Tag Archives: University of Calgary

The State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada

Earlier this year I featured (in a July 1, 2016 posting) the announcement of a third assessment of science and technology in Canada by the Council of Canadian Academies. At the time I speculated as to the size of the ‘expert panel’ making the assessment as they had rolled a second assessment (Industrial Research and Development) into this one on the state of science and technology. I now have my answer thanks to an Oct. 17, 2016 Council of Canadian Academies news release announcing the chairperson (received via email; Note: Links have been removed and emphases added for greater readability),

The Council of Canadian Academies (CCA) is pleased to announce Dr. Max Blouw, President and Vice-Chancellor of Wilfrid Laurier University, as Chair of the newly appointed Expert Panel on the State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada.

“Dr. Blouw is a widely respected leader with a strong background in research and academia,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “I am delighted he has agreed to serve as Chair for an assessment that will contribute to the current policy discussion in Canada.”

As Chair of the Expert Panel, Dr. Blouw will work with the multidisciplinary, multi-sectoral Expert Panel to address the following assessment question, referred to the CCA by Innovation, Science and Economic Development Canada (ISED):

What is the current state of science and technology and industrial research and development in Canada?

Dr. Blouw will lead the CCA Expert Panel to assess the available evidence and deliver its final report by late 2017. Members of the panel include experts from different fields of academic research, R&D, innovation, and research administration. The depth of the Panel’s experience and expertise, paired with the CCA’s rigorous assessment methodology, will ensure the most authoritative, credible, and independent response to the question.

“I am very pleased to accept the position of Chair for this assessment and I consider myself privileged to be working with such an eminent group of experts,” said Dr. Blouw. “The CCA’s previous reports on S&T and IR&D provided crucial insights into Canada’s strengths and weaknesses in these areas. I look forward to contributing to this important set of reports with new evidence and trends.”

Dr. Blouw was Vice-President Research, Associate Vice-President Research, and Professor of Biology, at the University of Northern British Columbia, before joining Wilfrid Laurier as President. Dr. Blouw served two terms as the chair of the university advisory group to Industry Canada and was a member of the adjudication panel for the Ontario Premier’s Discovery Awards, which recognize the province’s finest senior researchers. He recently chaired the International Review Committee of the NSERC Discovery Grants Program.

For a complete list of Expert Panel members, their biographies, and details on the assessment, please visit the assessment page. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The Expert Panel on the State of S&T and IR&D
Max Blouw, (Chair) President and Vice-Chancellor of Wilfrid Laurier University
Luis Barreto, President, Dr. Luis Barreto & Associates and Special Advisor, NEOMED-LABS
Catherine Beaudry, Professor, Department of Mathematical and Industrial Engineering, Polytechnique Montréal
Donald Brooks, FCAHS, Professor, Pathology and Laboratory Medicine, and Chemistry, University of British Columbia
Madeleine Jean, General Manager, Prompt
Philip Jessop, FRSC, Professor, Inorganic Chemistry and Canada Research Chair in Green Chemistry, Department of Chemistry, Queen’s University; Technical Director, GreenCentre Canada
Claude Lajeunesse, FCAE, Corporate Director and Interim Chair of the Board of Directors, Atomic Energy of Canada Ltd.
Steve Liang, Associate Professor, Geomatics Engineering, University of Calgary; Director, GeoSensorWeb Laboratory; CEO, SensorUp Inc.
Robert Luke, Vice-President, Research and Innovation, OCAD University
Douglas Peers, Professor, Dean of Arts, Department of History, University of Waterloo
John M. Thompson, O.C., FCAE, Retired Executive Vice-Chairman, IBM Corporation
Anne Whitelaw, Associate Dean Research, Faculty of Fine Arts and Associate Professor, Department of Art History, Concordia University
David A. Wolfe, Professor, Political Science and Co-Director, Innovation Policy Lab, Munk School of Global Affairs, University of Toronto

You can find more information about the expert panel here and about this assessment and its predecesors here.

A few observations, given the size of the task this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

Teleporting photons in Calgary (Canada) is a step towards a quantum internet

Scientists at the University of Calgary (Alberta, Canada) have set a distance record for the teleportation of photons and you can see the lead scientist is very pleased.

Wolfgang Tittel, professor of physics and astronomy at the University of Calgary, and a group of PhD students have developed a new quantum key distribution (QKD) system.

Wolfgang Tittel, professor of physics and astronomy at the University of Calgary, and a group of PhD students have developed a new quantum key distribution (QKD) system.

A Sept. 21, 2016 news item on phys.org makes the announcement (Note: A link has been removed),

What if you could behave like the crew on the Starship Enterprise and teleport yourself home or anywhere else in the world? As a human, you’re probably not going to realize this any time soon; if you’re a photon, you might want to keep reading.

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

City’s accessible dark fibre makes research possible

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

“The university receives secure access to a small portion of our fibre optic infrastructure and The City may benefit in the future by leveraging the secure encryption keys generated out of the lab’s research to protect our critical infrastructure,” said Andruschak. In order to deliver next-generation services to Calgarians, The City has been increasing its fibre optic footprint, connecting all City buildings, facilities and assets.

Timed to within one millionth of one millionth of a second

As if teleporting a photon wasn’t challenging enough, Tittel and his team encountered a number of other roadblocks along the way.

Due to changes in the outdoor temperature, the transmission time of photons from their creation point to City Hall varied over the course of a day — the time it took the researchers to gather sufficient data to support their claim. This change meant that the two photons would not meet at City Hall.

“The challenge was to keep the photons’ arrival time synchronized to within 10 pico-seconds,” says Tittel. “That is one trillionth, or one millionth of one millionth of a second.”

Secondly, parts of their lab had to be moved to two locations in the city, which as Tittel explains was particularly tricky for the measurement station at City Hall which included state-of-the-art superconducting single-photon detectors developed by the National Institute for Standards and Technology, and NASA’s Jet Propulsion Laboratory.

“Since these detectors only work at temperatures less than one degree above absolute zero the equipment also included a compact cryostat,” said Tittel.

Milestone towards a global quantum Internet

This demonstration is arguably one of the most striking manifestations of a puzzling prediction of quantum mechanics, but it also opens the path to building a future quantum internet, the long-term goal of the Tittel group.

The Urban Alliance is a strategic research partnership between The City of Calgary and University of Calgary, created in 2007 to encourage and co-ordinate the seamless transfer of cutting-edge research between the university and The City of Calgary for the benefit of all our communities. The Urban Alliance is a prime example and vehicle for one of the three foundational commitments of the University of Calgary’s Eyes High vision to fully integrate the university with the community. The City sees the Alliance as playing a key role in realizing its long-term priorities and the imagineCALGARY vision.

Here’s a link to and a citation for the paper,

Quantum teleportation across a metropolitan fibre network by Raju Valivarthi, Marcel.li Grimau Puigibert, Qiang Zhou, Gabriel H. Aguilar, Varun B. Verma, Francesco Marsili, Matthew D. Shaw, Sae Woo Nam, Daniel Oblak, & Wolfgang Tittel. Nature Photonics (2016)  doi:10.1038/nphoton.2016.180 Published online 19 September 2016

This paper is behind a paywall.

