Tag Archives: imec

Canada’s ‘Smart Cities’ will need new technology (5G wireless) and, maybe, graphene

I recently published [March 20, 2018] a piece on ‘smart cities’ both an art/science event in Toronto and a Canadian government initiative without mentioning the necessity of new technology to support all of the grand plans. On that note, it seems the Canadian federal government and two provincial (Québec and Ontario) governments are prepared to invest in one of the necessary ‘new’ technologies, 5G wireless. The Canadian Broadcasting Corporation’s (CBC) Shawn Benjamin reports about Canada’s 5G plans in suitably breathless (even in text only) tones of excitement in a March 19, 2018 article,

The federal, Ontario and Quebec governments say they will spend $200 million to help fund research into 5G wireless technology, the next-generation networks with download speeds 100 times faster than current ones can handle.

The so-called “5G corridor,” known as ENCQOR, will see tech companies such as Ericsson, Ciena Canada, Thales Canada, IBM and CGI kick in another $200 million to develop facilities to get the project up and running.

The idea is to set up a network of linked research facilities and laboratories that these companies — and as many as 1,000 more across Canada — will be able to use to test products and services that run on 5G networks.

Benjamin’s description of 5G is focused on what it will make possible in the future,

If you think things are moving too fast, buckle up, because a new 5G cellular network is just around the corner and it promises to transform our lives by connecting nearly everything to a new, much faster, reliable wireless network.

The first networks won’t be operational for at least a few years, but technology and telecom companies around the world are already planning to spend billions to make sure they aren’t left behind, says Lawrence Surtees, a communications analyst with the research firm IDC.

The new 5G is no tentative baby step toward the future. Rather, as Surtees puts it, “the move from 4G to 5G is a quantum leap.”

In a downtown Toronto soundstage, Alan Smithson recently demonstrated a few virtual reality and augmented reality projects that his company MetaVRse is working on.

The potential for VR and AR technology is endless, he said, in large part for its potential to help hurdle some of the walls we are already seeing with current networks.

Virtual Reality technology on the market today is continually increasing things like frame rates and screen resolutions in a constant quest to make their devices even more lifelike.

… They [current 4G networks] can’t handle the load. But 5G can do so easily, Smithson said, so much so that the current era of bulky augmented reality headsets could be replaced buy a pair of normal looking glasses.

In a 5G world, those internet-connected glasses will automatically recognize everyone you meet, and possibly be able to overlay their name in your field of vision, along with a link to their online profile. …

Benjamin also mentions ‘smart cities’,

In a University of Toronto laboratory, Professor Alberto Leon-Garcia researches connected vehicles and smart power grids. “My passion right now is enabling smart cities — making smart cities a reality — and that means having much more immediate and detailed sense of the environment,” he said.

Faster 5G networks will assist his projects in many ways, by giving planners more, instant data on things like traffic patterns, energy consumption, variou carbon footprints and much more.

Leon-Garcia points to a brightly lit map of Toronto [image embedded in Benjamin’s article] in his office, and explains that every dot of light represents a sensor transmitting real time data.

Currently, the network is hooked up to things like city buses, traffic cameras and the city-owned fleet of shared bicycles. He currently has thousands of data points feeding him info on his map, but in a 5G world, the network will support about a million sensors per square kilometre.

Very exciting but where is all this data going? What computers will be processing the information? Where are these sensors located? Benjamin does not venture into those waters nor does The Economist in a February 13, 2018 article about 5G, the Olympic Games in Pyeonchang, South Korea, but the magazine does note another barrier to 5G implementation,

“FASTER, higher, stronger,” goes the Olympic motto. So it is only appropriate that the next generation of wireless technology, “5G” for short, should get its first showcase at the Winter Olympics  under way in Pyeongchang, South Korea. Once fully developed, it is supposed to offer download speeds of at least 20 gigabits per second (4G manages about half that at best) and response times (“latency”) of below 1 millisecond. So the new networks will be able to transfer a high-resolution movie in two seconds and respond to requests in less than a hundredth of the time it takes to blink an eye. But 5G is not just about faster and swifter wireless connections.

