Tag Archives: security

‘Smart’ windows from Australia

My obsession with smart windows has been lying dormant until now. This February 25, 2018 RMIT University (Australia) press release on EurekAlert has reawkened it,

Researchers from RMIT University in Melbourne Australia have developed a new ultra-thin coating that responds to heat and cold, opening the door to “smart windows”.

The self-modifying coating, which is a thousand times thinner than a human hair, works by automatically letting in more heat when it’s cold and blocking the sun’s rays when it’s hot.

Smart windows have the ability to naturally regulate temperatures inside a building, leading to major environmental benefits and significant financial savings.

Lead investigator Associate Professor Madhu Bhaskaran said the breakthrough will help meet future energy needs and create temperature-responsive buildings.

“We are making it possible to manufacture smart windows that block heat during summer and retain heat inside when the weather cools,” Bhaskaran said.

“We lose most of our energy in buildings through windows. This makes maintaining buildings at a certain temperature a very wasteful and unavoidable process.

“Our technology will potentially cut the rising costs of air-conditioning and heating, as well as dramatically reduce the carbon footprint of buildings of all sizes.

“Solutions to our energy crisis do not come only from using renewables; smarter technology that eliminates energy waste is absolutely vital.”

Smart glass windows are about 70 per cent more energy efficient during summer and 45 per cent more efficient in the winter compared to standard dual-pane glass.

New York’s Empire State Building reported energy savings of US$2.4 million and cut carbon emissions by 4,000 metric tonnes after installing smart glass windows. This was using a less effective form of technology.

“The Empire State Building used glass that still required some energy to operate,” Bhaskaran said. “Our coating doesn’t require energy and responds directly to changes in temperature.”

Co-researcher and PhD student Mohammad Taha said that while the coating reacts to temperature it can also be overridden with a simple switch.

“This switch is similar to a dimmer and can be used to control the level of transparency on the window and therefore the intensity of lighting in a room,” Taha said. “This means users have total freedom to operate the smart windows on-demand.”

Windows aren’t the only clear winners when it comes to the new coating. The technology can also be used to control non-harmful radiation that can penetrate plastics and fabrics. This could be applied to medical imaging and security scans.

Bhaskaran said that the team was looking to roll the technology out as soon as possible.

“The materials and technology are readily scalable to large area surfaces, with the underlying technology filed as a patent in Australia and the US,” she said.

The research has been carried out at RMIT University’s state-of-the-art Micro Nano Research Facility with colleagues at the University of Adelaide and supported by the Australian Research Council.

How the coating works

The self-regulating coating is created using a material called vanadium dioxide. The coating is 50-150 nanometres in thickness.

At 67 degrees Celsius, vanadium dioxide transforms from being an insulator into a metal, allowing the coating to turn into a versatile optoelectronic material controlled by and sensitive to light.

The coating stays transparent and clear to the human eye but goes opaque to infra-red solar radiation, which humans cannot see and is what causes sun-induced heating.

Until now, it has been impossible to use vanadium dioxide on surfaces of various sizes because the placement of the coating requires the creation of specialised layers, or platforms.

The RMIT researchers have developed a way to create and deposit the ultra-thin coating without the need for these special platforms – meaning it can be directly applied to surfaces like glass windows.

Here’s a link to and a citation for the paper,

Insulator–metal transition in substrate-independent VO2 thin film for phase-change device by Mohammad Taha, Sumeet Walia, Taimur Ahmed, Daniel Headland, Withawat Withayachumnankul, Sharath Sriram, & Madhu Bhaskaran. Scientific Reportsvolume 7, Article number: 17899 (2017) doi:10.1038/s41598-017-17937-3 Published online: 20 December 2017

This paper is open access.

For anyone interested in more ‘smart’ windows, you can try that search term or ‘electrochromic’, ‘photochromic’, and ‘thermochromic’ , as well.

Internet of toys, the robotification of childhood, and privacy issues

Leave it to the European Commission’s (EC) Joint Research Centre (JRC) to look into the future of toys. As far as I’m aware there are no such moves in either Canada or the US despite the ubiquity of robot toys and other such devices. From a March 23, 2017 EC JRC  press release (also on EurekAlert),

Action is needed to monitor and control the emerging Internet of Toys, concludes a new JRC report. Privacy and security are highlighted as main areas of concern.

Large numbers of connected toys have been put on the market over the past few years, and the turnover is expected to reach €10 billion by 2020 – up from just €2.6 billion in 2015.

Connected toys come in many different forms, from smart watches to teddy bears that interact with their users. They are connected to the internet and together with other connected appliances they form the Internet of Things, which is bringing technology into our daily lives more than ever.

However, the toys’ ability to record, store and share information about their young users raises concerns about children’s safety, privacy and social development.

A team of JRC scientists and international experts looked at the safety, security, privacy and societal questions emerging from the rise of the Internet of Toys. The report invites policymakers, industry, parents and teachers to study connected toys more in depth in order to provide a framework which ensures that these toys are safe and beneficial for children.

Robotification of childhood

Robots are no longer only used in industry to carry out repetitive or potentially dangerous tasks. In the past years, robots have entered our everyday lives and also children are more and more likely to encounter robotic or artificial intelligence-enhanced toys.

We still know relatively little about the consequences of children’s interaction with robotic toys. However, it is conceivable that they represent both opportunities and risks for children’s cognitive, socio-emotional and moral-behavioural development.

For example, social robots may further the acquisition of foreign language skills by compensating for the lack of native speakers as language tutors or by removing the barriers and peer pressure encountered in class room. There is also evidence about the benefits of child-robot interaction for children with developmental problems, such as autism or learning difficulties, who may find human interaction difficult.

However, the internet-based personalization of children’s education via filtering algorithms may also increase the risk of ‘educational bubbles’ where children only receive information that fits their pre-existing knowledge and interest – similar to adult interaction on social media networks.

