Category Archives: space exploration

The US National Aeronautics and Aerospace Administration’s outreach: an introductory nanotechnology video and a talk in Washington, DC

The US National Aeronautics and Aerospace Administration or NASA, as it’s popularly known, has released a Nanotechnology video as part of its NASA Edge series of videos. As it runs for approximately 29 mins. 31 secs. (I won’t be embedding it here where I usually draw the line at approximately 5 mins. running time.)

It is a good introductory video aimed at people who are interested in space exploration and nanotechnology but not inclined to listen to much scientific detail. There is a transcript if you want to get a sense of how much information is needed to watch this program with enjoyment,

CHRIS: Welcome to NASA EDGE

FRANKLIN:  An inside and outside look…

BLAIR:  …at all things NASA.

CHRIS: On today’s show we’re going to be talking about nanotechnology.

BLAIR:  Which is technology that’s really small or as I like to say, co-host sized technology.

FRANKLIN: I think it’s a little bit smaller than cohost.  Maybe like the G.I. Joe with kung fu grip or maybe Antman size small.

BLAIR:  Alright, Antman I’ll buy but it’s probably even smaller than that, probably deeply embedded in wearables for Antman.

CHRIS: On today’s show, we going to look at nano sensors, nano wires, nano tubes, and composite over wrapped [sic] pressure vessels.

FRANKLIN: Or COPV’s

BLAIR: Which is really what’s interesting to me about the technology, it’s not a single technology with a single use.  It’s a technology that’s being applied all across industry in a lot of different areas and even across NASA.

FRANKLIN: And speaking of COPV’s, we are going to have Mia Siochi on the show today and she’s going to talk to us about how NASA is using nanotechnology in some upcoming tests.

CHRIS: But first up, I had a chance to talk with Steve Gaddis, who is going to give us the broad picture of nanotechnology.

CHRIS: We are here with Steve Gaddis the manager for the Game Changing Development program office. Steve, how are you doing?

STEVE: Doing good.

CHRIS: Steve, we had this whole technology campaign where the theme is Technology Drives Exploration.

STEVE: Absolutely, and I believe it.

CHRIS: What’s that mean Technology Drives Exploration?

STEVE: It means if you want to do these cool things that we haven’t done before, we have to develop the technologies to go do them. We can’t simply just keep doing what we’ve already done in the past, right? We have done some cool things but we want new missions. We want to go farther than we’ve been. We want to drill down. We want to bring things back. So, we need these new technologies.

CHRIS: Now with Game Changing you’re sort of a subset of the Space Technology Mission directorate at NASA headquarters.

STEVE: Right.

CHRIS:  What’s the focus on Game Changing as opposed to other technology subprograms?

STEVE:  We’re the disruptive program, we’re the DARPA like program at out of the nine.  However, all the programs, they’re looking for revolutionary and incremental developments in technology.  Our associate administrator really wants us to take some risk. He expects a certain amount of failure in the activities that were pursuing; the high pay off, high-risk type activities.  So he’d like to see the risk take place with us instead of maybe some of our sister programs where we’re demonstrating on orbit or we’re demonstrating on the International Space Station or we’re demonstrating on a ride with another government agency or the commercial crew type folks.

MEYYA: Nano sensors are a product of nanoscience and nanotechnology. When materials go to that small scale their properties are fundamentally different from bulk materials. So scientists all around the world have been working very hard trying to take advantage of this difference in properties between the bulk scale and the nano scale. And trying to make useful things, which are devices, systems, architectures, and materials for a wide variety of applications; touching upon every economic sector, which is electronics, computing, materials manufacturing, health, medicine, national security, transportation, energy storage, and I don’t want to leave out space exploration.

BLAIR: That’s a lot of stuff anyway. You mentioned space exploration, so I’m wondering; how are nanosensors being used by NASA?

MEYYA: The nanosensors are being developed to replace bulky instruments NASA has been using. No matter what you want to measure, whether you want to measure a composition of gas or vapor or if you want to measure radiation, historically we have always taken bulky instruments. Remember every pound of anything that we lift to near earth orbit it costs us about $10,000 a pound. The same 1-pound of anything would cost roughly about $100,000 a pound for Mars or other missions. So we have an incentive actually to miniaturize the size of the payload. So that’s why we want to move from bulky instruments to sensors. That’s one reason. The second reason is no matter where we go, okay, we don’t have utility companies sitting there waiting for us.  We have to generate our own power and we have to be very wise how we use that power.  The sensors not only are they small in size but they also consume very low power. That’s why over the last decade or so we’ve been working on developing nano-based chemical sensors, biosensors and radiation sensors.

CHRIS: When you are looking at these biosensors, are we looking primarily for crew health safety? What would they be used for?

JESSICA: What are the applications? We’ve developed them for crew health and diagnostic purposes. That’s our most recent project that we worked with the Game Changing Technology office on.  For that project, we developed this sensor to look at a variety of different protein biomarkers for cardiac health. When you’re in microgravity, there’s a lot of strain that’s placed on the heart, so, to monitor the health of the heart for our astronaut crew is critical.  That is the most recent technology we developed for them. We’ve also worked on this sensor looking at microbial contaminants in the water supply.  This is an environmental application for NASA to make sure that the water that the astronauts are drinking is actually safe to drink.