I’m 99% certain this is the paper from the Chinese researchers (referred to in the University of Calgary news release),

Quantum teleportation with independent sources and prior entanglement distribution over a network by Qi-Chao Sun, Ya-Li Mao, Si-Jing Chen, Wei Zhang, Yang-Fan Jiang, Yan-Bao Zhang, Wei-Jun Zhang, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Xiao Jiang, Teng-Yun Chen, Li-Xing You, Xian-Feng Chen, Zhen Wang, Jing-Yun Fan, Qiang Zhang & Jian-Wei Pan. Nature Photonics (2016)  doi:10.1038/nphoton.2016.179 Published online 19 September 2016

This too is behind a paywall.

Parvus Therapeutics (Calgary, Canada) and reprogramming immune cells

An international collaboration of Canadian, Spanish, and US scientists has announced a new therapeutic approach which could reverse autoimmune diseases in a Feb. 17, 2016 news item on Nanotechnology Now,

• Nanotechnology Approach Restores Glucose Regulation and Motor Function in In Vivo Preclinical Models of Diabetes and Multiple Sclerosis, Respectively; Joint Swelling and Destruction Resolved in In Vivo Model of Rheumatoid Arthritis
• Parvus’ Approach Can Be Tailored to Treat Diverse Diseases

A Feb. 17, 2016 Parvus Therapeutics news release (also on EurekAlert), which originated the news item, provides more detail and a strong orientation to marketing communication,

Parvus Therapeutics today announced the publication in Nature of a seminal paper describing the discovery and applications of a novel therapeutic approach employing nanomedicines, referred to as “Navacims”TM, to reprogram white blood cells to become regulatory cells capable of blunting autoimmune responses and restoring the equilibrium of the immune system. Navacims are nanoparticles (NPs) coated with disease-relevant peptide-major histocompatibility complexes (pMHCs) that alter the behavior of pathogenic T lymphocytes by binding directly to their antigen receptors. The peer-reviewed article, titled “Expanding antigen-specific regulatory networks to treat autoimmunity” reports on a body of work, including results in multiple in vivo disease models, built on more than eight years of research by Parvus Founder and Chief Scientific Officer, Pere Santamaria, M.D., Ph.D.

Dr. Santamaria commented, “Autoimmune diseases, including type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, are extraordinarily complex responses of our immune system against some of our own tissues (e.g. pancreas, brain and joints, respectively), leading to chronic organ inflammation, organ dysfunction, and, in some cases, premature death. Blunting these incompletely understood immune responses without suppressing the normal components of our immune system that protect us against infection and cancer is not currently possible.”

“However, our work offers a pharmaceutical solution to this fundamental problem,” Dr. Santamaria continued. “Navacims essentially re-program disease-causing white blood cells to become disease-suppressing cells, known as regulatory cells, leading to sustained therapeutic effects in various spontaneous and experimental autoimmune diseases, as reported in our article in Nature. Essentially, we have found that Navacims can be tailored to treat a wide range of autoimmune diseases, while sharing a common structure. Importantly, they have been shown to affect human white blood cells in the same manner as they do murine cells. Furthermore, Navacims have shown promising safety findings in preclinical in vivo models. Based on our results to date, we believe Navacims represent a therapeutic platform with broad-ranging health care implications.”

Findings being reported in Nature include:

pMHC class II Navacims expanded cognate CD4+ T-cells that consistently have a TR1-like, regulatory T cell surface phenotype, transcriptional pattern and cytokine profile (mouse=human TR1 cells) systemically.

pMHC class II-Navacims designed to target T cells in newly diabetic nonobese (NOD) mice restored normoglycemia (normal blood sugar regulation) in the majority of the mice tested.

Tailored pMHC class II Navacims restored motor function to paralyzed C57BL/6 mice at the peak of Experimental Autoimmune Encephalomyelitis (a model of Multiple Sclerosis).

pMHC class II Navacims, targeting disease-causing T cells in joints, resolved joint swelling and destruction in arthritic mice.

“The findings being reported in Nature represent a scientific advance for Parvus and also a major achievement in the field of Immunology,” said Janice M. LeCocq, CEO of Parvus. “We believe that Dr. Santamaria’s work has the potential to transform the treatment of many of the more than 80 major autoimmune diseases affecting humankind, alleviating the suffering of millions of patients and their families. Over the coming year, we will be dedicating much of our in-house efforts to the advancement of our two lead programs for type 1 diabetes and multiple sclerosis.”

“Dr. Santamaria’s work to target the immune system dysfunction that causes type 1 diabetes represents the kind of innovative work that JDRF believes will eventually get us to a cure for this disease,” said Juvenile Diabetes Research Foundation Vice President of Discovery Research Julia Greenstein, Ph.D. “He and his colleagues have made exciting progress towards possibly developing a new class of drugs that could rebalance certain T-cells and ultimately provide a cure for type 1 diabetes and other autoimmune diseases as well.” The JDRF has funded the work of Dr. Santamaria and his colleagues at Parvus to explore Navacim-based treatments for diabetes.

Parvus’ strategy is to establish partnerships with major pharmaceutical companies to undertake the clinical and commercial development of many of its product pipeline candidates while also reserving rights to others suitable for its own development and commercialization. Parvus currently is engaged in late stage discussions with multiple pharmaceutical companies with regard to the type 1 diabetes (T1D) program. Manufacturing scale-up is now underway to supply upcoming preclinical and clinical studies.

The work being reported in Nature was led by Dr. Pere Santamaria and largely executed at the University of Calgary, Cumming School of Medicine (animal models of disease) and the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (humanized mouse work), with significant contributions from investigators at Institutions in Europe and the US. Further, Innovate Calgary, the technology-transfer and business-incubation center for the University of Calgary, provided early support for the transfer of the Navacims technology to and incubation of Parvus Therapeutics, which was organized as a separate entity in 2012.

It should be noted that this intervention has been tested on ‘humanized’ mice and, at this point, there don’t seem to have been any human clinical trials. At a guess I’d say we’re still several years away from this therapeutic intervention reaching the market, should it prove to be successful in humans.

Here’s a link to and a citation for the paper,

Expanding antigen-specific regulatory networks to treat autoimmunity by Xavier Clemente Casares, Jesus Blanco, Poornima Ambalavanan, Jun Yamanouchi, Santiswarup Singha, Cesar Fandos, Sue Tsai, Jinguo Wang, Nahir Garabatos, Cristina Izquierdo, Smriti Agrawal, Michael B. Keough, V. Wee Yong, Eddie James, Anna Moore, Yang Yang, Thomas Stratmann, Pau Serra, & Pere Santamaria. Nature (2016) doi:10.1038/nature16962 Published online 17 February 2016

This paper is behind a paywall.

Simon Fraser University (Vancouver, Canada) and its president’s (Andrew Petter) dream colloquium: big data

They have a ‘big data’ start to 2016 planned for the President’s (Andrew Petter at Simon Fraser University [SFU] in Vancouver, Canada) Dream Colloquium according to a Jan. 5, 2016 news release,

Big data explained: SFU launches spring 2016 President’s Dream Colloquium

Speaker series tackles history, use and implications of collecting data

 

Canadians experience and interact with big data on a daily basis. Some interactions are as simple as buying coffee or as complex as filling out the Canadian government’s mandatory long-form census. But while big data may be one of the most important technological and social shifts in the past five years, many experts are still grappling with what to do with the massive amounts of information being gathered every day.

