Category Archives: regulation

More memory, less space and a walk down the cryptocurrency road

Libraries, archives, records management, oral history, etc. there are many institutions and names for how we manage collective and personal memory. You might call it a peculiarly human obsession stretching back into antiquity. For example, there’s the Library of Alexandria (Wikipedia entry) founded in the third, or possibly 2nd, century BCE (before the common era) and reputed to store all the knowledge in the world. It was destroyed although accounts differ as to when and how but its loss remains a potent reminder of memory’s fragility.

These days, the technology community is terribly concerned with storing ever more bits of data on materials that are reaching their limits for storage.I have news of a possible solution,  an interview of sorts with the researchers working on this new technology, and some very recent research into policies for cryptocurrency mining and development. That bit about cryptocurrency makes more sense when you read what the response to one of the interview questions.

Memory

It seems University of Alberta researchers may have found a way to increase memory exponentially, from a July 23, 2018 news item on ScienceDaily,

The most dense solid-state memory ever created could soon exceed the capabilities of current computer storage devices by 1,000 times, thanks to a new technique scientists at the University of Alberta have perfected.

“Essentially, you can take all 45 million songs on iTunes and store them on the surface of one quarter,” said Roshan Achal, PhD student in Department of Physics and lead author on the new research. “Five years ago, this wasn’t even something we thought possible.”

A July 23, 2018 University of Alberta news release (also on EurekAlert) by Jennifer-Anne Pascoe, which originated the news item, provides more information,

Previous discoveries were stable only at cryogenic conditions, meaning this new finding puts society light years closer to meeting the need for more storage for the current and continued deluge of data. One of the most exciting features of this memory is that it’s road-ready for real-world temperatures, as it can withstand normal use and transportation beyond the lab.

“What is often overlooked in the nanofabrication business is actual transportation to an end user, that simply was not possible until now given temperature restrictions,” continued Achal. “Our memory is stable well above room temperature and precise down to the atom.”

Achal explained that immediate applications will be data archival. Next steps will be increasing readout and writing speeds, meaning even more flexible applications.

More memory, less space

Achal works with University of Alberta physics professor Robert Wolkow, a pioneer in the field of atomic-scale physics. Wolkow perfected the art of the science behind nanotip technology, which, thanks to Wolkow and his team’s continued work, has now reached a tipping point, meaning scaling up atomic-scale manufacturing for commercialization.

“With this last piece of the puzzle now in-hand, atom-scale fabrication will become a commercial reality in the very near future,” said Wolkow. Wolkow’s Spin-off [sic] company, Quantum Silicon Inc., is hard at work on commercializing atom-scale fabrication for use in all areas of the technology sector.

To demonstrate the new discovery, Achal, Wolkow, and their fellow scientists not only fabricated the world’s smallest maple leaf, they also encoded the entire alphabet at a density of 138 terabytes, roughly equivalent to writing 350,000 letters across a grain of rice. For a playful twist, Achal also encoded music as an atom-sized song, the first 24 notes of which will make any video-game player of the 80s and 90s nostalgic for yesteryear but excited for the future of technology and society.

As noted in the news release, there is an atom-sized song, which is available in this video,

As for the nano-sized maple leaf, I highlighted that bit of whimsy in a June 30, 2017 posting.

Here’s a link to and a citation for the paper,

Lithography for robust and editable atomic-scale silicon devices and memories by Roshan Achal, Mohammad Rashidi, Jeremiah Croshaw, David Churchill, Marco Taucer, Taleana Huff, Martin Cloutier, Jason Pitters, & Robert A. Wolkow. Nature Communicationsvolume 9, Article number: 2778 (2018) DOI: https://doi.org/10.1038/s41467-018-05171-y Published 23 July 2018

This paper is open access.

For interested parties, you can find Quantum Silicon (QSI) here. My Edmonton geography is all but nonexistent, still, it seems to me the company address on Saskatchewan Drive is a University of Alberta address. It’s also the address for the National Research Council of Canada. Perhaps this is a university/government spin-off company?

The ‘interview’

I sent some questions to the researchers at the University of Alberta who very kindly provided me with the following answers. Roshan Achal passed on one of the questions to his colleague Taleana Huff for her response. Both Achal and Huff are associated with QSI.

Unfortunately I could not find any pictures of all three researchers (Achal, Huff, and Wolkow) together.

Roshan Achal (left) used nanotechnology perfected by his PhD supervisor, Robert Wolkow (right) to create atomic-scale computer memory that could exceed the capacity of today’s solid-state storage drives by 1,000 times. (Photo: Faculty of Science)

(1) SHRINKING THE MANUFACTURING PROCESS TO THE ATOMIC SCALE HAS
ATTRACTED A LOT OF ATTENTION OVER THE YEARS STARTING WITH SCIENCE
FICTION OR RICHARD FEYNMAN OR K. ERIC DREXLER, ETC. IN ANY EVENT, THE
ORIGINS ARE CONTESTED SO I WON’T PUT YOU ON THE SPOT BY ASKING WHO
STARTED IT ALL INSTEAD ASKING HOW DID YOU GET STARTED?

I got started in this field about 6 years ago, when I undertook a MSc
with Dr. Wolkow here at the University of Alberta. Before that point, I
had only ever heard of a scanning tunneling microscope from what was
taught in my classes. I was aware of the famous IBM logo made up from
just a handful of atoms using this machine, but I didn’t know what
else could be done. Here, Dr. Wolkow introduced me to his line of
research, and I saw the immense potential for growth in this area and
decided to pursue it further. I had the chance to interact with and
learn from nanofabrication experts and gain the skills necessary to
begin playing around with my own techniques and ideas during my PhD.

(2) AS I UNDERSTAND IT, THESE ARE THE PIECES YOU’VE BEEN
WORKING ON: (1) THE TUNGSTEN MICROSCOPE TIP, WHICH MAKE[s] (2) THE SMALLEST
QUANTUM DOTS (SINGLE ATOMS OF SILICON), (3) THE AUTOMATION OF THE
QUANTUM DOT PRODUCTION PROCESS, AND (4) THE “MOST DENSE SOLID-STATE
MEMORY EVER CREATED.” WHAT’S MISSING FROM THE LIST AND IS THAT WHAT
YOU’RE WORKING ON NOW?

One of the things missing from the list, that we are currently working
on, is the ability to easily communicate (electrically) from the
macroscale (our world) to the nanoscale, without the use of a scanning
tunneling microscope. With this, we would be able to then construct
devices using the other pieces we’ve developed up to this point, and
then integrate them with more conventional electronics. This would bring
us yet another step closer to the realization of atomic-scale
electronics.

(3) PERHAPS YOU COULD CLARIFY SOMETHING FOR ME. USUALLY WHEN SOLID STATE
MEMORY IS MENTIONED, THERE’S GREAT CONCERN ABOUT MOORE’S LAW. IS
THIS WORK GOING TO CREATE A NEW LAW? AND, WHAT IF ANYTHING DOES
;YOUR MEMORY DEVICE HAVE TO DO WITH QUANTUM COMPUTING?

That is an interesting question. With the density we’ve achieved,
there are not too many surfaces where atomic sites are more closely
spaced to allow for another factor of two improvement. In that sense, it
would be difficult to improve memory densities further using these
techniques alone. In order to continue Moore’s law, new techniques, or
storage methods would have to be developed to move beyond atomic-scale
storage.

The memory design itself does not have anything to do with quantum
computing, however, the lithographic techniques developed through our
work, may enable the development of certain quantum-dot-based quantum
computing schemes.

