Tag Archives: cars

Plantains and carbon nanotubes to improve cars

I always enjoy the unexpected in a story and this one has to do with plantains and luxury cars, from a July 29, 2020 news item on phys.org (Note: A link has been removed),

A luxury automobile is not really a place to look for something like sisal, hemp, or wood. Yet automakers have been using natural fibers for decades. Some high-end sedans and coupes use these in composite materials for interior door panels, for engine, interior and noise insulation, and internal engine covers, among other uses.

Unlike steel or aluminum, natural fiber composites do not rust or corrode. They can also be durable and easily molded. The biggest advantages of fiber reinforced polymer composites for cars are light weight, good crash properties, and noise- and vibration-reducing characteristics. But making more parts of a vehicle from renewable sources is a challenge. Natural fiber polymer composites can crack, break and bend. The reasons include low tensile, flexural and impact strength in the composite material.

Researchers from the University of Johannesburg [South Africe] have now demonstrated that plantain, a starchy type of banana, is a promising source for an emerging type of composite material for the automotive industry. The natural plantain fibers are combined with carbon nanotubes and epoxy resin to form a natural fiber-reinforced polymer hybrid nanocomposite material. Plantain is a year-round staple food crop in tropical regions of Africa, Asia and South America. Many types of plantain are eaten cooked.

A July 29, 2020 University of Johannesburg press release, which originated the news item, delves into plantains and how their fibers enhance nanocomposites destined for integration into luxury cars,

Plantain is a year-round staple food crop in tropical regions of Africa, Asia and South America. Many types of plantain are eaten cooked.

The researchers moulded a composite material from epoxy resin, treated plantain fibers and carbon nanotubes. The optimum amount of nanotubes was 1% by weight of the plantain-epoxy resin combined.

The resulting plantain nanocomposite was much stronger and stiffer than epoxy resin on its own.

The composite had 31% more tensile and 34% more flexural strength than the epoxy resin alone. The nanocomposite also had 52% higher tensile modulus and 29% higher flexural modulus than the epoxy resin alone.

“The hybridization of plantain with multi-walled carbon nanotubes increases the mechanical and thermal strength of the composite. These increases make the hybrid composite a competitive and alternative material for certain car parts,” says Prof Tien-Chien Jen.

Prof Jen is the lead researcher in the study and the Head of the Department of Mechanical Engineering Science at the University of Johannesburg.

Natural fibres vs metals

Producing car parts from renewable sources have several benefits, says Dr Patrick Ehi Imoisili. Dr Imoisili is a postdoctoral researcher in the Department of Mechanical Engineering Science at the University of Johannesburg.

“There is a trend of using natural fibre in vehicles. The reason is that natural fibres composites are renewable, low cost and low density. They have high specific strength and stiffness. The manufacturing processes are relatively safe,” says Imoisili.

“Using car parts made from these composites, can reduce the mass of a vehicle. That can result in better fuel-efficiency and safety. These components will not rust or corrode like metals. Also, they can be stiff, durable and easily molded,” he adds.

However, some natural fibre reinforced polymer composites currently have disadvantages such as water absorption, low impact strength and low heat resistance. Car owners can notice effects such as cracking, bending or warping of a car part, says Imoisili.

Standardised tests

The researchers subjected the plantain nanocomposite to a series of standardised industrial tests. These included ASTM Test Methods D638 and D790; impact testing according to the ASTM A-370 standard; and ASTM D-2240.

The tests showed that a composite with 1% nanotubes had the best strength and stiffness, compared to epoxy resin alone.

The plantain nanocomposite also showed marked improvement in micro hardness, impact strength and thermal conductivity compared to epoxy resin alone.

Moulding a nanocomposite from natural fibres

The researchers compression-moulded a ‘stress test object’. They used 1 part inedible plantain fibres, 4 parts epoxy resin and multi-walled carbon nanotubes. The epoxy resin and nanotubes came from commercial suppliers. The epoxy was similar to resins that auto manufacturers use in certain car parts.

The plantain fibres came from the ‘trunks’ or pseudo-stems, of plantain plants in the south-western region of Nigeria. The pseudo-stems consist of tightly-overlapping leaves.

The researchers treated the plantain fibers with several processes. The first process is an ancient method to separate plant fibres from stems, called water-retting.

In the second process, the fibres were soaked in a 3% caustic soda solution for 4 hours. After drying, the fibres were treated with high-frequency microwave radiation of 2.45GHz at 550W for 2 minutes.

The caustic soda and microwave treatments improved the bonding between the plantain fibers and the epoxy resin in the nanocomposite.

Next, the researchers dispersed the nanotubes in ethanol to prevent ‘bunching’ of the tubes in the composite. After that, the plantain fibres, nanotubes and epoxy resin were combined inside a mold. The mold was then compressed with a load for 24 hours at room temperature.

Food crop vs industrial raw material

Plantain is grown in tropical regions worldwide. This includes Mexico, Florida and Texas in North America; Brazil, Honduras, Guatemala in South and Central America; India, China, and Southeast Asia.

In West and Central Africa, farmers grow plantain in Cameroon, Ghana, Uganda, Rwanda, Nigeria, Cote d’Ivoire and Benin.

Using biomass from major staple food crops can create problems in food security for people with low incomes. In addition, the automobile industry will need access to reliable sources of natural fibres to increase use of natural fibre composites.

In the case of plantains, potential tensions between food security and industrial uses for composite materials are low. This is because plantain farmers discard the pseudo-stems as agro-waste after harvest.

Here’s a link to and a citation for the paper,

Physical, mechanical and thermal properties of high frequency microwave treated plantain (Musa Paradisiaca) fibre/MWCNT hybrid epoxy nanocomposites by Patrick Ehi Imoisili, Kingsley Ukoba, Tien-Chien Jen. Journal of Materials Research and Technology Volume 9, Issue 3, May–June 2020, Pages 4933-4939 DOI: https://doi.org/10.1016/j.jmrt.2020.03.012

This paper is open access.

Measurably fewer nanoparticles in São Paulo’s (Brazil) air after ethanol use

An Aug. 28, 2017 news item on Nanotechnology Now features news about nanoparticles and the environment in São Paulo, Brazil,

When ethanol prices at the pump rise for whatever reason, it becomes economically advantageous for drivers of dual-fuel vehicles to fill up with gasoline. However, the health of the entire population pays a high price: substitution of gasoline for ethanol leads to a 30% increase in the atmospheric concentration of ultrafine particulate matter, which consists of particles with a diameter of less than 50 nanometers (nm).