 

To help understand the implications of collecting, analyzing and using big data, Simon Fraser University is launching the President’s Dream Colloquium on Engaging Big Data on Tuesday, January 5.

 

“Big data affects all sectors of society from governments to businesses to institutions to everyday people,” says Peter Chow-White, SFU Associate Professor of Communication. “This colloquium brings together people from industry and scholars in computing and social sciences in a dialogue around one of the most important innovations of our time next to the Internet.”

 

This spring marks the first President’s Dream Colloquium where all faculty and guest lectures will be available to the public. The speaker series will give a historical overview of big data, specific case studies in how big data is used today and discuss what the implications are for this information’s usage in business, health and government in the future.

 

The series includes notable guest speakers such as managing director of Microsoft Research, Surajit Chaudhuri, and Tableau co-founder Pat Hanrahan.  

 

“Pat Hanrahan is a leader in a number of sectors and Tableau is a leader in accessing big data through visual analytics,” says Chow-White. “Rather than big data being available to only a small amount of professionals, Tableau makes it easier for everyday people to access and understand it in a visual way.”

 

The speaker series is free to attend with registration. Lectures will be webcast live and available on the President’s Dream Colloquium website.

 

FAST FACTS:

  • By 2020, over 1/3 of all data will live in or pass through the cloud.
  • Data production will be 44 times greater in 2020 than it was in 2009.
  • More than 70 percent of the digital universe is generated by individuals. But enterprises have responsibility for the storage, protection and management of 80 percent of that.

(Statistics provided by CSC)

 

WHO’S SPEAKING AT THE COLLOQUIUM:

 

The course features lectures from notable guest speakers including:

  • Sasha Issenberg, Author and Journalist
    Tuesday, January 12, 2016
  • Surajit ChaudhuriScientist and Managing Director of XCG (Microsoft Research)
    Tuesday, January 19, 2016
  • Pat Hanrahan, Professor at the Stanford Computer Graphics Laboratory, Cofounder and Chief Scientist of Tableau, Founding member of Pixar
    Wednesday, February 3, 2016
  • Sheelagh Carpendale, Professor of Computing Science University of Calgary, Canada Research Chair in Information Visualization
    Tuesday, February 23, 2016, 3:30pm
  • Colin HillCEO of GNS Healthcare
    Tuesday, March 8, 2016
  • Chad Skelton, Award-winning Data Journalist and Consultant
    Tuesday, March 22, 2016

Not to worry, even though the first talk with Sasha Issenberg and Mark Pickup (strangely, he’s [Pickup is an SFU professor of political science] not mentioned in the news release or on the event page) has taken place, a webcast is being posted to the event page here.

I watched the first event live (via a livestream webcast which I accessed by clicking on the link found on the Event’s Speaker’s page) and found it quite interesting although I’m not sure about asking Issenberg to speak extemporaneously. He rambled and offered more detail about things that don’t matter much to a Canadian audience. I couldn’t tell if part of the problem might lie with the fact that his ‘big data’ book (The Victory Lab: The Secret Science of Winning Campaigns) was published a while back and he’s since published one on medical tourism and is about to publish one on same sex marriages and the LGBTQ communities in the US. As someone else who moves from topic to topic, I know it’s an effort to ‘go back in time’ and to remember the details and to recapture the enthusiasm that made the piece interesting.  Also, he has yet to get the latest scoop on big data and politics in the US as embarking on the 2016 campaign trail won’t take place until sometime later in January.

So, thanks to Issenberg for managing to dredge up as much as he did. Happily, he did recognize that there are differences between Canada and the US and the type of election data that is gathered and other data that can accessed. He provided a capsule version of the data situation in the US where they can identify individuals and predict how they might vote, while Pickup focused on the Canadian scene. As one expects from Canadian political parties and Canadian agencies in general, no one really wants to share how much information they can actually access (yes, that’s true of the Liberals and the NDP [New Democrats] too). By contrast, political parties and strategists in the US quite openly shared information with Issenberg about where and how they get data.

Pickup made some interesting points about data and how more data does not lead to better predictions. There was one study done on psychologists which Pickup replicated with undergraduate political science students. The psychologists and the political science students in the two separate studies were given data and asked to predict behaviour. They were then given more data about the same individuals and asked again to predict behaviour. In all. there were four sessions where the subjects were given successively more data and asked to predict behaviour based on that data. You may have already guessed but prediction accuracy decreased each time more information was added. Conversely, the people making the predictions became more confident as their predictive accuracy declined. A little disconcerting, non?

Pickup made another point noting that it may be easier to use big data to predict voting behaviour in a two-party system such as they have in the US but a multi-party system such as we have in Canada offers more challenges.

So, it was a good beginning and I look forward to more in the coming weeks (President’s Dream Colloquium on Engaging Big Data). Remember if you can’t listen to the live session, just click through to the event’s speaker’s page where they have hopefully posted the webcast.

The next dream colloquium takes place Tuesday, Jan. 19, 2016,

Big Data since 1854

Dr. Surajit Chaudhuri, Scientist and Managing Director of XCG (Microsoft Research)
Standford University, PhD
Tuesday, January 19, 2016, 3:30–5 pm
IRMACS Theatre, ASB 10900, Burnaby campus [or by webcast[

Enjoy!

Disability and technology

There’s a human enhancement or,more specifically, a ‘technology and disability’ event being held by Future Tense (a collaboration between Slate.com, New America, and Arizona State University) on March 4, 2015. Here’s more from the Feb. 20, 2015 Slate.com post,

Attention-grabbing advances in robotics and neurotechnology have caused many to rethink the concept of human disability. A paraplegic man in a robotic suit took the first kick at the 2014 World Cup, for instance, and the FDA has approved a bionic arm controlled with signals from the brain. It’s not hard to imagine that soon these advances may allow people to run, lift, and even think better than what is currently considered “normal”—challenging what it means to be human. But some in the disability community reject these technologies; for others, accessing them can be an overwhelmingly expensive and bureaucratic process. As these technological innovations look more and more like human engineering, will we need to reconsider what it means to be able and disabled?

We’ll discuss these questions and more at noon [EST] on Wednesday, March 4, at the New America office in Washington, D.C. The event is presented by Future Tense in collaboration with the award-winning documentary on disability and technology Fixed: The Science/Fiction of Human Enhancement [mentioned in an Aug. 3, 2010 posting]. You can find the event agenda and the trailer for Fixed below; to RSVP, click here. The venue is wheelchair accessible, and an American Sign Language interpreter will be present.