Safety and security considerations

The rapid rise in internet connected toys also raises concerns about children’s safety and privacy. In particular, the way that data gathered by connected toys is analysed, manipulated and stored is not transparent, which poses an emerging threat to children’s privacy.

The data provided by children while they play, i.e the sounds, images and movements recorded by connected toys is personal data protected by the EU data protection framework, as well as by the new General Data Protection Regulation (GDPR). However, information on how this data is stored, analysed and shared might be hidden in long privacy statements or policies and often go unnoticed by parents.

Whilst children’s right to privacy is the most immediate concern linked to connected toys, there is also a long term concern: growing up in a culture where the tracking, recording and analysing of children’s everyday choices becomes a normal part of life is also likely to shape children’s behaviour and development.

Usage framework to guide the use of connected toys

The report calls for industry and policymakers to create a connected toys usage framework to act as a guide for their design and use.

This would also help toymakers to meet the challenge of complying with the new European General Data Protection Regulation (GDPR) which comes into force in May 2018, which will increase citizens’ control over their personal data.

The report also calls for the connected toy industry and academic researchers to work together to produce better designed and safer products.

Advice for parents

The report concludes that it is paramount that we understand how children interact with connected toys and which risks and opportunities they entail for children’s development.

“These devices come with really interesting possibilities and the more we use them, the more we will learn about how to best manage them. Locking them up in a cupboard is not the way to go. We as adults have to understand how they work – and how they might ‘misbehave’ – so that we can provide the right tools and the right opportunities for our children to grow up happy in a secure digital world”, Stéphane Chaudron, the report’s lead researcher at the Joint Research Centre (JRC).).

The authors of the report encourage parents to get informed about the capabilities, functions, security measures and privacy settings of toys before buying them. They also urge parents to focus on the quality of play by observing their children, talking to them about their experiences and playing alongside and with their children.

Protecting and empowering children

Through the Alliance to better protect minors online and with the support of UNICEF, NGOs, Toy Industries Europe and other industry and stakeholder groups, European and global ICT and media companies  are working to improve the protection and empowerment of children when using connected toys. This self-regulatory initiative is facilitated by the European Commission and aims to create a safer and more stimulating digital environment for children.

There’s an engaging video accompanying this press release,

You can find the report (Kaleidoscope on the Internet of Toys: Safety, security, privacy and societal insights) here and both the PDF and print versions are free (although I imagine you’ll have to pay postage for the print version). This report was published in 2016; the authors are Stéphane Chaudron, Rosanna Di Gioia, Monica Gemo, Donell Holloway , Jackie Marsh , Giovanna Mascheroni , Jochen Peter, Dylan Yamada-Rice and organizations involved include European Cooperation in Science and Technology (COST), Digital Literacy and Multimodal Practices of Young Children (DigiLitEY), and COST Action IS1410. DigiLitEY is a European network of 33 countries focusing on research in this area (2015-2019).

Noniridescent photonics inspired by tarantulas

Last year, I was quite taken with a structural colour story centering on tarantulas which was featured in my Dec. 7, 2015 posting.

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

On Oct. 17, 2016 I was delighted to receive an email with the latest work from the same team who this time around crowdfunded resources to complete their research. Before moving on to the paper, here’s more from the team’s crowdfunder on Experiment was titled “The Development of Non-iridescent Structurally Colored Material Inspired by Tarantula Hairs,”

Many vibrant colors in nature are produced by nanostructures rather than pigments. But their application is limited by iridescence – changing hue and brightness with viewing angles. This project aims to mimic the nanostructures that tarantulas use to produce bright, non-iridescent blue colors to inspire next-generation, energy efficient, wide-angle color displays. Moreover, one day non-iridescent structural colorants may replace costly and toxic pigments and dyes.

What is the context of this research?

We recently discovered that some tarantulas produce vivid blue colors using unique nanostructures not found in other blue organisms like birds and Morpho butterflies. We described a number of different nanostructures that help explain how blue color evolved at least eight times within tarantulas. These colors are also remarkably non-iridescent so that they stay bright blue even at wide viewing angles, unlike the “flashy” structural colors seen in many birds and butterflies. We hypothesize that although the hue is produced by multilayer nanostructure, it is the hierarchical morphology of the hairs controls iridescence. We would like to validate our results from preliminary optical simulations by making nano-3D printed physical prototypes with and without key features of the tarantula hairs.

What is the significance of this project?

While iridescence can make a flashy signal to a mating bird or butterfly, it isn’t so useful in optical technology. This limits the application of structural colors in human contexts, even though they can be more vibrant and resist fading better than traditional pigment-based colors. For example, despite being energy efficient and viewable in direct sunlight, this butterfly-inspired color display, that utilizes principles of structural colors, has never made it into the mainstream because iridescence limits its viewing angle. We believe this limitation could be overcome using tarantula-inspired nanostructures that could be mass-produced in an economically viable way through top-down approaches. Those nanostructures may even be used to replace pigments and dyes someday!

What are the goals of the project?

We have designed five models that vary in complexity, incorporating successively more details of real tarantula hairs. We would like to fabricate those five designs by 3D nano-printing, so that we can test our hypothesis experimentally and determine which features produce blue and which remove iridescence. We’ll start making those designs as soon as we reach our goal and the project is fully funded. Once these designs are made, we will compare the angle-dependency of the colors produced by each design through angle-resolved reflectance spectrometry. We’ll also compare them visually through photography by taking series of shots from different angles similar to Fig. S4. Through those steps, we’ll be able to identify how each feature of the complex nanostructure contributes to color.