An Aug. 23, 2017 Fundação de Amparo à Pesquisa do Estado de São Paulo (The São Paulo Research Foundation [FAPESP]) press release, which originated the news item, explains further,

The phenomenon was detected in São Paulo City, Brazil, in a study supported by FAPESP and published in July 2017 in Nature Communications.

“These polluting nanoparticles are so tiny that they behave like gas molecules. When inhaled, they can penetrate the respiratory system’s defensive barriers and reach the pulmonary alveoli, so that potentially toxic substances enter the bloodstream and may increase the incidence of respiratory and cardiovascular problems,” said Paulo Artaxo, Full Professor at the University of São Paulo’s Physics Institute (IF-USP) and a co-author of the study.

Levels of ultrafine particulate matter in the atmosphere are neither monitored nor regulated by environmental agencies not only in Brazil but practically anywhere in the world, according to Artaxo. The São Paulo State Environmental Corporation (CETESB), for example, routinely monitors only solid particles with diameters of 10,000 nm (PM10) and 2,500 nm (PM2.5) – as well as other gaseous pollutants such as ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2).

“Between 75% and 80% of the mass of the nanoparticles we measured in this study corresponds to organic compounds emitted by motor vehicles – carbon in different chemical forms. What these compounds are exactly and how they affect health are questions that require further research,” Artaxo said.

He added that a consensus is forming in the United States and Europe based on recent research indicating that these emissions are a potential health hazard and should be regulated. Several US states, such as California, have laws requiring a 20%-30% ethanol blend in gasoline, which also helps reduce emissions of ultrafine particulate matter.

Methodology

The data analyzed in the study were collected during the period of January-May 2011, when ethanol prices fluctuated sharply compared with gasoline prices, owing to macroeconomic factors such as variations in the international price of sugar (Brazilian ethanol is made from sugarcane).

Collection was performed at the top of a ten-story building belonging to IF-USP in the western part of São Paulo City. According to Artaxo, the site was chosen because it is relatively distant from the main traffic thoroughfares so that the aerosols there are “older” in the sense that they have already interacted with other substances present in the atmosphere.

“Generally speaking, the pollution we inhale every day at home or at work isn’t what comes out of vehicular exhaust pipes but particles already processed in the atmosphere,” he explained. “For this reason, we chose a site that isn’t directly impacted by primary vehicle emissions.”

The study was conducted during Joel Ferreira de Brito’s postdoctoral research, which Artaxo supervised. The model used to analyze the data was developed by Brazilian economist Alberto Salvo, a professor at the National University of Singapore and first author of the article. Franz Geiger, a chemist at Northwestern University in the US, also collaborated.

“We adapted a sophisticated statistical model originally developed for economic analysis and used here for the first time to analyze the chemistry of atmospheric nanoparticles,” Artaxo said. “The main strength of this tool is that it can work with a large number of variables, such as the presence or absence of rainfall, wind direction, traffic intensity, and levels of ozone, carbon monoxide and other pollutants.”

Analyses were performed before, during and after a sharp fluctuation in ethanol prices leading consumers to switch motor fuels in São Paulo City. While no significant changes were detected in levels of inhalable fine particulate matter (PM2.5 and PM10), the study proved in a real, day-to-day situation that choosing ethanol reduces emissions of ultrafine particles. To date, this phenomenon had only been observed in the laboratory.

“These results reinforce the need for public policies to encourage the use of biofuels, as they clearly show that the public lose in health what they save at the pump when opting for gasoline,” Artaxo said.

In São Paulo, a city with 7 million motor vehicles and the largest urban fleet of flexible-fuel cars, it would be feasible to run all buses on biofuel. “We have the technology for this in Brazil – and at a competitive price,” he said.

The fact that the city’s bus fleet still depends on diesel, Artaxo warned, creates an even worse health hazard in the shape of emissions of black carbon, one of the main components of soot and a pollutant that contributes to global warming. Alongside electricity generation, the transportation sector is the largest emitter of pollutants produced by the burning of fossil fuels.

For Artaxo, incentives for electric, hybrid or biofuel vehicles are vital to reduce greenhouse gas emissions. “By incentivizing biofuels, we could solve several problems at once,” he said. “We could combat climate change, reduce harm to health and foster advances in automotive technology by offering a stimulus for auto makers to develop more economical and efficient cars fueled by ethanol.”

Here’s a link to and a citation for the paper,

Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use by Alberto Salvo, Joel Brito, Paulo Artaxo, & Franz M. Geiger. Nature Communications 8, Article number: 77 (2017) doi:10.1038/s41467-017-00041-5 Published online: 18 July 2017

This paper is open access.

Boron nitride-graphene hybrid nanostructures could lead to next generation ‘green’ cars

An Oct. 24, 2016 phys.org news item describes research which may lead to improved fuel storage in ‘green’ cars,

Layers of graphene separated by nanotube pillars of boron nitride may be a suitable material to store hydrogen fuel in cars, according to Rice University scientists.

The Department of Energy has set benchmarks for storage materials that would make hydrogen a practical fuel for light-duty vehicles. The Rice lab of materials scientist Rouzbeh Shahsavari determined in a new computational study that pillared boron nitride and graphene could be a candidate.

An Oct. 24, 2016 Rice University news release (also on EurekAlert), which originated the news item, provides more detail (Note: Links have been removed),

Shahsavari’s lab had already determined through computer models how tough and resilient pillared graphene structures would be, and later worked boron nitride nanotubes into the mix to model a unique three-dimensional architecture. (Samples of boron nitride nanotubes seamlessly bonded to graphene have been made.)

Just as pillars in a building make space between floors for people, pillars in boron nitride graphene make space for hydrogen atoms. The challenge is to make them enter and stay in sufficient numbers and exit upon demand.

In their latest molecular dynamics simulations, the researchers found that either pillared graphene or pillared boron nitride graphene would offer abundant surface area (about 2,547 square meters per gram) with good recyclable properties under ambient conditions. Their models showed adding oxygen or lithium to the materials would make them even better at binding hydrogen.