The scientists featured on the video podcast are:

Featuring:

Game Changing Nanotechnology
– Steve Gaddis
– Meyya Meyyappan
– Jim Gaier
– Azlin Biaggi​
– Tiffany Williams
– John Thesken
– Mia Siochi

Enjoy!

The second outreach project is billed as a NASA event but it’s more of a science event being hosted by the Wilson Center (Woodrow Wilson International Center for Scholars) Science and Technology Innovation Program. From the July 1, 2015 Wilson Center announcement,

NASA’s New Horizons: Innovation, Collaboration and Accomplishment in Science and Technology

With the NASA New Horizons spacecraft on its final approach to its primary target – the icy dwarf planet Pluto – now is the perfect time to reflect on some of the knowledge we’ve already gained from the mission, and to anticipate the new discoveries that are waiting to be made!

We would like to take this opportunity to invite you to a series of short talks inspired by the mission. These talks will cover a number of topics including:

NASA’s and New Horizon’s impact within the world of research

How the Mendeley product suite aims to make life easier for researchers

The importance of open science and the impact it has on major scientific achievements

How a culture of ‘hacking’ can help to foster innovation and creativity

The benefits of making data available for public usage and its societal impact

Mendeley loves science. We help researchers to manage their reference materials, collaborate with their colleagues and discover new research. We’re excited about the possibilities that our work can help to unlock and we want to talk to other people who are excited about the same things.

Logistics are two tiered, first there are the talks and then are the refreshments,

Wednesday, July 15th, 2015
4:00pm – 6:00pm

6th Floor Board Room

Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000

Followed by drinks and conversation at The Laughing Man Tavern, 1306 G St NW, Washington, DC 20005 from 6:30pm to 9:30pm.

Complimentary drinks will be served from 6:30 until 7:30. Each ticket holder will also receive drinks tickets for later use. This event is on a first come, first served basis. All guests must be 21 years of age or older.

You can find more information about the event here and you can register here.  As for Mendeley, free reference manager and academic social network, it seems to be a sponsor for this event and you can find out more about the company here.

Reducing friction with snakeskin-inspired surface

A June 30, 2015 Institute of Physics press release (also on EurekAlert) explains how snakeskin may inspire a whole new generation of robots bound for outer space along with other more earth-bound applications,

Snakeskin-inspired surfaces smash records, providing an astonishing 40% friction reduction in tests of high performance materials.

These new surfaces could improve the reliability of mechanical components in machines such as high performance cars and add grist to the mill of engineers designing a new generation of space exploration robots.

The skin of many snakes and lizards has been studied by biologists and has long been known to provide friction reduction to the animal as it moves. It is also resistant to wear, particularly in environments that are dry and dusty or sandy.

Dr Greiner and his team used a laser to etch the surface of a steel pin so that it closely resembled the texture of snakeskin. They then tested the friction created when the pin moved against another surface.

In dry conditions, i.e. with no oil or other lubricant, the scale-like surface created far less friction – 40% less – than its smooth counterpart.

Lead researcher Dr Christian Greiner said: “If we’d managed just a 1% reduction in friction, our engineering colleagues would have been delighted; 40% really is a leap forward and everyone is very excited.”

Applications are likely to be in mechanical devices that are made to a micro or nano scale. Familiar examples include the sensors in car anti-lock braking systems, computer hard disk drives, and accelerometers in mobile phones, which enable the device to determine for example whether it’s in portrait or landscape mode.

“Our new surface texture will mainly come into its own when engineers are really looking to push the envelope,” Dr Greiner said.

The snakeskin surface could be used in very high-end automotive engineering, such as Formula 1 racing cars. It could also be used in highly sensitive scientific equipment, including sensors installed in synchrotrons such as the Diamond Light Source in the UK or the Large Hadron Collider in Switzerland, and anywhere the engineering challenge is to further miniaturise moving parts.

There is interest in snakeskin-inspired materials from the robotics sector, too, which is designing robots inspired by snakes, which could aid exploration of very dusty environments, including those in space. This raises a new challenge for Dr Greiner’s team: to make a material that decreases friction in only one direction.

Anyone who has felt snakeskin will know that the scales all lie in the same direction and are articulated to aid the snake in its forward motion, while resisting backwards motion. The steel pins tested in this research mimic only the overall surface texture of snakeskin and reduce friction in at least two directions. Dr Greiner has made some progress with polymers that even more closely mimic snakeskin to reduce friction in only one direction. It is, he says, early days and this later work is not yet scheduled for publication.

The only caution is that this new surface doesn’t work well in an environment where oil or another lubricant is present. In fact, the snakeskin effect created three times more friction with lubricant than an equivalent smooth surface.

“This wasn’t a huge surprise,” Dr Greiner explained, “since we were looking to nature for inspiration and the species we mimicked – the royal python and a lizard called a sandfish skink – live in very dry environments and don’t secrete oils or other liquids onto their skin.”

