Tag Archives: bacteria

Nanosilver resistance

Researchers at Australia’s University of New South Wales (UNSW) have published a study where they claim that bacteria have develop resistance to nanosilver, a product used widely for its antibacterial properties. From the May 8, 2013 news item on ScienceDaily,

Researchers from UNSW have cautioned that more work is needed to understand how micro-organisms respond to the disinfecting properties of silver nano-particles, increasingly used in consumer goods, and for medical and environmental applications.

Although nanosilver has effective antimicrobial properties against certain pathogens, overexposure to silver nano-particles can cause other potentially harmful organisms to rapidly adapt and flourish, a UNSW study reveals.

The May 8, 2013 UNSW news release, which originated the news item, notes,

“We found an important natural ability of a widely occurring bacteria to adapt quite rapidly to the antimicrobial action of nanosilver. This is the first unambiguous evidence of this induced adaptation,” says co-author Dr Cindy Gunawan, from the UNSW School of Chemical Engineering.

Using an experimental culture, UNSW researchers observed that nanosilver was effective in suppressing a targeted bacteria (Escherichia coli), but that its presence initiated the unexpected emergence, adaptation and abnormally fast growth of another bacteria species (Bacillus).

The news release mentions some of the implications,

The efficacy of nanosilver to suppress certain disease-causing pathogens has been well-documented, and as a result, it has become widely used in medicine to coat bandages and wound dressings. It also has environmental uses in water and air purification systems, and is used in cosmetics and detergents, and as a surface coating for things like toys and tupperware.

But the researchers say this exploitation of nanosilver’s antimicrobial properties have “gained momentum due in part to a lack of evidence for the potential development of resistant microorganisms”.

“Antimicrobial action of nanosilver is not universal and the widespread use of these products should take into consideration the potential for longer-term adverse outcomes,” says Gunawan.

The researchers say these adverse impacts could be more pronounced given the near-ubiquitous nature of the Bacillus bacteria, which originate from airborne spores, and because the resistance trait can potentially be transferred to the genes of other micro-organisms.

“For the medical use of nanosilver, this implies the potential for reduced efficacy and the development of resistant populations in clinical settings,” says co-author Dr Christopher Marquis, a senior lecturer from the UNSW School of Biotechnology and Biomolecular Sciences. [emphasis mine]

I have touched on the issue of resistance and bacteria previously in the context of finding new ways to deal with them in my Don’t kill bacteria, uninvite them posting of Aug. 13, 2012 about developing new materials that resist bacteria and and there’s my mention of Sharklet, a material based on the nanoscale properties of sharkskin and which has potential for use in hospital settings, in my Feb. 10, 2011 posting.

For those who’d like to read about this work from the University of New South Wales, the ScienceDaily news item provides a link to and a citation for the paper which has been published in Small. This paper is behind a paywall and the publisher (Wiley Online Library), puzzingly and in comparison to other publishers, has made the paper hard to find.

Bacteria on a battery can be a good thing

In a joint project between the UK’s University of East Anglia (UEA) and the Pacific Northwest National Laboratory (PNNL) in Washington State (US) researchers have published a paper about their work utilizing bacteria to produce electric currents in batteries. From the Mar. 25, 2013 news item on ScienceDaily,

Scientists at the University of East Anglia have made an important breakthrough in the quest to generate clean electricity from bacteria.

Findings published today in the journal Proceedings of the National Academy of Sciences (PNAS) show that proteins on the surface of bacteria can produce an electric current by simply touching a mineral surface.

The research shows that it is possible for bacteria to lie directly on the surface of a metal or mineral and transfer electrical charge through their cell membranes. This means that it is possible to ‘tether’ bacteria directly to electrodes — bringing scientists a step closer to creating efficient microbial fuel cells or ‘bio-batteries’.

The team collaborated with researchers at Pacific Northwest National Laboratory in Washington State in the US.

Shewanella oneidensis (pictured) is part of a family of marine bacteria. The research team created a synthetic version of this bacteria using just the proteins thought to shuttle the electrons from the inside of the microbe to the rock.