The technology is meant to enable all sorts of new services. One such would offer virtual- or augmented-reality experiences. At the Olympics, for example, many contestants are being followed by 360-degree video cameras. At special venues sports fans can don virtual-reality goggles to put themselves right into the action. But 5G is also supposed to become the connective tissue for the internet of things, to link anything from smartphones to wireless sensors and industrial robots to self-driving cars. This will be made possible by a technique called “network slicing”, which allows operators quickly to create bespoke networks that give each set of devices exactly the connectivity they need.

Despite its versatility, it is not clear how quickly 5G will take off. The biggest brake will be economic. [emphasis mine] When the GSMA, an industry group, last year asked 750 telecoms bosses about the most salient impediment to delivering 5G, more than half cited the lack of a clear business case. People may want more bandwidth, but they are not willing to pay for it—an attitude even the lure of the fanciest virtual-reality applications may not change. …

That may not be the only brake, Dexter Johnson in a March 19, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website), covers some of the others (Note: Links have been removed),

Graphene has been heralded as a “wonder material” for well over a decade now, and 5G has been marketed as the next big thing for at least the past five years. Analysts have suggested that 5G could be the golden ticket to virtual reality and artificial intelligence, and promised that graphene could improve technologies within electronics and optoelectronics.

But proponents of both graphene and 5G have also been accused of stirring up hype. There now seems to be a rising sense within industry circles that these glowing technological prospects will not come anytime soon.

At Mobile World Congress (MWC) in Barcelona last month [February 2018], some misgivings for these long promised technologies may have been put to rest, though, thanks in large part to each other.

In a meeting at MWC with Jari Kinaret, a professor at Chalmers University in Sweden and director of the Graphene Flagship, I took a guided tour around the Pavilion to see some of the technologies poised to have an impact on the development of 5G.

Being invited back to the MWC for three years is a pretty clear indication of how important graphene is to those who are trying to raise the fortunes of 5G. But just how important became more obvious to me in an interview with Frank Koppens, the leader of the quantum nano-optoelectronic group at Institute of Photonic Sciences (ICFO) just outside of Barcelona, last year.

He said: “5G cannot just scale. Some new technology is needed. And that’s why we have several companies in the Graphene Flagship that are putting a lot of pressure on us to address this issue.”

In a collaboration led by CNIT—a consortium of Italian universities and national laboratories focused on communication technologies—researchers from AMO GmbH, Ericsson, Nokia Bell Labs, and Imec have developed graphene-based photodetectors and modulators capable of receiving and transmitting optical data faster than ever before.

The aim of all this speed for transmitting data is to support the ultrafast data streams with extreme bandwidth that will be part of 5G. In fact, at another section during MWC, Ericsson was presenting the switching of a 100 Gigabits per second (Gbps) channel based on the technology.

“The fact that Ericsson is demonstrating another version of this technology demonstrates that from Ericsson’s point of view, this is no longer just research” said Kinaret.

It’s no mystery why the big mobile companies are jumping on this technology. Not only does it provide high-speed data transmission, but it also does it 10 times more efficiently than silicon or doped silicon devices, and will eventually do it more cheaply than those devices, according to Vito Sorianello, senior researcher at CNIT.

Interestingly, Ericsson is one of the tech companies mentioned with regard to Canada’s 5G project, ENCQOR and Sweden’s Chalmers University, as Dexter Johnson notes, is the lead institution for the Graphene Flagship.. One other fact to note, Canada’s resources include graphite mines with ‘premium’ flakes for producing graphene. Canada’s graphite mines are located (as far as I know) in only two Canadian provinces, Ontario and Québec, which also happen to be pitching money into ENCQOR. My March 21, 2018 posting describes the latest entry into the Canadian graphite mining stakes.

As for the questions I posed about processing power, etc. It seems the South Koreans have found answers of some kind but it’s hard to evaluate as I haven’t found any additional information about 5G and its implementation in South Korea. If anyone has answers, please feel free to leave them in the ‘comments’. Thank you.

Self-learning neuromorphic chip

There aren’t many details about this chip and so far as I can tell this technology is not based on a memristor. From a May 16, 2017 news item on plys.org,

Today [May 16, 2017], at the imec technology forum (ITF2017), imec demonstrated the world’s first self-learning neuromorphic chip. The brain-inspired chip, based on OxRAM technology, has the capability of self-learning and has been demonstrated to have the ability to compose music.