Here’s a link to and citation for the paper,

Bio-inspired scale-like surface textures and their tribological properties by Christian Greiner and Michael Schäfer. Bioinspir. Biomim. 10 044001 doi:10.1088/1748-3190/10/4/044001 Published 30 June 2015

This paper is open access.

Canadian science media at June 28, 2015 SpaceX Dragon CRS-7 cargo mission to the International Space Station

The short story is that Elizabeth Hand, Digital Engagement Specialist, at Vancouver’s (Canada) Science World was selected to be a correspondent at the Cape Canaveral (Florida) Space X launch on June 28, 2015. There’s more in her June 24, 2015 posting on the Vancouver Sun newspaper blog network (Note: Links and some formatting niceties have been removed),

I [am] on my way to Cape Canaveral Air Force Station in Florida to join a team of social media correspondents from all over the world as a representative of Science World British Columbia to view the June 28, 2015 SpaceX Dragon CRS-7 cargo mission to the International Space Station.

I  received the news that I had been offered an invite at my thirty-something birthday celebration dinner. It was the gift to end all birthday gifts—a once-in-a-lifetime space nerd adventure. Any rocket launch would have made me happy, but a launch from Cape Canaveral is a particularly special one. For me, in particular, because I grew up in Florida and I can remember standing outside in the school yard hoping to catch a glimpse of the space shuttles that moved the Americans to the stars in the 80’s and 90’s. I dreamed of going up with them.

I am excited to bring the curiosity and excitement of the kids in BC with me to the events. Kids of all ages are invited to send their questions about space and rockets to @scienceworldca and/or @bettyHand on both Instagram and Twitter with the hashtag #whyspacematters. You can participate from home or from Science World, where, from June 24-28, kids can dress up in space suits and, with the help of our science facilitators, can snap photos and share their ideas and questions with me and the experts at NASA and SpaceX.

It’s not clear to me if she will be blogging live as well as using the vehicles (Twitter, etc.) mentioned in her posting*. It might be worth checking both the Vancouver Sun (Community Blogs Network) and Science World (blog) to see if she will be offering more substantive descriptions than are possible on the social media vehicles she mentioned.

* ‘posing’ corrected to ‘posting’ at 1115 hours on June 26, 2015.

ETA June 29, 2015: The rocket exploded nine minutes after launch (Daniel Terdiman’s June 28, 2015 posting for Fast Company).

Outer space telescopes made of micro- and nanoparticles (smart dust)

Scientists at Rochester Institute of Technology (RIT is located in New York state) are working on a project that would see ‘smart dust’ used as a telescope in outer space. From a Dec. 1, 2014 news item on phys.org,

Telescope lenses someday might come in aerosol cans. Scientists at Rochester Institute of Technology and the NASA [ National Aeronautics and Space Administration] Jet Propulsion Laboratory are exploring a new type of space telescope with an aperture made of swarms of particles released from a canister and controlled by a laser.

These floating lenses would be larger, cheaper and lighter than apertures on conventional space-based imaging systems like NASA’s Hubble and James Webb space telescopes, said Grover Swartzlander, associate professor at RIT’s Chester F. Carlson Center for Imaging Science and Fellow of the Optical Society of America. Swartzlander is a co-investigator on the Jet Propulsion team led by Marco Quadrelli.

A Dec. 1, 2014 RIT news release by Susan Gawlowicz, which originated the news item, describes the NASA project and provides more details about the technology,

NASA’s Innovative Advanced Concepts Program is funding the second phase of the “orbiting rainbows” project that attempts to combine space optics and “smart dust,” or autonomous robotic system technology. The smart dust is made of a photo-polymer, or a light-sensitive plastic, covered with a metallic coating.

“Our motivation is to make a very large aperture telescope in space and that’s typically very expensive and difficult to do,” Swartzlander said. “You don’t have to have one continuous mass telescope in order to do astronomy—it can be distributed over a wide distance. Our proposed concept could be a very cheap, easy way to achieve large coverage, something you couldn’t do with the James Webb-type of approach.”

An adaptive optical imaging sensor comprised of tiny floating mirrors could support large-scale NASA missions and lead to new technology in astrophysical imaging and remote sensing.

Swarms of smart dust forming single or multiple lenses could grow to reach tens of meters to thousands of kilometers in diameter. According to Swartzlander, the unprecedented resolution and detail might be great enough to spot clouds on exoplanets, or planets beyond our solar system.

“This is really next generation,” Swartzlander said. “It’s 20, 30 years out. We’re at the very first step.”

Previous scientists have envisioned orbiting apertures but not the control mechanism. This new concept relies upon Swartzlander’s expertise in the use of light, or photons, to manipulate micro- or nano-particles like smart dust. He developed and patented the techniques known as “optical lift,” in which light from a laser produces radiation pressure that controls the position and orientation of small objects.

In this application, radiation pressure positions the smart dust in a coherent pattern oriented toward an astronomical object. The reflective particles form a lens and channel light to a sensor, or a large array of detectors, on a satellite. Controlling the smart dust to reflect enough light to the sensor to make it work will be a technological hurdle, Swartzlander said.