Image: Shewanella oneidensis bacteria, Alice Dohnalkova. (downloaded from http://www.uea.ac.uk/mac/comm/media/press/2013/March/bio-batteries)

Image: Shewanella oneidensis bacteria, Alice Dohnalkova. (downloaded from http://www.uea.ac.uk/mac/comm/media/press/2013/March/bio-batteries)

The Mar. 25, 2013 UEA news release,which originated the news item,  describes the work n some detail (Note: A link has been removed),

They inserted these proteins into the lipid layers of vesicles, which are small capsules of lipid membranes such as the ones that make up a bacterial membrane. Then they tested how well electrons travelled between an electron donor on the inside and an iron-bearing mineral on the outside.

Lead researcher Dr Tom Clarke from UEA’s school of Biological Sciences said: “We knew that bacteria can transfer electricity into metals and minerals, and that the interaction depends on special proteins on the surface of the bacteria. But it was not been clear whether these proteins do this directly or indirectly though an unknown mediator in the environment.

“Our research shows that these proteins can directly ‘touch’ the mineral surface and produce an electric current, meaning that is possible for the bacteria to lie on the surface of a metal or mineral and conduct electricity through their cell membranes.

“This is the first time that we have been able to actually look at how the components of a bacterial cell membrane are able to interact with different substances, and understand how differences in metal and mineral interactions can occur on the surface of a cell.

“These bacteria show great potential as microbial fuel cells, where electricity can be generated from the breakdown of domestic or agricultural waste products.

“Another possibility is to use these bacteria as miniature factories on the surface of an electrode, where chemicals reactions take place inside the cell using electrical power supplied by the electrode through these proteins.”

Biochemist Liang Shi of Pacific Northwest National Laboratory said: “We developed a unique system so we could mimic electron transfer like it happens in cells. The electron transfer rate we measured was unbelievably fast – it was fast enough to support bacterial respiration.”

This work reminds me of the biobattery created at Concordia University (my April 20, 2012 posting) and the work on breathable batteries at the Polish Academy of Sciences (my Mar. 8, 2013 posting).

Interested parties can find a full citation for the UEA/PNNL research paper at the bottom of the ScienceDaily news item here.

Don’t kill bacteria, uninvite them

The relentless campaign against bacteria has had some unintended consequences, we’ve made bacteria more resistant and more virulent. Researchers at the University of Nottingham (UK) have taken a different approach from attempting to eradicate or kill; they’ve discovered a class of polymers that ‘uninvites’ bacteria from their surfaces. From the Aug. 13, 2012 news item on ScienceDaily,

Using state-of-the-art technology, scientists at The University of Nottingham have discovered a new class of polymers that are resistant to bacterial attachment. These new materials could lead to a significant reduction in hospital infections and medical device failures.

Medical device associated infections can lead to systemic infections or device failure, costing the NHS £1bn a year. Affecting many commonly used devices including urinary and venous catheters — bacteria form communities known as biofilms. This ‘strength in numbers approach’ protects them against the bodies’ natural defences and antibiotics.

Experts in the Schools of Pharmacy and Molecular Medical Sciences, have shown that when the new materials are applied to the surface of medical devices they repel bacteria and prevent them forming biofilms.

There’s a video of the scientists discussing their work on this new class of polymers,

In order to find this new class of polymers, the scientists had to solve another problem first. From the Aug. 12, 2012 University of Nottingham press release,

Researchers believed there were new materials that could resist bacteria better but they had to find them. This meant screening thousands of different chemistries and testing their reaction to bacteria — a challenge which was beyond conventional materials development or any of our current understanding of the interaction of micro-organisms with surfaces.

The discovery has been made with the help of experts from the Massachusetts Institute of Technology (MIT) — who initially developed the process by which thousands of unique polymers can now be screened simultaneously.

Professor Alexander said: “This is a major scientific breakthrough — we have discovered a new group of structurally related materials that dramatically reduce the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). We could not have found these materials using the current understanding of bacteria-surface interactions. The technology developed with the help of MIT means that hundreds of materials could be screened simultaneously to reveal new structure-property relationships. In total thousands of materials were investigated using this high throughput materials discovery approach leading to the identification of novel materials resisting bacterial attachment. This could not have been achieved using conventional techniques.”

