Tag Archives: biosensors

Do-it-yourself sensors possible with biocatalytic pen technology

The engineers at the University of California at San Diego (UCSD) are envisioning a future where anyone can create a biosensor anywhere. From a March 3, 2015 news item on Azonano,

A new simple tool developed by nanoengineers at the University of California, San Diego, is opening the door to an era when anyone will be able to build sensors, anywhere, including physicians in the clinic, patients in their home and soldiers in the field.

The team from the University of California, San Diego, developed high-tech bio-inks that react with several chemicals, including glucose. They filled off-the-shelf ballpoint pens with the inks and were able to draw sensors to measure glucose directly on the skin and sensors to measure pollution on leaves.

A March 2, 2015 UCSD news release by Ioana Patringenaru, which originated the news item, describes the researchers’ hopes for this technology,

Skin and leaves aren’t the only media on which the pens could be used. Researchers envision sensors drawn directly on smart phones for personalized and inexpensive health monitoring or on external building walls for monitoring of toxic gas pollutants. The sensors also could be used on the battlefield to detect explosives and nerve agents.

The team, led by Joseph Wang, the chairman of the Department of NanoEngineering at the University of California, San Diego, published their findings in the Feb. 26 [2015] issue of Advanced Healthcare Materials. Wang also directs the Center for Wearable Sensors at UC San Diego.

“Our new biocatalytic pen technology, based on novel enzymatic inks, holds considerable promise for a broad range of applications on site and in the field,” Wang said.

The news release goes on to describe one of the key concerns with developing the ink,

The biggest challenge the researchers faced was making inks from chemicals and biochemicals that aren’t harmful to humans or plants; could function as the sensors’ electrodes; and retain their properties over long periods in storage and in various conditions. Researchers turned to biocompatible polyethylene glycol, which is used in several drug delivery applications, as a binder. To make the inks conductive to electric current they used graphite powder. They also added chitosan, an antibacterial agent which is used in bandages to reduce bleeding, to make sure the ink adhered to any surfaces it was used on. The inks’ recipe also includes xylitol, a sugar substitute, which helps stabilize enzymes that react with several chemicals the do-it-yourself sensors are designed to monitor.

There’s a backstory to this research,

Wang’s team has been investigating how to make glucose testing for diabetics easier for several years. The same team of engineers recently developed non-invasive glucose sensors in the form of temporary tattoos. In this study, they used pens, loaded with an ink that reacts to glucose, to draw reusable glucose-measuring sensors on a pattern printed on a transparent, flexible material which includes an electrode. Researchers then pricked a subject’s finger and put the blood sample on the sensor. The enzymatic ink reacted with glucose and the electrode recorded the measurement, which was transmitted to a glucose-measuring device. Researchers then wiped the pattern clean and drew on it again to take another measurement after the subject had eaten.

Researchers estimate that one pen contains enough ink to draw the equivalent of 500 high-fidelity glucose sensor strips. Nanoengineers also demonstrated that the sensors could be drawn directly on the skin and that they could communicate with a Bluetooth-enabled electronic device that controls electrodes called a potentiostat, to gather data.

As mentioned earlier, there are more applications being considered (from the news release),

The pens would also allow users to draw sensors that detect pollutants and potentially harmful chemicals sensors on the spot. Researchers demonstrated that this was possible by drawing a sensor on a leaf with an ink loaded with enzymes that react with phenol, an industrial chemical, which can also be found in cosmetics, including sunscreen. The leaf was then dipped in a solution of water and phenol and the sensor was connected to a pollution detector. The sensors could be modified to react with many pollutants, including heavy metals or pesticides.

Next steps include connecting the sensors wirelessly to monitoring devices and investigating how the sensors perform in difficult conditions, including extreme temperatures, varying humidity and extended exposure to sunlight.

