Tag Archives: biotechnology

Korea Advanced Institute of Science and Technology (KAIST) at summer 2016 World Economic Forum in China

From the Ideas Lab at the 2016 World Economic Forum at Davos to offering expertise at the 2016 World Economic Forum in Tanjin, China that is taking place from June 26 – 28, 2016.

Here’s more from a June 24, 2016 KAIST news release on EurekAlert,

Scientific and technological breakthroughs are more important than ever as a key agent to drive social, economic, and political changes and advancements in today’s world. The World Economic Forum (WEF), an international organization that provides one of the broadest engagement platforms to address issues of major concern to the global community, will discuss the effects of these breakthroughs at its 10th Annual Meeting of the New Champions, a.k.a., the Summer Davos Forum, in Tianjin, China, June 26-28, 2016.

Three professors from the Korea Advanced Institute of Science and Technology (KAIST) will join the Annual Meeting and offer their expertise in the fields of biotechnology, artificial intelligence, and robotics to explore the conference theme, “The Fourth Industrial Revolution and Its Transformational Impact.” The Fourth Industrial Revolution, a term coined by WEF founder, Klaus Schwab, is characterized by a range of new technologies that fuse the physical, digital, and biological worlds, such as the Internet of Things, cloud computing, and automation.

Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department will speak at the Experts Reception to be held on June 25, 2016 on the topic of “The Summer Davos Forum and Science and Technology in Asia.” On June 27, 2016, he will participate in two separate discussion sessions.

In the first session entitled “What If Drugs Are Printed from the Internet?” Professor Lee will discuss the future of medicine being impacted by advancements in biotechnology and 3D printing technology with Nita A. Farahany, a Duke University professor, under the moderation of Clare Matterson, the Director of Strategy at Wellcome Trust in the United Kingdom. The discussants will note recent developments made in the way patients receive their medicine, for example, downloading drugs directly from the internet and the production of yeast strains to make opioids for pain treatment through systems metabolic engineering, and predicting how these emerging technologies will transform the landscape of the pharmaceutical industry in the years to come.

In the second session, “Lessons for Life,” Professor Lee will talk about how to nurture life-long learning and creativity to support personal and professional growth necessary in an era of the new industrial revolution.

During the Annual Meeting, Professors Jong-Hwan Kim of the Electrical Engineering School and David Hyunchul Shim of the Aerospace Department will host, together with researchers from Carnegie Mellon University and AnthroTronix, an engineering research and development company, a technological exhibition on robotics. Professor Kim, the founder of the internally renowned Robot World Cup, will showcase his humanoid micro-robots that play soccer, displaying their various cutting-edge technologies such as imaging processing, artificial intelligence, walking, and balancing. Professor Shim will present a human-like robotic piloting system, PIBOT, which autonomously operates a simulated flight program, grabbing control sticks and guiding an airplane from take offs to landings.

In addition, the two professors will join Professor Lee, who is also a moderator, to host a KAIST-led session on June 26, 2016, entitled “Science in Depth: From Deep Learning to Autonomous Machines.” Professors Kim and Shim will explore new opportunities and challenges in their fields from machine learning to autonomous robotics including unmanned vehicles and drones.

Since 2011, KAIST has been participating in the World Economic Forum’s two flagship conferences, the January and June Davos Forums, to introduce outstanding talents, share their latest research achievements, and interact with global leaders.

KAIST President Steve Kang said, “It is important for KAIST to be involved in global talks that identify issues critical to humanity and seek answers to solve them, where our skills and knowledge in science and technology could play a meaningful role. The Annual Meeting in China will become another venue to accomplish this.”

I mentioned KAIST and the Ideas Lab at the 2016 Davos meeting in this Nov. 20, 2015 posting and was able to clear up my (and possible other people’s) confusion as to what the Fourth Industrial revolution might be in my Dec. 3, 2015 posting.

AquAdvantage salmon (genetically modified) approved for consumption in Canada

This is an update of the AquAdvantage salmon story covered in my Dec. 4, 2015 post (scroll down about 40% of the way). At the time, the US Food and Drug Administration (FDA) had just given approval for consumption of the fish. There was speculation there would be a long hard fight over approval in Canada. This does not seem to have been the case, according to a May 10, 2016 news item announcing Health Canada’s on phys.org,

Canada’s health ministry on Thursday [May 19, 2016] approved a type of genetically modified salmon as safe to eat, making it the first transgenic animal destined for Canadian dinner tables.

This comes six months after US authorities gave the green light to sell the fish in American grocery stores.

The decisions by Health Canada and the US Food and Drug Administration follow two decades of controversy over the fish, which is an Atlantic salmon injected with genes from Pacific Chinook salmon and a fish known as the ocean pout to make it grow faster.

