsulation procedure. Courtesy: Cornell University

Here’s a link to and a citation for the paper,

Ex vivo Engineered Immune Organoids for Controlled Germinal Center Reactions by Alberto Purwada, Manish K. Jaiswal, Haelee Ahn, Takuya Nojima, Daisuke Kitamura, Akhilesh K. Gaharwar, Leandro Cerchietti, & Ankur Singh. Biomaterials DOI: 10.1016/j.biomaterials.2015.06.002 Available online 3 June 2015

This paper is behind a paywall.

Observing photo exposure one nanoscale grain at a time

A June 9, 2015 news item on Nanotechnology Now highlights research into a common phenomenon, photographic exposure,

Photoinduced chemical reactions are responsible for many fundamental processes and technologies, from energy conversion in nature to micro fabrication by photo-lithography. One process that is known from everyday’s life and can be observed by the naked eye, is the exposure of photographic film. At DESY’s [Deutsches Elektronen-Synchrotron] X-ray light source PETRA III, scientists have now monitored the chemical processes during a photographic exposure at the level of individual nanoscale grains in real-time. The advanced experimental method enables the investigation of a broad variety of chemical and physical processes in materials with millisecond temporal resolution, ranging from phase transitions to crystal growth. The research team lead by Prof. Jianwei (John) Miao from the University of California in Los Angeles and Prof. Tim Salditt from the University of Göttingen report their technique and observations in the journal Nature Materials.

A June 9, 2015 DESY press release (also on EurekAlert), which originated the news item, provides more detail about the research,

The researchers investigated a photographic paper (Kodak linagraph paper Type 2167 or “yellow burn paper”) that is often used to determine the position of the beam at X-ray experiments. “The photographic paper we looked at is not specially designed for X-rays. It works by changing its colour on exposure to light or X-rays,” explains DESY physicist Dr. Michael Sprung, head of the PETRA III beamline P10 where the experiments took place.

The X-rays were not only used to expose the photographic paper, but also to analyse changes of its inner composition at the same time. The paper carries a photosensitive film of a few micrometre thickness, consisting of tiny silver bromide grains dispersed in a gelatine matrix, and with an average size of about 700 nanometres. A nanometre is a millionth of a millimetre. When X-rays impinge onto such a crystalline grain, they are diffracted in a characteristic way, forming a unique pattern on the detector that reveals properties like crystal lattice spacing, chemical composition and orientation. “We could observe individual silver bromide grains within the ‘burn’ paper since the X-ray beam had a size of only 270 by 370 nanometres – smaller than the average grain,” says Salditt, who is a partner of DESY in the construction and operation of the GINIX (Göttingen Instrument for Nano-Imaging with X-Rays) at beamline P10.

The X-ray exposure starts the photolysis from silver bromide to produce silver. An absorbed X-ray photon can create many photolytic silver atoms, which grow and agglomerate at the surface and inside the silver bromide grain. The scientists observed how the silver bromide grains were strained, began to turn in the gelatine matrix and broke up into smaller crystallites as well as the growth of pure silver nano grains. The exceptionally bright beam of PETRA III together with a high-speed detector enabled the ‘filming’ of the process with up to five milliseconds temporal resolution. “We observed, for the first time, grain rotation and lattice deformation during photoinduced chemical reactions,” emphasises Miao. “We were actually surprised how fast some of these single grains rotate,” adds Sprung. “Some spin almost one time every two seconds.”

“As advanced synchrotron light sources are currently under rapid development in the US, Europe and Asia,” the authors anticipate that “in situ X-ray nanodiffraction, which enables to measure atomic resolution diffraction patterns with several millisecond temporal resolution, can be broadly applied to investigate phase transitions, chemical reactions, crystal growth, grain boundary dynamics, lattice expansion, and contraction in materials science, nanoscience, physics, and chemistry.”

Here’s a link to and a citation for the paper,

Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction by Zhifeng Huang, Matthias Bartels, Rui Xu, Markus Osterhoff, Sebastian Kalbfleisch, Michael Sprung, Akihiro Suzuki, Yukio Takahashi, Thomas N. Blanton, Tim Salditt, & Jianwei Miao. Nature Materials (2015) doi:10.1038/nmat4311 Published online 08 June 2015

This paper is behind a paywall.