They focused the simulations on four variants: pillared structures of boron nitride or pillared boron nitride graphene doped with either oxygen or lithium. At room temperature and in ambient pressure, oxygen-doped boron nitride graphene proved the best, holding 11.6 percent of its weight in hydrogen (its gravimetric capacity) and about 60 grams per liter (its volumetric capacity); it easily beat competing technologies like porous boron nitride, metal oxide frameworks and carbon nanotubes.

At a chilly -321 degrees Fahrenheit, the material held 14.77 percent of its weight in hydrogen.

The Department of Energy’s current target for economic storage media is the ability to store more than 5.5 percent of its weight and 40 grams per liter in hydrogen under moderate conditions. The ultimate targets are 7.5 weight percent and 70 grams per liter.

Shahsavari said hydrogen atoms adsorbed to the undoped pillared boron nitride graphene, thanks to  weak van der Waals forces. When the material was doped with oxygen, the atoms bonded strongly with the hybrid and created a better surface for incoming hydrogen, which Shahsavari said would likely be delivered under pressure and would exit when pressure is released.

“Adding oxygen to the substrate gives us good bonding because of the nature of the charges and their interactions,” he said. “Oxygen and hydrogen are known to have good chemical affinity.”

He said the polarized nature of the boron nitride where it bonds with the graphene and the electron mobility of the graphene itself make the material highly tunable for applications.

“What we’re looking for is the sweet spot,” Shahsavari said, describing the ideal conditions as a balance between the material’s surface area and weight, as well as the operating temperatures and pressures. “This is only practical through computational modeling, because we can test a lot of variations very quickly. It would take experimentalists months to do what takes us only days.”

He said the structures should be robust enough to easily surpass the Department of Energy requirement that a hydrogen fuel tank be able to withstand 1,500 charge-discharge cycles.

Shayeganfar [Farzaneh Shayeganfar], a former visiting scholar at Rice, is an instructor at Shahid Rajaee Teacher Training University in Tehran, Iran.

 

Caption: Simulations by Rice University scientists show that pillared graphene boron nitride may be a suitable storage medium for hydrogen-powered vehicles. Above, the pink (boron) and blue (nitrogen) pillars serve as spacers for carbon graphene sheets (gray). The researchers showed the material worked best when doped with oxygen atoms (red), which enhanced its ability to adsorb and desorb hydrogen (white). Credit: Lei Tao/Rice University

Caption: Simulations by Rice University scientists show that pillared graphene boron nitride may be a suitable storage medium for hydrogen-powered vehicles. Above, the pink (boron) and blue (nitrogen) pillars serve as spacers for carbon graphene sheets (gray). The researchers showed the material worked best when doped with oxygen atoms (red), which enhanced its ability to adsorb and desorb hydrogen (white). Credit: Lei Tao/Rice University

Here’s a link to and a citation for the paper,

Oxygen and Lithium Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage by Farzaneh Shayeganfar and Rouzbeh Shahsavari. Langmuir,  DOI: 10.1021/acs.langmuir.6b02997 Publication Date (Web): October 23, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

I last featured research by Shayeganfar and  Shahsavari on graphene and boron nitride in a Jan. 14, 2016 posting.

Improving fossil-fueled cars’ efficiency with graphene-based ballistic rectifier

UK and Chinese researchers have a developed a technology to make fuel use more efficient in fossil-fueled cars (from a June 2, 2016 news item on phys.org),

A graphene-based electrical nano-device has been created which could substantially increase the energy efficiency of fossil fuel-powered cars.

The nano-device, known as a ‘ballistic rectifier’, is able to convert heat which would otherwise be wasted from the car exhaust and engine body into a useable electrical current.

Parts of car exhausts can reach temperatures of 600 degrees Celsius. The recovered energy can then be used to power additional automotive features such as air conditioning and power steering, or be stored in the car battery.

The nano-rectifier was built by a team at The University of Manchester led by Professor Aimin Song and Dr. Ernie Hill, with a team at Shandong University. The device utilises graphene’s phenomenally high electron mobility, a property which determines how fast an electron can travel in a material and how fast electronic devices can operate.

A June 1, 2016 University of Manchester press release, which originated the news item, provides more detail,

The resulting device is the most sensitive room-temperature rectifier ever made. Conventional devices with similar conversion efficiencies require cryogenically low temperatures.

Even today’s most efficient internal combustion engines can only convert about 70% of energy burned from fossil fuels into the energy required to power a car. The rest of the energy created is often wasted through exhaust heat or cooling systems.

Greg Auton, who performed most of the experiment said: “Graphene has exceptional properties; it possesses the longest carrier mean free path of any electronic material at room temperature.

“Despite this, even the most promising applications to commercialise graphene in the electronics industry do not take advantage of this property. Instead they often try to tackle the the problem that graphene has no band gap.”

Professor Song who invented the concept of the ballistic rectifier said: “The working principle of the ballistic rectifier means that it does not require any band gap. Meanwhile, it has a single-layered planar device structure which is perfect to take the advantage of the high electron-mobility to achieve an extremely high operating speed.

“Unlike conventional rectifiers or diodes, the ballistic rectifier does not have any threshold voltage either, making it perfect for energy harvest as well as microwave and infrared detection”.

The Manchester-based group is now looking to scale up the research by using large wafer-sized graphene and perform high-frequency experiments. The resulting technology can also be applied to harvesting wasted heat energy in power plants.

Inadvertent carbon nanotube production from your car

It’s disconcerting to find out that cars inadvertently produce carbon nanotubes which are then spilled into the air we breathe. Researchers at Rice University (US) and Paris-Saclay University (France) have examined matter from car exhausts and dust in various parts of Paris finding carbon nanotubes (CNTs). Further, they also studied the lungs of Parisian children who have asthma and found CNTs there too.

The scientists have carefully stated that CNTs have been observed in lung cells but they are not claiming causality (i.e., they don’t claim the children’s asthma was caused by CNTs).

An Oct. 20, 2015 news item on Nanotechnology Now introduces the research,

Cars appear to produce carbon nanotubes, and some of the evidence has been found in human lungs.

Rice University scientists working with colleagues in France have detected the presence of man-made carbon nanotubes in cells extracted from the airways of Parisian children under routine treatment for asthma. Further investigation found similar nanotubes in samples from the exhaust pipes of Paris vehicles and in dust gathered from various places around the city.