Budget
Ultra-high resolution (nano-scale) 3D printing
$6,000
To fund nano 3D printing completely
$1,700

This project has been designed using Biomimicry Thinking, and is a follow-up to our published, well-received tarantula research. In order to test our hypothesis, we are planning to use Photonic Professional GT by nanoscribe to fabricate tarantula hair-inspired prototypes by 3D printing nanostructures within millimeter sized swatches. To be able to 3D print nanostructures across these relatively large-sized swatches is critical to the success of our project. Currently, there’s no widely-accessible technology out there that meets our needs other than Photonic Professional GT. However, the estimated cost just for 3D printing those nanostructures alone is $20,000. So far, we have successfully raised and allocated $13,000 of research funds through conventional means, but we are still $7,000 short. Initial trial of our most complex prototype was a success. Therefore, we’re here, seeking your help. Please help us make this nano fabrication happen, and make this project a success! Thank you!

The researchers managed to raise $7, 708.00 in total, making this paper possible,

Tarantula-Inspired Noniridescent Photonics with Long-Range Order by Bor-Kai Hsiung, Radwanul Hasan Siddique, Lijia Jiang, Ying Liu, Yongfeng Lu, Matthew D. Shawkey, and Todd A. Blackledge. Advanced Materials DOI: 10.1002/adom.201600599 Version of Record online: 11 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall but I did manage to get my hands on a copy. So here are a few highlights from the paper,

Pigment-based colorants are used for applications ranging from textiles to packaging to cosmetics.[1] However, structural-based alternatives can be more vibrant, durable, and eco-friendly relative to pigmentary colors.[2] Moreover, optical nanostructures are highly tunable, they can achieve a full color gamut by slight alterations to spacing.[3] However, light interference and/or diffraction from most photonic structures results in iridescence,[4] which limits their broader applications. Iridescent colors that change hue when viewed from different directions are useful for niche markets, such as security and anticounterfeiting, {emphasis mine} [5] but are not desirable for most applications, such as paints, coatings, electronic displays, and apparels. Hence, fabricating a photonic structure that minimizes iridescence is a key step to unlocking the potential applications of structural colors.

Noniridescent structural colors in nature are produced by coherent scattering of light by quasi-ordered, amorphous photonic structures (i.e., photonic glass),[6–10] or photonic polycrystals [9,11–14] that possess only short-range order. Iridescence is thought to be a fundamental component of photonic structures with long-range order, such as multilayers.[4] However, the complexity of short-range order photonic structures prohibits their design and fabrication using top-down approaches while bottom-up synthesis using colloidal suspension[15,16] or self-assembly[17–20] lack the tight controls over the spatial and temporal scales needed for industrial mass production. Photonic structures with long-range order are easier to model mathematically. Hence, long-range order photonic structures are intrinsically suitable for top-down fabrication, where precise feature placement and scalability can be guaranteed.

Recently, we found blue color produced by multilayer interference on specialized hairs from two species of blue tarantulas (Poecilotheria metallica (Figure 1a,b) and Lampropelma violaceopes) that was largely angle independent.[21] We hypothesize that the iridescent effects of the multilayer are reduced by hierarchical structuring of the hairs. Specifically, the hairs have: (1) high degrees of rotational symmetry, (2) hierarchy—with subcylindrical multilayers surrounding a larger, overarching multilayer cylinder, and (3) nanoscale surface grooves. Because all of these structures co-occur on the tarantulas, it is impossible to decouple them simply by observing nature. Here, we use optical simulation and nano-3D rapid prototyping to demonstrate that introducing design features seen in these tarantulas onto a multilayer photonic structure nearly eliminates iridescence. As far as we are aware, this is the first known example of a noniridescent structural color produced by a photonic structure with both short and long-range order. This opens up an array of new possibilities for photonic structure design and fabrication to produce noniridescent structural colors and is a key first step to achieving economically viable solutions for mass production of noniridescent structural color.  … (p. 1 PDF)

There is a Canadian security and anti-counterfeiting company (Nanotech Security Corp.), inspired by the Morpho butterfly and its iridescent blue, which got its start in Bozena Kaminska’s laboratory at Simon Fraser University (Vancouver, Canada).

Getting back to the paper, after a few twists and turns, they conclude with this,

This approach of producing noniridescent structural colors using photonic structures with long-range order (i.e., modified multilayer) has, to our knowledge, not been explored previously. Our findings reaffirm the value of using nature and the biomimetic process as a tool for innovation and our approach also may help to overcome the current inability of colloidal self-assembly to achieve pure noniridescent structural red due to single-particle scattering and/or multiple scattering.[25] As a result, our research provides a new and easy way for designing structural colorants with customizable hues (see Figure S6, Supporting Information, as one of the potential examples) and iridescent effects to satisfy the needs of different applications. While nano-3D printing of these nanostructures is not viable for mass production, it does identify the key features that are necessary for top-down fabrication. With promising nanofabrication techniques, such as preform drawing[26]—a generally scalable methodology that has been demonstrated for fabricating particles with complex internal architectures and continuously tunable diameters down to nanometer scale[27] – it is possible to mass produce these “designer structural colorants” in an economically viable manner. Our discovery of how to produce noniridescent structural colors using long-range order may therefore lead to a more sustainable future that does not rely upon toxic and wasteful synthetic pigments and dyes. (p. 5)

I’m glad to have gotten caught up with the work. Thank you, Bor-Kai Hsiung.

A 2015 nanotechnology conference for the security and defense sectors

According to an August 25, 2015 news item on Nanotechnology Now, a security and defence conference (NanoSD 2015) will be held in September 2015 in Spain,

Nano for Security & Defense International Conference (NanoSD2015) will be held in Madrid, Spain (September 22-25, 2015). The conference will provide an opportunity to discuss general issues and important impacts of nanotechnology in the development of security and defense. A broad range of defense and security technologies and applications, such as nanostructures, nanosensors, nano energy sources, and nanoelectronics which are influencing these days will be discussed.