Two RIT graduate students on Swartzlander’s team are working on different aspects of the project. Alexandra Artusio-Glimpse, a doctoral student in imaging science, is designing experiments in low-gravity environments to explore techniques for controlling swarms of particle and to determine the merits of using a single or multiple beams of light.

Swartzlander expects the telescope will produce speckled and grainy images. Xiaopeng Peng, a doctoral student in imaging science, is developing software algorithms for extracting information from the blurred image the sensor captures. The laser that will shape the smart dust into a lens also will measure the optical distortion caused by the imaging system. Peng will use this information to develop advanced image processing techniques to reverse the distortion and recover detailed images.

“Our goal at this point is to marry advanced computational photography with radiation-pressure control techniques to achieve a rough image,” Swartzlander said. “Then we can establish a roadmap for improving both the algorithms and the control system to achieve ‘out of this world’ images.”

You can find out more about NASA’s Orbiting Rainbows project here.

I just mentioned rainbows and optics with regard to Robert Grosseteste, a 13th century cleric who ‘unwove’ rainbows, in a Dec. 1, 2014 posting (scroll down about 60% of the way).

NASA, super-black nanotechnology, and an International Space Station livestreamed event

A super-black nanotechnology-enabled coating (first mentioned here in a July 18, 2013 posting featuring work by John Hagopian, an optics engineer at the US National Aeronautics and Space Administration [NASA’s] Goddard Space Flight Center on this project) is about to be tested in outer space. From an Oct. 23, 2014 news item on Nanowerk,

An emerging super-black nanotechnology that is to be tested for the first time this fall on the International Space Station will be applied to a complex, 3-D component critical for suppressing stray light in a new, smaller, less-expensive solar coronagraph designed to ultimately fly on the orbiting outpost or as a hosted payload on a commercial satellite.

The super-black carbon-nanotube coating, whose development is six years in the making, is a thin, highly uniform coating of multi-walled nanotubes made of pure carbon about 10,000 times thinner than a strand of human hair. Recently delivered to the International Space Station for testing, the coating is considered especially promising as a technology to reduce stray light, which can overwhelm faint signals that sensitive detectors are supposed to retrieve.

An Oct. 24, 2014 NASA news release by Lori Keesey, which originated the news item, further describes the work being done on the ground simultaneous to the tests on the International Space Station,

While the coating undergoes testing to determine its robustness in space, a team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will apply the carbon-nanotube coating to a complex, cylindrically shaped baffle — a component that helps reduce stray light in telescopes.

Goddard optical engineer Qian Gong designed the baffle for a compact solar coronagraph that Principal Investigator Nat Gopalswamy is now developing. The goal is [to] build a solar coronagraph that could deploy on the International Space Station or as a hosted payload on a commercial satellite — a much-needed capability that could guarantee the continuation of important space weather-related measurements.

The effort will help determine whether the carbon nanotubes are as effective as black paint, the current state-of-the-art technology, for absorbing stray light in complex space instruments and components.

Preventing errant light is an especially tricky challenge for Gopalswamy’s team. “We have to have the right optical system and the best baffles going,” said Doug Rabin, a Goddard heliophysicist who studies diffraction and stray light in coronagraphs.

The new compact coronagraph — designed to reduce the mass, volume, and cost of traditional coronagraphs by about 50 percent — will use a single set of lenses, rather than a conventional three-stage system, to image the solar corona, and more particularly, coronal mass ejections (CMEs). These powerful bursts of solar material erupt and hurdle across the solar system, sometimes colliding with Earth’s protective magnetosphere and posing significant hazards to spacecraft and astronauts.

“Compact coronagraphs make greater demands on controlling stray light and diffraction,” Rabin explained, adding that the corona is a million times fainter than the sun’s photosphere. Coating the baffle or occulter with the carbon-nanotube material should improve the component’s overall performance by preventing stray light from reaching the focal plane and contaminating measurements.

The project is well timed and much needed, Rabin added.

Currently, the heliophysics community receives coronagraphic measurements from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO).

“SOHO, which we launched in 1995, is one of our Great Observatories,” Rabin said. “But it won’t last forever.” Although somewhat newer, STEREO has operated in space since 2006. “If one of these systems fails, it will affect a lot of people inside and outside NASA, who study the sun and forecast space weather. Right now, we have no scheduled mission that will carry a solar coronagraph. We would like to get a compact coronagraph up there as soon as possible,” Rabin added.

Ground-based laboratory testing indicates it could be a good fit. Testing has proven that the coating absorbs 99.5 percent of the light in the ultraviolet and visible and 99.8 percent in the longer infrared bands due to the fact that the carbon atoms occupying the tiny nested tubes absorb the light and prevent it from reflecting off surfaces, said Goddard optics engineer John Hagopian, who is leading the technology’s advancement. Because only a tiny fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black — in this case, extremely black.