The researchers reported in the journal EBioMedicine this month that these samples align with what has been found elsewhere, including Rice’s home city of Houston, in spider webs in India and in ice cores.

An Oct. 19, 2015 Rice University news release (also on EurekAlert), which originated the news item, painstakingly describes the work and initial conclusions,

The research in no way ascribes the children’s conditions to the nanotubes, said Rice chemist Lon Wilson, a corresponding author of the new paper. But the nanotubes’ apparent ubiquity should be the focus of further investigation, he said.

“We know that carbon nanoparticles are found in nature,” Wilson said, noting that round fullerene molecules like those discovered at Rice are commonly produced by volcanoes, forest fires and other combustion of carbon materials. “All you need is a little catalysis to make carbon nanotubes instead of fullerenes.”

A car’s catalytic converter, which turns toxic carbon monoxide into safer emissions, bears at least a passing resemblance to the Rice-invented high-pressure carbon monoxide, or HiPco, process to make carbon nanotubes, he said. “So it is not a big surprise, when you think about it,” Wilson said.

The team led by Wilson, Fathi Moussa of Paris-Saclay University and lead author Jelena Kolosnjaj-Tabi, a graduate student at Paris-Saclay, analyzed particulate matter found in the alveolar macrophage cells (also known as dust cells) that help stop foreign materials like particles and bacteria from entering the lungs.

The researchers wrote that their results “suggest humans are routinely exposed” to carbon nanotubes. They also suggested previous studies that link the carbon content of airway macrophages and the decline of lung function should be reconsidered in light of the new findings. Moussa confirmed his lab will continue to study the impact of man-made nanotubes on health.

The cells were taken from 69 randomly selected asthma patients aged 2 to 17 who underwent routine fiber-optic bronchoscopies as part of their treatment. For ethical reasons, no cells from healthy patients were analyzed, but because nanotubes were found in all of the samples, the study led the researchers to conclude that carbon nanotubes are likely to be found in everybody.

The study notes but does not make definitive conclusions about the controversial proposition that carbon nanotube fibers may act like asbestos, a proven carcinogen. But the authors reminded that “long carbon nanotubes and large aggregates of short ones can induce a granulomatous (inflammation) reaction.”

The study partially answers the question of what makes up the black material inside alveolar macrophages, the original focus of the study. The researchers found single-walled and multiwalled carbon nanotubes and amorphous carbon among the cells, as well as in samples swabbed from the tailpipes of cars in Paris and dust from various buildings in and around the city.

The news release goes on to detail how the research was conducted,

“The concentrations of nanotubes are so low in these samples that it’s hard to believe they would cause asthma, but you never know,” Wilson said. “What surprised me the most was that carbon nanotubes were the major component of the carbonaceous pollution we found in the samples.”

The nanotube aggregates in the cells ranged in size from 10 to 60 nanometers in diameter and up to several hundred nanometers in length, small enough that optical microscopes would not have been able to identify them in samples from former patients. The new study used more sophisticated tools, including high-resolution transmission electron microscopy, X-ray spectroscopy, Raman spectroscopy and near-infrared fluorescence microscopy to definitively identify them in the cells and in the environmental samples.

“We collected samples from the exhaust pipes of cars in Paris as well as from busy and non-busy intersections there and found the same type of structures as in the human samples,” Wilson said.

“It’s kind of ironic. In our laboratory, working with carbon nanotubes, we wear facemasks to prevent exactly what we’re seeing in these samples, yet everyone walking around out there in the world probably has at least a small concentration of carbon nanotubes in their lungs,” he said.

The researchers also suggested that the large surface areas of nanotubes and their ability to adhere to substances may make them effective carriers for other pollutants.

The study followed one released by Rice and Baylor College of Medicine earlier this month with the similar goal of analyzing the black substance found in the lungs of smokers who died of emphysema. That study found carbon black nanoparticles that were the product of the incomplete combustion of such organic material as tobacco.

Here’s an image of a sample,

 Caption: Carbon nanotubes (the long rods) and nanoparticles (the black clumps) appear in vehicle exhaust taken from the tailpipes of cars in Paris. The image is part of a study by scientists in Paris and at Rice University to analyze carbonaceous material in the lungs of asthma patients. They found that cars are a likely source of nanotubes found in the patients. Credit: Courtesy of Fathi Moussa/Paris-Saclay University

Caption: Carbon nanotubes (the long rods) and nanoparticles (the black clumps) appear in vehicle exhaust taken from the tailpipes of cars in Paris. The image is part of a study by scientists in Paris and at Rice University to analyze carbonaceous material in the lungs of asthma patients. They found that cars are a likely source of nanotubes found in the patients.
Credit: Courtesy of Fathi Moussa/Paris-Saclay University

Here’s a link to and a citation for the paper,

Anthropogenic Carbon Nanotubes Found in the Airways of Parisian Children by Jelena Kolosnjaj-Tabi, Jocelyne Just, Keith B. Hartman, Yacine Laoudi, Sabah Boudjemaa, Damien Alloyeau, Henri Szwarc, Lon J. Wilson, & Fathi Moussa. EBioMedicine doi:10.1016/j.ebiom.2015.10.012 Available online 9 October 2015

This paper is open access.

ETA Oct. 26, 2015: Dexter Johnson, along with Dr. Andrew Maynard, provides an object lesson on how to read science research in an Oct. 23, 2015 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]),

“From past studies, the conditions in combustion engines seem to favor the production of at least some CNTs (especially where there are trace metals in lubricants that can act as catalysts for CNT growth),” explained Andrew Maynard Director, Risk Innovation Lab and Professor, School for the Future of Innovation in Society at Arizona State University, in an e-mail interview. Says Maynard:

What, to my knowledge, is still not known, is the relative concentrations of CNT in ambient air that may be inhaled, the precise nature of these CNT in terms of physical and chemical structure, and the range of sources that may lead to ambient CNT. This is important, as the potential for fibrous particles to cause lung damage depends on characteristics such as their length—and many of the fibers shown in the paper appear too short to raise substantial concerns.”

Nonetheless, Maynard praises the research for establishing that these carbon nanotube-like fibers are part of the urban aerosol and therefore end up in the lungs of anyone who breathes it in. However, he cautions that the findings don’t provide information on the potential health risks associated with these exposures.