(4) THIS MAY BE A LITTLE OUT OF LEFT FIELD (OR FURTHER OUT THAN THE
OTHERS), COULD;YOUR MEMORY DEVICE HAVE AN IMPACT ON THE
DEVELOPMENT OF CRYPTOCURRENCY AND BLOCKCHAIN? IF SO, WHAT MIGHT THAT
IMPACT BE?

I am not very familiar with these topics, however, co-author Taleana
Huff has provided some thoughts:

Taleana Huff (downloaded from https://ca.linkedin.com/in/taleana-huff]

“The memory, as we’ve designed it, might not have too much of an
impact in and of itself. Cryptocurrencies fall into two categories.
Proof of Work and Proof of Stake. Proof of Work relies on raw
computational power to solve a difficult math problem. If you solve it,
you get rewarded with a small amount of that coin. The problem is that
it can take a lot of power and energy for your computer to crunch
through that problem. Faster access to memory alone could perhaps
streamline small parts of this slightly, but it would be very slight.
Proof of Stake is already quite power efficient and wouldn’t really
have a drastic advantage from better faster computers.

Now, atomic-scale circuitry built using these new lithographic
techniques that we’ve developed, which could perform computations at
significantly lower energy costs, would be huge for Proof of Work coins.
One of the things holding bitcoin back, for example, is that mining it
is now consuming power on the order of the annual energy consumption
required by small countries. A more efficient way to mine while still
taking the same amount of time to solve the problem would make bitcoin
much more attractive as a currency.”

Thank you to Roshan Achal and Taleana Huff for helping me to further explore the implications of their work with Dr. Wolkow.

Comments

As usual, after receiving the replies I have more questions but these people have other things to do so I’ll content myself with noting that there is something extraordinary in the fact that we can imagine a near future where atomic scale manufacturing is possible and where as Achal says, ” … storage methods would have to be developed to move beyond atomic-scale [emphasis mine] storage”. In decades past it was the stuff of science fiction or of theorists who didn’t have the tools to turn the idea into a reality. With Wolkow’s, Achal’s, Hauff’s, and their colleagues’ work, atomic scale manufacturing is attainable in the foreseeable future.

Hopefully we’ll be wiser than we have been in the past in how we deploy these new manufacturing techniques. Of course, before we need the wisdom, scientists, as  Achal notes,  need to find a new way to communicate between the macroscale and the nanoscale.

As for Huff’s comments about cryptocurrencies and cyptocurrency and blockchain technology, I stumbled across this very recent research, from a July 31, 2018 Elsevier press release (also on EurekAlert),

A study [behind a paywall] published in Energy Research & Social Science warns that failure to lower the energy use by Bitcoin and similar Blockchain designs may prevent nations from reaching their climate change mitigation obligations under the Paris Agreement.

The study, authored by Jon Truby, PhD, Assistant Professor, Director of the Centre for Law & Development, College of Law, Qatar University, Doha, Qatar, evaluates the financial and legal options available to lawmakers to moderate blockchain-related energy consumption and foster a sustainable and innovative technology sector. Based on this rigorous review and analysis of the technologies, ownership models, and jurisdictional case law and practices, the article recommends an approach that imposes new taxes, charges, or restrictions to reduce demand by users, miners, and miner manufacturers who employ polluting technologies, and offers incentives that encourage developers to create less energy-intensive/carbon-neutral Blockchain.

“Digital currency mining is the first major industry developed from Blockchain, because its transactions alone consume more electricity than entire nations,” said Dr. Truby. “It needs to be directed towards sustainability if it is to realize its potential advantages.

“Many developers have taken no account of the environmental impact of their designs, so we must encourage them to adopt consensus protocols that do not result in high emissions. Taking no action means we are subsidizing high energy-consuming technology and causing future Blockchain developers to follow the same harmful path. We need to de-socialize the environmental costs involved while continuing to encourage progress of this important technology to unlock its potential economic, environmental, and social benefits,” explained Dr. Truby.

As a digital ledger that is accessible to, and trusted by all participants, Blockchain technology decentralizes and transforms the exchange of assets through peer-to-peer verification and payments. Blockchain technology has been advocated as being capable of delivering environmental and social benefits under the UN’s Sustainable Development Goals. However, Bitcoin’s system has been built in a way that is reminiscent of physical mining of natural resources – costs and efforts rise as the system reaches the ultimate resource limit and the mining of new resources requires increasing hardware resources, which consume huge amounts of electricity.

Putting this into perspective, Dr. Truby said, “the processes involved in a single Bitcoin transaction could provide electricity to a British home for a month – with the environmental costs socialized for private benefit.

“Bitcoin is here to stay, and so, future models must be designed without reliance on energy consumption so disproportionate on their economic or social benefits.”

The study evaluates various Blockchain technologies by their carbon footprints and recommends how to tax or restrict Blockchain types at different phases of production and use to discourage polluting versions and encourage cleaner alternatives. It also analyzes the legal measures that can be introduced to encourage technology innovators to develop low-emissions Blockchain designs. The specific recommendations include imposing levies to prevent path-dependent inertia from constraining innovation:

  • Registration fees collected by brokers from digital coin buyers.
  • “Bitcoin Sin Tax” surcharge on digital currency ownership.
  • Green taxes and restrictions on machinery purchases/imports (e.g. Bitcoin mining machines).
  • Smart contract transaction charges.

According to Dr. Truby, these findings may lead to new taxes, charges or restrictions, but could also lead to financial rewards for innovators developing carbon-neutral Blockchain.

The press release doesn’t fully reflect Dr. Truby’s thoughtfulness or the incentives he has suggested. it’s not all surcharges, taxes, and fees constitute encouragement.  Here’s a sample from the conclusion,

The possibilities of Blockchain are endless and incentivisation can help solve various climate change issues, such as through the development of digital currencies to fund climate finance programmes. This type of public-private finance initiative is envisioned in the Paris Agreement, and fiscal tools can incentivize innovators to design financially rewarding Blockchain technology that also achieves environmental goals. Bitcoin, for example, has various utilitarian intentions in its White Paper, which may or may not turn out to be as envisioned, but it would not have been such a success without investors seeking remarkable returns. Embracing such technology, and promoting a shift in behaviour with such fiscal tools, can turn the industry itself towards achieving innovative solutions for environmental goals.

I realize Wolkow, et. al, are not focused on cryptocurrency and blockchain technology per se but as Huff notes in her reply, “… new lithographic techniques that we’ve developed, which could perform computations at significantly lower energy costs, would be huge for Proof of Work coins.”

Whether or not there are implications for cryptocurrencies, energy needs, climate change, etc., it’s the kind of innovative work being done by scientists at the University of Alberta which may have implications in fields far beyond the researchers’ original intentions such as more efficient computation and data storage.

ETA Aug. 6, 2018: Dexter Johnson weighed in with an August 3, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website),

Researchers at the University of Alberta in Canada have developed a new approach to rewritable data storage technology by using a scanning tunneling microscope (STM) to remove and replace hydrogen atoms from the surface of a silicon wafer. If this approach realizes its potential, it could lead to a data storage technology capable of storing 1,000 times more data than today’s hard drives, up to 138 terabytes per square inch.

As a bit of background, Gerd Binnig and Heinrich Rohrer developed the first STM in 1986 for which they later received the Nobel Prize in physics. In the over 30 years since an STM first imaged an atom by exploiting a phenomenon known as tunneling—which causes electrons to jump from the surface atoms of a material to the tip of an ultrasharp electrode suspended a few angstroms above—the technology has become the backbone of so-called nanotechnology.