“We’ve made great progress on the coating,” Hagopian said. “The fact the coatings have survived the trip to the space station already has raised the maturity of the technology to a level that qualifies them for flight use. In many ways the external exposure of the samples on the space station subjects them to a much harsher environment than components will ever see inside of an instrument.”

Given the need for a compact solar coronagraph, Hagopian said he’s especially excited about working with the instrument team. “This is an important instrument-development effort, and, of course, one that could showcase the effectiveness of our technology on 3-D parts,” he said, adding that the lion’s share of his work so far has concentrated on 2-D applications.

By teaming with Goddard technologist Vivek Dwivedi, Hagopian believes the baffle project now is within reach. Dwivedi is advancing a technique called atomic layer deposition (ALD) that lays down a catalyst layer necessary for carbon-nanotube growth on complex, 3-D parts. “Previous ALD chambers could only hold objects a few millimeters high, while the chamber Vivek has developed for us can accommodate objects 20 times bigger; a necessary step for baffles of this type,” Hagopian said.

Other NASA researchers have flown carbon nanotubes on the space station, but their samples were designed for structural applications, not stray-light suppression — a completely different use requiring that the material demonstrate greater absorption properties, Hagopian said.

“We have extreme stray light requirements. Let’s see how this turns out,” Rabin said.

The researchers from NASA have kindly made available an image of a baffle prior to receiving its super-black coating,

This is a close-up view of a baffle that will be coated with a carbon-nanotube coating. Image Credit:  NASA Goddard/Paul Nikulla

This is a close-up view of a baffle that will be coated with a carbon-nanotube coating.
Image Credit: NASA Goddard/Paul Nikulla

There’s more information about the project in this August 12, 2014 NASA news release first announcing the upcoming test.

Serendipitously or not, NASA is hosting an interactive Space Technology Forum on Oct. 27, 2014 (this coming Monday) focusing on technologies being demonstrated on the International Space Station (ISS) according to an Oct. 20, 2014 NASA media advisory,

Media are invited to interact with NASA experts who will answer questions about technologies being demonstrated on the International Space Station (ISS) during “Destination Station: ISS Technology Forum” from 10 to 11 a.m. EDT (9 to 10 a.m. CDT [7 to 8 am PDT]) Monday, Oct. 27, at the U.S. Space & Rocket Center in Huntsville, Alabama.

The forum will be broadcast live on NASA Television and the agency’s website.

The Destination Station forums are a series of live, interactive panel discussions about the space station. This is the second in the series, and it will feature a discussion on how technologies are tested aboard the orbiting laboratory. Thousands of investigations have been performed on the space station, and although they provide benefits to people on Earth, they also prepare NASA to send humans farther into the solar system than ever before.

Forum panelists and exhibits will focus on space station environmental and life support systems; 3-D printing; Space Communications and Navigation (SCaN) systems; and Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES).

The forum’s panelists are:
– Jeffrey Sheehy, senior technologist in NASA’s Space Technology Mission Directorate
– Robyn Gatens, manager for space station System and Technology Demonstration, and Environmental Control Life Support System expert
– Jose Benavides, SPHERES chief engineer
– Rich Reinhart, principal investigator for the SCaN Testbed
– Niki Werkeiser, project manager for the space station 3-D printer

During the forum, questions will be taken from the audience, including media, students and social media participants. Online followers may submit questions via social media using the hashtag, #asknasa. [emphasis mine] …

The “Destination Station: ISS Technology Forum” coincides with the 7th Annual Von Braun Memorial Symposium at the University of Alabama in Huntsville Oct. 27-29. Media can attend the three-day symposium, which features NASA officials, including NASA Administrator Charles Bolden, Associate Administrator for Human Exploration and Operation William Gerstenmaier and Assistant Deputy Associate Administrator for Exploration Systems Development Bill Hill. Jean-Jacques Dordain, director general of the European Space Agency, will be a special guest speaker. Representatives from industry and academia also will be participating.

For NASA TV streaming video, scheduling and downlink information, visit:

http://www.nasa.gov/nasatv

For more information on the International Space Station and its crews, visit:

http://www.nasa.gov/station

I have checked out the livestreaming/tv site and it appears that registration is not required for access. Sadly, I don’t see any the ‘super-black’ coating team members mentioned in the news release on the list of forum participants.

ETA Oct. 27, 2014: You can check out Dexter Johnson’s Oct. 24, 2014 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website for a little more information

Lunar spelunking with robots at Vancouver’s (Canada) June 24, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, June 24,  2014 at 7:30 pm. Here’s the meeting description (from the June 18, 2014 announcement),

Our speaker for the evening will be John Walker, Rover Development Lead of the Hakuto Google Lunar X-Prize Team.  The title and abstract of his talk is:

Lunar Spelunking

Lava tubes, or caves likely exist on the surface of the moon. Based on recent images and laser distance measurements from the surface of the moon, scientists have selected candidates for further study.

Governmental space agencies and private institutions now have plans to visit these potential caves and investigate them as potential lunar habitat sites, as early as 2015.

I will present some of these candidates and my PhD research, which is supporting a Google Lunar X-Prize team’s attempt to survey one of these caves using robots.