Once they found this new class of polymers, researchers tested for effectiveness (from the Aug. 12, 2012 university press release),

These new materials prevent infection by stopping biofilm formation at the earliest possible stage — when the bacteria first attempt to attach themselves to the device. In the laboratory experts were able to reduce the numbers of bacteria by up to 96.7per cent — compared with a commercially available silver containing catheter — and were effective at resisting bacterial attachment in a mouse implant infection model. By preventing bacterial attachment the body’s own immune system can kill the bacteria before they have time to generate biofilms.

You can read more about this work in the paper the researchers have published (as well as, the news item on ScienceDaily or the University of Nottingham press release for more accessible explanations). You will need to get past a paywall (from the news item on ScienceDaily),

Andrew L Hook, Chien-Yi Chang, Jing Yang, Jeni Luckett, Alan Cockayne, Steve Atkinson, Ying Mei, Roger Bayston, Derek J Irvine, Robert Langer, Daniel G Anderson, Paul Williams, Martyn C Davies, Morgan R Alexander. Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 2012; DOI: 10.1038/nbt.2316

This research reminded me of Sharklet, a product being developed in the US for use in hospitals. Designed to mimic sharkskin, the product discourages bacteria from settling on its surface. It was featured in my Feb. 10, 2011 posting.

Material changes

A few items have caught my attention lately and the easiest way to categorize them is with the term, ‘materials’.  First, a June 7, 2012 article by Jane Wakefield about fashion and technology on the BBC News website that features a designer, Suzanne Lee, who grows clothing. I’m glad to see Lee is still active (I first mentioned her work with bacteria and green tea in a July 13, 2010 posting). From Wakefield’s 2012 article,

“I had a conversation with a biologist who raised the idea of growing a garment in a laboratory,” she [Biocouture designer, Suzanne Lee] told the BBC.

In her workshop in London, she is doing just that.

Using a recipe of green tea, sugar, bacteria and yeast she is able to ‘grow’ a material which she describes as a kind of “vegetable leather”.

The material takes about two weeks to grow and can then be folded around a mould – she has made a dress from a traditional tailor’s model but handbags and furniture are also possibilities.

Bio-biker image courtesy of Bio Couture (http://www.biocouture.co.uk/)

Designer Suzanne Lee’s website is http://www.biocouture.co.uk

Wakefield’s article goes on to discuss technologies being integrated into design,

While computer-aided design and drafting (CADD) is not a new technology, it has rarely been used in the fashion world before but French fashion designer Julien Fournié wants to change that.

Mr Fournié began working in fashion industry under Jean-Paul Gaultier but these days he is more likely to be found hanging out with engineers than with fashionistas.

He has teamed up with engineers at Dassault Systèmes, a French software company which more usually creates 3D designs for the car and aerospace industries.

Recently Mr Fournié has been experimenting with making clothes from neoprene, a type of rubber.

It is a difficult material to work with and Mr Fournié’s seamstresses suggested that the only way to stitch it would be to use glue.

“To my mind a glued dress wasn’t very sexy,” he said.

So he handed the problem over to the engineers.

“They found the right pressure for the needle so it didn’t break the material,” he said.

Wakefield discusses more of Fournié’s work as well as a ‘magic mirror’ being developed by the FashionLab at Dassault Systèmes,

“A store may have a magic mirror with a personal avatar that can use your exact body measurements to show you how new clothes would look on you,” explained Jerome Bergeret, director of FashionLab.

There is more in the Wakefield including the ‘future of fashion shopping’.

Still on the material theme but in a completely different category, flat screens that are tactile. From the June 6, 2012 news item by Nancy Owano on the physorg.com website,

Why settle for flat? That is the question highlighted on the home page of Tactus Technology, which does not want device users to settle for any of today’s tactile limitations on flatscreen devices. The Fremont, California-based company has figured out how to put physical buttons on a display when we want them and no buttons when we don’t. Tactus has announced its tactile user interface for touchscreen devices that are real, physical buttons that can rise up from the touchscreen surface on demand.