The researchers’ have provided a picture of the pen and a leaf,

Researchers drew sensors capable of detecting pollutants on a leaf. Courtesy: University of California at San Diego

Researchers drew sensors capable of detecting pollutants on a leaf. Courtesy: University of California at San Diego

Here’s a link to and a citation for the paper,

Biocompatible Enzymatic Roller Pens for Direct Writing of Biocatalytic Materials: “Do-it-Yourself” Electrochemical Biosensors by Amay J. Bandodkar, Wenzhao Jia, Julian Ramírez, and Joseph Wang. Advanced Healthcare Materials DOI: 10.1002/adhm.201400808 Article first published online: 26 FEB 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Monitoring health with graphene rubber bands

An Aug. 20, 2014 news item on Azonano highlights graphene research from the University of Surrey (UK) and Trinity College Dublin (Ireland),

Although body motion sensors already exist in different forms, they have not been widely used due to their complexity and cost of production.

Now researchers from the University of Surrey and Trinity College Dublin have for the first time treated common elastic bands with graphene, to create a flexible sensor that is sensitive enough for medical use and can be made cheaply.

An Aug. 15, 2014 University of Surrey press release (also on EurekAlert), which originated the news item, describes the innovation (Note: A link has been removed),

Once treated, the rubber bands remain highly pliable. By fusing this material with graphene – which imparts an electromechanical response on movement – the material can be used as a sensor to measure a patient’s breathing, heart rate or movement, alerting doctors to any irregularities.

“Until now, no such sensor has been produced that meets these needs,” said Surrey’s Dr Alan Dalton. “It sounds like a simple concept, but our graphene-infused rubber bands could really help to revolutionise remote healthcare – and they’re very cheap to manufacture.”

“These sensors are extraordinarily cheap compared to existing technologies. Each device would probably cost pennies instead of pounds, making it ideal technology for use in developing countries where there are not enough medically trained staff to effectively monitor and treat patients quickly.” [commented corresponding author, Professor Jonathan Coleman from Trinity College, Dublin]

Trinity College Dublin issued an Aug. 20, 2014 press release, which provides a little more technical detail and clarifies who led the team for anyone who may been curious about the matter,

The team – led by Professor of Chemical Physics at Trinity, Jonathan Coleman, one of the world’s leading nanoscientists – infused rubber bands with graphene, a nano-material derived from pencil lead which is 10,000 times smaller than the width of a human hair. This process is simple and compatible with normal manufacturing techniques. While rubber does not normally conduct electricity, the addition of graphene made the rubber bands electrically conductive without degrading the mechanical properties of the rubber. Tests showed that any electrical current flowing through the graphene-infused rubber bands was very strongly affected if the band was stretched. As a result, if the band is attached to clothing, the tiniest movements such as breath and pulse can be sensed.

The discovery opens up a host of possibilities for the development of wearable sensors from rubber, which could be used to monitor blood pressure, joint movement and respiration. Other applications of rubber-graphene sensors could be in the automotive industry (to develop sensitive airbags); in robotics, in medical device development (to monitor bodily motion), as early warning systems for cot death in babies or sleep apnoea in adults. They could also be woven into clothing to monitor athletes’ movement or for patients undergoing physical rehabilitation.

Professor Coleman said: “Sensors are becoming extremely important in medicine, wellness and exercise, medical device manufacturing, car manufacturing and robotics, among other areas. Biosensors, which are worn on or implanted into the skin, must be made of durable, flexible and stretchable materials that respond to the motion of the wearer. By implanting graphene into rubber, a flexible natural material, we are able to completely change its properties to make it electrically conductive, to develop a completely new type of sensor. Because rubber is available widely and cheaply, this unique discovery will open up major possibilities in sensor manufacturing worldwide.”

Here’s a link to and a citation for the paper,

Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites by Conor S. Boland, Umar Khan, Claudia Backes, Arlene O’Neill, Joe McCauley, Shane Duane, Ravi Shanker, Yang Liu, Izabela Jurewicz, Alan B. Dalton, and Jonathan N. Coleman. ACS Nano, Article ASAP DOI: 10.1021/nn503454h Publication Date (Web): August 6, 2014

Copyright © 2014 American Chemical Society

This paper is open access (I was able to open the HTML version this morning, Aug. 20, 2014). As well the researchers have made this image illustrating their work available,

[downloaded from http://pubs.acs.org/doi/full/10.1021/nn503454h]

[downloaded from http://pubs.acs.org/doi/full/10.1021/nn503454h]

Nanodiamonds detect the iron in your blood

Too little iron in the blood can lead to anemia and too much can signal problems with the immune system; German researchers have devised a promising new technique for detecting the amount of iron in the blood according to an Oct. 2, 2013 news item on ScienceDaily,

Lack of iron — caused by malnutrition — can lead to anemia while an increased level of iron may signal the presence of an acute inflammatory response. Therefore, the blood iron level is an important medical diagnostic agent. Researchers at Ulm University [Germany], led by experimental physicist Fedor Jelezko, theoretical physicist Martin Plenio and chemist Tanja Weil, have developed a novel biosensor for determination of iron content that is based on nanodiamonds.