Tobacco Indemnification and Community Revitalization Commission supports nanomaterial development with a $2M grant

Tobacco growing is not as lucrative as it once was. Worldwide anti-smoking legislation and health campaigns against smoking have had an effect on the industry and the farmers who grow tobacco. With that in mind, the June 10, 2015 news item on Azonano suggests that the industry and the farmers might be trying to find other uses for tobacco,

The Tobacco Commission [aka Tobacco Indemnification and Community Revitalization Commission] voted unanimously to award the Center for Advanced Engineering & Research a $2 million research and development grant, 100% of which will directly support NanoTouch Materials’ continued development of their NanoSeptic surfaces. This funding will be used to research new materials and advanced manufacturing processes, and build a dedicated fabrication facility in Bedford County [state of Virginia].

A June 9, 2015 NanoTouch news release on prnewswire.com, which originated the news item, describes the deal in more detail but offers no indication as to how tobacco might factor into the research (Note: A link has been removed),

“What makes research and development of NanoSeptic products complex and expensive is the multiple areas of scientific expertise required,” says NanoTouch co-founder Mark Sisson. “This funding will allow us to continue working with some of the best scientific minds in material science, nanotechnology, polymers and biotechnology.”

The research component of this grant will be focused on the development of the 5th generation of the NanoSeptic surface. Initial lab testing on early prototypes of the technology resulted in a surface that was 1,000 times more effective than the previous generation, achieving almost a six-log reduction.

Effectiveness of the current NanoSeptic surface has been extensively studied both by an independent FDA compliant lab and university research centers worldwide, including Saudi Arabia and South Korea. These studies utilize internationally recognized standard testing protocols against a variety of pathogens including E. coli, MRSA, Staph, Norovirus and the human Coronavirus, a strain of which is causing MERS outbreaks in the Middle East and Korea.

“NanoSeptic products present a great growth opportunity for this region,” says Bob Bailey, executive director of CAER. “The Center for Advanced Engineering and Research [this appears to be a wholly NanoTouch-owned research group] is excited to be part of this project and we believe that our strong research partnerships with multiple Virginia universities will prove to be a significant asset.”

As part of this three-year initiative, NanoTouch Materials is expected to grow their workforce in Bedford County, VA to a total of 14 employees, and an estimated 37 employees in five years. NanoTouch is also expected to invest $1 million in facilities and advanced manufacturing equipment.

“Virtually every firm or project with which the Tobacco Commission partners has a common characteristic: a tremendous potential to grow.  NanoSeptic is an ideal example of this.  It’s easy to see how big the potential is in healthcare, public and commercial transportation, and the hospitality industry,” says Delegate Kathy Byron, Chair of the Research & Development Committee. “That potential is emblematic of our entire region, and the reestablishment of our manufacturing community.  Once again, companies in Central and Southside Virginia are making products that are being used worldwide.”

While an entire line of NanoSeptic products have been developed and are being distributed to 29 countries, the company also plans to spend significant funding to conduct market research in the healthcare, education, facility management, commercial janitorial and food service industries. This market research will guide future product development and uncover specific ways that self-cleaning surfaces can be used to improve healthcare outcomes, reduce employee and student absenteeism, and broadly improve community health.

“While the vetting process for the grant was exhaustive, we’re grateful for the support of the Tobacco Commission and the Economic Development Authority of Bedford County in our mission of providing cleaner, healthier places in which to live, work and play,” says NanoTouch co-founder Dennis Hackemeyer. “And our investors couldn’t be happier with the company receiving funding that will accelerate growth without diluting their investment.”

The news release goes on to describe the funding agency,

The Tobacco Indemnification and Community Revitalization Commission is a 31-member body whose mission is to promote economic growth and development in tobacco-dependent communities using proceeds of the national tobacco settlement.  The Commission has awarded 1,831 grants totaling more than $1,072,922,288 across the tobacco region of the Commonwealth. http://www.tic.virginia.gov

I have mentioned NanoTouch before in an April 24, 2013 posting where I also expressed some interest in getting more technical information about the company’s products. In 2013, the company was introducing its product, NanoSeptic, into schools in the Bellmore-Merrick School District of New York.