It’s a good read not only for the information but the mild snarkiness (assuming you find that kind of thing amusing) that spices up the piece.

Nano for car lubricants and for sensors on dashboards

I have two car-oriented news items today. The first concerns the introduction of carbon nanospheres into lubricants as a means of reducing friction. From a March 5, 2015 news item on Nanowerk,

Tiny, perfectly smooth carbon spheres added to motor oil have been shown to reduce friction and wear typically seen in engines by as much as 25 percent, suggesting a similar enhancement in fuel economy.

The researchers also have shown how to potentially mass-produce the spheres, making them hundreds of times faster than previously possible using ultrasound to speed chemical reactions in manufacturing.

“People have been making these spheres for about the last 10 years, but what we discovered was that instead of taking the 24 hours of synthesis normally needed, we can make them in 5 minutes,” said Vilas Pol, an associate professor of chemical engineering at Purdue University.

The spheres are 100-500 nanometers in diameter, a range that generally matches the “surface roughness” of moving engine components.

“So the spheres are able to help fill in these areas and reduce friction,” said mechanical engineering doctoral student Abdullah A. Alazemi.

A March 4, 2015 Purdue University news release by Emil Venere, which originated the news item, elaborates on the impact this finding could have (Note: A link has been removed),

Tests show friction is reduced by 10 percent to 25 percent when using motor oil containing 3 percent of the spheres by weight.

“Reducing friction by 10 to 25 percent would be a significant improvement,” Sadeghi said. “Many industries are trying to reduce friction through modification of lubricants. The primary benefit to reducing friction is improved fuel economy.”

Friction is greatest when an engine is starting and shutting off, so improved lubrication is especially needed at those times.

“Introducing microspheres helps separate the surfaces because the spheres are free to move,” Alazemi said. “It also is possible that these spheres are rolling and acting as little ball bearings, but further research is needed to confirm this.” [emphasis mine]

Findings indicate adding the spheres did not change the viscosity of the oil.

“It’s very important not to increase the viscosity because you want to maintain the fluidity of the oil so that it can penetrate within engine parts,” Alazemi said.

The spheres are created using ultrasound to produce bubbles in a fluid containing a chemical compound called resorcinol and formaldehyde. The bubbles expand and collapse, generating heat that drives chemical reactions to produce polymer particles. These polymeric particles are then heated in a furnace to about 900 degrees Celsius, yielding the perfectly smooth spheres.

“A major innovation is that professor Pol has shown how to make lots of these spheres, which is important for potential industrial applications,” Sadeghi said.

Etacheri said, “Electron microscopy images and Raman spectra taken before and after their use show the spheres are undamaged, suggesting they can withstand the punishing environment inside engines and other machinery.”

Funding was provided by Purdue’s School of Chemical Engineering. Electron microscopy studies were performed at the Birck Nanotechnology Center in Purdue’s Discovery Park.

Future research will include work to determine whether the spheres are rolling like tiny ball bearings or merely sliding. A rolling mechanism best reduces friction and would portend well for potential applications. Future research also will determine whether the resorcinol-formaldehyde particles might themselves be used as a lubricant additive without heating them to produce pure carbon spheres.

I’m not sure why the researcher is referring to microspheres as the measurements are at the nanoscale, which should mean these are ‘nanospheres’ or, as the researchers have it in the title for their paper, ‘submicrometer spheres’.

Here’s a link to and a citation for the paper,

Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction by Abdullah A. Alazemi, Vinodkumar Etacheri, Arthur D. Dysart, Lars-Erik Stacke, Vilas G. Pol, and Farshid Sadeghi. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.5b00099 Publication Date (Web): February 17, 2015
Copyright © 2015 American Chemical Society

This paper is behind a paywall but there is an instructive image freely available,

This image taken with an electron microscope shows that tiny carbon spheres added to motor oil reduce friction and wear typically seen in engines by as much as 25 percent, suggesting a similar enhancement in fuel economy. Purdue researchers also have shown how to potentially mass-produce the spheres. (Purdue University image)

This image taken with an electron microscope shows that tiny carbon spheres added to motor oil reduce friction and wear typically seen in engines by as much as 25 percent, suggesting a similar enhancement in fuel economy. Purdue researchers also have shown how to potentially mass-produce the spheres. (Purdue University image)

My second car item concerns thin films and touch. From a March 5, 2015 news item on Azonano (Note: A link has been removed),,

Canatu, a leading manufacturer of transparent conductive films, has in partnership with Schuster Group [based in Germany] and Display Solution AG [based in Germany], showcased a pioneering 3D encapsulated touch sensor for the automotive industry.

The partnership is delivering the first ever, button free, 3D shaped true multitouch panel for automotives, being the first to bring much anticipated touch applications to dashboards and paneling. The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML [in mould labeling] technology.

A March 5, 2015 Canatu press release, which originated the news item, provides more details about the technology and some insight into future plans,

The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML technology. The integration of touch applications to dashboards and other paneling in cars has long been a desired by automotive designers but a suitable technology was not available. Finally the technology is now here. Canatu’s CNB™ (Carbon NanoBud®) In-Mold Film, with its unique stretch properties provides a clear path to the eventual replacement of mechanical controls with 3D touch sensors. The touch application was made using an existing mass manufacturing tool and industry standard processes.

Specifically designed for automobile center consoles and dashboards, household machines, wearable devices, industrial user interfaces, commercial applications and consumer devices, CNB™ In-Mold Films can be easily formed into shape. The film is first patterned to the required touch functionality, then formed, then back-molded by injection molding, resulting in a unique 3D shape with multitouch functionality.

With a bending radius of 1mm, CNB™ In-Mold Films can bring touch to almost any surface imaginable. The unique properties of CNB™ In-Mold Films are unmatched as no other film on the market can be stretched 120% and molded without losing their conductivity.

You can find out more about Canatu, based in Finland, here.

Supercapacitors* on automobiles

Queensland University of Technology* (QUT; Australia) researchers are hopeful they can adapt supercapacitors in the form of a fine film tor use in electric vehicles making them more energy-efficient. From a Nov. 6, 2014 news item on ScienceDaily,

A car powered by its own body panels could soon be driving on our roads after a breakthrough in nanotechnology research by a QUT team.

Researchers have developed lightweight “supercapacitors” that can be combined with regular batteries to dramatically boost the power of an electric car.