Here’s a sample,

A May 16, 2017 imec press release, which originated the news item, expands on the theme,

The human brain is a dream for computer scientists: it has a huge computing power while consuming only a few tens of Watts. Imec researchers are combining state-of-the-art hardware and software to design chips that feature these desirable characteristics of a self-learning system. Imec’s ultimate goal is to design the process technology and building blocks to make artificial intelligence to be energy efficient so that that it can be integrated into sensors. Such intelligent sensors will drive the internet of things forward. This would not only allow machine learning to be present in all sensors but also allow on-field learning capability to further improve the learning.

By co-optimizing the hardware and the software, the chip features machine learning and intelligence characteristics on a small area, while consuming only very little power. The chip is self-learning, meaning that is makes associations between what it has experienced and what it experiences. The more it experiences, the stronger the connections will be. The chip presented today has learned to compose new music and the rules for the composition are learnt on the fly.

It is imec’s ultimate goal to further advance both hardware and software to achieve very low-power, high-performance, low-cost and highly miniaturized neuromorphic chips that can be applied in many domains ranging for personal health, energy, traffic management etc. For example, neuromorphic chips integrated into sensors for health monitoring would enable to identify a particular heartrate change that could lead to heart abnormalities, and would learn to recognize slightly different ECG patterns that vary between individuals. Such neuromorphic chips would thus enable more customized and patient-centric monitoring.

“Because we have hardware, system design and software expertise under one roof, imec is ideally positioned to drive neuromorphic computing forward,” says Praveen Raghavan, distinguished member of the technical Staff at imec. “Our chip has evolved from co-optimizing logic, memory, algorithms and system in a holistic way. This way, we succeeded in developing the building blocks for such a self-learning system.”

About ITF

The Imec Technology Forum (ITF) is imec’s series of internationally acclaimed events with a clear focus on the technologies that will drive groundbreaking innovation in healthcare, smart cities and mobility, ICT, logistics and manufacturing, and energy.

At ITF, some of the world’s greatest minds in technology take the stage. Their talks cover a wide range of domains – such as advanced chip scaling, smart imaging, sensor and communication systems, the IoT, supercomputing, sustainable energy and battery technology, and much more. As leading innovators in their fields, they also present early insights in market trends, evolutions, and breakthroughs in nanoelectronics and digital technology: What will be successful and what not, in five or even ten years from now? How will technology evolve, and how fast? And who can help you implement your technology roadmaps?

About imec

Imec is the world-leading research and innovation hub in nano-electronics and digital technologies. The combination of our widely-acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy.

As a trusted partner for companies, start-ups and universities we bring together close to 3,500 brilliant minds from over 75 nationalities. Imec is headquartered in Leuven, Belgium and also has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, China, and offices in India and Japan. In 2016, imec’s revenue (P&L) totaled 496 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited), imec Florida (IMEC USA nanoelectronics design center).

I don’t usually include the ‘abouts’ but I was quite intrigued by imec. For anyone curious about the ITF (imec Forums), here’s a website with a listing all of the previously held and upcoming 2017 forums.

Keeping up with science is impossible: ruminations on a nanotechnology talk

I think it’s time to give this suggestion again. Always hold a little doubt about the science information you read and hear. Everybody makes mistakes.

Here’s an example of what can happen. George Tulevski who gave a talk about nanotechnology in Nov. 2016 for TED@IBM is an accomplished scientist who appears to have made an error during his TED talk. From Tulevski’s The Next Step in Nanotechnology talk transcript page,

When I was a graduate student, it was one of the most exciting times to be working in nanotechnology. There were scientific breakthroughs happening all the time. The conferences were buzzing, there was tons of money pouring in from funding agencies. And the reason is when objects get really small, they’re governed by a different set of physics that govern ordinary objects, like the ones we interact with. We call this physics quantum mechanics. [emphases mine] And what it tells you is that you can precisely tune their behavior just by making seemingly small changes to them, like adding or removing a handful of atoms, or twisting the material. It’s like this ultimate toolkit. You really felt empowered; you felt like you could make anything.