We have a national science and technology museum in Canada, don’t we? A national public consultation

Before dashing off to participate in the consultation, here’s a little background information. At this moment in time, Canada’s national museum for science and technology is a truck, ‘Museum on the go‘. There was a museum building but that was closed in Sept. 2014 due to health and safety issues. (Btw, the ‘Museum on the go’ truck is a regular summer programme which staff are presenting in difficult circumstances.)

For those unfamiliar with the setup, Canada has three interlinked science and technology museum institutions (a) Canada Aviation and Space Museum (b) Canada Agriculture and Food Museum and (c) Canada Science and Technology Museum. The other two institutions are still open.

If memory serves, 2008 was when I first heard there was a problem with the Canada Science and Technology Museum. The details escape me but it had something to do with an unsuccessful attempt to get a new building or move to a new building. Presumably they were having health and safety problems dating from 2008 at least. That’s a long to time to wait for a solution but after closing in Sept. 2014, the federal government announced funds to repair and upgrade the current museum building. From a Nov. 17, 2014 announcement on the Canada Science and Technology Museum (CSTM) website,

The Government of Canada announced today an $80.5 million investment to repair and upgrade the Canada Science and Technology Museum. The work will be completed during the next two years and the Museum will re-open in 2017.

This funding is essential to address the health and safety issues that are of immediate concern, and to support the Museum’s work promoting Canada’s long history of scientific and technological achievement.

Specifically, the funds announced today will go toward:

  • Removing the mould and replacing the Museum’s roof, which will stop leaks. A new roof will ensure that artifacts and exhibitions are no longer in danger of damage;
  • Retrofitting and upgrading the Museum’s exhibition spaces and floor space;
  • Upgrading the building’s fire-suppression systems and its seismic structural strength; and,
  • Bringing the Museum’s exterior façade up to date to match the new, modern interior. …

$80M is not a lot of money for the repairs and there is no mention of any upgrades for technology used to display exhibits e.g., VR (or virtual reality is becoming popular) or ICT (information and communications technology such as mobile applications and perhaps even webcasting facilities so people living outside the Ottawa region might have chance to attend virtually).

It seems ironic that while the Canadian federal government wants to promote science culture and innovation, it refuses to adequately fund our national showcase. Where culture is concerned, the federal government can commission a report on science culture (my Dec. 31, 2014 post: Science Culture: Where Canada Stands; an expert assessment, Part 1 of 3: Canadians are doing pretty well) but it’s not inclined to support culture as can be seen in an April 17, 2015 article by Jeff Lee for the Vancouver Sun concerning the funding for arts museums,

There is also no indication that the Stephen Harper government would be willing to contribute such a large amount for cultural projects, given that it hasn’t done so elsewhere in Canada, with only two exceptions.

Both of those fulfilled commitments made by the previous federal Liberal government. One is the now federally owned Canadian Museum of Human Rights in Winnipeg, to which Ottawa contributed $100 million and then took over as the cost soared to $351 million. The other is the Royal Alberta Museum in Edmonton, first envisioned in 2003 at a cost of $200 million and now under construction at a new estimate of $340 million.

The feds, under Paul Martin, pledged $122 million — and the Harper government tried to back out of the deal. Last year [2014] it agreed to pay the remaining $92 million.

If the federal government is contributing to museum and art gallery projects, it is doing so in smaller amounts, such as $13 million for Saskatoon’s Remai Modern, once estimated to cost $55 million and now approaching $100 million. Or the $13 million for the Montreal Museum of Fine Arts’ $33-million conversion of the Erskine and American Church into the Claire and Marc Bourgie Pavilion of Quebec and Canadian Art, incorporating a concert hall.

The interest in culture seems grudging. Even for an aspect of culture, science and technology, for which the federal government has expressed some enthusiasm. They are very interested in promoting innovation (code for commercializing science research) but, although they want science culture so all those young’uns will study science, engineering, technology, and mathematics, they aren’t willing to dedicate enough money so the museum has some chance of delivering on its mandate.