The resulting fish, called AquAdvantage Salmon, is made by AquaBounty Technologies in Massachusetts, and can reach adult size in 16 to 18 months instead of 30 months for normal Atlantic salmon.

A May 19, 2016 BIOTECanada news release on businesswire provides more detail about one of the salmon’s Canadian connections,

Canadian technology emanating from Memorial University developed the AquAdvantage salmon by introducing a growth hormone gene from Chinook salmon into the genome of Atlantic salmon. This results in a salmon which grows faster and reaches market size quicker and AquAdvantage salmon is identical to other farmed salmon. The AquAdvantage salmon also received US FDA approval in November 2015. With the growing world population, AquaBounty is one of many biotechnology companies offering safe and sustainable means to enhance the security and supply of food in the world. AquaBounty has improved the productivity of aquaculture through its use of biotechnology and modern breeding technics that have led to the development of AquAdvantage salmon.

“Importantly, today’s approval is a result of a four year science-based regulatory approval process which involved four federal government departments including Agriculture and AgriFood, Canada Food Inspection Agency, Environment and Climate Change, Fisheries and Oceans and Health which demonstrates the rigour and scope of science based regulatory approvals in Canada. Coupled with the report from the [US] National Academy of Sciences today’s [May 19, 2016] approval clearly demonstrates that genetic engineering of food is not only necessary but also extremely safe,” concluded Casey [Andrew Casey, President and CEO BIOTECanada].

There’s another connection, the salmon hatcheries are based in Prince Edward Island.

While BIOTECanada’s Andrew Casey is crowing about this approval, it should be noted that there was a losing court battle with British Columbia’s Living Oceans Society and Nova Scotia’s Ecology Action Centre both challenging the federal government’s approval. They may have lost *the* battle but, as the cliché goes, ‘the war is not over yet’. There’s an Issue about the lack of labeling and there’s always the  possibility that retailers and/or consumers may decide to boycott the fish.

As for BIOTECanada, there’s this description from the news release,

BIOTECanada is the national industry association with more than 230 members reflecting the diverse nature of Canada’s health, industrial and agricultural biotechnology sectors. In addition to providing significant health benefits for Canadians, the biotechnology industry has quickly become an essential part of the transformation of many traditional cornerstones of the Canadian economy including manufacturing, automotive, energy, aerospace and forestry industries. Biotechnology in all of its applications from health, agriculture and industrial is offering solutions for the collective population.

You can find the BIOTECanada website here.

Personally, I’m a bit ambivalent about it all. I understand the necessity for changing our food production processes but I do think more attention should be paid to consumers’ concerns and that organizations such as BIOTECanada could do a better job of communicating.

*’the’ added on Aug. 4, 2016.

Bacteria, pyramids, cancer, and Sylvain Martel

Canada’s national newspaper (as they like to bill themselves), the Globe and Mail featured Québec researcher’s (Sylvain Martel) work in a Dec. 13, 2011 article by Bertrand Marotte. From the news article,

Professor Sylvain Martel is already a world leader in the field of nano-robotics, but now he’s working to make a medical dream reality: To deliver toxic drug treatments directly to cancerous cells without damaging the body’s healthy tissue.

I have profiled Martel’s work before in an April 6 2010 posting about bacterial nanobots (amongst other subjects) and in a March 16, 2011 posting about his work with remote-controlled microcarriers.

It seems that his next project will combine the work on bacteria and microcarriers (from the Globe and Mail article),

Bolstered by his recent success in guiding micro-carriers loaded with cancer-fighting medications into a rabbit’s liver, he and his team of up to 20 researchers from several disciplines are working to transfer the method to the treatment of colorectal cancer in humans within four years.

This time around he is not using micro-carriers to deliver the drug to the tumour, but rather bacteria.

Here’s a video of the bacteria which illustrates Martel’s earlier success with ‘training’ them to build a pyramid.

The latest breakthrough reported in March 2011 (from my posting) implemented an MRI (magnetic resonance imaging) machine,

Known for being the world’s first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Here’s what Martel is trying to accomplish now (from the Globe and Mail article),

The MRI machine’s magnetic field is manipulated by [a] sophisticated software program that helps guide the magnetically sensitive bacteria to the tumour mass.

Attached to the bacteria is a capsule containing the cancer-fighting drug. The bacteria are tricked into swimming to an artificially created “magnetic north” at the centre of the tumour, where they will die off after 30 to 40 minutes. The micro-mules, however, have left their precious cargo: the capsule, whose envelope breaks and releases the drug.

I’m not entirely sure why the drug won’t destroy health tissue after it’s finished with the tumour but that detail is not offered in Marotte’s story which, in the last few paragraphs, switches focus from medical breakthroughs to the importance of venture capital funding for Canadian biotech research.

I wish Martel and his team great success.