The NanoSD 2015 website notes this on its homepage,

After a first edition organised in Avila [Spain], NanoSD 2015 will again provide an opportunity to discuss general issues and important impacts of nanotechnology in the development of security and defense. …

It is evident that nanotechnology can bring many innovations into the defense world such as new innovate products, materials and power sources. Therefore, NanoSD 2015 will present current developments, research findings and relevant information on nanotechnology that will impact the security and defense.

The Phantoms Foundation (event organizers) August 24, 2015 press release, which originated the news item, provides a few more details,

NanoSD2015 Topics
Sensors | Textiles | Nano-Optics | Nanophotonics | Nanoelectronics | Nanomaterials | Nanobio & Nanomedicine | Energy | Nanofood | Forensic Science

Do not miss presentations from well known institutions
Lawrence Livermore National Laboratory (USA) | Ministry of Economy, Industry and Digital (France) | European Defence Agency (Belgium) | Metamaterial Technologies Inc. (Canada) | Graphenea (Spain) | Consiglio Nazionale delle Ricerche (Italy) | Gemalto SA (France) | ICFO (Spain) | The University of Texas at Dallas (USA) | International Commercialisation Alliance of Israel | Grupo Antolin (Spain), among others

Do not miss the opportunity to meet the key players of the Security & Defense industry. Prices starting from 350€ and 495€ for students and seniors respectively.

The deadline for poster submission is September 04.

My most recent piece on nanotechnology and security is an Aug. 19, 2014 posting about a then upcoming NATO (North Atlantic Treaty Organization) workshop on aiding chemical and biological defenses. It took place in Sept. 2014 in Turkey.

D-Wave passes 1000-qubit barrier

A local (Vancouver, Canada-based, quantum computing company, D-Wave is making quite a splash lately due to a technical breakthrough.  h/t’s Speaking up for Canadian Science for Business in Vancouver article and Nanotechnology Now for Harris & Harris Group press release and Economist article.

A June 22, 2015 article by Tyler Orton for Business in Vancouver describes D-Wave’s latest technical breakthrough,

“This updated processor will allow significantly more complex computational problems to be solved than ever before,” Jeremy Hilton, D-Wave’s vice-president of processor development, wrote in a June 22 [2015] blog entry.

Regular computers use two bits – ones and zeroes – to make calculations, while quantum computers rely on qubits.

Qubits possess a “superposition” that allow it to be one and zero at the same time, meaning it can calculate all possible values in a single operation.

But the algorithm for a full-scale quantum computer requires 8,000 qubits.

A June 23, 2015 Harris & Harris Group press release adds more information about the breakthrough,

Harris & Harris Group, Inc. (Nasdaq: TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has successfully fabricated 1,000 qubit processors that power its quantum computers.  D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.”  Every additional qubit doubles the search space of the processor.  At 1,000 qubits, the new processor considers 21000 possibilities simultaneously, a search space which is substantially larger than the 2512 possibilities available to the company’s currently available 512 qubit D-Wave Two. In fact, the new search space contains far more possibilities than there are particles in the observable universe.

A June 22, 2015 D-Wave news release, which originated the technical details about the breakthrough found in the Harris & Harris press release, provides more information along with some marketing hype (hyperbole), Note: Links have been removed,

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.

“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A June 20, 2015 article in The Economist notes there is now commercial interest as it provides good introductory information about quantum computing. The article includes an analysis of various research efforts in Canada (they mention D-Wave), the US, and the UK. These excerpts don’t do justice to the article but will hopefully whet your appetite or provide an overview for anyone with limited time,

A COMPUTER proceeds one step at a time. At any particular moment, each of its bits—the binary digits it adds and subtracts to arrive at its conclusions—has a single, definite value: zero or one. At that moment the machine is in just one state, a particular mixture of zeros and ones. It can therefore perform only one calculation next. This puts a limit on its power. To increase that power, you have to make it work faster.

But bits do not exist in the abstract. Each depends for its reality on the physical state of part of the computer’s processor or memory. And physical states, at the quantum level, are not as clear-cut as classical physics pretends. That leaves engineers a bit of wriggle room. By exploiting certain quantum effects they can create bits, known as qubits, that do not have a definite value, thus overcoming classical computing’s limits.

… The biggest question is what the qubits themselves should be made from.

A qubit needs a physical system with two opposite quantum states, such as the direction of spin of an electron orbiting an atomic nucleus. Several things which can do the job exist, and each has its fans. Some suggest nitrogen atoms trapped in the crystal lattices of diamonds. Calcium ions held in the grip of magnetic fields are another favourite. So are the photons of which light is composed (in this case the qubit would be stored in the plane of polarisation). And quasiparticles, which are vibrations in matter that behave like real subatomic particles, also have a following.

The leading candidate at the moment, though, is to use a superconductor in which the qubit is either the direction of a circulating current, or the presence or absence of an electric charge. Both Google and IBM are banking on this approach. It has the advantage that superconducting qubits can be arranged on semiconductor chips of the sort used in existing computers. That, the two firms think, should make them easier to commercialise.

Google is also collaborating with D-Wave of Vancouver, Canada, which sells what it calls quantum annealers. The field’s practitioners took much convincing that these devices really do exploit the quantum advantage, and in any case they are limited to a narrower set of problems—such as searching for images similar to a reference image. But such searches are just the type of application of interest to Google. In 2013, in collaboration with NASA and USRA, a research consortium, the firm bought a D-Wave machine in order to put it through its paces. Hartmut Neven, director of engineering at Google Research, is guarded about what his team has found, but he believes D-Wave’s approach is best suited to calculations involving fewer qubits, while Dr Martinis and his colleagues build devices with more.