In addition to imaging the world on the atomic scale for the last thirty years, STMs have been experimented with as a potential data storage device. Last year, we reported on how IBM (where Binnig and Rohrer first developed the STM) used an STM in combination with an iron atom to serve as an electron-spin resonance sensor to read the magnetic pole of holmium atoms. The north and south poles of the holmium atoms served as the 0 and 1 of digital logic.

The Canadian researchers have taken a somewhat different approach to making an STM into a data storage device by automating a known technique that uses the ultrasharp tip of the STM to apply a voltage pulse above an atom to remove individual hydrogen atoms from the surface of a silicon wafer. Once the atom has been removed, there is a vacancy on the surface. These vacancies can be patterned on the surface to create devices and memories.

If you have the time, I recommend reading Dexter’s posting as he provides clear explanations, additional insight into the work, and more historical detail.

US National Institute of Occupational Health and Safety (NIOSH) released four new documents for handling nanomaterials

A March 12, 2018 news item on Nanowerk announced the latest from the US National Institute of Occupational Health and Safety (NIOSH) on the safe handling of nanomaterials in the workplace,

Realizing the promise of any scientific advancement requires understanding of its potential human health effects, and its safe and responsible development, even at the level of engineered nanomaterials, which can be nearly atomic-sized. The National Institute for Occupational Safety and Health (NIOSH) launched four new products this week intended to provide options to companies for controlling possible exposure of their workers to nanomaterials on the job.

A March 12, 2018 NIOSH news release, which originated the news item, fills in some details,

Engineered nanomaterials are intentionally produced to have at least one primary dimension less than 100 nanometers (nm). These very small particles have unique shapes and physical and chemical properties. These materials become desirable for specific product applications in areas including medicine, electronics, biomaterials, and consumer products. Workers in industries that use or make these uniquely engineered nanomaterials may inhale nanoparticles on a daily basis, posing a potential respiratory hazard.

“Researching, developing, and utilizing these nano properties is at the heart of new technology, just as worker safety is at the heart of what we do at NIOSH,” said NIOSH Director John Howard, M.D. “The information contained in these new workplace design solution documents provide employers with strategic steps towards making sure their employees stay safe while handling nanomaterials.”

The four new documents provide helpful recommendations on minimizing exposures during common processes and tasks, including:

Each workplace design solutions document provides key tips on the design, use, and maintenance of exposure controls for nanomaterial production, post processing, and use. The poster poses questions that employers and workers should consider before starting work with a nanomaterial. For each question, the poster provides options to reduce exposures to nanomaterials based on the physical form. The poster can be displayed in a lab or work environment, making it an easily accessible reminder of the important health and safety considerations for working with nanomaterials.

To access the products, and for more information about nanotechnology research at NIOSH, please visit https://www.cdc.gov/niosh/topics/nanotech/pubs.html

NIOSH is the federal institute that conducts research and makes recommendations for preventing work-related injuries and illnesses. More information about NIOSH can be found at www.cdc.gov/niosh.

That’s all folks!

Nanomaterials the SUN (Sustainable Nanotechnologies) project sunsets, finally and the Belgians amend their registry

Health, safety, and risks have been an important discussion where nanotechnology is concerned. The sense of urgency and concern has died down somewhat but scientists and regulators continue with their risk analysis.

SUN (Sustainable Nanotechnologies) project

Back in a December 7, 2016 posting I mentioned the Sustainable Nanotechnologies (SUN) project and its imminent demise in 2017. A February 26, 2018 news item on Nanowerk announces a tool developed by SUN scientists and intended for current use,

Over 100 scientists from 25 research institutions and industries in 12 different European Countries, coordinated by the group of professor Antonio Marcomini from Ca’ Foscari University of Venice, have completed one of the first attempts to understand the risks nanomaterials carry throughout their life-cycle, starting from their fabrication and ending in being discarded or recycled.

From nanoscale silver to titanium dioxide for air purification, the use of nanomaterials of high commercial relevance proves to have clear benefits as it attracts investments, and raises concerns. ‘Nano’ sized materials (a nanometre is one millionth of a millimetre) could pose environmental and health risks under certain conditions. The uncertainties and insufficient scientific knowledge could slow down innovation and economic growth.

How do we evaluate these risks and take the appropriate preventative measures? The answer comes from the results of the Sustainable Nanotechnologies Project (SUN), which has been given 13 million euros of funding from the European Commission.

Courtesy: SUN Project

A February 26, 2018 Ca’ Foscari University of Venice press release describes some of the SUN project’s last t initiatives including, https://sunds.gd/  or the ‘SUNDS; Decision support system for risk management of engineered nanomaterials and nano-enabled products’,

After 3 years of research in laboratories and in contact with industrial partners, the scientists have processed, tested and made available an online platform (https://sunds.gd/) that supports industries and control and regulating institutions in evaluating potential risks that may arise for the production teams, for the consumers and for the environment.

The goal is to understand the extent to which these risks are sustainable, especially in relation to the traditional materials available, and to take the appropriate preventative measures. Additionally, this tool allows us to compare risk reduction costs with the benefits generated by this innovative product, while measuring its possible environmental impact.

Danail Hristozov, the project’s principal investigator from the Department of Environmental Sciences, Informatics and Statistics at Ca’ Foscari, commented: “The great amount of work done for developing and testing the methods and tools for evaluating and managing the risks posed by nanomaterials has not only generated an enormous amount of new scientific data and knowledge on the potential dangers of different types of nanomaterials, but has also resulted in key discoveries on the interactions between nanomaterials and biological or ecological systems and on their diffusion, on how they work and on their possible adverse consequences. These results, disseminated in over 140 research papers, have been immediately taken up by industries and regulators and will inevitably have great impact on developing safer and more sustainable nanotechnologies and on regulating their risks”.”.

The SUN project has also composed a guide for the safest products and processes, published on its website: www.sun.fp7.eu.

Studied Materials

Scientists have focused their research on specific materials and their us, in order to analyse the entire life cycle of the products. Two of the best-known were chosen: nanoscale silver that is used in textiles, and multi-walled carbon nanotubes that is used in marine coatings and automotive parts. Less known materials that are of great relevance for their use were also included: car pigments and silica anticaking agents used by food industry.

Lastly, SUN included nanomaterials of high commercial value which are extremely innovative: Nitrogen doped Titanium Dioxide for air purification is a new product enabled by SUN and exploited by the large colour ceramics company Colorobbia. The copper based coating and impregnation for wood protection has been re-oriented based on SUN safety assessment, and the Tungsten Carbide based coatings for paper mills is marketed based on SUN results.

You can find out more about the SUN project here and about ‘SUNDS; Decision support system for risk management of engineered nanomaterials and nano-enabled products’ here.

Belgium’s nanomaterials reigster

A February 26, 2018 Nanowerk Spotlight article by Anthony Bochon has a   rather acerbic take on Belgium’s efforts to regulate nanomaterials with a national register,

In Alice’s Adventures in Wonderland, the White Rabbit keeps saying “Oh dear! Oh dear! I shall be too late.” The same could have been said by the Belgian federal government when it adopted the Royal Decree of 22nd December 2017, published in the annexes of the Belgian Official Gazette of 15th January 2018 (“Amending Royal Decree”), whose main provisions retroactively enter into force on 31st December 2016. …

The Belgian federal government unnecessarily delayed the adoption of the Amending Royal Decree until December 2017 and published it only mid-January 2018. It creates legal uncertainty where it should have been avoided. The Belgian nanomaterials register (…) symbolizes a Belgian exceptionalism in the small world of national nanomaterials registers. Unlike France, Denmark and Sweden, Belgium decided from the very beginning to have three different deadlines for substances, mixtures and articles.