I wasn’t able to find much about John Walker bu there is this Facebook entry noting a talk he gave at TEDxBudapest.

As for the Google Lunar XPRIZE, running a Google search yielded this on June 22, 2014 at 0945 hours PDT. It was the top finding on the search page. links to the site were provided below this definition:

The Google Lunar XPRIZE is a $30 million competition for the first privately funded team to send a robot to the moon, travel 500 meters and transmit video,…

You can find the Google Lunar XPRIZE website here. The Hakuto team, the only one based in Japan (I believe), has a website here. There is some English language material but the bulk would appear to be Japanese language.

Tweet the International Space Station on the solstice, June 21, 2014

On the heels of the nanosatellite project (see this June 19, 2014 posting) here’s an email announcement about a very interesting project for the Summer Solstice (June 21, 2014),

The June Solstice (Saturday, June 21) is the best time to view the International Space Station [ISS] in the northern hemisphere.

But now there¹s another way.

Crowdsource the pictures via Twitter.

Space enthusiasts are being encouraged to tag their tweets with #SpotTheStation and include a location name and it will go on an interactive map.

Astronaut Reid Wiseman had the idea while on the International Space Station.  His tweet for example was ³During #Exp40, spot the #ISS & tweet your town, country-or-state w/ #spotthestation (pics welcome); we’ll map it! bit.ly/SpotTheStation2²

Here’s a little more detail as to the company and agency behind this project,

Esri, a GIS mapping software provider, has partnered with the Center of Geographic Sciences in Canada to develop a Twitter app to pinpoint the exact location of the ISS sightings around the world in order to give a complete view. The global map documenting the recent ISS sightings is already live.

I have looked at the live map and tweeters have been active. You can check to see the locations. For example, as of June 19, 2014 1000 hours PDT, Canada has some 26 tweets while Florida has 40 and Munich tops them both with 132 tweets.

I have looked up the company, Esri, and found this on the About Esri History page,

Jack and Laura Dangermond founded Esri in 1969 as a small research group focused on land-use planning. The company’s early mission was to organize and analyze geographic information to help land planners and land resource managers make well-informed environmental decisions.

There’s a very interesting article on the Esri website, which provides some insight into the origins for the June 21, 2014 ‘#SpotTheStation’ project. Written by Carla Wheeler (an Esri writer), it is undated but there is mention of Chris Hadfield’s sojourn on the ISS and his attendance at an event in June 2013 after he landed. From Wheeler’s 2013 (?) article, A Map App Odyssey,

Today social media, with doses of humor, are very much a part of the space mission, with the National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and many astronauts sending messages, videos, and photos back to Earth via Twitter, Facebook, and YouTube. Followers post messages for the astronauts too, making interaction about space interactive.

The photos Hadfield and fellow ISS astronaut Thomas Marshburn sent via Twitter inspired their follower David MacLean, a faculty member at the Centre of Geographic Sciences (COGS), Nova Scotia Community College, and his students to create a mapping app called Our World from the ISS. It used Esri ArcGIS Online to map more than 950 photographs of interesting places on Earth that Hadfield and Marshburn shot from space. They took the photos during their December 2012–May 2013 mission and posted the images on Twitter with their observations of each scene (in 140 characters or fewer, of course). Hadfield, a Canadian, was especially prolific and poetic. …

MacLean, also a Canadian, was intrigued by the astronauts’ unique perspective as they orbited 400 kilometers (250 miles) above earth, photographing everything from cities to barrier reefs and sand formations to smoke from brush fires. He didn’t want their geologically and geographically interesting images and descriptions—such as “taffy-twisted African rock” and the “yin and yang of ice and land”—to quickly get swallowed and lost in the fast-moving Twitterverse.

“[Hadfield] took pictures all over the earth, with wonderful prose as he described the outback of Australia and parts of Mauritania and Algeria that no one would [otherwise] get to see,” MacLean said. “Unfortunately, Twitter seems to be a very temporal medium, and all these wonderful pictures—these rich resources—slip away and you have to really look to find them.”

MacLean wondered if there was a way to preserve the images and messages in the Tweets in a form that was easy for people to find and view. He decided to try building a mapping app, which he and his students created using geographic information system (GIS) technology from Esri, online comma-separated value (CSV) files, and Google Docs spreadsheets in Google Drive. Their map displays icons, provided courtesy of the Canadian Space Agency, that look like small space stations. These show the approximate (or, at times, quite accurate) locations of each photograph. Viewers can pan the map, zoom in to any area of interest, and tap an icon. A pop-up window will appear that includes a thumbnail of the picture and the message from the astronaut. You can also click the thumbnail to see the full-size Tweet in the astronauts’ Twitter feed. (Clicking the photo in Twitter will then bring up a larger, sharper image.) It’s a little like seeing photos of landscapes in National Geographic—only taken from space.

Tap an icon north of Medina, Saudi Arabia, to see Hadfield’s May 3 [2013?] photo of the Harrat Khaybar volcanic lava field and read his post: “The Earth bubbled and spat, like boiling porridge, long ago in Saudi Arabia.” Another geologic wonder caught his eye Down Under: “A splash of dry salt, white on seared red, in Australia’s agonizingly beautiful Outback.”