So please, do participate in the public consultation. Yes, it’s very Ottawa-centric and also Ontario- and Québec-centric, which is understandable. They are dependent on the people who are most likely to visit multiple time but it’s still irritating to those of us (me) who live outside those regions to be lumped into a category of ‘everybody else’.

As to why the consultation has such a depressive quality, the drawings are gray and faded and the written descriptions are somewhat flat, I can’t tell if that’s a problem with time, depressed staff, something I have failed to imagine, or some combination.

I know that sounds uninviting but let them know you care and you want to see a dynamic Science and Technology Museum that reaches out nationally.

Finally, here’s a June 4, 2015 CSTM announcement (with a link to the consultation),

Want to learn more about plans for a renewed
Canada Science and Technology Museum? 

As a friend of the Museum, this is your chance to get a sneak peek and provide feedback on the proposed concept plan.

Renewal of the Museum is underway, with many new exhibits, programs, and a striking redesigned façade on tap for its reopening in 2017. Staff, architects, and consultants have been hard at work on a new master plan for the interior — which, we are happy to confirm, will include the Museum’s ever-popular locomotives and Crazy Kitchen.

Here’s how you can participate:

Fill out the online survey below to see early sketches and concepts, and offer your thoughts on these potential new offerings. You can participate in this national survey until June 20.

Survey link: http://cstmc-smstc.fluidsurveys.com/s/CSTM_MSTC_2017/  

Visit the Museum team at a series of Open House events
  • St. Laurent Shopping Centre in Ottawa, June 6 from 9:30 a.m. to 6:00 p.m. and June 7 from 11:00 a.m. to 5:00 p.m.
  •  Canada Agriculture and Food Museum on June 13, and Canada Aviation and Space Museum on June 14 from 10 a.m. to 4 p.m.

As the renewal project unfolds, additional opportunities for feedback on exhibitions will be shared via the Museum’s website. Stay tuned for updates!

I have filled it out and, as far as I can tell, you have to complete the survey in one session and the questions require open-ended answers (no multiple choice) .

ASCENT: access to European Nanoelectronics Infrastructure

ASCENT is an Irish-French-Belgian-led collaborative project designed to open up state of the state-of-the-art facilities to researchers across Europe. From a June 10, 2015 news item on Nanowerk,

ASCENT opens the doors to the world’s most advanced nanoelectronics infrastructures in Europe. Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, leading European nanoelectronics institutes, have entered into a collaborative open-access project called ASCENT (Access to European Nanoelectronics Network), to mobilise European research capabilities like never before.

The €4.7 million project will make the unique research infrastructure of three of Europe’s premier research centres available to the nanoelectronics modelling-and-characterisation research community.

A June 10, 2015 Imec press release, which originated the news item, expands on the theme,

The three partners will provide researchers access to advanced device data, test chips and characterisation equipment. This access programme will enable the research community to explore exciting new developments in industry and meet the challenges created in an ever-evolving and demanding digital world.

The partners’ respective facilities are truly world-class, representing over €2 billion of combined research infrastructure with unique credentials in advanced semiconductor processing, nanofabrication, heterogeneous and 3D integration, electrical characterisation and atomistic and TCAD modelling. This is the first time that access to these state-of-the-art devices and test structures will become available anywhere in the world.

The project will engage industry directly through an ‘Industry Innovation Committee’ and will feed back the results of the open research to device manufacturers, giving them crucial information to improve the next generation of electronic devices.

Speaking on behalf of project coordinator, Tyndall National Institute, CEO Dr. Kieran Drain said: “We are delighted to coordinate the ASCENT programme and to be partners with world-leading institutes CEA-Leti and imec. Tyndall has a great track record in running successful collaborative open-access programmes, delivering real economic and societal impact. ASCENT has the capacity to change the paradigm of European research through unprecedented access to cutting-edge technologies. We are confident that ASCENT will ensure that Europe remains at the forefront of global nanoelectronics development.”

“The ASCENT project is an efficient, strategic way to open the complementary infrastructure and expertise of Tyndall, Leti and imec to a broad range of researchers from Europe’s nanoelectronics modelling-and-characterisation sectors,” said Leti CEO Marie-Noëlle Semeria. “Collaborative projects like this, that bring together diverse, dedicated and talented people, have synergistic affects that benefit everyone involved, while addressing pressing technological challenges.”