In an already fragmented regulatory landscape (with 4 EU Member States having their own national nanomaterials register and 24 EU Member States which do not have such registration requirements), the confusion around the deadline for the registration of mixtures in Belgium does not allow the addressees of the legal obligations to comply with them.

Even though failure to properly register substances – and now mixtures – within the Belgian nanomaterials register exposes the addressees of the obligation to criminal penalties, the function of the register remains purely informational.

The data collected through the registration was meant to be used to identify the presence of manufactured nanomaterials on the Belgian market, with the implicit objective of regulating the exposure of workers and consumers to these nanomaterials. The absence of entry into force of the provisions relating to the registration of articles is therefore incoherent and should question the relevance of the whole Belgian registration system.

Taking into account the author’s snarkiness, Belgium seems to have adopted (knowingly or unknowingly) a chaotic approach to registering nanomaterials.  For anyone interesting in the Belgian’ nanoregister’, there’s this September 3, 2014 posting featuring another Anthony Bochon article on the topic and for anyone interested in Bochon’s book, there’s this August 15, 2014 posting (Note: his book, ‘Nanotechnology Law & Guidelines: A Practical Guide for the Nanotechnology Industries in Europe’, seems to have been updated [there is a copyright date of 2019 in the bibliographic information on the publisher’s website]).

Why don’t you CRISPR yourself?

It must have been quite the conference. Josiah Zayner plunged a needle into himself and claimed to have changed his DNA (deoxyribonucleic acid) while giving his talk. (*Segue: There is some Canadian content if you keep reading.*) From an Oct. 10, 2017 article by Adele Peters for Fast Company (Note: A link has been removed),

“What we’ve got here is some DNA, and this is a syringe,” Josiah Zayner tells a room full of synthetic biologists and other researchers. He fills the needle and plunges it into his skin. “This will modify my muscle genes and give me bigger muscles.”

Zayner, a biohacker–basically meaning he experiments with biology in a DIY lab rather than a traditional one–was giving a talk called “A Step-by-Step Guide to Genetically Modifying Yourself With CRISPR” at the SynBioBeta conference in San Francisco, where other presentations featured academics in suits and the young CEOs of typical biotech startups. Unlike the others, he started his workshop by handing out shots of scotch and a booklet explaining the basics of DIY [do-it-yourwelf] genome engineering.

If you want to genetically modify yourself, it turns out, it’s not necessarily complicated. As he offered samples in small baggies to the crowd, Zayner explained that it took him about five minutes to make the DNA that he brought to the presentation. The vial held Cas9, an enzyme that snips DNA at a particular location targeted by guide RNA, in the gene-editing system known as CRISPR. In this case, it was designed to knock out the myostatin gene, which produces a hormone that limits muscle growth and lets muscles atrophy. In a study in China, dogs with the edited gene had double the muscle mass of normal dogs. If anyone in the audience wanted to try it, they could take a vial home and inject it later. Even rubbing it on skin, Zayner said, would have some effect on cells, albeit limited.

Peters goes on to note that Zayner has a PhD in molecular biology and biophysics and worked for NASA (US National Aeronautics and Space Administration). Zayner’s Wikipedia entry fills in a few more details (Note: Links have been removed),

Zayner graduated from the University of Chicago with a Ph.D. in biophysics in 2013. He then spent two years as a researcher at NASA’s Ames Research Center,[2] where he worked on Martian colony habitat design. While at the agency, Zayner also analyzed speech patterns in online chat, Twitter, and books, and found that language on Twitter and online chat is closer to how people talk than to how they write.[3] Zayner found NASA’s scientific work less innovative than he expected, and upon leaving in January 2016, he launched a crowdfunding campaign to provide CRISPR kits to let the general public experiment with editing bacterial DNA. He also continued his grad school business, The ODIN, which sells kits to let the general public experiment at home. As of May 2016, The ODIN had four employees and operates out of Zayner’s garage.[2]

He refers to himself as a biohacker and believes in the importance in letting the general public participate in scientific experimentation, rather than leaving it segregated to labs.[2][4][1] Zayner found the biohacking community exclusive and hierarchical, particularly in the types of people who decide what is “safe”. He hopes that his projects can let even more people experiment in their homes. Other scientists responded that biohacking is inherently privileged, as it requires leisure time and money, and that deviance from the safety rules of concern would lead to even harsher regulations for all.[5] Zayner’s public CRISPR kit campaign coincided with wider scrutiny over genetic modification. Zayner maintained that these fears were based on misunderstandings of the product, as genetic experiments on yeast and bacteria cannot produce a viral epidemic.[6][7] In April 2015, Zayner ran a hoax on Craigslist to raise awareness about the future potential of forgery in forensics genetics testing.[8]

In February 2016, Zayner performed a full body microbiome transplant on himself, including a fecal transplant, to experiment with microbiome engineering and see if he could cure himself from gastrointestinal and other health issues. The microbiome from the donors feces successfully transplanted in Zayner’s gut according to DNA sequencing done on samples.[2] This experiment was documented by filmmakers Kate McLean and Mario Furloni and turned into the short documentary film Gut Hack.[9]

In December 2016, Zayner created a fluorescent beer by engineering yeast to contain the green fluorescent protein from jellyfish. Zayner’s company, The ODIN, released kits to allow people to create their own engineered fluorescent yeast and this was met with some controversy as the FDA declared the green fluorescent protein can be seen as a color additive.[10] Zayner, views the kit as a way that individual can use genetic engineering to create things in their everyday life.[11]

I found the video for Zayner’s now completed crowdfunding campaign,

I also found The ODIN website (mentioned in the Wikipedia essay) where they claim to be selling various gene editing and gene engineering kits including the CRISPR editing kits mentioned in Peters’ article,

In 2016, he [Zayner] sold $200,000 worth of products, including a kit for yeast that can be used to brew glowing bioluminescent beer, a kit to discover antibiotics at home, and a full home lab that’s roughly the cost of a MacBook Pro. In 2017, he expects to double sales. Many kits are simple, and most buyers probably aren’t using the supplies to attempt to engineer themselves (many kits go to classrooms). But Zayner also hopes that as people using the kits gain genetic literacy, they experiment in wilder ways.

Zayner sells a full home biohacking lab that’s roughly the cost of a MacBook Pro. [Photo: The ODIN]

He questions whether traditional research methods, like randomized controlled trials, are the only way to make discoveries, pointing out that in newer personalized medicine (such as immunotherapy for cancer, which is personalized for each patient), a sample size of one person makes sense. At his workshop, he argued that people should have the choice to self-experiment if they want to; we also change our DNA when we drink alcohol or smoke cigarettes or breathe in dirty city air. Other society-sanctioned activities are more dangerous. “We sacrifice maybe a million people a year to the car gods,” he said. “If you ask someone, ‘Would you get rid of cars?’–no.” …

US researchers both conventional and DIY types such as Zayner are not the only ones who are editing genes. The Chinese study mentioned in Peters’ article was written up in an Oct. 19, 2015 article by Antonio Regalado for the MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

Scientists in China say they are the first to use gene editing to produce customized dogs. They created a beagle with double the amount of muscle mass by deleting a gene called myostatin.

The dogs have “more muscles and are expected to have stronger running ability, which is good for hunting, police (military) applications,” Liangxue Lai, a researcher with the Key Laboratory of Regenerative Biology at the Guangzhou Institutes of Biomedicine and Health, said in an e-mail.