Here’s an image of microscopic diamonds before they’ve been ground down to the nanoscale,

(Photo: Fedor Jelezko): Microscope picture of small diamonds, 100 microns in diameter. Specific lattice defects do not only impart colour on the diamonds but also provide the basis for the magnetic field sensor. In their experiments the team at Ulm ground down these diamonds to a size of 20 nanometers (as a comparison, a human hair has a diameter of 70 microns and is therefore 3000 times thicker than the nanodiamonds).

(Photo: Fedor Jelezko): Microscope picture of small diamonds, 100 microns in diameter. Specific lattice defects do not only impart colour on the diamonds but also provide the basis for the magnetic field sensor. In their experiments the team at Ulm ground down these diamonds to a size of 20 nanometers (as a comparison, a human hair has a diameter of 70 microns and is therefore 3000 times thicker than the nanodiamonds).

The Oct. 2, 2013 University of Ulm news release (on the Alpha Galileo Foundation website,) which originated the news item, describes the problem the scientists were addressing and their solution,

“Standard blood tests do not capture — as one might expect — free iron ions in the blood, because free iron is toxic and is therefore hardly detectable in blood,” explains Professor Tanja Weil, director of the Institute for Organic Chemistry III, University of Ulm. These methods are based on certain proteins instead that are responsible for the storage and transport of iron. One of these proteins is Ferritin that can contain up to 4,500 magnetic iron ions. Most standard tests are based on immunological techniques and estimate the iron concentration indirectly based on different markers. Results from different tests may however lead to inconsistent results in some clinical situations.

The Ulm scientists have developed a completely new approach to detect Ferritin. This required a combination of several new ideas. First, each ferritin-bound iron atom generates a magnetic field but as there are only 4,500 of them, the total magnetic field they generate is very small indeed and therefore hard to measure. This indeed, posed the second challenge for the team: to develop a method that is sufficiently sensitive to detect such weak magnetic fields. This they achieved by making use of a completely new, innovative technology based on tiny artificial diamonds of nanometer size. Crucially these diamonds are not perfect —colorless and transparent — but contain lattice defects which are optically active and thus provide the color of diamonds.

“These color centers allow us to measure the orientation of electron spins in external fields and thus measure their strength” explains Professor Fedor Jelezko, director of the Ulm Institute of Quantum Optics. Thirdly, the team had to find a way to adsorb ferritin on the surface of the diamond. “This we achieved with the help of electrostatic interactions between the tiny diamond particles and ferritin proteins,” adds Weil. Finally, “Theoretical modeling was essential to ensure that the signal measured is in fact consistent with the presence of ferritin and thus to validate the method,” states Martin Plenio, director of the Institute for Theoretical Physics. Future plans of the Ulm team include the precise determination of the number of ferritin proteins and the average iron load of individual proteins.

As the news release notes, this research is part of a larger project,

The demonstration of this innovative method, reported in Nano Letters [journal], represents a first step towards the goals of their recently awarded BioQ Synergy Grant. [10.3 million Euro which the scientists were awarded last December 2012 by the European Research Council] The focus of this project is the exploration of quantum properties in biology and the creation of self-organized diamond structures.