It’s not clear to me if the writers at The Economist were aware of  D-Wave’s latest breakthrough at the time of writing but I think not. In any event, they (The Economist writers) have included a provocative tidbit about quantum encryption,

Documents released by Edward Snowden, a whistleblower, revealed that the Penetrating Hard Targets programme of America’s National Security Agency was actively researching “if, and how, a cryptologically useful quantum computer can be built”. In May IARPA [Intellligence Advanced Research Projects Agency], the American government’s intelligence-research arm, issued a call for partners in its Logical Qubits programme, to make robust, error-free qubits. In April, meanwhile, Tanja Lange and Daniel Bernstein of Eindhoven University of Technology, in the Netherlands, announced PQCRYPTO, a programme to advance and standardise “post-quantum cryptography”. They are concerned that encrypted communications captured now could be subjected to quantum cracking in the future. That means strong pre-emptive encryption is needed immediately.

I encourage you to read the Economist article.

Two final comments. (1) The latest piece, prior to this one, about D-Wave was in a Feb. 6, 2015 posting about then new investment into the company. (2) A Canadian effort in the field of quantum cryptography was mentioned in a May 11, 2015 posting (scroll down about 50% of the way) featuring a profile of Raymond Laflamme, at the University of Waterloo’s Institute of Quantum Computing in the context of an announcement about science media initiative Research2Reality.

Does more nano-enabled security = more nano-enabled surveillance?

A May 6, 2014 essay by Brandon Engel published on Nanotechnology Now poses an interesting question about the use of nanotechnology-enabled security and surveillance measures (Note: Links have been removed),

Security is of prime importance in an increasingly globalized society. It has a role to play in protecting citizens and states from myriad malevolent forces, such as organized crime or terrorist acts, and in responding, as well as preventing, both natural and man-made disasters. Research and development in this field often focuses on certain broad areas, including security of infrastructures and utilities; intelligence surveillance and border security; and stability and safety in cases of crisis. …

Nanotechnology is coming to play an ever greater title:role in these applications. Whether it’s used for detecting potentially harmful materials for homeland security, finding pathogens in water supply systems, or for early warning and detoxification of harmful airborne substances, its usefulness and efficiency are becoming more evident by the day.

He’s quite right about these applications. For example, I’ve just published (May 9, 2014) piece ‘Textiles laced with carbon nanotubes for clothing that protects against poison gas‘.

Engel goes on to describe a dark side to nanotechnology-enabled security,

On the other hand, more and more unsettling scenarios are fathomable with the advent of this new technology, such as covertly infiltrated devices, as small as tiny insects, being used to coordinate and execute a disarming attack on obsolete weapons systems, information apparatuses, or power grids.

Engel is also right about the potential surveillance issues. In a Dec. 18, 2013 posting I featured a special issue of SIGNAL Magazine (which covers the latest trends and techniques in topics that include C4ISR, information security, intelligence, electronics, homeland security, cyber technologies,  …) focusing on nanotechnology-enabled security and surveillance,

The Dec. 1, 2013 article by Rita Boland (h/t Dec. 13, 2013 Azonano news item) does a good job of presenting a ‘big picture’ approach including nonmilitary and military  nanotechnology applications  by interviewing the main players in the US,

Nanotechnology is the new cyber, according to several major leaders in the field. Just as cyber is entrenched across global society now, nano is poised to be the major capabilities enabler of the next decades. Expert members from the National Nanotechnology Initiative representing government and science disciplines say nano has great significance for the military and the general public.

For anyone who may think Engel is exaggerating when he mentions tiny insects being used for surveillance, there’s this May 8, 2014 post (Cyborg Beetles Detect Nerve Gas) by Dexter Johnson on his Nanoclast blog (Note: Dexter is an engineer who describes the technology in a somewhat detailed, technical fashion). I have a less technical description of some then current research in an Aug. 12, 2011 posting featuring some military experiments, for example, a surveillance camera disguised as a hummingbird (I have a brief video of a demonstration) and some research into how smartphones can be used for surveillance.

Engel comes to an interesting conclusion (Note: A link has been removed),

The point is this: whatever conveniences are seemingly afforded by these sort of technological advances, there is persistent ambiguity about the extent to which this technology actually protects or makes us more vulnerable. Striking the right balance between respecting privacy and security is an ever-elusive goal, and at such an early point in the development of nanotech, must be approached on a case by case basis. … [emphasis mine]

I don’t understand what Engel means when he says “case by case.” Are these individual applications that he feels are prone to misuse or specific usages of these applications? In any event, while I appreciate the concerns (I share many of them), I don’t think his proposed approach is practicable and that leads to another question, what can be done? Sadly, I have no answers but I am glad to see the question being asked in the ‘nanotechnology webspace’.

I did some searching for Bandon Engel online and found this January 17, 2014 guest post (about a Dean Koontz book) on The Belle’s Tales blog. He also has a blog of his own, Brandon Engel where he describes himself this way,

Musician, filmmaker, multimedia journalist, puppeteer, and professional blogger based in Chicago.

The man clearly has a wide range of interests and concerns.

As for the question posed in this post’s head, I don’t think there is a simple one-to-one equivalency where one more security procedure results in one more surveillance procedure. However, I do believe there is a relationship between the two and that sometimes increased security is an argument used to support increased surveillance procedures. While Engel doesn’t state that explicitly in his piece, I think it is implied.

One final thought, surveillance is not new and one of the more interesting examples of the ‘art’ is featured in a description of the Parisian constabulary of the 18th century written by Nina Kushner in ,

The Case of the Closely Watched Courtesans
The French police obsessively tracked the kept women of 18th-century Paris. Why? (Slate.com, April 15, 2014)

or

Republished as: French police obsessively tracked elite sex workers of 18th-century Paris — and well-to-do men who hired them (National Post, April 16, 2014)

Kushner starts her article by describing contemporary sex workers and a 2014 Urban Institute study and then draws parallels between now and 18th Century Parisian sex workers while detailing advances in surveillance reports,

… One of the very first police forces in the Western world emerged in 18th-century Paris, and one of its vice units asked many of the same questions as the Urban Institute authors: How much do sex workers earn? Why do they turn to sex work in the first place? What are their relationships with their employers?