Lai and 28 colleagues reported their results last week in the Journal of Molecular Cell Biology, saying they intend to create dogs with other DNA mutations, including ones that mimic human diseases such as Parkinson’s and muscular dystrophy. “The goal of the research is to explore an approach to the generation of new disease dog models for biomedical research,” says Lai. “Dogs are very close to humans in terms of metabolic, physiological, and anatomical characteristics.”

Lai said his group had no plans breed to breed the extra-muscular beagles as pets. Other teams, however, could move quickly to commercialize gene-altered dogs, potentially editing their DNA to change their size, enhance their intelligence, or correct genetic illnesses. A different Chinese Institute, BGI, said in September it had begun selling miniature pigs, created via gene editing, for $1,600 each as novelty pets.

People have been influencing the genetics of dogs for millennia. By at least 36,000 years ago, early humans had already started to tame wolves and shape the companions we have today. Charles Darwin frequently cited dog breeding in The Origin of Species to demonstrate how evolution gradually occurs by a process of selection. With CRISPR, however, evolution is no longer gradual or subject to chance. It is immediate and under human control.

It is precisely that power that is stirring wide debate and concern over CRISPR. Yet at least some researchers think that gene-edited dogs could put a furry, friendly face on the technology. In an interview this month, George Church, a professor at Harvard University who leads a large effort to employ CRISPR editing, said he thinks it will be possible to augment dogs by using DNA edits to make them live longer or simply make them smarter.

Church said he also believed the alteration of dogs and other large animals could open a path to eventual gene editing of people. “Germline editing of pigs or dogs offers a line into it,” he said. “People might say, ‘Hey, it works.’ ”

In the meantime, Zayner’s ideas are certainly thought provoking. I’m not endorsing either his products or his ideas but it should be noted that early science pioneers such as Humphrey Davy and others experimented on themselves. For anyone unfamiliar with Davy, (from the Humphrey Davy Wikipedia entry; Note: Links have been removed),

Sir Humphry Davy, 1st Baronet PRS MRIA FGS (17 December 1778 – 29 May 1829) was a Cornish chemist and inventor,[1] who is best remembered today for isolating a series of substances for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. Berzelius called Davy’s 1806 Bakerian Lecture On Some Chemical Agencies of Electricity[2] “one of the best memoirs which has ever enriched the theory of chemistry.”[3] He was a Baronet, President of the Royal Society (PRS), Member of the Royal Irish Academy (MRIA), and Fellow of the Geological Society (FGS). He also invented the Davy lamp and a very early form of incandescent light bulb.

Canadian content*

A Nov. 11, 2017 posting on the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks blog notes that self-experimentation has a long history and goes on to describe Zayner’s and others biohacking exploits before describing the legality of biohacking in Canada,

With biohackers entering into the space traditionally held by scientists and clinicians, it begs questions. Professor Timothy Caulfield, a Canada research chair in health, law and policy at the University of Alberta, says when he hears of somebody giving themselves biohacked gene therapy, he wonders: “Is this legal? Is this safe? And if it’s not safe, is there anything that we can do about regulating it? And to be honest with you that’s a tough question and I think it’s an open question.”

In Canada, Caulfield says, Health Canada focuses on products. “You have to have something that you are going to regulate or you have to have something that’s making health claims. So if there is a product that is saying I can cure X, Y, or Z, Health Canada can say, ‘Well let’s make sure the science really backs up that claim.’ The problem with these do-it-yourself approaches is there isn’t really a product. You know these people are experimenting on themselves with something that may or may not be designed for health purposes.”

According to Caufield, if you could buy a gene therapy kit that was being marketed to you to biohack yourself, that would be different. “Health Canada could jump in. But right here that’s not the case,” he says.

There are places in the world that do regulate biohacking, says Caulfield. “Germany, for example, they have specific laws for it. And here in Canada we do have a regulatory framework that says that you cannot do gene therapy that will alter the germ line. In other words, you can’t do gene therapy or any kind of genetic editing that will create a change that you will pass on to your offspring. So that would be illegal, but that’s not what’s happening here. And I don’t think there’s a regulatory framework that adequately captures it.”

Infectious disease and policy experts aren’t that concerned yet about the possibility of a biohacker unleashing a genetically modified super germ into the population.

“I think in the future that could be a problem,”says Caulfield, “but this isn’t something that would be easy to do in your garage. I think it’s complicated science. But having said that, the science is moving quickly. We need to think about how we are going to control the potential harms.”

You can find out more about the ‘wild’ people (mostly men) of early science in Richard Holmes’ 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science.

Finally, should you be interested in connecting with synthetic biology enthusiasts, entrepreneurs, and others, SynBioBeta is more than a conference; it’s also an activity hub.

ETA January 25, 2018 (five minutes later): There are some CRISPR/CAS9 events taking place in Toronto, Canada on January 24 and 25, 2018. One is a workshop with Portuguese artist, Marta de Menezes, and the other is a panel discussion. See my January 10, 2018 posting for more details.

*’Segue: There is some Canadian content if you keep reading.’ and ‘Canadian content’ added January 25, 2018 six minutes after first publication.

ETA February 20, 2018: Sarah Zhang’s Feb. 20, 2018 article for The Atlantic revisits Josiah Zayner’s decision to inject himself with CRISPR,

When Josiah Zayner watched a biotech CEO drop his pants at a biohacking conference and inject himself with an untested herpes treatment, he realized things had gone off the rails.

Zayner is no stranger to stunts in biohacking—loosely defined as experiments, often on the self, that take place outside of traditional lab spaces. You might say he invented their latest incarnation: He’s sterilized his body to “transplant” his entire microbiome in front of a reporter. He’s squabbled with the FDA about selling a kit to make glow-in-the-dark beer. He’s extensively documented attempts to genetically engineer the color of his skin. And most notoriously, he injected his arm with DNA encoding for CRISPR that could theoretically enhance his muscles—in between taking swigs of Scotch at a live-streamed event during an October conference. (Experts say—and even Zayner himself in the live-stream conceded—it’s unlikely to work.)

So when Zayner saw Ascendance Biomedical’s CEO injecting himself on a live-stream earlier this month, you might say there was an uneasy flicker of recognition.

“Honestly, I kind of blame myself,” Zayner told me recently. He’s been in a soul-searching mood; he recently had a kid and the backlash to the CRISPR stunt in October [2017] had been getting to him. “There’s no doubt in my mind that somebody is going to end up hurt eventually,” he said.

Yup, it’s one of the reasons for rules; people take things too far. The trick is figuring out how to achieve balance between risk taking and recklessness.

European Commission has issued evaluation of nanomaterial risk frameworks and tools

Despite complaints that there should have been more, there has been some research into risks where nanomaterials are concerned. While additional research would be welcome, it’s perhaps more imperative that standardized testing and risk frameworks are developed so, for example, carbon nanotube safety research in Japan can be compared with the similar research in the Netherlands, the US, and elsewhere. This March 15, 2017 news item on Nanowerk features some research analyzing risk assessment frameworks and tools in Europe,

A recent study has evaluated frameworks and tools used in Europe to assess the potential health and environmental risks of manufactured nanomaterials. The study identifies a trend towards tools that provide protocols for conducting experiments, which enable more flexible and efficient hazard testing. Among its conclusions, however, it notes that no existing frameworks meet all the study’s evaluation criteria and calls for a new, more comprehensive framework.

A March 9, 2017 news alert in the European Commission’s Science for Environment Policy series, which originated the news item, provides more detail (Note: Links have been removed),

Nanotechnology is identified as a key emerging technology in the EU’s growth strategy, Europe 2020. It has great potential to contribute to innovation and economic growth and many of its applications have already received large investments. However,there are some uncertainties surrounding the environmental, health and safety risks of manufactured nanomaterials. For effective regulation, careful scientific analysis of their potential impacts is needed, as conducted through risk assessment exercises.