The discovery was made by Postdoctoral Research Fellow Dr Jinzhang Liu, Professor Nunzio Motta and PhD researcher Marco Notarianni, from QUT’s Science and Engineering Faculty — Institute for Future Environments, and PhD researcher Francesca Mirri and Professor Matteo Pasquali, from Rice University in Houston, in the United States.

A Nov. 6, 2014 QUT news release, which originated the news item, describes supercapacitors, the research, and the need for this research in more detail,

The supercapacitors – a “sandwich” of electrolyte between two all-carbon electrodes – were made into a thin and extremely strong film with a high power density.

The film could be embedded in a car’s body panels, roof, doors, bonnet and floor – storing enough energy to turbocharge an electric car’s battery in just a few minutes.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but they are able to deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

“Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared to several hours for a standard electric car battery.”

Dr Liu said currently the “energy density” of a supercapacitor is lower than a standard lithium ion (Li-Ion) battery, but its “high power density”, or ability to release power in a short time, is “far beyond” a conventional battery.

“Supercapacitors are presently combined with standard Li-Ion batteries to power electric cars, with a substantial weight reduction and increase in performance,” he said.

“In the future, it is hoped the supercapacitor will be developed to store more energy than a Li-Ion battery while retaining the ability to release its energy up to 10 times faster – meaning the car could be entirely powered by the supercapacitors in its body panels.

“After one full charge this car should be able to run up to 500km – similar to a petrol-powered car and more than double the current limit of an electric car.”

Dr Liu said the technology would also potentially be used for rapid charges of other battery-powered devices.

“For example, by putting the film on the back of a smart phone to charge it extremely quickly,” he said.

The discovery may be a game-changer for the automotive industry, with significant impacts on financial, as well as environmental, factors.

“We are using cheap carbon materials to make supercapacitors and the price of industry scale production will be low,” Professor Motta said.

“The price of Li-Ion batteries cannot decrease a lot because the price of Lithium remains high. This technique does not rely on metals and other toxic materials either, so it is environmentally friendly if it needs to be disposed of.”

A Nov. 10, 2014 news item on Azonano describes the Rice University (Texas, US) contribution to this work,

Rice University scientist Matteo Pasquali and his team contributed to two new papers that suggest the nano-infused body of a car may someday power the car itself.

Rice supplied high-performance carbon nanotube films and input on the device design to scientists at the Queensland University of Technology in Australia for the creation of lightweight films containing supercapacitors that charge quickly and store energy. The inventors hope to use the films as part of composite car doors, fenders, roofs and other body panels to significantly boost the power of electric vehicles.

A Nov. 7, 2014 Rice University news release, which originated the news item, offers a few technical details about the film being proposed for use as a supercapacitor on car panels,

Researchers in the Queensland lab of scientist Nunzio Motta combined exfoliated graphene and entangled multiwalled carbon nanotubes combined with plastic, paper and a gelled electrolyte to produce the flexible, solid-state supercapacitors.

“Nunzio’s team is making important advances in the energy-storage area, and we were glad to see that our carbon nanotube film technology was able to provide breakthrough current collection capability to further improve their devices,” said Pasquali, a Rice professor of chemical and biomolecular engineering and chemistry. “This nice collaboration is definitely bottom-up, as one of Nunzio’s Ph.D. students, Marco Notarianni, spent a year in our lab during his Master of Science research period a few years ago.”

“We built on our earlier work on CNT films published in ACS Nano, where we developed a solution-based technique to produce carbon nanotube films for transparent electrodes in displays,” said Francesca Mirri, a graduate student in Pasquali’s research group and co-author of the papers. “Now we see that carbon nanotube films produced by the solution-processing method can be applied in several areas.”

As currently designed, the supercapacitors can be charged through regenerative braking and are intended to work alongside the lithium-ion batteries in electric vehicles, said co-author Notarianni, a Queensland graduate student.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but with their high power density, deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

Because hundreds of film supercapacitors are used in the panel, the electric energy required to power the car’s battery can be stored in the car body. “Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared with several hours for a standard electric car battery,” Notarianni said.

The researchers foresee such panels will eventually replace standard lithium-ion batteries. “In the future, it is hoped the supercapacitor will be developed to store more energy than an ionic battery while retaining the ability to release its energy up to 10 times faster – meaning the car would be powered by the supercapacitors in its body panels,” said Queensland postdoctoral researcher Jinzhang Liu.

Here’s an image of graphene infused with carbon nantoubes used in the supercapacitor film,

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology - See more at: http://news.rice.edu/2014/11/07/supercharged-panels-may-power-cars/#sthash.0RPsIbMY.dpuf

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology

Here are links to and citations for the two papers published by the researchers,

Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector by Marco Notarianni, Jinzhang Liu, Francesca Mirri, Matteo Pasquali, and Nunzio Motta. Nanotechnology Volume 25 Number 43 doi:10.1088/0957-4484/25/43/435405

High performance all-carbon thin film supercapacitors by Jinzhang Liu, Francesca Mirri, Marco Notarianni, Matteo Pasquali, and Nunzio Motta. Journal of Power Sources Volume 274, 15 January 2015, Pages 823–830 DOI: 10.1016/j.jpowsour.2014.10.104

Both articles are behind paywalls.

One final note, Dexter Johnson provides some insight into issues with graphene-based supercapacitors and what makes this proposed application attractive in his Nov. 7, 2014 post on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

The hope has been that someone could make graphene electrodes for supercapacitors that would boost their energy density into the range of chemical-based batteries. The supercapacitors currently on the market have on average an energy density around 28 Wh/kg, whereas a Li-ion battery holds about 200Wh/kg. That’s a big gap to fill.

The research in the field thus far has indicated that graphene’s achievable surface area in real devices—the factor that determines how many ions a supercapacitor electrode can store, and therefore its energy density—is not any better than traditional activated carbon. In fact, it may not be much better than a used cigarette butt.

Though graphene may not help increase supercapacitors’ energy density, its usefulness in this application may lie in the fact that its natural high conductivity will allow superconductors to operate at higher frequencies than those that are currently on the market. Another likely benefit that graphene will yield comes from the fact that it can be structured and scaled down, unlike other supercapacitor materials.

I recommend reading Dexter’s commentary in its entirety.