The vice unit, which operated from 1747 to 1771, turned out thousands of hand-written pages detailing what these dames entretenues [kept women] did. …

… They gathered biographical and financial data on the men who hired kept women — princes, peers of the realm, army officers, financiers, and their sons, a veritable “who’s who” of high society, or le monde. Assembling all of this information required cultivating extensive spy networks. Making it intelligible required certain bureaucratic developments: These inspectors perfected the genre of the report and the information management system of the dossier. These forms of “police writing,” as one scholar has described them, had been emerging for a while. But they took a giant leap forward at midcentury, with the work of several Paris police inspectors, including Inspector Jean-Baptiste Meusnier, the officer in charge of this vice unit from its inception until 1759. Meusnier and his successor also had clear literary talent; the reports are extremely well written, replete with irony, clever turns of phrase, and even narrative tension — at times, they read like novels.

If you have the time, Kushner’s well written article offers fascinating insight.

Surprise: telepresent Ed Snowden at TED 2014′s Session 2: Retrospect

The first session (Retrospect) this morning held a few surprises, i.e, unexpected speakers, Brian Greene and Ed Snowden (whistleblower re: extensive and [illegal or nonlegal?] surveillance by the US National Security Agency [NSA]). I’m not sure how Snowden fits into the session theme of Retrospect but I think that’s less the point than the sheer breathtaking surprise and his topic’s importance to current public discourse around much of the globe.

Snowden is mostly focused on PRISM (from its Wikipedia entry; Note: Links have been removed),

PRISM is a clandestine mass electronic surveillance data mining program launched in 2007 by the National Security Agency (NSA), with participation from an unknown date by the British equivalent agency, GCHQ.[1][2][3] PRISM is a government code name for a data-collection effort known officially by the SIGAD US-984XN.[4][5] The Prism program collects stored Internet communications based on demands made to Internet companies such as Google Inc. and Apple Inc. under Section 702 of the FISA Amendments Act of 2008 to turn over any data that match court-approved search terms.[6] The NSA can use these Prism requests to target communications that were encrypted when they traveled across the Internet backbone, to focus on stored data that telecommunication filtering systems discarded earlier,[7][8] and to get data that is easier to handle, among other things.[9]

He also described Boundless Informant in response to a question from the session co-moderator, Chris Anderson (from its Wikipedia entry; Note: Links have been removed),

Boundless Informant or BOUNDLESSINFORMANT is a big data analysis and data visualization tool used by the United States National Security Agency (NSA). It gives NSA managers summaries of the NSA’s world wide data collection activities by counting metadata.[1] The existence of this tool was disclosed by documents leaked by Edward Snowden, who worked at the NSA for the defense contractor Booz Allen Hamilton.[2]

Anderson asks Snowden, “Why should we care [about increased surveillance]? After all we’re not doing anything wrong.” Snowden response notes that we have a right to privacy and that our actions can be misinterpreted or used against us at any time, present or future.

Anderson mentions Dick Cheney and Snowden notes that Cheney has in the past made some overblown comments about Assange which he (Cheney) now dismisses in the face of what he now considers to be Snowden’s greater trespass.

Snowden is now commenting on the NSA’s attempt to undermine internet security by misleading their partners. He again makes a plea for privacy. He also notes that US security has largely been defensive, i.e., protection against other countries’ attempts to get US secrets. These latest programmes change US security from a defensive strategy to an offensive strategy (football metaphor). These changes have been made without public scrutiny.

Anderson asks Snowden about his personal safety.  His response (more or less), “I go to sleep every morning thinking about what I can do to help the American people. … I’m happy to do what I can.”

Anderson asks the audience members whether they think Snowden’s was a reckless act or an heroic act. Some hands go up for reckless, more hands go up for heroic, and many hands remain still.

Snowden, “We need to keep the internet safe for us and if we don’t act we will lose our freedom.”

Anderson asks Tim Berners-Lee to come up to the stage and the discussion turns to his (Berners-Lee) proposal for a Magna Carta for the internet.

Tim Berners-Lee biography from his Wikipedia entry,

Sir Timothy John “Tim” Berners-Lee, OM, KBE, FRS, FREng, FRSA, DFBCS (born 8 June 1955), also known as “TimBL”, is a British computer scientist, best known as the inventor of the World Wide Web. He made a proposal for an information management system in March 1989,[4] and he implemented the first successful communication between a Hypertext Transfer Protocol (HTTP) client and server via the Internet sometime around mid November.[5][6][7][8][9]

Berners-Lee is the director of the World Wide Web Consortium (W3C), which oversees the Web’s continued development. He is also the founder of the World Wide Web Foundation, and is a senior researcher and holder of the Founders Chair at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).[10] He is a director of the Web Science Research Initiative (WSRI),[11] and a member of the advisory board of the MIT Center for Collective Intelligence.[12][13]

The Magna Carta (from its Wikipedia entry; Note: Links have been removed),

Magna Carta (Latin for Great Charter),[1] also called Magna Carta Libertatum or The Great Charter of the Liberties of England, is an Angevin charter originally issued in Latin in June 1215. It was sealed under oath by King John at Runnymede, on the bank of the River Thames near Windsor, England at June 15, 1215.[2]

Magna Carta was the first document forced onto a King of England by a group of his subjects, the feudal barons, in an attempt to limit his powers by law and protect their rights.

The charter is widely known throughout the English speaking world as an important part of the protracted historical process that led to the rule of constitutional law in England and beyond.

When asked by Anderson if he would return to the US if given amnesty, Snowden says yes as long as he can continue his work. He’s not willing to trade his work of bringing these issues to the public forefront in order to go home again.