The Will Technology Put an End to Disability? event page includes an agenda,

Agenda:

12:00 pm Engineering Ability

Jennifer French
Executive Director, Neurotech Network

Larry Jasinksi
CEO, ReWalk Robotics
@ReWalk_Robotics

Will Oremus
Senior Technology Writer, Slate
@WillOremus

12:45 pm T​he Promise and Peril of Human Enhancement

​Gregor Wolbring
Associate Professor, University of Calgary
@Wolbring

Julia Bascom
Director of Programs, Autistic Self Advocacy Network
@autselfadvocacy

Teresa Blankmeyer Burke
Assistant Professor of Philosophy, Gallaudet University
@teresaburke

Moderator:
Lawrence Carter-Long
Public Affairs Specialist, National Council on Disability
@LCarterLong

Gregor Wolbring who’s scheduled for 1245 hours EST has been mentioned here more than once (most recently in a Jan. 10, 2014 posting titled, Chemistry of Cyborgs: review of the state of the art by German researchers, which includes further links. Gregor is also mentioned in the Aug. 3, 2010 posting about the movie ‘Fixed’. You can find out more about Wolbring and his work here.

Coincidentally, there’s a March 2, 2015 article titled: Deus Ex and Human Enhancement by Adam Koper for nouse.co.uk which conflates the notion of nanotechnology and human enhancement. It’s a well written and interesting article (there is a proviso) about a game, Deus Ex, which features nanotechnology=enabled human enhancement.  Despite Koper’s description not all human enhancement is nanotechnology-enabled and not all nanotechnology-enabled solutions are oriented to human enhancement. However, many human enhancement efforts are enabled by nanotechnology.

By the way, the game is published in Montréal (Québec, Canada) by Eidos (you will need your French language skills; I was not able to find an English language site).

University of Calgary (Alberta, Canada) welcomes ‘oil sands’ researcher with two news releases

I gather the boffins at the University of Calgary are beside themselves with joy as they welcome Steven Bryant from Texas, a nanoscience researcher with long ties to oil industry research. From an Oct. 17, 2014 University of Calgary news release by Stéphane Massinon,

The greatest energy challenge of the 21st century is to meet energy demand from available fuels while drastically reducing society’s environmental footprint.

The challenge is massive. The solution, according to Steven Bryant, may be miniscule.

Bryant will lead and co-ordinate nanotechnology and materials science research at the University of Calgary, and the integrated team of researchers from across campus who will aim to drastically change how the oilsands are developed.

Bryant says Alberta’s oilsands are a key resource for meeting the world’s energy demands and the status quo is not acceptable.

“There is a huge desire to extract this energy resource with less environmental impact and, we think, conceivably even zero-impact, because of some of the cool things that are becoming possible with nanotechnology,” says Bryant.

“That’s kind of blue-sky but that’s one of the things we will be trying to sow the seeds for — alternative ways to get the energy out of this resource altogether. It’s a chance to do things better than we are currently doing them because of rapid advances in mesoscience.”

The mention of mesoscience called to mind the mesocosm project featured in an Aug. 15, 2011 posting (Mesocosms and nanoparticles at Duke University) although it seems that mesoscience is a somewhat different beast according to Massinon’s news release,

Mesoscience — technology developed at smaller than 100 nanometres — offers many tantalizing options to increase the efficiency of in-situ oilsands development, or Steam-Assisted Gravity drainage (SAGD). SAGD is the extraction process in which producers drill horizontal wells beneath the surface to pump steam into the underground oilsands reservoirs to loosen the oil and pump it to the surface.

SAGD is the method currently used to pump nearly one million barrels per day in Alberta and the output is forecast to double by 2022. SAGD uses considerable volumes of water and requires energy to heat the water to produce the steam that softens the underground oil that is caked in sand.

By using nanotechnology, Bryant and his team are working on reducing the amount of energy needed to heat water to create steam while also making the underground heat source more efficient at gathering more oil.

“The holy grail for the last 30 years has been trying to get CO2 to be less viscous. If you can do that, then you can get it to contact a lot more of the oil and for the same amount of CO2, you get a lot more oil produced. That turned out to be hard to do because there aren’t many chemical ways to make CO2 more viscous,” says Bryant.

By employing innovative approaches now, industry, environment and consumers can benefit greatly in the not-too-distant future.

“These alternative ways to get the energy out are at least 10 years away. So it’s not going to happen tomorrow, but it’s worth thinking about now to try to see what might be possible,” says Bryant.

Apparently, Bryant (no mention of family members) is terribly excited about moving to Calgary, from the news release,

Bryant is looking forward to working in Canada’s energy hub and says he will also work with industry to tackle oil production issues.

Industry wants to be more efficient at extracting oil because it saves them money. Efficiency also means reducing the environmental footprint. He believes oil companies will welcome the research produced from the university and said Calgary is the ideal place to be world leaders in energy production and energy research.

“The university is close to where the action is. All the major operators are in town and there’s a chance to take things from the lab to the field. The University of Calgary is very well situated in that regard.”

Bryant is joining the Department of Chemical and Petroleum Engineering in the Schulich School of Engineering. Before accepting this position, he was at the University of Texas at Austin, as Bank of America Centennial Professor in the Department of Petroleum and Geosystems Engineering, and directed the Geological CO2 Storage Joint Industry Project and the Nanoparticles for Subsurface Engineering Industrial Affiliates Program.

Bryant pioneered the fields of digital petrophysics and nanoparticles for engineering applications, and has made some of the most significant advances in the past 20 years in porous media modeling, reactive transport theory and CO2 sequestration. Bryant has been published more than 280 times in books, book chapters, peer-reviewed journals and conference proceedings on applications in production engineering, reservoir engineering and formation evaluation. Over his career, Bryant has led major research initiatives involving industry partnerships and trained over 90 graduate students and postdoctoral fellows who found positions in several of the largest energy companies and national laboratories.

He looks forward to what happens next.

“There’s still a lot of cool, basic science to be done, but we’ll be doing it with an eye to making a difference in terms of how you get energy out of the oilsands. This won’t be business as usual.”

Meanwhile, there’s an Oct. 17, 2014 news item on Azonano that focuses on the University of Calgary’s response to receiving its first Canada Excellence Research Chair (a programme where the federal Canadian government throws a lot of money for salaries and research at universities which then try to recruit ‘world class’ researchers),

A world-leading nanotechnology researcher has come to Canada’s energy capital to become the first Canada Excellence Research Chair (CERC) at the University of Calgary.

Minister of State (Western Economic Diversification) Michelle Rempel announced today $10 million in federal funding to the university over seven years to create the CERC for Materials Engineering for Unconventional Oil Reservoirs. These funds will be matched by the University of Calgary.

The CERC has been awarded to renowned researcher Steven Bryant, who has joined the Schulich School of Engineering and will integrate a team of researchers from several departments of the Schulich School of Engineering and Faculty of Science.

An Oct. 17, 2014 University of Calgary news release (no byline is given but this is presumably from the university’s ‘corporate’ communications team), which originated the news item on Azonano,

Rempel said the federal government is focused on developing, attracting, and retaining world-leading researchers through record investment in science, technology and innovation. She added that Bryant’s application of new nanomaterials and technology will seek to develop new efficiencies within the oilsands industry while training the next generation of highly talented Canadian researchers.

“Our government is committed to ensuring advancement in sustainable energy resource technology. Dr. Bryant’s arrival at the University of Calgary will help consolidate Canada’s position as a global leader in this area. The research being conducted at the university is good for Calgary, good for the economy and good for Canada,” said Rempel.