The customizable buttons can appear in a range of shapes and configurations. Buttons may run across the display, or in another collection of round buttons to represent a gamepad for playing games. “We are a user interface technology where people can take our technology and create whatever kind of interface they want,” said Nate Saaal, VP business development. He said it could be any shape or construct on the surface.

Lakshmi Sandhana also wrote about Tactus and its new keyboard in a June 6, 2012 article for Fast Company,

The idea of a deformable touchscreen surface came to Craig Ciesla, CEO of Tactus, way back in 2007, when he found himself using his BlackBerry instead of the newly released iPhone because of its keyboard. …

“I realized that this question could be answered by using microfluidics,” Ciesla says. Their design calls for a thin transparent cover layer with some very special properties to be laid on top of a touchscreen display. Made of glass or plastic, the 1mm-thick slightly elastic layer has numerous micro-channels filled with a non-toxic fluid. Increasing fluid pressure with the aid of a small internal controller causes transparent physical buttons to grow out of the surface of the layer in less than a second. Once formed, you can feel the buttons, rest your fingers or type on them, just like a mechanical keyboard. “When you don’t want the buttons, you reduce the fluid pressure, draw the fluid out and the buttons recede back to their original flat state.” (No messy cleanup–the minimal amount of fluid is all contained within the device.) “You’re left with a surface where you don’t see anything,” Ciesla explains.

The company, Tactus Technology Inc.,  does have a product video,

It’s a little bit on the dramatic side, I think their professional voiceover actor could have a future career  as a Rod Serling (Twilight Zone) sound alike. Regardless, I do like the idea of a product than can function as a flat screen and as a screen with buttons.

My last item is about an emotion-recognition phone. Kit Eaton who writes for Fast Company on a pretty regular basis posted a June 7, 2012 article about systems that recognize your emotions (Note: I have removed links from the excerpt),

Nunance [sic], which makes PC voice recognition systems and the tech that powers Apple’s famous Siri digital PA, have revealed their next tech is voice recognition in cars and for TVs. But the firm also wants to add more than voice recognition in an attempt to build a real-life KITT–it wants to add emotion detection so its system can tell how you’re feeling while you gab away. …

Nuance’s chief of marketing Peter Mahoney spoke to the Boston Globe last week about the future of the company’s tech, and noted that in a driving environment emotion detection could be a vital tool. For example, if your car thinks you sound stressed, it may SMS your office to say you’re late or even automatically suggest another route that avoids traffic. (Or how about a voice-controlled Ford system that starts playing you, say, Enya to calm the nerves.) Soon enough, you may deviate from your existing “shortest route” algorithms, while being whisked to parts of the city you never otherwise visit. Along the way, you might discover a more pleasant route to the office, or a new place to buy coffee.

But Nuance says it has far bigger plans to make your emotional input valuable: It’s looking into ways to monetize its voice systems, including your emotional input, to directly recommend services and venues to you.

There are more details and a video demonstrating Nuance’s Dragon Drive product in Eaton’s article. As for me, I’m not excited about decreasing my personal agency in an attempt to sell me yet more products and services. But perhaps I’m being overly pessimistic.

Since my weekend is about to start and these items got me to thinking about materials, it seems only right that I end this posting with,


It takes about one minute before the singing starts but it’s worth the wait. Happy weekend!

Bacteria and biobatteries

It’s more a possibility at the moment than anything else but researchers at Concordia University in Montréal, Canada have found a way to make an enzyme behave more like a battery. From the April 19, 2012 news item on Nanowerk,

Concordia Associate Professor László Kálmán — along with his colleagues in the Department of Physics, graduate students Sasmit Deshmukh and Kai Tang — has been working with an enzyme found in bacteria that is crucial for capturing solar energy. Light induces a charge separation in the enzyme, causing one end to become negatively charged and the other positively charged, much like in a battery.

In nature, the energy created is used immediately, but Kálmán says that to store that electrical potential, he and his colleagues had to find a way to keep the enzyme in a charge-separated state for a longer period of time.

“We had to create a situation where the charges don’t want to or are not allowed to go back, and that’s what we did in this study,” he says.