German nanotechnology industry mood lightens

A March 11, 2014 news item on Nanowerk proclaims a mood change for some sectors, including nanotechnology, of German industry,

For the German companies dealing with microtechnology, nanotechnology, advanced materials and optical technologies, business in 2013 has developed just as the industry had predicted earlier that year: at a constant level. But things are supposed to get better in 2014. The companies do not expect an enormous growth, but they are more positive than they have been ever since the outbreak of the financial and economic crisis. Orders, production and sales figures are expected to rise noticeably in 2014. Areas excluded from an optimistic outlook are staff and financing: the numbers of employees is likely to remain static in 2014 while the funding situation might even reach a new low.

The March 11, 2014 IVAN news release, which originated the news item, provides more detail about this change of mood,

The situation and mood of the micro- and nanotechnology industry, which the IVAM Microtechnology Network queried in a recent economic data survey, coincides with the overall economic development in Germany and general forecasts for 2014. According to publications of the German Federal Statistical Office, the gross domestic product in Germany has grown by only 0.4 percent in 2013 – the lowest growth since the crisis year 2009. For 2014, the Ifo Institute predicts a strong growth for the German economy. Especially exports are expected to increase.

The German micro- and nanotechnology industry is expecting increases during 2014 above all in the area of orders. Production and sales are likely to rise for more than 60 percent of companies each. But just a quarter of companies intend to hire more staff. Only one tenth of companies expect increases in the field of financing. Nevertheless, 30 percent of companies are planning to make investments, which is a higher proportion than in previous years.

The new research funding program of the European Union, Horizon 2020, has aroused certain hopes of enhancing financing opportunities for innovation projects. Compared to the 7th Framework Program, Horizon 2020 is designed in a way that means to facilitate access to EU funding for small and medium-sized enterprises. Especially small companies are still a little sceptical in this regard.

In the IVAM survey, 43 percent of micro- and nanotechnology companies say that EU funding is essential for them in order to implement their innovation projects. Three quarter of companies are planning to apply for funds from the new program. But only 23 percent of companies think that their opportunities to obtain EU funding have improved with Horizon 2020. Many small high-tech enterprises presume that the application still takes too much time and effort. However, since the program had just started at the time of survey, there are no experiences that might confirm or refute these first impressions.

The NSA surveillance scandal has caused a great insecurity among the micro- and nanotechnology companies in Germany concerning the safety of their technical knowledge. The majority of respondents (54 percent) would not even make a guess at whether their company’s know-how is safe from spying. A quarter of companies believe that they are sufficiently safe from spying. Only 21 percent are convinced that they do not have adequate protection. A little more than a third of companies have drawn consequences from the NSA scandal and taken steps to enhance the safety of their data.

Most companies agree that each company is responsible to ensure the best possible safety of its data. But still, almost 90 percent demand that authorities like national governments and the European Commission should intervene and impose stricter regulations. They feel that although each company bears a partial responsibility, the state must also fulfil its responsibilities, establish a clear legal framework for data security, make sure that regulations are complied with, and impose sanctions when they are not.

IVAM has provided this chart amongst others to illustrate their data,

Courtesy: IVAM. [downloaded from http://www.ivam.de/news/pm_ivam_survey_2014]

Courtesy: IVAM. [downloaded from http://www.ivam.de/news/pm_ivam_survey_2014]

You can access the 2014 IVAM survey from this page.

DARPA, innovation, passwords, people, and nanotherapeutics

There have been a few articles recently about (US) DARPA (Defense Advance Research Projects Agency) that have roused my interest in how they view innovation and business. The first piece I’m mentioning is a request for a proposal (RFP) on nanotherapeutics in a Nov. 22, 2011 news item on Nanowerk,

Through the U.S. Department of Defense’s Small Business Innovation Research (SBIR) program, DARPA is currently soliciting research proposals to develop a platform capable of rapidly synthesizing therapeutic nanoparticles targeted against evolving and engineered pathogens (SB121-003: Rapidly Adaptable Nanotherapeutics pdf).

Here’s part of the problem they’re trying to solve,

Acquired resistance compromises our ability to fight emergent bacterial threats in injured warfighters and our military treatment facilities. For burn patients in particular, multidrug-resistant Acinetobacter calcoaceticus-baumannii complex (ABC) is a common cause of nosocomial infection, causing severe morbidity as well as longer hospital stays. Typically, antimicrobial resistant infections require a hospital stay three times as long and are in excess of four times as expensive. Therefore, new and innovative methods to control bacterial infection in the military health system are of critical importance.

Here’s what they want,

Recent advances in nanomaterials, genome sequencing, nucleotide synthesis, and bioinformatics could converge in nanotherapeutics with tailored sequence, specificity, and function that can overcome earlier challenges. Collectively, these core technologies could permit the development of an innovative pharmaceutical platform composed of nanoparticles with tethered small interfering RNA (siRNA) oligonucelotides whose sequence and objective can be reprogrammed “on-the-fly” to inhibit multiple targets within multiple classes of pathogens.

This topic is focused on the development of a revolutionary rapidly adaptable nanotherapeutic platform effective against evolving and engineered pathogens. The biocompatible materials used to fabricate the nanoparticle should optimize cellular targeting, intracellular concentration, target sequence affinity, resistance to nuclease, and knockdown of target genes. The platform should leverage state-of-the-art genomic sequencing and oligonucleotide synthesis technologies to permit rapid programmability against evolving biologic threats.

I have taken a look at the RFP and, predictably, there’s a militaristic element to the introduction,

DARPA’s mission is to prevent technological surprise for the United States and to create technological surprise for its adversaries. The DARPA SBIR [Small Business Innovation Research] and STTR [Small Business Technology Transfer] Programs are designed to provide small, high-tech businesses and academic institutions the opportunity to propose radical, innovative, high-risk approaches to address existing and emerging national security threats; thereby supporting DARPA’s overall strategy to bridge the gap between fundamental discoveries and the provision of new military capabilities. (p. 1)

In short, we should never be caught with our pants down but we would like to catch our enemies in that position.