Minimizing synthetic biology risks with open-source software

GenoTHREAT is designed to detect bioterrorism threats arising from the use of synthetic DNA. The research team that developed this new software tool recently published a paper in the March issue of Nature Biotechnology. From the March 21, 2011 news item on Nanowerk (****http://www.nanowerk.com/news/newsid=20626.php),

GenoTHREAT implements the “best match” screening protocol method recommended by the federal government to minimize the risk that unauthorized individuals or those with malicious intent will obtain toxins and other potentially dangerous materials from DNA synthesis providers. The process of developing GenoTHREAT allowed Peccoud’s team to conduct a rigorous bioinformatic analysis of the strengths and limitations of the best match method which was published in the March issue of Nature Biotechnology (“Strengths and limitations of the federal guidance on synthetic DNA”).

“It was natural to start developing GenoTHREAT around the federal guidance on synthetic DNA,” said [Jean] Peccoud. “Since this regulation is only one of many regulations and policies that providers of synthetic DNA need to comply with, our current efforts aim at developing a more comprehensive biosecurity solution that can be customized for a variety of users.”

An abstract for the paper is available (http://www.nature.com/nbt/journal/v29/n3/full/nbt.1802.html) but the full paper is behind a paywall. You can find out more about Peccoud’s research work and get information about how to download GenoTHREAT (http://www.genocad.com/software/genothreat).

Here’s a figure that shows GenoTHREAT’s screening algorithm,

GenoTHREAT Sequence screening algorithm figure from “Strengths and limitations of the federal guidance on synthetic DNA” in Nature Biotechnology, Nature Biotechnology Volume: 29, Pages: 208–210 (2011) DOI: 0.1038/nbt.1802

The number of synthetic biology stories I’ve been stumbling across lately is noticeable and since synthetic biology is not one of my main areas of interest, I’m guessing there’s a concerted communications effort to rouse interest in the topic.

Don’t forget, Friday, March 25, 2011, there’s a webcast about Synthetic biology ethics, details are in my March 17, 2011 post here: http://www.frogheart.ca/?p=3128.

**** I’m sorry, the WYSIWYG linking function is not working for me and I don’t have time to figure out the HTML coding.

 

 

Excitement over the cow genome…why?

They’ve sequenced the genome for a female Hereford cow, according the BBC News here. In reading the article, you’ll find a fair chunk of equivocation.

The genome of a female Hereford cow has been sequenced, which could be a major starting point for improvements in the agricultural industry.

The information is likely to have a major impact on livestock breeding. [emphasis mine]

Other genomes have been mapped, notably the human genome, and as far as I’m aware, nothing much has come of it. Denise Caruso in her webcast discussion with Rick Weiss on synthetic biology (for the Project on Emerging Nanotechnologies) mentioned the Encode Project where they identified all the functional elements in the human genome sequence. There was an international consortium working on this multi-year project  and, according to Caruso, after it was completed the biologists found that they still don’t understand how the genes actually interact within the body. In other words, you may have markers for a disease that never manifests because of other factors which are part of your personal biology. Theories are all very well but they don’t necessarily function outside a laboratory.

Eta: I forgot to mention that a team of Simon Fraser University researchers worked with colleagues at Trinity College Dublin, Ireland on the cow genome.

Canadian attosecond researcher wins medal

The Natural Sciences and Engineering Research Council (NSERC)  awarded Dr. Paul Corkum at the University of Ottawa with $1M in funding and the Gerhard Herzberg Canada Gold Medal for Science and Engineering. Corkum’s work is in the field of attosecond science.

I looked up attosecond to find out that it is one quintillionth of a second or one thousandth of a femtosecond. I found the description of the work a little more helpful (from Attosecond science researcher wins Gerhard Herzberg Canada Gold Medal),

Dr. Paul Corkum and his team at NRC used the world’s fastest laser light pulses to capture the first image of an electron, one of the smallest bits of matter in the universe.

And this helped too,

Dr. Paul Corkum and his team … used the world’s fastest laser light pulses to capture the first image of an electron, one of the smallest bits of matter in the universe. This manipulation of electrons could lead to breakthroughs in fields as diverse as computing, engineering and medicine.

I’m still trying to find ways to describe nanotechnology and now there’s attosecond science. Not to mention synthetic biology (I’m still not sure I can define the difference between that and biotechnology). Btw, there’s a Project on Emerging Nanotechnologies event, Synthetic Biology: The Next Biotech Revolution Is Brewing on Wednesday, March 25, 2009 from 9:30 am to 10:30 am PST. It will be webcast live and posted on their website a few days later. If you’re in the Washington, DC area and want to attend please RSVP by clicking on the event title link. The event features Michael Rodemeyer from the University of Virginia. He’s the author of a report titled New Life, Old Bottles: Regulating First-Generation Products of Synthetic Biology and will be discussing the US regulatory framework for biotechnology and whether synthetic biology can be contained within that framework.