So, on June 21, 2014 get ready to tweet ‘#SpotTheStation’ and have a joyous Summer Solstice!

Canada’s ‘nano’satellites to gaze upon luminous stars

The launch (from Yasny, Russia) of two car battery-sized satellites happened on June 18, 2014 at 15:11:11 Eastern Daylight Time according to a June 18, 2014 University of Montreal (Université de Montréal) news release (also on EurekAlert).

Together, the satellites are known as the BRITE-Constellation, standing for BRIght Target Explorer. “BRITE-Constellation will monitor for long stretches of time the brightness and colour variations of most of the brightest stars visible to the eye in the night sky. These stars include some of the most massive and luminous stars in the Galaxy, many of which are precursors to supernova explosions. This project will contribute to unprecedented advances in our understanding of such stars and the life cycles of the current and future generations of stars,” said Professor Moffat [Anthony Moffat, of the University of Montreal and the Centre for Research in Astrophysics of Quebec], who is the scientific mission lead for the Canadian contribution to BRITE and current chair of the international executive science team.

Here’s what the satellites (BRITE-Constellatio) are looking for (from the news release),

Luminous stars dominate the ecology of the Universe. “During their relatively brief lives, massive luminous stars gradually eject enriched gas into the interstellar medium, adding heavy elements critical to the formation of future stars, terrestrial planets and organics. In their spectacular deaths as supernova explosions, massive stars violently inject even more crucial ingredients into the mix. The first generation of massive stars in the history of the Universe may have laid the imprint for all future stellar history,” Moffat explained. “Yet, massive stars – rapidly spinning and with radiation fields whose pressure resists gravity itself – are arguably the least understood, despite being the brightest members of the familiar constellations of the night sky.” Other less-massive stars, including stars similar to our own Sun, also contribute to the ecology of the Universe, but only at the end of their lives, when they brighten by factors of a thousand and shed off their tenuous outer layers.

BRITE-Constellation is both a multinational effort and a Canadian bi-provincial effort,

BRITE-Constellation is in fact a multinational effort that relies on pioneering Canadian space technology and a partnership with Austrian and Polish space researchers – the three countries act as equal partners. Canada’s participation was made possible thanks to an investment of $4.07 million by the Canadian Space Agency. The two new Canadian satellites are joining two Austrian satellites and a Polish satellite already in orbit; the final Polish satellite will be launched in August [2014?].

All six satellites were designed by the University of Toronto Institute for Aerospace Studies – Space Flight Laboratory, who also built the Canadian pair. The satellites were in fact named “BRITE Toronto” and “BRITE Montreal” after the University of Toronto and the University of Montreal, who play a major role in the mission.  “BRITE-Constellation will exploit and enhance recent Canadian advances in precise attitude control that have opened up for space science  the domain of very low cost, miniature spacecraft, allowing a scientific return that otherwise would have had price tags 10 to 100 times higher,” Moffat said. “This will actually be the first network of satellites devoted to a fundamental problem in astrophysics.”

Is it my imagination or is there a lot more Canada/Canadian being included in news releases from the academic community these days? In fact, I made a similar comment in my June 10, 2014 posting about TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics where I noted we might not need to honk our own horns quite so loudly.

One final comment, ‘nano’satellites have been launched before as per my Aug. 6, 2012 posting,

The nanosatellites referred to in the Aug.2, 2012 news release on EurekALert aren’t strictly speaking nano since they are measured in inches and weigh approximately eight pounds. I guess by comparison with a standard-sized satellite, CINEMA, one of 11 CubeSats, seems nano-sized. From the news release,

Eleven tiny satellites called CubeSats will accompany a spy satellite into Earth orbit on Friday, Aug. 3, inaugurating a new type of inexpensive, modular nanosatellite designed to piggyback aboard other NASA missions. [emphasis mine]

One of the 11 will be CINEMA (CubeSat for Ions, Neutrals, Electrons, & MAgnetic fields), an 8-pound, shoebox-sized package which was built over a period of three years by 45 students from the University of California, Berkeley, Kyung Hee University in Korea, Imperial College London, Inter-American University of Puerto Rico, and University of Puerto Rico, Mayaguez.

This 2012 project had a very different focus from this Austrian-Canadian-Polish effort. From the University of Montreal news release,

The nanosatellites will be able to explore a wide range of astrophysical questions. “The constellation could detect exoplanetary transits around other stars, putting our own planetary system in context, or the pulsations of red giants, which will enable us to test and refine our models regarding the eventual fate of our Sun,” Moffatt explained.

Good luck!

Fly me to the moon using 17th century science

Apparently the first serious scientific thinking about space exploration (in Europe?) was written almost four hundred years ago by John Wilkins, a priest in the Church of England. This year, 2014, marks the four hundredth anniversary of Wilkins birth on January 1 and provides the occasion for a paper, Fly me to the moon? by Allan Chapman, historian and professor at Oxford University (UK).