In September 2016, scientists at Cambridge University (UK) announced they had concrete proof that the physics governing materials at the nanoscale is unique, i.e., it does not follow the rules of either classical or quantum physics. From my Oct. 27, 2016 posting,

A Sept. 29, 2016 University of Cambridge press release, which originated the news item, hones in on the peculiarities of the nanoscale,

In the middle, on the order of around 10–100,000 molecules, something different is going on. Because it’s such a tiny scale, the particles have a really big surface-area-to-volume ratio. This means the energetics of what goes on at the surface become very important, much as they do on the atomic scale, where quantum mechanics is often applied.

Classical thermodynamics breaks down. But because there are so many particles, and there are many interactions between them, the quantum model doesn’t quite work either.

It is very, very easy to miss new developments no matter how tirelessly you scan for information.

Tulevski is a good, interesting, and informed speaker but I do have one other hesitation regarding his talk. He seems to think that over the last 15 years there should have been more practical applications arising from the field of nanotechnology. There are two aspects here. First, he seems to be dating the ‘nanotechnology’ effort from the beginning of the US National Nanotechnology Initiative and there are many scientists who would object to that as the starting point. Second, 15 or even 30 or more years is a brief period of time especially when you are investigating that which hasn’t been investigated before. For example, you might want to check out the book, “Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life” (published 1985) is a book by Steven Shapin and Simon Schaffer (Wikipedia entry for the book). The amount of time (years) spent on how to make just the glue which held the various experimental apparatuses together was a revelation to me. Of  course, it makes perfect sense that if you’re trying something new, you’re going to have figure out everything.

By the way, I include my blog as one of the sources of information that can be faulty despite efforts to make corrections and to keep up with the latest. Even the scientists at Cambridge University can run into some problems as I noted in my Jan. 28, 2016 posting.

Getting back to Tulevsk, herei’s a link to his lively, informative talk :
https://www.ted.com/talks/george_tulevski_the_next_step_in_nanotechnology#t-562570

ETA Jan. 24, 2017: For some insight into how uncertain, tortuous, and expensive commercializing technology can be read Dexter Johnson’s Jan. 23, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website). Here’s an excerpt (Note: Links have been removed),

The brief description of this odyssey includes US $78 million in financing over 15 years and $50 million in revenues over that period through licensing of its technology and patents. That revenue includes a back-against-the-wall sell-off of a key business unit to Lockheed Martin in 2008.  Another key moment occured back in 2012 when Belgian-based nanoelectronics powerhouse Imec took on the job of further developing Nantero’s carbon-nanotube-based memory back in 2012. Despite the money and support from major electronics players, the big commercial breakout of their NRAM technology seemed ever less likely to happen with the passage of time.

Clothing which turns you into a billboard

This work from a Belgian-Dutch initiative has the potential to turn us into billboards. From a Sept. 2, 2015 news item on Nanowerk,

Researchers from Holst Centre (set up by TNO and imec), imec and CMST, imec’s associated lab at Ghent University [Belgium], have demonstrated the world’s first stretchable and conformable thin-film transistor (TFT) driven LED display laminated into textiles. This paves the way to wearable displays in clothing providing users with feedback.

Here’s what it looks like,

A Sept. 2, 2015 Holst Centre press release, which originated the news item, provides more details,

“Wearable devices allow people to monitor their fitness and health so they can live full and active lives for longer. But to maximize the benefits wearables can offer, they need to be able to provide feedback on what users are doing as well as measuring it. By combining imec’s patented stretch technology with our expertise in active-matrix backplanes and integrating electronics into fabrics, we’ve taken a giant step towards that possibility,” says Edsger Smits, Senior research scientist at Holst Centre.

The conformable display is very thin and mechanically stretchable. A fine-grain version of the proven meander interconnect technology was developed by the CMST lab at Ghent University and Holst Centre to link standard (rigid) LEDs into a flexible and stretchable display. The LED displays are fabricated on a polyimide substrate and encapsulated in rubber, allowing the displays to be laminated in to textiles that can be washed. Importantly, the technology uses fabrication steps that are known to the manufacturing industry, enabling rapid industrialization.