“Diamond sensors can thus be applied in biology and medicine,” say the Ulm scientists. But their new invention has its limits “. Whether the children have actually eaten their spinach cannot be detected with the diamond sensor, that’s still the prerogative of parents “, confesses quantum physicist Plenio

Here’s a link to and a citation for the paper,

Detection of a Few Metallo-Protein Molecules Using Color Centers in Nanodiamonds by A. Ermakova, G. Pramanik, J.-M. Cai, G. Algara-Siller,  U. Kaiser, T. Weil, Y.-K. Tzeng, H. C. Chang, L. P. McGuinness, M. B. Plenio, B. Naydenov, and F. Jelezko. Nano Lett., 2013, 13 (7), pp 3305–3309 DOI: 10.1021/nl4015233 Publication Date (Web): June 5, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

e-Gnosis chip (nanopore sensor) competition on Marblar—winning money and developing a reputation for brilliance

It’s probably best to explain Marblar, a creative ‘playground’ or, as it could be called, a ‘wisdom of the crowd initiative’, before describing the e-Gnosis chip project.

Basically, Marblar is inviting people to participate in an online game/conversation where competitors make suggestions to ‘host’ inventors about how to best commercialize their inventions. Anyone can register to join in; there are two types of incentives for ‘game players’. First, they can accumulate marbles/points by voting and/or contributing ideas. Second, they can win cash prizes. Here’s how the Marblar community describes itself, from the About page,

Marblar is a creative playground that takes over-looked technology and unleashes a crowd of multi-disciplined, brilliant Marblars to discover new applications.

It is like a big game where many minds work together to realise the promise of science. Working with tech holders, we find the best technology deserving of a second look and transform these into challenges for the crowd of Marblars. The best ideas win points, kudos, and prizes. Best yet anyone can tackle any challenge. We don’t care what your background is…we care about your applied brilliance.

There’s a very interesting list of organizations backing this initiative, heavily weighted towards UK institutions but with a solid international presence, from the Partners page,

University of Oxford
Oxford, England

MRC Laboratory of Molecular Biology
Cambridge, England

Svaya Nanotechnologies
California, USA

Imperial Innovations
London, England

Edinburgh Research and Innovation
Edinburgh, Scotland

King’s College London
London, UK

Exploit Technologies
Singapore

Virginia Tech
Virginia, USA

Getting back to the game, for the hosted competitions, participants get to brainstorm ideas for a fixed period of time. These ideas are then refined over another fixed period of time with the inventor finally choosing a winner.

Now on to the specific game/project, the e-Gnosis chip (nanopore sensor). The inventor, Peter Kollensperger of the Imperial College London, has created a portable diagnostic device. There are many such diagnostic devices being developed all over the world, many of them designed for medical use. Kollensperger wants to find another market niche for his e-Gnosis chip device,

The vast majority of biosensors today are based on some form of optical readout to get the  results you want. You usually have a choice between inexpensive (but non-quantitative) methods such as lateral flow tests (e.g. pregnancy tests), which just show you a blue line if positive, or more sensitive tests that can tell you how much of the analyte is present using specialised optical equipment. These quantitative tests generally require several extra wash steps and additional reagents and are carried out by labs or on specialised microfluidic or robotic platforms. We wanted to develop a sensitive, quantitative technology that doesn’t require expensive platforms but instead:

  • Could be read using a low-cost smartphone or laptop accessory (<$20);
  • Works with a small amount of sample (~10 microlitre, such as a tiny drop of blood, urine or saliva)
  • Requires no (or just one) washing steps.
  • Runs several different tests on the same sample simultaneously.
  • Is as easy to use as a pregnancy test.

Here’s what the inventor is looking for (from the e-Gnosis chip page),

We’ve been looking at the field of medical diagnostics for a while, but the point-of-care market is highly competitive, fragmented into relatively small markets, with high entry barriers in the form of FDA [US Food and Drug Administration]/EMA [European Medicines Agency] approval. So for any medical diagnostic we’d need a large market, where our device’s unique features (multiplexing, rapid & simple point-of-care use without sample prep) offer a very significant competitive advantage, and can justify the high barrier costs for approval.

We’d be very interested to hear ideas about a consumer market to prove the device commercially, keeping in mind:

  • While the chip-manufacturing part of the process is cheap, the cost/test is unlikely to ever fall below $6-8 due to functionalization and assembly. We need an application where customers would pay enough to allow a reasonable profit margin.
  • Need a high-volume application to justify setup costs of chip-manufacture (>$300k). What’s your market size?
  • What would be the market entry route? Who’d be our commercial partners? What are the competing devices and their price? How would distinguish ourselves against these?