Kálmán and his colleagues showed that by adding different molecules, they were able to alter the shape of the enzyme and, thus, extend the lifespan of its electrical potential.

In the April 17, 2012 news item written by Luciana Gravotta for Concordia University, Kálmán provides an explanation of why the researchers were changing the enzyme’s shape,

In its natural configuration, the enzyme is perfectly embedded in the cell’s outer layer, known as the lipid membrane. The enzyme’s structure allows it to quickly recombine the charges and recover from a charge-separated state.

However, when different lipid molecules make up the membrane, as in Kálmán’s experiments, there is a mismatch between the shape of the membrane and the enzyme embedded within it. Both the enzyme and the membrane end up changing their shapes to find a good fit. The changes make it more difficult for the enzyme to recombine the charges, thereby allowing the electrical potential to last much longer.

“What we’re doing is similar to placing a race car on snow-covered streets,” says Kálmán. The surrounding conditions prevent the race car from performing as it would on a racetrack, just like the different lipids prevent the enzyme from recombining the charges as efficiently as it does under normal circumstances.

Apparently the researchers are hoping to eventually create biocompatible batteries with enzymes and other biological molecules replacing traditional batteries that contain toxic metals.

Bacteria, pyramids, cancer, and Sylvain Martel

Canada’s national newspaper (as they like to bill themselves), the Globe and Mail featured Québec researcher’s (Sylvain Martel) work in a Dec. 13, 2011 article by Bertrand Marotte. From the news article,

Professor Sylvain Martel is already a world leader in the field of nano-robotics, but now he’s working to make a medical dream reality: To deliver toxic drug treatments directly to cancerous cells without damaging the body’s healthy tissue.

I have profiled Martel’s work before in an April 6 2010 posting about bacterial nanobots (amongst other subjects) and in a March 16, 2011 posting about his work with remote-controlled microcarriers.

It seems that his next project will combine the work on bacteria and microcarriers (from the Globe and Mail article),

Bolstered by his recent success in guiding micro-carriers loaded with cancer-fighting medications into a rabbit’s liver, he and his team of up to 20 researchers from several disciplines are working to transfer the method to the treatment of colorectal cancer in humans within four years.

This time around he is not using micro-carriers to deliver the drug to the tumour, but rather bacteria.

Here’s a video of the bacteria which illustrates Martel’s earlier success with ‘training’ them to build a pyramid.

The latest breakthrough reported in March 2011 (from my posting) implemented an MRI (magnetic resonance imaging) machine,

Known for being the world’s first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Here’s what Martel is trying to accomplish now (from the Globe and Mail article),

The MRI machine’s magnetic field is manipulated by [a] sophisticated software program that helps guide the magnetically sensitive bacteria to the tumour mass.

Attached to the bacteria is a capsule containing the cancer-fighting drug. The bacteria are tricked into swimming to an artificially created “magnetic north” at the centre of the tumour, where they will die off after 30 to 40 minutes. The micro-mules, however, have left their precious cargo: the capsule, whose envelope breaks and releases the drug.

I’m not entirely sure why the drug won’t destroy health tissue after it’s finished with the tumour but that detail is not offered in Marotte’s story which, in the last few paragraphs, switches focus from medical breakthroughs to the importance of venture capital funding for Canadian biotech research.

I wish Martel and his team great success.

Bacterial art lovers

With all the emphasis on eradicating bacteria (with signs everywhere telling you to wash your hands, often will illustrated instructions), it’s easy to forget that some bacteria are necessary for health. It also turns out that some bacteria can help us preserve art works. From the June 7, 2011 news item on Nanowerk,

Researchers at the Institute of Heritage Restoration (IRP) and the Centre for Advanced Food Microbiology (CAMA), both from the Polytechnic University of Valencia (Spain), are beginning to experiment with this new technique on the frescoes of Antonio Palomino from the 17th century in the Church of Santos Juanes in Valencia.

They have shown that a certain type of micro-organism is capable of cleaning works of art in a fast, specific and respectful way as well as being non-toxic for the restorer or the environment.