*’University of Queensland’ corrected to “Queensland University of Technology’ on Nov. 10, 2014 at 1335 PST.

* ‘super-capacitor’ changed to ‘supercapacitor’ on April 29, 2015.

Corporate influence, nanotechnology regulation, and Friends of the Earth (FoE) Australia

The latest issue of the newsletter, Chain Reaction # 121, July 2014, published by Friends of the Earth (FoE) Australia features an article by Louise Sales ‘Corporate influence over nanotechnology regulation‘ that has given me pause. From the Sales article,

I recently attended an Organisation for Economic Co-operation and Development (OECD) seminar on the risk assessment and risk management of nanomaterials. This was an eye-opening experience that graphically illustrated the extent of corporate influence over nanotechnology regulation globally. Representatives of the chemical companies DuPont and Evonik; the Nanotechnology Industries Association; and the Business and Industry Advisory Committee to the OECD (BIAC) sat alongside representatives of countries such as Australia, the US and Canada and were given equal speaking time.

BIAC gave a presentation on their work with the Canadian and United States Governments to harmonise nanotechnology regulation between the two countries. [US-Canada Regulatory Cooperative Council] [emphasis mine] Repeated reference to the involvement of ‘stakeholders’ prompted me to ask if any NGOs [nongovernmental organizations] were involved in the process. Only in the earlier stages apparently − ‘stakeholders’ basically meant industry.

A representative of the Nanotechnology Industries Association told us about the European NANoREG project they are leading in collaboration with regulators, industry and scientists. This is intended to ‘develop … new testing strategies adapted to innovation requirements’ and to ‘establish a close collaboration among authorities, industry and science leading to efficient and practically applicable risk management approaches’. In other words industry will be helping write the rules.

Interestingly, when I raised concerns about this profound intertwining of government and industry with one of the other NGO representatives they seemed almost dismissive of my concerns. I got the impression that most of the parties concerned thought that this was just the ‘way things were’. As under-resourced regulators struggle with the regulatory challenges posed by nanotechnology − the offer of industry assistance is probably very appealing. And from the rhetoric at the meeting one could be forgiven for thinking that their objectives are very similar − to ensure that their products are safe. Right? Wrong.

I just published an update about the US-Canada Regulatory Cooperation Council (RCC; in  my July 14, 2014 posting) where I noted the RCC has completed its work and final reports are due later this summer. Nowhere in any of the notices is there mention of BIAC’s contribution (whatever it might have been) to this endeavour.

Interestingly. BIAC is not an OECD committee but a separate organization as per its About us page,

BIAC is an independent international business association devoted to advising government policymakers at OECD and related fora on the many diversified issues of globalisation and the world economy.

Officially recognised since its founding in 1962 as being representative of the OECD business community, BIAC promotes the interests of business by engaging, understanding and advising policy makers on a broad range of issues with the overarching objectives of:

  • Positively influencing the direction of OECD policy initiatives;

  • Ensuring business and industry needs are adequately addressed in OECD policy decision instruments (policy advocacy), which influence national legislation;

  • Providing members with timely information on OECD policies and their implications for business and industry.

Through its 38 policy groups, which cover the major aspects of OECD work most relevant to business, BIAC members participate in meetings, global forums and consultations with OECD leadership, government delegates, committees and working groups.

I don’t see any mention of safety either in the excerpt or elsewhere on their About us page.

As Sales notes in her article,

Ultimately corporations have one primary driver and that’s increasing their bottom line.

I do wonder why there doesn’t seem to have been any transparency regarding BIAC’s involvement with the RCC and why no NGOs (according to Sales) were included as stakeholders.

While I sometimes find FoE and its fellow civil society groups a bit shrill and over-vehement at times, It never does to get too complacent. For example, who would have thought that General Motors would ignore safety issues (there were car crashes and fatalities as a consequence) over the apparently miniscule cost of changing an ignition switch. From What is the timeline of the GM recall scandal? on Vox.com,

March 2005: A GM project engineering manager closed the investigation into the faulty switches, noting that they were too costly to fix. In his words: “lead time for all solutions is too long” and “the tooling cost and piece price are too high.” Later emails unearthed by Reuters suggested that the fix would have cost GM 90 cents per car. [emphasis mine]

March 2007: Safety regulators inform GM of the death of Amber Rose, who crashed her Chevrolet Cobalt in 2005 after the ignition switch shut down the car’s electrical system and air bags failed to deploy. Neither the company nor regulators open an investigation.

End of 2013: GM determines that the faulty ignition switch is to blame for at least 31 crashes and 13 deaths.

According to a July 17, 2014 news item on CBC (Canadian Broadcasting Corporation) news online, Mary Barra, CEO of General Motors, has testified on the mater before the US Senate for a 2nd time, this year,

A U.S. Senate panel posed questions to a new set of key players Thursday [July 17, 2014] as it delves deeper into General Motors’ delayed recall of millions of small cars.

An internal report found GM attorneys signed settlements with the families of crash victims but didn’t tell engineers or top executives about mounting problems with ignition switches. It also found that GM’s legal staff acted without urgency.

GM says faulty ignition switches were responsible for at least 13 deaths. It took the company 11 years to recall the cars.

Barra will certainly be asked about how she’s changing a corporate culture that allowed a defect with ignition switches to remain hidden from the car-buying public for 11 years. It will be Barra’s second time testifying before the panel.

H/T ICON (International Council on Nanotechnology) July 16, 2014 news item. Following on the topic of transparency, ICON based at Rice University in Texas (US) has a Sponsors webpage.

Quantum dots and graphene; a mini roundup

I’ve done very little writing about quantum dots (so much nano, so little time) but there’s been a fair amount of activity lately which has piqued my interest. In the last few days researchers at Kansas State University have been getting noticed for being able to control the size and shape of the graphene quantum dots they produce.  This one has gotten extensive coverage online including this May 17, 2012 news item on physorg.com,

Vikas Berry, William H. Honstead professor of chemical engineering, has developed a novel process that uses a diamond knife to cleave graphite into graphite nanoblocks, which are precursors for graphene quantum dots. These nanoblocks are then exfoliated to produce ultrasmall sheets of carbon atoms of controlled shape and size.

By controlling the size and shape, the researchers can control graphene’s properties over a wide range for varied applications, such as solar cells, electronics, optical dyes, biomarkers, composites and particulate systems. Their work has been published in Nature Communications and supports the university’s vision to become a top 50 public research university by 2025. The article is available online.