President Elizabeth Cannon thanked the federal government for its financial support and said Bryant’s arrival vaults the university’s existing energy research to the next level.

“The University of Calgary is thrilled to have Dr. Steven Bryant join our energy research team, where he will play a key role exploring new and sustainable ways of developing unconventional resources,” said Cannon.

“We are confident that Dr. Bryant and his colleagues, working here at Canada’s energy university, will offer innovative solutions to the pressing challenges faced by our society: meeting ever-growing energy demands and drastically reducing our environmental footprint.”

In addition to the matching funds, the University of Calgary is planning additional support for major infrastructure and equipment for the CERC.

In 2008, the federal government launched the CERC program to encourage some of the most accomplished researchers around the world to work at Canadian universities.

The Canada Excellence Research Chair plays a significant role in the university’s energy strategy, which aims to make the University of Calgary a global leader in energy research. It is also critical to our Eyes High goal to becoming a top five Canadian research university.

Attracting world-class researchers to campus helps attract more students and post-docs to the university and exposes students and faculty to some of the world’s cutting-edge research.

Oddly, there’s no message of congratulations or recognition of this addition to Alberta’s nanotechnology community from Canada’s National Institute for Nanotechnology (NINT) located at the University of Alberta in Edmonton.

Green chemistry and zinc oxide nanoparticles from Iran (plus some unhappy scoop about Elsevier and access)

It’s been a while since I’ve featured any research from Iran partly due to the fact that I find the information disappointingly scant. While the Dec. 22, 2013 news item on Nanowerk doesn’t provide quite as much detail as I’d like it does shine a light on an aspect of Iranian nanotechnology research that I haven’t previously encountered, green chemistry (Note: A link has been removed),

Researchers used a simple and eco-friendly method to produce homogenous zinc oxide (ZnO) nanoparticles with various applications in medical industries due to their photocatalytic and antibacterial properties (“Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth”).

Zinc oxide nanoparticles have numerous applications, among which mention can be made of photocatalytic issues, piezoelectric devices, synthesis of pigments, chemical sensors, drug carriers in targeted drug delivery, and the production of cosmetics such as sunscreen lotions.

The Dec. 22, 2013 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, provides a bit more detail (Note: Links have been removed),

By using natural materials found in the geography of Iran and through sol-gel technique, the researchers synthesized zinc oxide nanoparticles in various sizes. To this end, they used zinc nitrate hexahydrate and gum tragacanth obtained from the Northern parts of Khorassan Razavi Province as the zinc-providing source and the agent to control the size of particles in aqueous solution, respectively.

Among the most important characteristics of the synthesis method, mention can be made of its simplicity, the use of cost-effective materials, conservation of green chemistry principals to prevent the use of hazardous materials to human safety and environment, production of nanoparticles in homogeneous size and with high efficiency, and most important of all, the use of native materials that are only found in Iran and its introduction to the world.

Here’s a link to and a citation for the paper,

Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth by Majid Darroudi, Zahra Sabouri, Reza Kazemi Oskuee, Ali Khorsand Zak, Hadi Kargar, and Mohamad Hasnul Naim Abd Hamidf. Ceramics International, Volume 39, Issue 8, December 2013, Pages 9195–9199

There’s a bit more technical information in the paper’s abstract,

The use of plant extract in the synthesis of nanomaterials can be a cost effective and eco-friendly approach. In this work we report the “green” and biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using gum tragacanth. Spherical ZnO-NPs were synthesized at different calcination temperatures. Transmission electron microscopy (TEM) imaging showed the formation most of nanoparticles in the size range of below 50 nm. The powder X-ray diffraction (PXRD) analysis revealed wurtzite hexagonal ZnO with preferential orientation in (101) reflection plane. In vitro cytotoxicity studies on neuro2A cells showed a dose dependent toxicity with non-toxic effect of concentration below 2 µg/mL. The synthesized ZnO-NPs using gum tragacanth were found to be comparable to those obtained from conventional reduction methods using hazardous polymers or surfactants and this method can be an excellent alternative for the synthesis of ZnO-NPs using biomaterials.

I was not able to find the DOI (digital object identifier) and this paper is behind a paywall.

Elsevier and access

On a final note, Elsevier, the company that publishes Ceramics International and many other journals, is arousing some ire with what appears to be its latest policies concerning access according to a Dec. 20, 2013 posting by Mike Masnick for Techdirt Note: Links have been removed),

We just recently wrote about the terrible anti-science/anti-knowledge/anti-learning decision by publishing giant Elsevier to demand that Academia.edu take down copies of journal articles that were submitted directly by the authors, as Elsevier wished to lock all that knowledge (much of it taxpayer funded) in its ridiculously expensive journals. Mike Taylor now alerts us that Elsevier is actually going even further in its war on access to knowledge. Some might argue that Elsevier was okay in going after a “central repository” like Academia.edu, but at least it wasn’t going directly after academics who were posting pdfs of their own research on their own websites. While some more enlightened publishers explicitly allow this, many (including Elsevier) technically do not allow it, but have always looked the other way when authors post their own papers.

That’s now changed. As Taylor highlights, the University of Calgary sent a letter to its staff saying that a company “representing” Elsevier, was demanding that they take down all such articles on the University’s network.

While I do feature the topic of open access and other issues with intellectual property from time to time, you’ll find Masnick’s insights and those of his colleagues are those of people who are more intimately familiar (albeit firmly committed to open access) with the issues should you choose to read his Dec. 20, 2013 posting in its entirely.

Grand Challenges Canada funds 83 projects to improve global health

For the third year in a row (as per my Dec. 22, 2011 posting and my Nov. 22, 2012 posting), I’m featuring Grand Challenges Canada funding for its ‘Stars in Global Health’ programme . From the Grand Challenges Canada (GCC) Nov. 21, 2013 news release,

Imaginative: 83 Bold Innovations to Improve Global Health Receive Grand Challenges Canada Funding

Among novel ideas to reduce disease, save lives in developing world:
Diagnostic diapers to detect deadly rotavirus; Rolling water barrel;
Special yogurt offsets pesticides, heavy metals, toxins in food;
Inventive shoe, boot material releases bug repellent when walking

50 innovators from low- and middle-income countries,
plus 33 from Canada, share $9.3 million in seed grants

Grand Challenges Canada, funded by the Government of Canada, today extends seed grants of $100,000 each to 83 inventive new ideas for addressing health problems in resource-poor countries.

The Grand Challenges Canada “Stars in Global Health” program seeks breakthrough and affordable innovations that could transform the way disease is treated in the developing world — innovations that may benefit the health of developed world citizens as well.

Of the 83 grants announced today, 50 are given to innovators in 15 low- and middle-income nations worldwide and 33 to Canadian-originated projects, to be implemented in a total of 30 countries throughout the developing world.

“Innovation powers development leading to better health and more jobs. I feel proud that Canada, through Grand Challenges Canada, has supported almost 300 bold ideas to date in our Stars in Global Health program,” says Dr. Peter A. Singer, Chief Executive Officer of Grand Challenges Canada.  “This is one of the largest pipelines of innovations in global health in the world today.”