Here’s the background on the problem the art restorers were trying to fix (from the news item),

The project came about when the IRP [Institute of Heritage Restoration] was in the process of restoring the murals of the Church of Santos Juanes that were virtually destroyed after a fire in 1936 and were improperly restored in the 1960s. The researchers tested new techniques for filling with transferred printed digital images in spaces without painting, but had great difficulty dealing with salt efflorescence, the white scabs caused by the build up of crystallized salts and the enormous amount of gelatine glue remaining on the pulled-off murals.

With the problem defined, the researchers then investigated a technique developed in Italy that looked promising (from the news item),

Therefore, Rosa María Montes and Pilar Bosch travelled to Italy to learn from the authors about the pioneering studies that used bacteria to remove hardened glue that was very difficult to treat with conventional methods.

The restoration of the Campo Santo di Pisa wall paintings was performed under the direction of Gianluiggi Colalucci, restorer of the Sistine Chapel, and his colleagues Donatella Zari and Carlo Giantomassi who applied the technique developed by microbiologist Giancarlo Ranalli. The researcher had also been testing with black crusts that appear on sculptures and artistic monuments.

The team returned to Spain to practice the technique and add some refinements (from the news item),

Back in Valencia, the multidisciplinary team perfected this method and trained the most suitable strain of Pseudomonas bacteria to literally eat the saline efflorescence found in the lunettes of the vault behind which pigeons nest.

“By the action of gravity and evaporation, the salts of organic matter in decomposition migrate to the paintings and produce a white crust hiding the work of art and sometimes can also cause the loose of the painting layer” says Pilar Bosch.

These scientists have managed to reduce the application time, and have also innovated in the way of extending the bacteria. According to Dr. Bosch: “In Italy they use cotton wool to apply the micro-organisms. We, however, have developed a gel that acts on the surface, which prevents moisture from penetrating deep into the material and causing new problems.

“After an hour and a half, we remove the gel with the bacteria. The surface is then cleaned and dried.” Without a wet environment, the remaining bacteria die.

Here’s a picture that demonstrates the advantages of the new process according to whomever wrote up the caption in Spanish (I may have gotten the translation wrong),

Las ventajas del nuevo proceso (The advantages of the new process) image downloaded from RUVID website

If you do have the Spanish language skills you can read the article as it was written originally here.

I have from time to time (in my Sept. 20, 2010 posting and Oct. 26, 2009 posting) featured a different nano art restoration technique as it’s practiced by Piero Baglioni’s (Correction Mar. 1, 2013: Name was changed from Pier Baglioni) team on projects in Mexico and Italy. Baglioni and his cohorts use a technique involving a micro-emulsion partially derived from cellulose. From an Oct. 26, 2009 article written by Michael Berger on Nanowerk,

The solution developed by Baglioni and his team has been to develop a micro-emulsion cleaning agent that is designed to dissolve only the organic molecules on the surface of a painting or other artwork. This emulsion is not only suitable for removing the aged coating on paintings but also for the removal of aged organic varnishes from the surface of easel paintings or gilded surfaces, as an alternative to gels traditionally used in conservation.

The cleaning agent is made by dissolving the volatile solvent p-xylene in water and thickening it into a gel with hydrophobically modified hydroxyethylcellulose (hmHEC) – a gelling and thickening agent derived from cellulose. This oil-in-water emulsion has a microstructure of tiny droplets of oil-coated water trapped in the cellulose chains, and these will dissolve organic polymers on the painting’s surface, thereby restoring the original, clean finish.

Bacteria as couture and transgenic salmon?

Trash Fashion, opened at Antenna, a science gallery at London’s Science Museum in June 2010 with a piece of bio couture amongst other ‘trashy’ pieces. According to an article by Suzanne Labarre at Fastcodesign.com,

[Suzanne] Lee, a senior research fellow in the school of fashion and textiles at Central Saint Martins in London, makes clothes from the same microbes used to ferment green tea. By throwing yeast, sweetened tea, and bacteria into bathtubs, she produces sheets of cellulose that can be molded into something you might actually want to wear. (Fortunately, the microbes are non-pathogenic.)