Here’s a little more about Kollensperger (from the e-Gnosis chip page),

I’m Peter Kollensperger and I’m working with Prof. Green in the Optical and Semiconductor Devices Group of the Electrical and Electronic Engineering Department at Imperial College London.

My research to date has focused on the use of nanotechnology for biosensing applications, but my overarching interest is in making diagnostic/sensing technologies more accessible both to doctors and the general public.

The combination of scalable nanotechnology and the hugely parallel processing of semiconductor foundries holds great promise for the area of biosensors and we are looking for applications where the end-user wants to get results on the go without spending a large upfront amount on a reader. This can be in medical diagnostics, but ideally would be in an underserved consumer market where the combination of properties of our chip can make a real difference.

The Marblar community offers video services for the inventors hosting competitions and this is Kollensperger’s

Diagnostics Array from Marblar on Vimeo.

There’s still time (20 days) to enter the competition. Good luck!

By the way, I owe a big thank you to Daniel Bayley for contacting me about the project and about Marblar.

Biosensing cocaine

Amusingly, the Feb. 13, 2013 news item on Nanowerk highlights the biosensing aspect of the work in its title,

New biosensing nanotechnology adopts natural mechanisms to detect molecules

(Nanowerk News) Since the beginning of time, living organisms have developed ingenious mechanisms to monitor their environment.

The Feb. 13, 2013 news release from the University of Montreal (Université de Montréal) takes a somewhat different tack by focusing on cocaine,

Detecting cocaine “naturally”

Since the beginning of time, living organisms have developed ingenious mechanisms to monitor their environment. As part of an international study, a team of researchers has adapted some of these natural mechanisms to detect specific molecules such as cocaine more accurately and quickly. Their work may greatly facilitate the rapid screening—less than five minutes—of many drugs, infectious diseases, and cancers.

Professor Alexis Vallée-Bélisle of the University of Montreal Department of Chemistry has worked with Professor Francesco Ricci of the University of Rome Tor Vergata and Professor Kevin W. Plaxco of the University of California at Santa Barbara to improve a new biosensing nanotechnology. The results of the study were recently published in the Journal of American Chemical Society (JACS).

The scientists have provided an interesting image to illustrate their work,

Artist's rendering: the research team used an existing cocaine biosensor (in green) and revised its design to react to a series of inhibitor molecules (in blue). They were able to adapt the biosensor to respond optimally even within a large concentration window. Courtesy: University of Montreal

Artist’s rendering: the research team used an existing cocaine biosensor (in green) and revised its design to react to a series of inhibitor molecules (in blue). They were able to adapt the biosensor to respond optimally even within a large concentration window. Courtesy: University of Montreal

The news release provides some insight into the current state of biosensing and what the research team was attempting to accomplish,

“Nature is a continuing source of inspiration for developing new technologies,” says Professor Francesco Ricci, senior author of the study. “Many scientists are currently working to develop biosensor technology to detect—directly in the bloodstream and in seconds—drug, disease, and cancer molecules.”

“The most recent rapid and easy-to-use biosensors developed by scientists to determine the levels of various molecules such as drugs and disease markers in the blood only do so when the molecule is present in a certain concentration, called the concentration window,” adds Professor Vallée-Bélisle. “Below or above this window, current biosensors lose much of their accuracy.”

To overcome this limitation, the international team looked at nature: “In cells, living organisms often use inhibitor or activator molecules to automatically program the sensitivity of their receptors (sensors), which are able to identify the precise amount of thousand of molecules in seconds,” explains Professor Vallée-Bélisle. “We therefore decided to adapt these inhibition, activation, and sequestration mechanisms to improve the efficiency of artificial biosensors.”

The researchers put their idea to the test by using an existing cocaine biosensor and revising its design so that it would respond to a series of inhibitor molecules. They were able to adapt the biosensor to respond optimally even with a large concentration window. “What is fascinating,” says Alessandro Porchetta, a doctoral student at the University of Rome, “is that we were successful in controlling the interactions of this system by mimicking mechanisms that occur naturally.”

“Besides the obvious applications in biosensor design, I think this work will pave the way for important applications related to the administration of cancer-targeting drugs, an area of increasing importance,” says Professor Kevin Plaxco. “The ability to accurately regulate biosensor or nanomachine’s activities will greatly increase their efficiency.”