Says the Honourable Christian Paradis, Canadian Minister of International Development and Minister for La Francophonie: “Grand Challenges Canada’s portfolio of projects shows how innovators with bold ideas have the potential to make a big impact on global health.  By connecting game-changing ideas with some of the most pressing global health challenges, these projects will lead to sustainable and affordable health solutions in low- and middle-income countries.”

The portfolio of 83 creative, out-of-the-box ideas, selected through independent peer review from 451 applications, includes projects submitted by social entrepreneurs, private sector companies and non-government organizations as well as university researchers.  Among them:

Diagnostics

  • A simple, portable, dry, yeast-based blood screening test (Belize, Jamaica).  WHO estimates almost half of 46 million blood donations in low-income countries are inadequately tested;  in Africa up to 10% of new HIV infections are caused by transfusions.  A University of Toronto-developed yeast-based blood screening tool will detect combinations of diseases. Like baking yeast, it can be stored dry, and can be grown locally with minimal equipment and training, improving accessibility in rural areas.
  • A bedside, Litmus paper-like test to detect bronchitis (Brazil, India). Being pioneered at McMaster University with international collaborators, a simple sputum test will detect infectious and allergic bronchitis in adults and children, reducing mis-diagnosis in developing countries and saving resources: time, steroids, antibiotics.

Water, sanitation, hygiene and general health

  • Special yogurts formulated to offset the harm to health caused by heavy metals, pesticides and other toxics in food (Africa).  Between 2006-2009 in Nairobi, only 17% of the total maize sampled and 5% of feed was fit for human and animal consumption respectively. University of Western Ontario researchers have developed novel yogurts containing a bacteria that, in the stomach, sequesters certain toxins and heavy metals and degrades some pesticides.
  • Addressing arsenic-laced groundwater. In Bangladesh, 1 in 5 deaths (600,000 per year) occur due to groundwater arsenic, dubbed by WHO as the largest mass poisoning in history, with some 77 million people at risk.  Project 1) Toronto-based PurifAid will deploy new filtration units via franchised villagers who will filter and deliver purified water, perform maintenance, acquire new filters and dispose of old ones, which can be used to produce biofuels.  Project 2) A project based at the University of Calgary, meanwhile, will work to increase the use of Western Canadian lentils in Bangladeshi diets.  The crop is rich in selenium, which can decrease arsenic levels and improve health.
  • “WaterWheel” (India, Kenya, Mongolia).  This simple, innovative device from India is a wheeled water container that enables the collection and transport of 3 to 5 times as much water as usual per trip, as well as hygienic storage, saving valuable time for productive activities and improving health.

Malaria

  • A vaccine based on a newly-discovered antibody in men that prevents malaria infection in the placenta (Benin, Colombia).  Colombian men exposed to malaria are found to have antibodies that can prevent infection in the placenta of a pregnant woman. This University of Alberta finding forms the basis for developing a novel vaccine against several forms of malaria, which cause 10,000 maternal deaths and 200,000 stillbirths annually.
  • Insect-repellent clothing, footwear and wall plaster (East Africa).  1) In Tanzania, the Africa Technical Research Institute will lead the design and manufacture of attractive, affordable insecticide-treated clothing while 2) the Ifakara Health Institute will develop anti-mosquito footwear material that slowly releases repellents from the friction of walking.  A key advantage: no compliance or change in habits required.  3) Uganda’s Med Biotech Laboratories, meanwhile, will produce a colorful, insecticide-infused ‘plaster’ for the outside walls of African village homes.

Maternal and child health

  • Mothers Telling Mothers: improving maternal health through storytelling (Uganda).  Work by Twezimbe Development Association has found that stories told by mothers in their own words and reflecting shared realities are most likely to increase the number of moms seeking skilled health care, and convince policymakers to improve healthcare access.  This project will capture 3 to 5 minutes stories to be shared through digital media platforms and health clinics.

Mobile technology

  • Digital African Health Library (Sub-Saharan Africa).  The University of Calgary-led project is creating an app to support bedside care by medical doctors in Africa: a smartphone-accessible resource providing evidence-based, locally-relevant decision support and health information.  A pilot involving 65 doctors in Rwanda showed point of care answers to patient questions more than tripled to 43%, with self-reported improvement in patient outcomes.

Health care

  • Simple sticker helps track clean surfaces in healthcare facilities (Philippines).  WHO estimates that 10% to 30% of all patients in developing country health care facilities acquire an infection.   An innovative sticker for hospital surfaces developed by Lunanos Inc. changes colour when a cleaner is applied and fades color after a predetermined period of time, helping staff track and ensure cleanliness of equipment and other frequently touched surfaces.
  • “Mystery clients” to assess and improve quality of TB care (India).  India accounts for 25% of global tuberculosis (TB) incidence.  To evaluate variations in practice quality, and identify ways to improve TB management in India, this project, led by Canada’s McGill University, will send researchers into clinics posing as a patient with standard TB symptoms.  The project builds on earlier work related to angina, asthma and dysentery, which revealed incorrect diagnoses and treatment.

And many more.

A complete set of 83 short project descriptions, with links to additional project details, available photos / video, and local contact information, is available in the full news release online here: http://bit.ly/HOLt5b

Here’s a video for the one of the projects (filtering arsenic out of Bangladesh’s water),

I chose this project somewhat haphazardly. It caught my attention as I have written more than once about purification efforts and as it turns out, this is a Canada-based project (with a Bangladeshi partner, BRAC) from the University of Toronto.

You may have heard the video’s narrator mention scotch whiskey, here’s why (from the YouTube page hosting the project video,page),

We plan to roll out a new generation of filtration units which run on an organic by-product of the beverage industry. The units address many of the failings of existing devices (they require no power or chemicals and are very low maintenance).

This project gets still more interesting (from the full project description page),

Device for the Remediation and Attenuation of Multiple Pollutants (DRAM) removes 95% of arsenic from contaminated water within 5 minutes of exposure. With an estimated 600,000 deaths directly attributable to arsenic poisoning every year, these units hold the potential to save millions of lives. Existing solutions are too complicated and suffer from significant usability issues (2012 UNICEF study).

We will deploy our units through a franchise business model. [emphasis mine] Local villagers will filter and deliver purified water, perform maintenance, acquire new media, and dispose spent media. The current market leader, the Sono Filter, has less than 20% uptake (according to UNICEF). DRAM costs only 25% of this solution, has lower maintenance requirements (4-6 month media cycle vs. 2 week media cycle), higher durability, and can be retrofitted onto existing tube wells villagers use thereby requiring no behavior change. The spent media (which must be replaced every 4-6 months) can be used to produce biofuels, giving PurifAid a decisive capability over competitors.