This study, conducted under the EU-funded MARINA project1, reviewed existing frameworks and tools for risk assessing manufactured nanomaterials. The researchers define a framework as a ‘conceptual paradigm’ of how a risk assessment should be conducted and understood, and give the REACH chemical safety assessment as an example. Tools are defined as implements used to carry out a specific task or function, such as experimental protocols, computer models or databases.

In all, 12 frameworks and 48 tools were evaluated. These were identified from other studies and projects. The frameworks were assessed against eight criteria which represent different strengths, such as whether they consider properties specific to nanomaterials, whether they consider the entire life cycle of a nanomaterial and whether they include careful planning and prioritise objectives before the risk assessment is conducted.

The tools were assessed against seven criteria, such as ease of use, whether they provide quantitative information and if they clearly communicate uncertainty in their results. The researchers defined the criteria for both frameworks and tools by reviewing other studies and by interviewing staff at organisations who develop tools.

The evaluation was thus able to produce a list of strengths and areas for improvement for the frameworks and tools, based on whether they meet each of the criteria. Among its many findings, the evaluation showed that most of the frameworks stress that ‘problem formulation’, which sets the goals and scope of an assessment during the planning process, is essential to avoid unnecessary testing. In addition, most frameworks consider routes of exposure in the initial stages of assessment, which is beneficial as it can exclude irrelevant exposure routes and avoid unnecessary tests.

However, none of the frameworks met all eight of the criteria. The study therefore recommends that a new, comprehensive framework is developed that meets all criteria. Such a framework is needed to inform regulation, the researchers say, and should integrate human health and environmental factors, and cover all stages of the life cycle of a product containing nanomaterials.

The evaluation of the tools suggested that many of them are designed to screen risks, and not necessarily to support regulatory risk assessment. However, their strengths include a growing trend in quantitative models, which can assess uncertainty; for example, one tool analysed can identify uncertainties in its results that are due to gaps in knowledge about a material’s origin, characteristics and use.

The researchers also identified a growing trend in tools that provide protocols for experiments, such as identifying materials and test hazards, which are reproducible across laboratories. These tools could lead to a shift from expensive case-by-case testing for risk assessment of manufactured nanomaterials towards a more efficient process based on groupings of nanomaterials; and ‘read-across’ methods, where the properties of one material can be inferred without testing, based on the known properties of a similar material. The researchers do note, however, that although read-across methods are well established for chemical substances, they are still being developed for nanomaterials. To improve nanomaterial read-across methods, they suggest that more data are needed on the links between nanomaterials’ specific properties and their biological effects.

That’s all, folks.

OECD (Organization for Economic Cooperation and Development) Dossiers on Nanomaterials Are of “Little to No Value for assessing risk?”

The announcement that a significant portion of the OECD’s (Organization for Economic Cooperation and Development) dossiers on 11 nanomaterials have next to no value for assessing risk seems a harsh judgment from the Center for International Environmental Law (CIEL). From a March 1, 2017 posting by Lynn L. Bergeson on the Nanotechnology Now,

On February 23, 2017, the Center for International Environmental Law (CIEL) issued a press release announcing a new report, commissioned by CIEL, the European Environmental Citizens’ Organization for Standardization (ECOS), and the Oeko-Institute, that “shows that most of the information made available by the Sponsorship Testing Programme of the Organisation for Economic Co-operation and Development (OECD) is of little to no value for the regulatory risk assessment of nanomaterials.”

Here’s more from the Feb. 23, 3017 CIEL press release, which originated the posting,

The study published today [Feb. 23, 2017] was delivered by the Institute of Occupational Medicine (IOM) based in Singapore. IOM screened the 11,500 pages of raw data of the OECD dossiers on 11 nanomaterials, and analysed all characterisation and toxicity data on three specific nanomaterials – fullerenes, single-walled carbon nanotubes, and zinc oxide.

“EU policy makers and industry are using the existence of the data to dispel concerns about the potential health and environmental risks of manufactured nanomaterials,” said David Azoulay, Senior Attorney for CIEL. “When you analyse the data, in most cases, it is impossible to assess what material was actually tested. The fact that data exists about a nanomaterial does not mean that the information is reliable to assess the hazards or risks of the material.”

The dossiers were published in 2015 by the OECD’s Working Party on Manufactured Nanomaterials (WPMN), which has yet to draw conclusions on the data quality. Despite this missing analysis, some stakeholders participating in EU policy-making – notably the European Chemicals Agency (ECHA) and the European Commission’s Joint Research Centre – have presented the dossiers as containing information on nano-specific human health and environmental impacts. Industry federations and individual companies have taken this a step further emphasizing that there is enough information available to discard most concerns about potential health or environmental risks of manufactured nanomaterials.

“Our study shows these claims that there is sufficient data available on nanomaterials are not only false, but dangerously so,” said Doreen Fedrigo, Senior Policy Officer of ECOS. ”The lack of nano-specific information in the dossiers means that the results of the tests cannot be used as evidence of no ‘nano-effect’ of the tested material. This information is crucial for regulators and producers who need to know the hazard profile of these materials. Analysing the dossiers has shown that legislation detailing nano-specific information requirements is crucial for the regulatory risk assessment of nanomaterials.”

The report provides important recommendations on future steps in the governance of nanomaterials. “Based on our analysis, serious gaps in current dossiers must be filled in with characterisation information, preparation protocols, and exposure data,” said Andreas Hermann of the Oeko-Institute. “Using these dossiers as they are and ignoring these recommendations would mean making decisions on the safety of nanomaterials based on faulty and incomplete data. Our health and environment requires more from producers and regulators.”

CIEL has an Analysis of OECD WPMN Dossiers Regarding the Availability of Data to Evaluate and Regulate Risk (Dec 2016) webpage which provides more information about the dossiers and about the research into the dossiers and includes links to the report, the executive summer, and the dataset,

The Sponsorship Testing Programme of the Working Party on Manufactured Nanomaterials (WPMN) of the Organisation for Economic Co-operation and Development (OECD) started in 2007 with the aim to test a selection of 13 representative nanomaterials for many endpoints. The main objectives of the programme were to better understand what information on intrinsic properties of the nanomaterials might be relevant for exposure and hazards assessment and assess the validity of OECD chemicals Test Guidelines for nanomaterials. The testing programme concluded in 2015 with the publication of dossiers on 11 nanomaterials: 11,500 pages of raw data to be analysed and interpreted.

The WPMN has not drawn conclusions on the data quality, but some stakeholders participating in EU policy-making – notably the European Chemicals Agency and the European Commission’s Joint Research Centre – presented the dossiers as containing much scientific information that provided a better understanding of their nano-specific human health and environmental impacts. Industry federations and individual companies echoed the views, highlighting that there was enough information available to discard most concerns about potential health or environmental risks of manufactured nanomaterials.

As for the OECD, it concluded, even before the publication of the dossiers, that “many of the existing guidelines are also suitable for the safety assessment of nanomaterials” and “the outcomes (of the sponsorship programme) will provide useful information on the ‘intrinsic properties’ of nanomaterials.”

The Center for International Environmental Law (CIEL), the European Citizens’ Organisation for Standardisation (ECOS) and the Öko-Institut commissioned scientific analysis of these dossiers to assess the relevance of the data for regulatory risk assessment.