The funders for this project are (from the news release),

… the Italian Ministry of Universities and Research (MIUR), the Bill & Melinda Gates Foundation Grand Challenges Explorations program, the European Commission Marie Curie Actions program, the U.S. National Institutes of Health, and the Fonds de recherche du Québec Nature et Technologies.

Here’s a citation and a link to the research paper,

Using Distal-Site Mutations and Allosteric Inhibition To Tune, Extend, and Narrow the Useful Dynamic Range of Aptamer-Based Sensors by Alessandro Porchetta, Alexis Vallée-Bélisle, Kevin W. Plaxco, and Francesco Ricci. J. Am. Chem. Soc., 2012, 134 (51), pp 20601–20604 DOI: 10.1021/ja310585e Publication Date (Web): December 6, 2012

Copyright © 2012 American Chemical Society

This article is behind a paywall.

One final note, Alexis Vallée-Bélisle has been mentioned here before in the context of a ‘Grand Challenges Canada programme’ (not the Bill and Melinda Gates ‘Grand Challenges’) announcement of several fundees  in my Nov. 22, 2012 posting. That funding appears to be for a difference project.

Blood-, milk-, and mucus-powered electronics

Researchers at Tel Aviv University ([TAU] Israel) have already begun to develop biodegradable display screens in their quest to create electronic devices powered by blood, milk, and mucus proteins found in our bodies. From the March 7, 2012 news item on Nanowerk,

… a team including Ph.D. students Elad Mentovich and Netta Hendler of TAU’s Department of Chemistry and The Center for Nanoscience and Nanotechnology, with supervisor Dr. Shachar Richter and in collaboration with Prof. Michael Gozin and his Ph.D. student Bogdan Belgorodsky, has brought together cutting-edge techniques from multiple fields of science to create protein-based transistors — semi-conductors used to power electronic devices — from organic materials found in the human body. They could become the basis of a new generation of nano-sized technologies that are both flexible and biodegradable.

The March 7, 2012 news release on the American Friend of TAU website notes some of the issues with silicon-based electronics,

One of the challenges of using silicon as a semi-conductor is that a transistor must be created with a “top down” approach. Manufacturers start with a sheet of silicon and carve it into the shape that is needed, like carving a sculpture out of a rock. This method limits the capabilities of transistors when it comes to factors such as size and flexibility.

The TAU researchers turned to biology and chemistry for a different approach to building the ideal transistor. When they applied various combinations of blood, milk, and mucus proteins to any base material, the molecules self-assembled to create a semi-conducting film on a nano-scale. In the case of blood protein, for example, the film is approximately four nanometers high. The current technology in use now is 18 nanometers, says Mentovich.

Together, the three different kinds of proteins create a complete circuit with electronic and optical capabilities, each bringing something unique to the table. Blood protein has the ability to absorb oxygen, Mentovich says, which permits the “doping” of semi-conductors with specific chemicals in order to create specific technological properties. Milk proteins, known for their strength in difficult environments, form the fibers which are the building blocks of the transistors, while the mucosal proteins have the ability to keep red, green and, blue fluorescent dyes separate, together creating the white light emission that is necessary for advanced optics.

Overall, the natural abilities of each protein give the researchers “unique control” over the resulting organic transistor, allowing adjustments for conductivity, memory storage, and fluorescence among other characteristics.

I have previously featured work on vampire (blood-powered) fuel cells and batteries  in my July 18, 2012 posting and my April 3, 2009 posting so the notion of using blood (and presumably other bodily fluids) as a source for electrical power is generating (pun intended, weak though it is) interest in many research labs.

While the researchers don’t speculate about integrating these new carbon-based devices, which are smaller and more flexible than current devices, in bodies (from the American Friends of TAU news release),

Technology is now shifting from a silicon era to a carbon era, notes Mentovich, and this new type of transistor could play a big role. Transistors built from these proteins will be ideal for smaller, flexible devices that are made out of plastic rather than silicon, which exists in wafer form that would shatter like glass if bent. The breakthrough could lead to a new range of flexible technologies, such as screens, cell phones and tablets, biosensors, and microprocessor chips.