Here’s a close up of Lee’s garment,

Detail of Suzanne Lee's bio couture ruffle jacket (image from Ecouterre via fastcodesign)

Labarre’s article offers more detail about Lee’s work and how it fits into the Science Museum’s Trash Fashion show. The Ecouterre item and images can be found here. You can find London’s Science Museum website here but I had a hard time finding anything more than this about Trash Fashion on their site.

Transgenic salmon

If you think of it as new ways of interacting with various life forms, then these two items can fit together although it is a stretch. In an article written by Ariel Schwartz in a rather provocative style for Fast Company, Schwartz introduces his transgenic salmon by referencing genetically modified food and, in case we missed the point, goes on to call these salmon ‘frankenfish’,

Do genetically modified fruits and vegetables make you uneasy? …

The transgenic salmon is a mash-up of Atlantic salmon, a growth hormone gene from the chinook salmon, and an “on-switch” gene from the ocean pout that triggers the fish to eat year round, according to The Olympian. AquaBounty doesn’t plan to sell the actual salmon. Instead, the company will sell fish eggs to farmers.

Despite its initial frankenfish creepiness, AquaBounty’s salmon has a number of advantages.

Apparently, the US FDA (Food and Drug Administration) is close to giving its approval to a ‘salmon’ which grows twice as quickly as the ones in the wild. That’s a big advantage given the current issues with faltering salmon stocks on the west coast. From the Raincoast Conservation Foundation’s page on Fisheries Management and Wild Salmon Policy,

There is no question that fisheries management presents complex biological, economic, and political challenges. The status of salmon throughout much of BC and the US Pacific Northwest substantiates this difficulty.

In the lower continental US, salmon have disappeared from 40% of their historic spawning range and commercial fisheries proceed only as exceptions. In British Columbia, commercial catches of salmon between 1995-2005 were the lowest on record and the number of stocks contributing to this catch has declined, shifting over the decades from many diverse runs to fewer large runs.

In 2008, Raincoast published a paper in the Canadian Journal of Fisheries and Aquatic Sciences on the status of salmon on BC’s central and north coast. Our findings show that since 1950, salmon runs have repeatedly failed to meet their DFO escapement targets – meaning that not enough fish are returning to spawn. This resulted in a diminished status given to all species in nearly every decade. Only 4% of monitored streams consistently met their escapement targets (by decade) since 1950.

Species currently in the worst shape are chinook, chum and sockeye, which were depressed or very depressed in more than 70% of runs (2000-2005; 85%, 72% and 73% respectively). While specific to the north and central coast, this is likely true coast wide.

After the collapse of Canada’s east coast cod fishery, cynics noted that the policies which led to that collapse were being followed on the west coast. In any event, adjustments of some kind will have to be made whether that means going without fish or eating transgenic fish or some other alternative.

ETA Sept 21, 2010: The US Food and Drug Administration (FDA) is holding a hearing about transgenic salmon. Christopher Hickey (at Salon.com) offers a roundup of comments and opinions.

Bacterial nanobots build a pyramid; solar cell breakthrough in Quebec; global nano regulatory framework conference at Northeastern University; Robert Fulford talks about the poetry of nanotechnology

Just when I was thinking that the Canadian nanotechnology scene was slowing down there’s this: A research team at the École Polytechnique de Montréal (Québec) has announced that they’ve trained bacteria to build structures shaped like pyramids. From the news item on Nanowerk,

Faster than lion tamers… More powerful than snake charmers… Make way for the bacteria trainers! Professor Sylvain Martel and his team at the École Polytechnique de Montréal NanoRobotics Laboratory have achieved a new world first: “training” living bacteria to build a nanopyramid.

These miniature construction workers are magnetotactic bacteria (MTB): they have their own internal compasses, allowing them to be pulled by magnetic fields. MTB possess flagella bundles enabling each individual to generate a thrust force of approximately 4 picoNewtons. Professor Martel’s team has succeeded in directing the motion of a group of such bacteria using computer-controlled magnetic fields. In an experiment conducted by Polytechnique researchers, the bacteria transported several epoxy nanobricks and assembled them into a step-pyramid structure, completing the task in just 15 minutes. The researchers have also managed to pilot a group of bacteria through the bloodstream of a rat using the same control apparatus.