The resulting report: Analysis of OECD WPMN dossiers regarding the availability of data to evaluate and regulate risk, provides insights illustratating how most of the information made available by the sponsorship programme is of little to no value in identifying hazards or in assessing risks due to nanomaterials.

The analysis shows that:

  • Most studies and documents in the dossiers contain insufficient characterisation data about the specific nanomaterial addressed (size, particle distribution, surface shape, etc.), making it impossible to assess what material was actually tested.
  • This makes it impossible to make any firm statements regarding the nano-specificity of the hazard data published, or the relationship between observed effects and specific nano-scale properties.
  • Less than 2% of the study records provide detail on the size of the nanomaterial tested. Most studies use mass rather than number or size distribution (so not following scientifically recommended reporting practice).
  • The absence of details on the method used to prepare the nanomaterial makes it virtually impossible to correlate an identified hazard with specific nanomaterial characteristic. Since the studies do not indicate dispersion protocols used, it is impossible to assess whether the final dispersion contained the intended mass concentration (or even the actual presence of nanomaterials in the test system), how much agglomeration may have occurred, and how the preparation protocols may have influenced the size distribution.
  • There is not enough nano-specific information in the dossiers to inform about nano-characteristics of the raw material that influence their toxicology. This information is important for regulators and its absence makes information in the dossier irrelevant to develop read-across guidelines.
  • Only about half of the endpoint study records using OECD Test Guideliness (TGs) were delivered using unaltered OECD TGs, thereby respecting the Guidelines’ requirements. The reasons for modifications of the TGs used in the tests are not clear from the documentation. This includes whether the study record was modified to account for challenges related to specific nanomaterial properties or for other, non-nano-specific reasons.
  • The studies do not contain systematic testing of the influence of nano-specific characteristics on the study outcome, and they do not provide the data needed to assess the effect of nano-scale features on the Test Guidelines. Given the absence of fundamental information on nanomaterial characteristics, the dossiers do not provide evidence of the applicability of existing OECD Test Guidelines to nanomaterials.

The analysis therefore dispels several myths created by some stakeholders following publication of the dossiers and provides important perspective for the governance of nanomaterials. In particular, the analysis makes recommendations to:

  • Systematically assess the validity of existing Test Guidelines for relevance to nanomaterials
  • Develop Test Guidelines for dispersion and other test preparations
  • Define the minimum characteristics of nanomaterials that need to be reported
  • Support the build-up of exposure database
  • Fill the gaps in current dossiers with characterisation information, preparation protocols and exposure data

Read full report.
Read executive summary.
Download full dataset.

This is not my area of expertise and while I find the language a bit inflammatory, it’s my understanding that there are great gaps in our understanding of nanomaterials and testing for risk assessment has been criticized for many of the reasons pointed out by CIEL, ECOS, and the Oeko-Institute.

You can find out more about CIEL here; ECOS here; and the Oeko-Institute (also known as Öko-Institute) here.

2016 report on nanomaterial reporting released by French government

Lynn L. Bergeson has announced the release of a new report from the French government in her Jan. 3, 2017 posting on Nanotechnology Now,

In November 2016, the Ministry of the Environment, Energy, and the Sea released its 2016 report, in French, Éléments issus des déclarations des substances à l’état nanoparticulaire. … The report analyzes nanomaterial declarations received in 2016 for reporting year 2015. Under Decree No. 2012-232, companies that manufacture, import, and/or distribute a “substance with nanoparticle status” in an amount of at least 100 grams per year must submit an annual report with substance identity, quantity, and use information. According to the report, while the number of declarations received in 2016 decreased from 2015, the quantity of materials produced increased (350,487 tonnes vs. 300,822 tonnes in 2015), as well as the quantity imported (125,279 tonnes vs. 114,951 tonnes in 2015).

For people with the French language skills, you can find the report here (PDF). You can also check out the R-Nano website (French language) (English language) for more information about the reporting programme in France.

In related news. the US Environmental Protection Agency announced its one-time only nanomaterial reporting requirements as highlighted in my Jan. 18, 2017 posting.

US Environmental Protection Agency finalizes its one-time reporting requirements for nanomaterials

The US Environmental Protection Agency (EPA) has announced its one-time reporting requirement for  nanomaterials. From a Jan. 12, 2017 news item on Nanowerk,

The U.S. Environmental Protection Agency (EPA) is requiring one-time reporting and recordkeeping requirements on nanoscale chemical substances in the marketplace. These substances are nano-sized versions of chemicals that are already in the marketplace.
EPA seeks to facilitate innovation while ensuring safety of the substances. EPA currently reviews new chemical substances manufactured or processed as nanomaterials prior to introduction into the marketplace to ensure that they are safe.

For the first time, EPA is using [the] TSCA [Toxic Substances Control Act] to collect existing exposure and health and safety information on chemicals currently in the marketplace when manufactured or processed as nanoscale materials.

The companies will notify EPA of certain information:
– specific chemical identity;
– production volume;
– methods of manufacture; processing, use, exposure, and release information; and,available health and safety data.

Reactions

David Stegon writes about the requirement in a Jan. 12, 2017 posting on Chemical Watch,

The US EPA has finalised its nanoscale materials reporting rule, completing a process that began more than 11 years ago.

The US position contrasts with that of the European Commission, which has rejected the idea of a specific mandatory reporting obligation for nanomaterials. Instead it insists such data can be collected under REACH’s registration rules for substances in general. It has told Echa [ECHA {European Chemicals Agency}] to develop ‘nano observatory’ pages on its website with existing nanomaterial information. Meanwhile, Canada set its reporting requirements in 2015.

The US rule, which comes under section 8(a) of TSCA, will take effect 120 days after publication in the Federal Register.

It defines nanomaterials as chemical substances that are:

  • solids at 25 degrees Celsius at standard atmospheric pressure;
  • manufactured or processed in a form where any particles, including aggregates and agglomerates, are between 1 and 100 nanometers (nm) in at least one dimension; and
  • manufactured or processed to exhibit one or more unique and novel property.

The rule does not apply to chemical substances manufactured or processed in forms that contain less than 1% by weight of any particles between 1 and 100nm.

Taking account of comments received on the rulemaking, the EPA made three changes to the proposed definition:

  • it added the definition of unique and novel properties to help identify substances that act differently at nano sizes;
  • it clarified that a substance is not a nanomaterial if it fits the specified size range, but does not have a size-dependent property that differs from the same chemical at sizes greater than 100nm; and
  • it eliminated part of the nanomaterial definition that had said a reportable chemical may not include a substance that only has trace amounts of primary particles, aggregates, or agglomerates in the size range of 1 to 100nm.

The EPA has added the new information gathering rule (scroll down about 50% of the way) on its Control of Nanoscale Materials under the Toxic Substances Control Act webpage.

There’s also this Jan. 17, 2017 article by Meagan Parrish for the ChemInfo which provides an alternative perspective and includes what appears to be some misinformation (Note: A link has been removed),

It was several years in the making, but in the final stages of its rule-making process for nanomaterial reporting, the Environmental Protection Agency declined to consider feedback from the industry.

Now, with the final language published and the rule set to go into effect in May, some in the industry are concerned that the agency is requiring an unnecessary amount of costly reporting that isn’t likely to reveal potential hazards. The heightened regulations could also hamper the pace of innovation underway in the industry.

“The poster child for nanotechnology is carbon nanotubes,” says James Votaw, a partner with Manatt, Phelps & Phillips, of the form of carbon that is 10,000 smaller than human hair but stronger than steel. “It can be used to make very strong materials and as an additive in plastics to make them electrically conductive or stiffer.”