Just as significant, because the researchers are using natural proteins to build their transistor, the products they create will be biodegradable. It’s a far more environmentally friendly technology that addresses the growing problem of electronic waste, which is overflowing landfills worldwide.

The biodegradability of these proposed devices may be a problem if they are integrated into our bodies but it is certain that this will be attempted as we continue to explore machine/flesh possibilities.

Surveillance by design and by accident

In general, one thinks of surveillance as an activity undertaken by the military or the police or some other arm of the state (a spy agency of some kind). The  Nano Hummingbird, a drone from AeroVironment designed for the US Pentagon, would fit into any or all of those categories.

AeroVironment's hummingbird drone // Source: suasnews.com (downloaded from Homeland Security Newswire)

You can see the device in action here,

The inset screen shows you what is being seen via the hummingbird’s camera, while the larger screen image allows you to observe the Nano Hummingbird in action. I don’t know why they’ve used the word nano as part of the product unless it is for marketing purposes. The company’s description of the product is at a fairly high level and makes no mention of the technology, nano or otherwise, that makes the hummingbird drone’s capabilities possible (from the company’s Nano Hummingbird webpage),

AV [AeroVironment] is developing the Nano Air Vehicle (NAV) under a DARPA sponsored research contract to develop a new class of air vehicle systems capable of indoor and outdoor operation. Employing biological mimicry at an extremely small scale, this unconventional aircraft could someday provide new reconnaissance and surveillance capabilities in urban environments.

The Nano Hummingbird could be described as a traditional form surveillance as could the EyeSwipe iris scanners (mentioned in my Dec. 10, 2010 posting). The EyeSwipe allows the police, military, or other state agencies to track you with cameras that scan your retinas (they’ve had trials of this technology in Mexico).

A provocative piece by Nic Fleming for the journal, New Scientist, takes this a step further. Smartphone surveillance: The cop in your pocket can be found in the July 30, 2011 issue of New Scientist (preview here; the whole article is behind a paywall),

While many of us use smartphones to keep our social lives in order, they are also turning out to be valuable tools for gathering otherwise hard-to-get data. The latest smartphones bristle with sensors …

Apparently the police are wanting to crowdsource surveillance by having members of the public use their smartphones to track licence plate numbers, etc. and notify the authorities. Concerns about these activities are noted both in Fleming article and in the August 10, 2011 posting on the Foresight Institute blog,

“Christine Peterson, president of the Foresight Institute based in Palo Alto, California, warns that without safeguards, the data we gather about each other might one day be used to undermine rather than to protect our freedom. ‘We are moving to a new level of data collection that our society is not accustomed to,’ she says.”

Peterson’s comments about data collection struck me most particularly as I’ve noticed over the last several months a number of applications designed to make life ‘easier’ that also feature data collection (i. e., collection of one’s personal data). For example, there’s Percolate. From the July 7, 2011 article by Austin Carr for Fast Company,

Percolate, currently in its “double secret alpha” version, is a blogging platform that provides curated content for you to write about. The service taps into your RSS and Twitter feeds, culls content based on your interests–the stuff that “percolates up”–and then offers you the ability to share your thoughts on the subject with friends. “We’re trying to make it easy for anyone to create content,” Brier says, “to take away from the frustration of staring at that blank box and trying to figure out what to say.”

It not only removes the frustration, it removes at least some of the impetus for creativity. The service is being framed as a convenience. Coincidentally, it makes much easier for marketers or any one or any agency to track your activities.

This data collection can get a little more intimate than just your Twitter and RSS feeds. Your underwear can monitor your bodily functions (from the June 11, 2010 news item on Nanowerk),

A team of U.S. scientists has designed some new men’s briefs that may be comfortable, durable and even stylish but, unlike most underpants, may be able to save lives.

Printed on the waistband and in constant contact with the skin is an electronic biosensor, designed to measure blood pressure, heart rate and other vital signs.

The technology, developed by nano-engineering professor Joseph Wang of University of California San Diego and his team, breaks new ground in the field of intelligent textiles and is part of shift in focus in healthcare from hospital-based treatment to home-based management.

The method is similar to conventional screen-printing although the ink contains carbon electrodes.

The project is being funded by the U.S. military with American troops likely to be the first recipients.