Here’s an image of graphene being cut by a diamond knife from the May 16, 2012 posting by jtorline on the K-State News blog,

Molecular dynamics snapshot of stretched graphene being nanotomed via a diamond knife.

Here’s why standardizing the size is so important,

While other researchers have been able to make quantum dots, Berry’s research team can make quantum dots with a controlled structure in large quantities, which may allow these optically active quantum dots to be used in solar cell and other optoelectronic applications. [emphasis mine]

While all this is happening in Kansas, the Econ0mist magazine published a May 12, 2012 article about some important quantum dot optoelectronic developments in Spain (an excellent description for relative beginners is given and, if this area interests you, I’d suggest reading it in full),

Actually converting the wonders of graphene into products has been tough. But Frank Koppens and his colleagues at the Institute of Photonic Sciences in Barcelona think they have found a way to do so. As they describe in Nature Nanotechnology, they believe graphene can be used to make ultra-sensitive, low-cost photodetectors.

A typical photodetector is made of a silicon chip a few millimetres across onto which light is focused by a small lens. Light striking the chip knocks electrons free from some of the silicon atoms, producing a signal that the chip’s electronics convert into a picture or other useful information. …

Silicon photodetectors suffer, though, from a handicap: they are inflexible. Nor are they particularly cheap. And they are not that sensitive. They absorb only 10-20% of the light that falls on to them. For years, therefore, engineers have been on the lookout for a cheap, bendable, sensitive photodetector. …

By itself, graphene is worse than silicon at absorbing light. According to Dr Koppens only 2.7% of the photons falling on it are captured. But he and his colleague Gerasimos Konstantatos have managed to increase this to more than 50% by spraying tiny crystals of lead sulphide onto the surface of the material.

So combining the ability to size quantum dots uniformly with this discovery on how to make graphene more sensitive (and more useful in potential products) with quantum dots suggests some very exciting possibilities including this one mentioned by Dexter Johnson (who’s living in Spain these days) in his May 16, 2012 posting on Nanoclast (on the Institute of Electrical and Electronics Engineers [IEEE] website),

The researchers offer a range of applications for the graphene-and-quantum-dot combination, including digital cameras and sensors.  [emphasis mine] But it seems the researchers seem particularly excited about one application in particular. They expect the material will be used for night-vision technologies in automobiles—an application I have never heard trotted out before in relation to nanotech.

You can get more insights, more precise descriptions if you want to follow up from the Econ0mist article,  and Dexter’s links to more information about the research in his posting.

In my final roundup piece, I received a news release (dated April 24, 2012) about a quantum dot commercialization project at the University of Utah,

One of the biggest challenges for advancing quantum dots is the manufacturing process. Conventional processes are expensive, require high temperatures and produce low yields. However, researchers at the University of Utah believe they have a solution. They recently formed a startup company called Navillum Nanotechnologies, and their efforts are gaining national attention with help from a team of M.B.A. students from the David Eccles School of Business.
The students recently won first place and $100,000 at the regional CU Cleantech New Venture Challenge. The student competition concluded at the University of Colorado in Boulder on Friday, April 20. The student team advances to the national championship, which will be held in June in Washington, D.C. Student teams from six regions will compete for additional prizes and recognition at the prestigious event. Other regional competitions were held at MIT, Cal Tech, the University of Maryland, Clean Energy Trust (Chicago) and Rice University. All the competitions are financed by the U.S. Department of Energy.

The students will be competing in the national Clean Energy Business Plan Competition taking place June 12-13, 2012 in Washington, D.C.  Here are a few more details from the national competition webpage,

Winners of the six regional competitions will represent their home universities and regions as they vie for the honor of presenting the best clean energy business plan before a distinguished panel of expert judges and invited guests from federal agencies, industry, national labs and the venture capital community.

Confirmed Attendees include:

The Honorable Steven Chu
Energy Secretary [US federal government]

Dr. David Danielson
Assistant Secretary, EERE  [US Dept. of Energy, energy efficiency and renewable energy technologies)

Dr. Karina Edmonds
Technology Transfer Coordinator [US Dept. of Energy]

Mr. Todd Park
Chief Technology Officer, White House

Good luck to the students!

Ford Motor Company goes greener with nanocoating

It seems to be a day for volatile organic compounds (VOC) as I mentioned them earlier today in my Nov. 18, 2011 posting about Pricoil Ghana and their technology. Ford Motor Company has developed a nanocoating which allows vehicle windshields to be attached in a more cost-efficient and eco-friendly fashion. From the Nov. 18, 2011 news item on Nanowerk,

Ford wants to innovate the way vehicle windshields are installed through a new patented process that makes the attachment less costly, simpler and more eco-conscious than current practices.

One patent covers cleaning and activating the edge of the windshield glass in less than 10 seconds. A second Ford patent covers the application of a plasma-reacted nano-coating that modifies the surface for bonding of the adhesive that holds the windshield in place. The entire patented process takes less than one minute.

Larry Haack, technical expert, Ford Research & Innovation, said there are several benefits of the new patented technology including elimination of the primers that contain volatile organic compounds (VOCs).

A deal has been signed with Plasmatreat so the technology can be used universally. From the news item,

Ford recently signed a nonexclusive, worldwide license agreement with Elgin, Ill.-based Plasmatreat U.S. L.P. that grants the right to use Ford’s new process patents and incorporate the Ford technology into Plasmatreat’s own equipment and patented processes. Also, Ford will provide technical assistance to Plasmatreat and its customers to implement technology using Ford’s experience and know-how.

Here’s a little information about Plasmatreat from the Company webpage,

Plasmatreat is a worldwide enterprise with leading technology, wide-ranging experience, renowned research projects and a large partner network. We are innovators and work with our customers to pioneer applications and break new ground. The potential for ground-breaking applications is unlimited.

Since 1995 the company, which now operates globally, has focused its activities on the development of atmospheric-pressure plasma processes. With technology centers in Germany, the Unites States, Japan and China as well as sales offices and agencies around the globe we have a local presence wherever our expert knowledge and our experience in the field of tailored surface treatment solutions are needed.

The company also has offices in Canada, unsurprisingly, in Mississauga (where there are lots of automobile manufacturing plants).