The EPA has been attempting to define nanomaterials since 2004 and assess the potential for environmental or human health risks associated with their use. In 2008, the EPA launched an effort to collect voluntarily submitted information from key players in the industry, but after a few years, the agency wasn’t happy with amount of responses. The effort to create a mandatory reporting requirement was launched in 2010.

Yet, according to Votaw, after a 2015 proposal of the rule was extensively criticized by the industry for being overly ambiguous and overly inclusive of its coverage, the industry asked the EPA to reopen a dialogue on the rule. The EPA declined.

The new reporting requirement is expected to cost companies about $27.79 million during the first year and $3.09 million in subsequent years. [emphasis mine]

As far as I’m aware, this is a one-time reporting requirement. Although I’m sure many would like to see that change.

As for the Canadian situation, I mentioned the nanomaterials mandatory survey noted in Stegon’s piece in a July 29, 2015 posting. It was one of a series of mandatory surveys (currently, a survey on asbestos is underway) issued as part of Canada’s Chemicals Management Plan. You can find more information about the nanomaterials notice and approach to the survey although there doesn’t appear to have been a report made public but perhaps it’s too soon. From the Nanomaterials Mandatory Survey page,

The Government of Canada is undertaking a stepwise approach to address nanoscale forms of substances on the DSL. The proposed approach consists of three phases:

  • Establishment of a list of existing nanomaterials in Canada (this includes the section 71 Notice);
  • Prioritization of existing nanomaterials for action; and
  • Action on substances identified for further work.

The overall approach was first described in a consultation document entitled Proposed Approach to Address Nanoscale Forms of Substances on the Domestic Substances List, published on March 18, 2015. This consultation document was open for a 60-day public comment period to solicit feedback from stakeholders, particularly on the first phase of the approach.

A second consultation document entitled Proposed Prioritization Approach for Nanoscale Forms of Substances on the Domestic Substances List was published on July 27, 2016. In this document, the approach proposed for prioritization of existing nanomaterials on the DSL is described, taking into consideration the results of the section 71 Notice.  Comments on this consultation document may be submitted prior to September 25, 2016 …

I look forward to discovering a report on the Canadian nanomaterials survey should one be made public.

International news bits: Israel and Germany and Cuba and Iran

I have three news bits today.

Germany

From a Nov. 14, 2016 posting by Lynn L. Bergeson and Carla N. Hutton for The National Law Review (Note: A link has been removed),

The German Federal Ministry of Education and Research (BMBF) recently published an English version of its Action Plan Nanotechnology 2020. Based on the success of the Action Plan Nanotechnology over the previous ten years, the federal government will continue the Action Plan Nanotechnology for the next five years.  Action Plan Nanotechnology 2020 is geared towards the priorities of the federal government’s new “High-Tech Strategy” (HTS), which has as its objective the solution of societal challenges by promoting research.  According to Action Plan Nanotechnology 2020, the results of a number of research projects “have shown that nanomaterials are not per se linked with a risk for people and the environment due to their nanoscale properties.”  Instead, this is influenced more by structure, chemical composition, and other factors, and is thus dependent on the respective material and its application.

A Nov. 16, 2016 posting on Out-Law.com provides mores detail about the plan (Note: A link has been removed),

Eight ministries have been responsible for producing a joint plan on nanotechnology every five years since 2006, the Ministry said. The ministries develop a common approach that pools strategies for action and fields of application for nanotechnology, it [Germany’s Federal Ministry of Education and Research] said.

The German public sector currently spends more than €600 million a year on nanotechnology related developments, and 2,200 organisations from industry, services, research and associations are registered in the Ministry’s nanotechnology competence map, the report said.

“There are currently also some 1,100 companies in Germany engaged [in] the use of nanotechnology in the fields of research and development as well as the marketing of commercial products and services. The proportion of SMEs [small to medium enterprises?] is around 75%,” it said.

Nanotechnology-based product innovations play “an increasingly important role in many areas of life, such as health and nutrition, the workplace, mobility and energy production”, and the plan “thus pursues the objective of continuing to exploit the opportunities and potential of nanotechnology in Germany, without disregarding any potential risks to humans and the environment.”, the Ministry said.

Technology law expert Florian von Baum of Pinsent Masons, the law firm behind Out-Law.com said: “The action plan aims to achieve and secure Germany’s critical lead in the still new nanotechnology field and to recognise and use the full potential of nanotechnology while taking into account possible risks and dangers of this new technology.”

..

“With the rapid pace of development and the new applications that emerge every day, the government needs to ensure that the dangers and risks are sufficiently recognised and considered. Nanotechnology will provide great and long-awaited breakthroughs in health and ecological areas, but ethical, legal and socio-economic issues must be assessed and evaluated at all stages of the innovation chain,” von Baum said.

You can find Germany’s Action Plan Nanotechnology 2020 here, all 64 pp.of it.

Israel and Germany

A Nov. 16, 2016 article by Shoshanna Solomon for The Times of Israel announces a new joint (Israel-Germany) nanotechnology fund,

Tsrael and Germany have set up a new three-year, €30 million plan to promote joint nanotechnology initiatives and are calling on companies and entities in both countries to submit proposals for funding for projects in this field.

“Nanotech is the industry of the future in global hi-tech and Israel has set a goal of becoming a leader of this field, while cooperating with leading European countries,” Ilan Peled, manager of Technological Infrastructure Arena at the Israel Innovation Authority, said in a statement announcing the plan.

In the past decade nanotechnology, seen by many as the tech field of the future, has focused mainly on research. Now, however, Israel’s Innovation Authority, which has set up the joint program with Germany, believes the next decade will focus on the application of this research into products — and countries are keen to set up the right ecosystem that will draw companies operating in this field to them.

Over the last decade, the country has focused on creating a “robust research foundation that can support a large industry,” the authority said, with six academic research institutes that are among the world’s most advanced.

In addition, the authority said, there are about 200 new startups that were established over the last decade in the field, many in the development stage.

I know it’s been over 70 years since the events of World War II but this does seem like an unexpected coupling. It is heartening to see that people can resolve the unimaginable within the space of a few generations.

Iran and Cuba

A Nov. 16, 2016 Mehr News Agency press release announces a new laboratory in Cuba,

Iran is ready to build a laboratory center equipped with nanotechnology in one of nano institutes in Cuba, Iran’s VP for Science and Technology Sorena Sattari said Tuesday [Nov. 15, 2016].

Sorena Sattari, Vice-President for Science and Technology, made the remark in a meeting with Fidel Castro Diaz-Balart, scientific adviser to the Cuban president, in Tehran on Tuesday [November 15, 2016], adding that Iran is also ready to present Cuba with a gifted package including educational services related to how to operate the equipment at the lab.

During the meeting, Sattari noted Iran’s various technological achievements including exports of biotechnological medicine to Russia, the extensive nanotechnology plans for high school and university students as well as companies, the presence of about 160 companies active in the field of nanotechnology and the country’s achievements in the field of water treatment.

“We have sealed good nano agreements with Cuba, and are ready to develop our technological cooperation with this country in the field of vaccines and recombinant drugs,” he said.

Sattari maintained that the biggest e-commerce company in the Middle East is situated in Iran, adding “the company which was only established six years ago now sales over $3.5 million in a day, and is even bigger than similar companies in Russia.”

The Cuban official, for his part, welcomed any kind of cooperation with Iran, and thanked the Islamic Republic for its generous proposal on establishing a nanotechnology laboratory in his country.

This coupling is not quite so unexpected as Iran has been cozying up to all kinds of countries in its drive to establish itself as a nanotechnology leader.