“This specific project involves monitoring the injury of soldiers during battlefield surgery and the goal is to develop minimally invasive sensors that can locate, in the field, and identify the type of injury,” Wang told Reuters Television.

I realize that efforts such as the ‘smart underpants’ are developed with good intentions but if the data can be used to monitor your health status, it can be used to monitor you for other reasons.

While the military can insist its soldiers be monitored, civilian efforts are based on incentives. For example, Foodzy is an application that makes dieting fun. From the July 7, 2011 article by Morgan Clendaniel on Fast Company,

As more and more people join (Foodzy is aiming for 30,000 users by the end of the year and 250,000 by the end of 2012), you’ll also start being able to see what your friends are eating. This could be a good way to keep your intake of bits down, not wanting to embarrass yourself in front of your friends as you binge on some cookies, but Kamphuis [Marjolijn Kamphuis is one of the founders] sees a more social aspect to it: “On my dashboard I am able to see what the ‘food match’ between me and my friends is, the same way Last.FM has been comparing me and my friend’s music taste for ages! I am now able to share recipes with my friends or hook up with them in real life for dinner because I notice we have similar taste.”

That sure takes the discovery/excitement aspect out of getting to know someone. As I noted with my comments about Percolate, with more of our lives being mediated by applications of this nature, the easier we are to track.

Along a parallel track, there’s a campaign to remove anonymity and/or pseudonymity from the Internet. As David Sirota notes in his August 12, 2011 Salon essay about this trend, the expressed intention is to ensure civility and minimize bullying but there is at least one other consequence,

The big potential benefit of users having to attach real identities to their Internet personas is more constructive dialogue.

As Zuckerberg [Randi Zuckerberg, Facebook executive] and Schmidt [Eric Schmidt, former Google CEO]  correctly suggest, online anonymity is primarily used by hate-mongers to turn constructive public discourse into epithet-filled diatribes. Knowing they are shielded from consequences, trolls feel empowered to spew racist, sexist and other socially unacceptable rhetoric that they’d never use offline. …

The downside, though, is that true whistle-blowers will lose one of their most essential tools.

Though today’s journalists often grant establishment sources anonymity to attack weaker critics, anonymity’s real social value is rooted in helping the powerless challenge the powerful. Think WikiLeaks, which exemplifies how online anonymity provides insiders the cover they need to publish critical information without fear of retribution. Eliminating such cover will almost certainly reduce the kind of leaks that let the public occasionally see inconvenient truths.

It’s not always about whistleblowing, some people prefer pseudonyms.  Science writer and blogger, GrrlScientist, recently suffered a blow to her pseudonymity which was administered by Google (from her July 16, 2011 posting on the Guardian science blogs),

One week ago, my entire Google account was deactivated suddenly and without warning. I was not allowed to access gmail nor any other Google service until I surrendered my personal telephone number in exchange for reinstating access to my gmail account. I still cannot access many of my other accounts, such as Google+, Reader and Buzz. My YouTube account remains locked, too.

I was never notified as to what specifically had warranted this unexpected deactivation of my account. I only learned a few hours later that my account was shut down due to the name I use on my profile page, which you claim is a violation of your “community standards”. However, as stated on your own “display name” pages, I have not violated your community standards. I complied with your stated request: my profile name is “the name that [I] commonly go by in daily life.”

My name is a pseudonym, as I openly state on my profile. I have used GrrlScientist as my pseudonym since 2000 and it has a long track record. I have given public lectures in several countries, received mail in two countries, signed contracts, received monetary payments, published in a number of venues and been interviewed for news stories – all using my pseudonym. A recent Google search shows that GrrlScientist, as spelled, is unique in the world. This meets at least two of your stated requirements; (1) I am not impersonating anyone and (2) my name represents just one person.

GrrlScientist is not the only writer who prefers a pseudonym. Mark Twain did too. His real name was Samuel J. Clemens but widely known as Mark Twain, he was the author of The Adventures of Tom Sawyer, Adventures of Huckleberry Finn, and many more books, short stories, and essays.

Minimzing bullying, ensuring civility, monitoring vital signs in battle situations, encouraging people to write, helping a friend stay on diet are laudable intentions but all of this leads to more data being collected about us and the potential for abusive use of this data.