Nanowerk also features a video of the magnetotactic bacteria at work.

Solar cell breakthrough?

More Canadian nano from Québec: a researcher (Professor Benoît Marsan) and his team at the Université du Québec à Montréal (UQAM) have provided solutions to two problems which have been inhibiting the development of the very promising Graetzel solar cell that was developed in the 1990s in Switzerland. From the news item on Nanowerk a description of the problems,

Most of the materials used to make this cell are low-cost, easy to manufacture and flexible, allowing them to be integrated into a wide variety of objects and materials. In theory, the Graetzel solar cell has tremendous possibilities. Unfortunately, despite the excellence of the concept, this type of cell has two major problems that have prevented its large-scale commercialisation:

– The electrolyte is: a) extremely corrosive, resulting in a lack of durability; b) densely coloured, preventing the efficient passage of light; and c) limits the device photovoltage to 0.7 volts.

– The cathode is covered with platinum, a material that is expensive, non-transparent and rare. Despite numerous attempts, until Professor Marsan’s recent contribution, no one had been able to find a satisfactory solution to these problem

Now a description of the solutions,

– For the electrolyte, entirely new molecules have been created in the laboratory whose concentration has been increased through the contribution of Professor Livain Breau, also of the Chemistry Department. The resulting liquid or gel is transparent and non-corrosive and can increase the photovoltage, thus improving the cell’s output and stability.

– For the cathode, the platinum can be replaced by cobalt sulphide, which is far less expensive. It is also more efficient, more stable and easier to produce in the laboratory.

More details about the work and publication of the study are at Nanowerk.

Northeastern University and nano regulatory frameworks

According to a news item on Azonano, Northeastern University’s (Boston, MA) School of Law will be hosting a two-day conference on international regulatory frameworks for nanotechnology.

Leading international experts on the global regulation of nanotechnologies, including scientists, lawyers, ethicists and officials from governments, industry stakeholders, and NGOs will join in a two-day conference May 7-8, 2010 at Northeastern University’s School of Law.

The conference will identify best practices that address the needs of industries, the public and regulators. Speakers include representatives from the U.S. Environmental Protection Agency, the Brazil Ministry of Science and Technology, the Korean government, the International Conference of Chemicals Management and National Science Foundation-funded university-industry collaborations.

I checked out the law school’s conference website and noted a pretty good range of speakers from Asia, Europe, and North and South America. It can’t have been easy pulling such a diverse group together. Unfortunately, I didn’t recognize names other than two Canadian ones: Dr. Mark Saner and Pat Roy Mooney.

Saner who’s from Carleton University (Ottawa, Ontario) co-wrote a paper cited by Peter Julian (Canadian Member of Parliament) as one of the materials he used for reference when drawing up his recently tabled bill on nanotechnology regulation. (You can see Julian’s list here.) Saner, when he worked with the Council of Canadian Academies, was charged with drawing together the expert panel that wrote the council’s paper on nanotechnology. That panel put together a report (Small is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale) that does a thoughtful job of discussing nanotechnology, regulations, the precautionary principle, etc. and which you can find here. (As I recall I don’t agree with everything as written in the report but it is, as I noted, thoughtful.)

As for Pat Roy Mooney, he’s the executive director for the ETC Group which is a very well-known (to many scientists and businesses in the technology sectors) civil society group. There’s an Oct. 2009 interview with Mooney here where he discusses (in English) nanotechnology during a festival in Austria.

Robert Fulford and nanotechnology

Canadian journalist and author, Robert Fulford just penned an essay/article about nanotechnology for the National Post. From the article,

Fresh bulletins regularly bring news of startling developments in this era’s most surprising and perhaps most poetic form of science, nanotechnology, the study of the unthinkably small.

It’s a pleasure to read as a literary piece. Fulford mostly concerns himself with visions of what nanotechnology could accomplish and with a book (No small matter) by Felice Frankel and George Whitesides which I first saw mentioned by Andrew Maynard on his 2020 Science blog here.