From a Jan. 14, 2014 news item on ScienceDaily about this Jacobean space exploration programme,

The seventeenth century saw unprecedented changes in our understanding of the universe, spurred on by the invention of the telescope and the opportunity to study stars and planets in detail for the first time. Figures like Galileo are famous for their work not just in astronomy but in scientific experiments of many kinds that challenged established ideas and helped lead to the final demise of an Earth-centred view of the cosmos.

Now historian Prof. Allan Chapman of Wadham College, University of Oxford, has investigated a less well-known pioneer, John Wilkins, who was born 400 years ago this month. His achievements include a plan for ‘mechanical’ space travel, the popularisation of astronomy, managing to negotiate the politics and privations of the English Civil War and helping to found the Royal Society. Prof. Chapman will describe Wilkins’ life in a presentation at the Royal Astronomical Society on Friday 10 January [2014].

The January ?, 2014 Royal Astronomical Society press release, which originated the news item, adds some details about Wilkins,

John Wilkins was born in Canons Ashby, Northamptonshire, on 1 January 1614. A graduate of Magdalen Hall, Oxford, he was ordained as a priest in the Church of England, before travelling widely in the UK and to Germany to meet contemporary scholars. In 1638 he published ‘The Discovery of a New World’ and then in 1640 ‘A Discourse Concerning a New Planet’. The frontispiece of the later book shows his affinity for the Copernican model of the Solar system, with the Polish astronomer and Galileo both prominent. Just as significantly, the illustration shows the stars extending to infinity, rather than being in a then conventional ‘fixed sphere’ just beyond Saturn.

With the two works, Wilkins used clear, concise English to popularise a new understanding of the universe, arguing passionately against the theories of Aristotle that dated back 2000 years. He understood how these ancient ideas (for example that it was in the nature of heavy objects to fall, whereas light materials like smoke would rise) had been fundamentally undermined by scientific discoveries. The model of the cosmos had completely changed over the course of the century since Copernicus.

He [Chapman] sees John Wilkins as one of the first people to understand the power of mass communication for astronomy and as an intellectual ancestor of the late Sir Patrick Moore and Carl Sagan. “Wilkins was a pioneer of English language science communication. Anybody who could read the Bible or enjoy a Shakespeare play could relate to Wilkins’ vision of the new astronomy of Copernicus and Galileo.’

Remarkably, Wilkins also speculated on space travel in his 1640 work. He considered the problems of travel to the Moon, including overcoming the gravitational pull of the Earth, the coldness of space and what the ‘sky voyagers’ would eat during a journey that he thought would take about 180 days.

In 1648, after becoming Master of Wadham College in Oxford, Wilkins expanded these ideas in ‘Mathematical Magick’, a book which describes machines and how systems of gears, pulleys and springs make at first sight insurmountable tasks possible. There he discusses a ‘flying chariot’, a ship like vehicle with bird’s wings, powered by springs and gears that would carry the astronauts on their six month journey. Robert Hooke’s posthumous diary suggests that he and Wilkins may even have built a model of this aircraft. [emphasis mine]

Chapman comments, “John Wilkins was the first person to discuss space travel from a scientific and technological perspective rather than as an aspect of fantasy literature. In his writing he initiates a ‘Jacobean Space Programme’, a serious proposal for travelling to other worlds”.

Here’s an image Chapman has created to illustrate what he believes was Wilkins vision for space travel,

http://www.ras.org.uk/news-and-press/news-archive/254-news-2014/2380-the-jacobean-space-programme-the-life-of-john-wilkins [downloaded from http://www.ras.org.uk/news-and-press/news-archive/254-news-2014/2380-the-jacobean-space-programme-the-life-of-john-wilkins]

Wilkins and Robert Hooke fly to the Moon from Wadham College. Wilkins left no picture of his “Flying Chariot”, so Prof. Chapman assembled components from written descriptions into this drawing. Credit: A. Chapman.[downloaded from http://www.ras.org.uk/news-and-press/news-archive/254-news-2014/2380-the-jacobean-space-programme-the-life-of-john-wilkins]

As one might expect from an historian, Chapman contextualizes Wilkins’ accomplishments within the major political events of the day,

1642 saw the onset of the English Civil War, a conflict that led to the abolition of the Anglican Church, the beheading of King Charles I and the Archbishop of Canterbury and the ascendancy of Oliver Cromwell as Lord Protector. A consummate diplomat, Wilkins even managed to marry Cromwell’s sister, took on the post at Wadham after opponents of Cromwell were purged and yet made the College a centre of tolerance that hosted a club of scientists.

After the restoration of the monarchy in 1659, Wilkins was removed from his next post as Master of Trinity College, Cambridge but nonetheless went on to found and become Secretary of the Royal Society and was appointed Bishop of Chester in 1668. He died in 1671.

While it’s too late to attend Chapman’s Jan. 10, 2014 talk and there doesn’t seem to be an online video of the talk, there’s Chapman’s 6 pp. paper, Fly me to the moon? for anyone who want’s to know more.