“In the frame of the ASCENT project, three of Europe’s leading research institutes – Tyndall, imec and Leti – join forces in supporting the EU research and academic community, SMEs and industry by providing access to test structures and electrical data of state-of-the-art semiconductor technologies,” stated Luc Van den hove, CEO of imec. “This will enable them to explore exciting new opportunities in the ‘More Moore’ [probably a Moore’s law reference] as well as the ‘More than Moore’ domains, and will allow them to participate and compete effectively on the global stage for the development of advanced nano-electronics.”

I’m curious as to how they plan to balance industry requests with academic requests. Will organizations that can afford to pay more get preference?

Could engineered nanoparticles be behind rise in obesity and metabolic disorders?

The researchers haven’t published a study and they have used fruit flies as their testing mechanism (animal models) so, it’s a little difficult (futile) to analyze the work at this stage but it is intriguing. A June 9, 2015 news item on Azonano announces a research collaboration  designed to examine the impact engineered nanoparticles have on the gut and the gut microbiome,

Researchers at Binghamton University believe understanding nano particles’ ability to influence our metabolic processing may be integral to mediating metabolic disorders and obesity, both of which are on the rise and have been linked to processed foods.

Anthony Fiumera, associate professor of biological sciences, and Gretchen Mahler, assistant professor of biomedical engineering, are collaborating on a research project funded by a Binghamton University Transdisciplinary Areas of Excellence (TAE) grant to discover the role ingested nanoparticles play in the physiology and function of the gut and gut microbiome.

A June 8, 2015 Binghamton University news release, which originated the news item, describes the reasoning behind the research,

The gut microbiome is the population of microbes living within the human intestine, consisting of tens of trillions of microorganisms (including at least 1,000 different species of known bacteria). Nanoparticles, which are often added to processed foods to enhance texture and color, have been linked to changes in gut function. As processed foods become more common elements of our diet, there has been a significant increase in concentrations of these particles found in the human body.

Fiumera works in vivo with fruit flies while Mahler works in vitro using a 3-D cell-culture model of the gastrointestinal (GI) tract to understand how ingesting nanoparticles influences glucose processing and the gut microbiome. By using complementary research methods, the researchers have helped advance each other’s understanding of nanoparticles.

Using fruit flies, Fiumera looks at the effects of nanoparticles on development, physiology and biochemical composition, as well as the microbial community in the GI tract of the fly. The fly model offers two advantages: 1) research can be done on a wide range of traits that might be altered by changes in metabolism and 2) the metabolic processes within the fly are similar to those in humans. Fiumera also aims to investigate which genes are associated with responses to the nanoparticles, which ultimately may help us understand why individuals react differently to nanoparticles.

For this project, Mahler expanded her GI tract model to include a commensal intestinal bacterial species and used the model to determine a more detailed mechanism of the role of nanoparticle exposure on gut bacteria and intestinal function. Early results have shown that nanoparticle ingestion alters glucose absorption, and that the presence of beneficial gut bacteria eliminates these effects.

Mahler was already investigating nanoparticles when she reached out to Fiumera and proposed they combine their respective expertise. With the help of undergraduate students Gabriella Shull and John Fountain and graduate student Jonathan Richter, Fiumera and Mahler have begun to uncover some effects of ingesting nanoparticles. Since they are using realistic, low concentrations of nanoparticles, the effects are slight, but eventually may be additive.

The most interesting aspect of this research (to me) is the notion that the impact may be additive. In short, you might be able to tolerate a few more nanoparticles in your gut but as more engineered nanoparticles become part of our food and drink (including water) and your gut receives more and more that tolerance may no longer possible.

There is increasing concern about engineered nanoparticles as they cycle through environment and the US Environmental Protection Agency (EPA) funded a programed by Arizona State University (ASU), LCnano Network (part of the EPA’s larger Life Cycle of Nanomaterials project). You can find out more about the ASU program in my April 8, 2014 post (scroll down about 50% of the way).

Getting back to Binghamton, I look forward to hearing more about the research as it progresses.