I was surprised to find that the responders are expected to create a business plan that includes information about markets, customers, and sales (from the RFP),

5. Market/Customer Sets/Value Proposition – Describe the market and customer sets you propose to target, their size, and their key reasons they would consider procuring the technology.

• What is the current size of the broad market you plan to enter and the “niche” market opportunity you are addressing?

• What are the growth trends for the market and the key trends in the industry that you are planning to target?

• What features of your technology will allow you to provide a compelling value proposition?

DARPA – 3

• Have you validated the significance of these features and if not, how do you plan to validate?

6. Competition Assessment – Describe the competition in these markets/customer sets and your anticipated advantage (e.g., function, performance, price, quality, etc.)

7. Funding Requirements – List your targeted funding sources (e.g., federal, state and local, private (internal, loan, angel, venture capital, etc.) and your proposed plan and schedule to secure this funding.

Provide anticipated funding requirements both during and after Phase II required to:

• mature the technology

• as required, mature the manufacturing processes

• test and evaluate the technology

• receive required certifications

• secure patents, or other protections of intellectual property

• manufacture the technology to bring the technology to market for use in operational environments

• market/sell technology to targeted customers

8. Sales Projections – Provide a schedule that outlines your anticipated sales projections and indicate when you anticipate breaking even. (pp. 2-3)

I do understand that the US has a military-industrial complex which fuels much of the country’s economic growth; I just hadn’t expected that the military would care as much as they do (as per this RFP) about  their suppliers’ business plans and financial health. It makes sense. After all, you want your suppliers to stay in business as it’s expensive and time-consuming to find new ones.

I don’t know if this is a new philosophy for the agency but it does seem to fit nicely with the current director’s Regina Dugan’s approach. From a Q & A between Dugan and Adam L. Penenberg for an Oct. 19, 2011 article in Fast Company,

That seems a key part of your mission since you got here–that it’s not enough to be doing cutting-edge research.
When deputy director Kaigham Gabriel and I got here, we understood that DARPA is one of the gems of the nation. We had been asked to take good care of her. For me, part of that meant really understanding why DARPA has this half-century of success in innovation. And the first element in DARPA’s success is the power that lies at the intersection of basic science and application, in the so-called Pasteur’s Quadrant. Do you know Stokes’s theory of innovation?

Absolutely not.
Donald E. Stokes wrote a theory of innovation in the late 1990s. Till then, most people thought of innovation as a linear process. You do basic science; then you do more advanced science; then you do the application work; then you commercialize it. What Stokes suggested is that it doesn’t happen that way at all. He preferred to think of it in a quadrant fashion, defining one row as very deep science and the other as light science; the two columns were a low-application drive and a high-application drive. Pasteur’s Quadrant happens at the deep-science-, high-application-drive quadrant. That’s DARPA’s absolute power lane. It’s called Pasteur’s Quadrant because serious concerns about food safety drove his research.

A very recent example of how it works for us is the blast-gauge work that we do. Here’s a big problem: TBI, traumatic brain injuries. So the way we approach it at DARPA is to say, “Okay, let’s understand the basic science, the phenomenology. How is it that an encounter with a blast injures the brain? What levels of blasts cause what levels of injury? Is it the overpressure? Is it the acceleration? What is it?” A medical person from DARPA researched this and discovered it was the overpressure. And the DARPA physicist says, “We know how to measure that.” Together, they devise this little blast gauge that’s the size of a couple stacks of quarters [the gauge helps doctors measure a soldier’s blast-exposure level, enabling better assessment of injuries]. They develop it in one year, going through four iterations of the electronics. That’s fast.

All of this leads back to the idea of shipping products. The defense world is like a mini-society. It has to deploy to anyplace in the world on a moment’s notice, and it has to work in a life-or-death situation. That kind of focus, that kind of drive to ship an application, really does inspire greater genius. And the constancy of funding that comes with that–in good times or bad, whether this party or that party is in power–also helps inspire innovation.

Dugan later goes on to describe her first weeks at DARPA (she was sworn in July 2009) where she and the deputy director made it their mission to meet every single person on staff, all 217 of them.

Still on the theme of innovation and DARPA, there’s a Nov. 16, 2011 article, DARPA Is After Your Password, by Neal Ungerleider in Fast Company which has to be of huge interest to anyone who has passwords,

According to DARPA press materials, the agency is focusing on creating cutting-edge biometric identification products that can identify an individual user through their individual typing style. In the future, DARPA hopes smart computers will be able to verify account-holders’ identities through their typing speed, finger motions and quirks of movement.

Materials published by DARPA seem to indicate that researchers at the agency believe most contemporary account passwords–at least those adhering to best practices–are clunky, hard to remember, and ultimately insecure. According to program manager Richard Guidorizzi, “My house key will get you into my house, but the dog in my living room knows you’re not me. No amount of holding up my key and saying you’re me is going to convince my dog you’re who you say you are. My dog knows you don’t look like me, smell like me or act like me. What we want out of this program is to find those things that are unique to you, and not some single aspect of computer security that an adversary can use to compromise your system.”

Nobody likes entering passwords. Nobody likes remembering passwords. Nobody likes forgetting passwords. Creating a painless, easy, and secure password-replacement system will be a major cash cow for any firm that can effectively bring it to market. [emphasis mine]

My enthusiasm for a world without passwords aside, I do note the interest in having the technology come to market. I wonder if DARPA will accrue some financial benefit, i.e. a licensing agreement. I did quickly skim the RFP but was unable to confirm or disprove this notion.