With the assistance of our local partner BRAC (ranked #1 on Global Journal’s list of top NGOs in 2012) we will retrofit our units onto existing tubewells. Contaminated water is pumped from the tubewell into the unit where it passes into the bottom of the unit, rising up through a bed of the organic filter media, binding the arsenic. Clean water is displaced and forced out of the top of the unit and out through the built-in tap. Our community based solution will begin with a proof-of-concept installation in the Mujibnagar District (pop. 1.3 million). BRAC will assist in testing our filter water quality on the ground and these results will be used to obtain regulatory approval for our technology. We will then operationalize our community-run DRAM systems. A council of local stakeholders will nominate prospective franchisees amongst villagers. These villagers will replace filter media in 4 month intervals and order annual delivery of new media. We are securing partnerships with nearby distilleries to locally source the filter media. [emphasis mine] Disposal will be handled by a local caretaker who will store spent media in bulk before transferring it for use as biofuel. Caretaker salary, media sourcing, and delivery costs will be paid by charging a levy on customer households. PurifAid will monitor behavioural and health indicators to ascertain DRAM’s immediate and long-term impact. To this end PurifAid has partnered with Ashalytics, a start-up global health analytics company, to report operational issues, measure impact, and communicate important metrics to key staff and stakeholders via mobile phones. This results in an environmentally-friendly value chain that uses beverage industry waste, maximizing positive impact. If the Bangladesh installations are a success then this system can be introduced across the Indian subcontinent and in west Africa, where arsenic in groundwater poses a serious health problem. DRAM has the potential to improve the lives of millions globally.

After 18 months we envisage having installed 15 DRAM systems supplying 45 liters of purified water per day to 2,700 households. In order to ensure maintenance, 15 paid caretakers will operate the pumps and a driver will supply the caretakers with fresh media every 4-6 months. Biannually, new bulk media will be provided to storage unit in the village, spent media will in turn be taken to a plant and converted to biofuel. Villagers will invest collectively to purchase, install and operate DRAM on pre-existing tube wells – thus no behavioral changes needed.

Our filters employ a new water filtration technology. Our franchise model involves social and business innovation, empowering communities to manage their own water treatment under the stewardship of a local partner that manages 17 social businesses with combined annual revenues of $93m in 2011.

(Aside: Don’t they ask for a ‘dram’ of whiskey in the movies?) This project is intended to do more than purify water; it’s designed to create jobs. Bravo!

Now back to the news release for details about the countries and agencies involved,

The global portfolio of grants, broken down by region and country:

30 projects based in 6 African countries (16 in Kenya, 5 in Tanzania, 5 in Uganda, 2 in Nigeria and 1 each in Senegal and Ghana)
17 projects based in 7 countries in Asia (7 in India, 2 in Pakistan 4 in Thailand and 1 each in Bangladesh, Cambodia, Mongolia and the Philippines)
Two projects based in South America (Peru) and one in Europe (Armenia)
33 projects based in 11 Canadian cities (14 in Toronto, 3 each in Calgary, Montreal and Vancouver, 2 each in Winnipeg, Edmonton and London, and 1 each in Halifax, Hamilton, Ottawa and Saskatoon)

The Canadian-based projects will be implemented worldwide (a majority of them implemented simultaneously in more than one country):

15 countries in Africa (5 in Kenya, 4 in Tanzania, 3 each in Uganda and Ethiopia, 2 each in Rwanda, Somalia, South Africa, South Sudan, and Zambia, and 1 each in Benin, Botswana, Ghana,  Malawi, Nigeria, and DR Congo)
8 countries in Asia (8 in India, 6 in Bangladesh, 1 each in Bhutan, China, Nepal, Pakistan, Philippines and Thailand)
5 countries in South and Latin America (Belize, Brazil, Colombia, Jamaica, Peru.) and
1 in the Middle East (Egypt)

Including today’s grants, total investments to date under the Grand Challenges Canada “Stars in Global Health” program is $32 million in 295 projects.

For full details: http://bit.ly/HOLt5b

* * * * *

About Grand Challenges Canada

Grand Challenges Canada is dedicated to supporting Bold Ideas with Big Impact in global

health. We are funded by the Government of Canada through the Development Innovation Fund announced in the 2008 Federal Budget. We fund innovators in low- and middle-income countries and Canada. Grand Challenges Canada works with the International Development Research Centre (IDRC), the Canadian Institutes of Health Research (CIHR), and other global health foundations and organizations to find sustainable, long-term solutions through Integrated Innovation − bold ideas that integrate science, technology, social and business innovation. Grand Challenges Canada is hosted at the Sandra Rotman Centre.

Please visit grandchallenges.ca  and look for us on Facebook, Twitter, YouTube and LinkedIn.

About Canada’s International Development Research Centre

The International Development Research Centre (IDRC) supports research in developing countries to promote growth and development. IDRC also encourages sharing this knowledge with policymakers, other researchers and communities around the world. The result is innovative, lasting local solutions that aim to bring choice and change to those who need it most. As the Government of Canada’s lead on the Development Innovation Fund, IDRC draws on decades of experience managing publicly funded research projects to administer the Development Innovation Fund. IDRC also ensures that developing country researchers and concerns are front and centre in this exciting new initiative.

www.idrc.ca

About Canadian Institutes of Health Research

The Canadian Institutes of Health Research (CIHR) is the Government of Canada’s health research investment agency. CIHR’s mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada. CIHR will be responsible for the administration of international peer review, according to international standards of excellence. The results of CIHR-led peer reviews will guide the awarding of grants by Grand Challenges Canada from the Development Innovation Fund.

www.cihr-irsc.gc.ca

About the Department of Foreign Affairs, Trade and Development Canada

The mandate of Foreign Affairs, Trade and Development Canada is to manage Canada’s diplomatic and consular relations, to encourage the country’s international trade, and to lead Canada’s international development and humanitarian assistance.

www.international.gc.ca

About Sandra Rotman Centre

The Sandra Rotman Centre is based at University Health Network and the University of Toronto. We develop innovative global health solutions and help bring them to scale where they are most urgently needed. The Sandra Rotman Centre hosts Grand Challenges Canada.

www.srcglobal.org

I have found it confusing that there’s a Grand Challenges Canada and the Bill and Melinda Gates Foundation has a Grand Challenges programme, both of which making funding announcements at this time of year. I did make some further investigations which I noted in my Dec. 22, 2011 posting,

Last week, the Bill & Melinda Gates Foundation announced a $21.1 M grant over three years for research into point-of-care diagnostic tools for developing nations. A Canadian nongovermental organization (NGO) will be supplementing this amount with $10.8 M for a total of $31.9 M. (source: Dec. 16, 2011 AFP news item [Agence France-Presse] on MedicalXpress.com)

At this point, things get a little confusing. The Bill & Melinda Gates Foundation has a specific program called Grand Challenges in Global Health and this grant is part of that program. Plus, the Canadian NGO is called Grand Challenges Canada (couldn’t they have found a more distinctive name?), which is funded by a federal Canadian government initiative known as the Development Innovation Fund (DIF). …

Weirdly, no one consulted with me when they named the Bil & Melinda Gates Foundation programme or the Canadian NGO.

Alberta’s (Canada) Ingenuity Lab and its nanotechnology dreams

I believe the Nov. 6, 2013 news release from Alberta’s Ingenuity Lab was meant to announce this new lab’s existence (why does Alberta need another nanotechnology-focused institution?),

Alberta’s first accelerator laboratory brings together some of nanotechnology’s leading players to make small science have a big impact in Alberta, by harnessing and commercializing emerging technologies, and simultaneously addressing some of the grand challenges faced by our province.

“We still have an incredible amount to learn from nature. This we know,” says Ingenuity Lab Director, Dr. Carlo Montemagno. “The opportunity in front of us is the potential to create a bio-enabled, globally-competitive and value-added industry while training the next generation of researchers and innovators in Alberta.”