Following an initial demonstration at the Society for Information Display’s Display Week in San Jose, USA earlier this year, Holst Centre has presented the next generation of the display at the International Meeting on Information Display (IMID) in Daegu, Korea, 18-21 August 2015. Smaller LEDs are now mounted on an amorphous indium-gallium-zinc oxide (a-IGZO) TFT backplane that employs a two-transistor and one capacitor (2T-1C) pixel engine to drive the LEDs. These second-generation displays offer higher pitch and increased, average brightness. The presentation will feature a 32×32 pixel demonstrator with a resolution of 13 pixels per inch (ppi) and average brightness above 200 candelas per square meter (cd/m2). Work is ongoing to further industrialize this technology.

There are some references for the work offered at the end of the press release but I believe they are citing their conference presentations,

9.4: Stretchable 45 × 80 RGB LED Display Using Meander Wiring Technology, Ohmae et al. SID 2015, June 2015

1.2: Rollable, Foldable and Stretchable Displays, Gelinck et al. IMID, Aug. 2015.

13.4 A conformable Active Matrix LED Display, Tripathi et al. IMID, Aug. 2015

For anyone interested in imec formerly the Interuniversity Microelectronics Centre, there’s this Wikipedia entry, and in TNO (Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek in Dutch), there’s this Wikipedia entry.

ASCENT: access to European Nanoelectronics Infrastructure

ASCENT is an Irish-French-Belgian-led collaborative project designed to open up state of the state-of-the-art facilities to researchers across Europe. From a June 10, 2015 news item on Nanowerk,

ASCENT opens the doors to the world’s most advanced nanoelectronics infrastructures in Europe. Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, leading European nanoelectronics institutes, have entered into a collaborative open-access project called ASCENT (Access to European Nanoelectronics Network), to mobilise European research capabilities like never before.

The €4.7 million project will make the unique research infrastructure of three of Europe’s premier research centres available to the nanoelectronics modelling-and-characterisation research community.

A June 10, 2015 Imec press release, which originated the news item, expands on the theme,

The three partners will provide researchers access to advanced device data, test chips and characterisation equipment. This access programme will enable the research community to explore exciting new developments in industry and meet the challenges created in an ever-evolving and demanding digital world.

The partners’ respective facilities are truly world-class, representing over €2 billion of combined research infrastructure with unique credentials in advanced semiconductor processing, nanofabrication, heterogeneous and 3D integration, electrical characterisation and atomistic and TCAD modelling. This is the first time that access to these state-of-the-art devices and test structures will become available anywhere in the world.

The project will engage industry directly through an ‘Industry Innovation Committee’ and will feed back the results of the open research to device manufacturers, giving them crucial information to improve the next generation of electronic devices.

Speaking on behalf of project coordinator, Tyndall National Institute, CEO Dr. Kieran Drain said: “We are delighted to coordinate the ASCENT programme and to be partners with world-leading institutes CEA-Leti and imec. Tyndall has a great track record in running successful collaborative open-access programmes, delivering real economic and societal impact. ASCENT has the capacity to change the paradigm of European research through unprecedented access to cutting-edge technologies. We are confident that ASCENT will ensure that Europe remains at the forefront of global nanoelectronics development.”

“The ASCENT project is an efficient, strategic way to open the complementary infrastructure and expertise of Tyndall, Leti and imec to a broad range of researchers from Europe’s nanoelectronics modelling-and-characterisation sectors,” said Leti CEO Marie-Noëlle Semeria. “Collaborative projects like this, that bring together diverse, dedicated and talented people, have synergistic affects that benefit everyone involved, while addressing pressing technological challenges.”

“In the frame of the ASCENT project, three of Europe’s leading research institutes – Tyndall, imec and Leti – join forces in supporting the EU research and academic community, SMEs and industry by providing access to test structures and electrical data of state-of-the-art semiconductor technologies,” stated Luc Van den hove, CEO of imec. “This will enable them to explore exciting new opportunities in the ‘More Moore’ [probably a Moore’s law reference] as well as the ‘More than Moore’ domains, and will allow them to participate and compete effectively on the global stage for the development of advanced nano-electronics.”

I’m curious as to how they plan to balance industry requests with academic requests. Will organizations that can afford to pay more get preference?