With a research team of 25 strong and growing, Ingenuity Lab is focusing its research on the mining, energy, agriculture and health sectors, and is a $40 million provincial government led initiative working in partnership with the National Institute for Nanotechnology (NINT), Campus Alberta and industry.

Alberta already hosts the National Institute of Nanotechnology (which was and perhaps still is partially funded by the province of Alberta) and there’s ACAMP “(Alberta Centre for Advanced MNT Products) is a not for profit organization that provides specialized services to micro nano technology clients. Clients have access to world-class equipment, facilities …” Both the University of Alberta and the University of Calgary have any number of labs dedicated to nanotechnology research and then there’s nanoAlberta which now lives on as part of  Alberta Innovates where* it’s listed on their Programs and Services page. It seems to me they have a number of organizations devoted to nanotechnology research and/or commercialization in Alberta. By the way, Canada’s National Institute of Nanotechnology (NINT) can still be found on two different websites; there’s the NINT on the National Research Council of Canada website and there’s the NINT on the University of Alberta website.

While the lab’s Nov. 19, 2013 news release (h/t Nanowerk) explores the lab’s goals, it doesn’t really answer the question: why another one?,

Dr. Carlo Montemagno and a world-class team of researchers are working across disciplines to identify innovative solutions to some of the province’s most difficult issues, including optimal resource extraction while enhancing environmental stewardship of Alberta’s signature natural resources [oil sands].

“Nanotechnology will have a significant impact on Canada’s economic prosperity and global competitive advantage,” says Ingenuity Lab Director, Dr. Carlo Montemagno.  “This enhanced understanding of matter will provide the necessary underpinning for revolutionary discoveries across disciplines that will forever change the way we envisage the future.”

Ingenuity Lab is applying recent advances in targeted drug delivery and other areas to develop novel technologies that will enable the recovery of valuable materials, currently discarded as waste, from our industrial operations and the environment.

The Ingenuity research team is engineering new materials that have the capability to detect, extract and bind to rare earth and precious metals that exist in nature or synthetic materials. As this approach is refined, it will spawn a variety of applications like reclamation of trace amounts of valuable or harmful materials from soil, water and industrial process streams, including tailing ponds.

“Our molecular recognition techniques, what we call biomining, offer the ability to maximize the utility of our resources, establish a new path forward to restore damaged lands and water and to reaffirm Canada’s commitment to societal and economic prosperity,” says Dr. Montemagno. “The further we delve into the very makeup of the natural and inorganic components of our universe, the more opportunities we uncover. This radical shift away from conventional thinking means that we leverage research gains beyond their intended purpose. We achieve a multiplier effect that increases the capacity of nanotechnology to address the grand challenges facing modern industrial societies.”

I became a little curious about Dr. Montemagno and found this on the Ingenuity Lab’s About the Director page,

Dr. Carlo Montemagno

“The purpose of scientific study is to create new knowledge by working at the very edge where world-changing knowledge unfolds.” – C. Montemagno

Driven by the principles of excellence, honor and responsibility and an unwavering commitment to education as an engine of economic prosperity, Dr. Montemagno has become a world-renowned expert in nanotechnology and is responsible for creating groundbreaking innovations which solve complex challenges in the areas of informatics, agriculture, chemical refining, transportation, energy, and healthcare.

He was Founding Dean of the College of Engineering and Applied Sciences at University of Cincinnati; received a Bachelor of Science degree in Agriculture and Bio Engineering from Cornell University; a Master’s Degree  in Petroleum and Natural Gas Engineering from Penn State and a Ph.D. in Civil Engineering and Geological Sciences from Notre Dame.

“Research and education are critical to success because the transfer of knowledge creates economic prosperity.” — C. Montemagno

Dr. Montemagno has been recognized with prestigious awards including the Feynman Prize (for creating single molecule biological motors with nano-scale silicon devices); the Earth Award Grand Prize (for cell-free artificial photosynthesis with over 95% efficiency); the CNBC Business Top 10 Green Innovator award (for Aquaporin Membrane water purification and desalination technology); and named a Bill & Melinda Gates Grand Challenge Winner (for a pH sensing active microcapsule oral vaccine delivery system which increased vaccine stability and demonstrated rapid uptake in the lower GI tract.)

Despite my doubts, I wish the Ingenuity Lab folks good luck with their efforts.

*where’s changed to where, Feb. 3, 2014

Testing ‘Schroedinger’s cat’ on everyday objects at the University of Calgary (Canada)

For decades physicists have been grappling with the question of why the rules for quantum mechanics/physics are so different from classical physics while they try to unify the theories into one coherent explanation for why things are the way they are. At the same time, they’ve also been trying to test how the rules of quantum mechanics might apply to everyday objects and it seems a team from the University of Calgary (Alberta, Canada) have made a breakthrough.

The July 21, 2013 University of Calgary news release on EurekAlert provides an explanation of Schroedinger’s thought experiment (the dead/alive cat), quantum mechanics, and difficulties testing the theory on everyday objects thus helping those of us without that knowledge to better understand the breakthrough,

In contrast to our everyday experience, quantum physics allows for particles to be in two states at the same time — so-called quantum superpositions. A radioactive nucleus, for example, can simultaneously be in a decayed and non-decayed state.

Applying these quantum rules to large objects leads to paradoxical and even bizarre consequences. To emphasize this, Erwin Schroedinger, one of the founding fathers of quantum physics, proposed in 1935 a thought experiment involving a cat that could be killed by a mechanism triggered by the decay of a single atomic nucleus. If the nucleus is in a superposition of decayed and non-decayed states, and if quantum physics applies to large objects, the belief is that the cat will be simultaneously dead and alive.

While quantum systems with properties akin to ‘Schroedinger’s cat’ have been achieved at a micro level, the application of this principle to everyday macro objects has proved to be difficult to demonstrate.

“This is because large quantum objects are extremely fragile and tend to disintegrate when subjected to any interaction with the environment,” explains Lvovsky [professor Alex Lvovsky].

Now for the breakthrough (from the news release),

The breakthrough achieved by Calgary quantum physicists is that they were able to contrive a quantum state of light that consists of a hundred million light quanta (photons) and can even be seen by the naked eye. In their state, the “dead” and “alive” components of the “cat” correspond to quantum states that differ by tens of thousands of photons.

“The laws of quantum mechanics which govern the microscopic world are very different from classical physics that rules over large objects such as live beings,” explains lead author Lvovsky. “The challenge is to understand where to draw the line and explore whether such a line exists at all. Those are the questions our experiment sheds light on,” he states.

While the findings are promising, study co-author Simon [professor Christoph Simon] admits that many questions remain unanswered.

“We are still very far from being able to do this with a real cat,” he says. “But this result suggests there is ample opportunity for progress in that direction.”

They want to try this on a real live  cat? hmmm

For those who’d like to satisfy their curiosity further, here’s a link to and a citation for the published paper,

Observation of micro–macro entanglement of light by A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad & C. Simon. Nature Physics (2013) doi:10.1038/nphys2682 Published online 21 July 2013

This paper is behind a paywall.