Tag Archives: nanobots

RNA (ribonucleic acid) video game

I am a great fan of  Foldit, a protein-folding game I have mentioned several times here (my first posting about Foldit was Aug. 6, 2010) and now via the Foresight Insitute’s July 16, 2012 blog posting, I have discovered an RNA video game (Note: I have removed links),

As we pointed out a few months ago, the greater complexity of folding rules for RNA compared to its chemical cousin DNA gives RNA a greater variety of compact, three-dimensional shapes and a different set of potential functions than is the case with DNA, and this gives RNA nanotechnology a different set of advantages compared to DNA nanotechnology … Proteins have even more complex folding rules and an even greater variety of structures and functions. We also noted here that online gamers playing Foldit topped scientists in redesigning a protein to achieve a novel enzymatic activity that might be especially useful in developing molecular building blocks for molecular manufacturing. Now KurzweilAI.net brings news of an online game that allows players to design RNA molecules …

Here’s more from the KurzwelAI.net June 26, 3012 posting about the new RNA game EteRNA,

EteRNA, an online game with more than 38,000 registered users, allows players to design molecules of ribonucleic acid — RNA — that have the power to build proteins or regulate genes.

EteRNA players manipulate nucleotides, the fundamental building blocks of RNA, to coax molecules into shapes specified by the game.

Those shapes represent how RNA appears in nature while it goes about its work as one of life’s most essential ingredients.

EteRNA was developed by scientists at Stanford and Carnegie Mellon universities, who use the designs created by players to decipher how real RNA works. The game is a direct descendant of Foldit — another science crowdsourcing tool disguised as entertainment — which gets players to help figure out the folding structures of proteins.

Here’s how the EteRNA folks describe this game (from the About EteRNA page),

By playing EteRNA, you will participate in creating the first large-scale library of synthetic RNA designs. Your efforts will help reveal new principles for designing RNA-based switches and nanomachines — new systems for seeking and eventually controlling living cells and disease-causing viruses. By interacting with thousands of players and learning from real experimental feedback, you will be pioneering a completely new way to do science. Join the global laboratory!

The About EteRNA webpage also offers a discussion about RNA,

RNA is often called the “Dark Matter of Biology.” While originally thought to be an unstable cousin of DNA, recent discoveries have shown that RNA can do amazing things. They play key roles in the fundamental processes of life and disease, from protein synthesis and HIV replication, to cellular control. However, the full biological and medical implications of these discoveries is still being worked out.

RNA is made of four nucleotides (A, C,G,and U, which stand for adenine, cytosine, guanine, and uracil). Chemically, each of these building blocks is made of atoms of carbon, oxygen, nitrogen, phosphorus, and hydrogen. When you design RNAs with EteRNA, you’re really creating a chain of these nucleotides.

RNA Nucleotides (from the About EteRNA webpage)

Scientists do not yet understand all of RNA’s roles, but we already know about a large collection of RNAs that are critical for life: (see the Thermus Thermophilus image representing following points)

  1. mRNAs are short copies of a cell’s DNA genome that gets cut up, pasted, spliced, and otherwise remixed before getting translated into proteins.
  1. rRNA forms the core machinery of an ancient machine, the ribosome. This machine synthesizes the proteins of your cells and all living cells, and is the target of most antibiotics.
  2. miRNAs (microRNAs) are short molecules (about 22-letters) that are used by all complex cells as commands for silencing genes and appear to have roles in cancer, heart disease, and other medical problems.
  3. Riboswitches are ubiquitous in bacteria. They sense all sorts of small molecules that could be food or signals from other bacteria, and turn on or off genes by changing their shapes. These are interesting targets for new antibiotics.
  4. Ribozymes are RNAs that can act as enzymes. They catalyze chemical reactions like protein synthesis and RNA splicing, and provide evidence of RNA’s dominance in a primordial stage of Life’s evolution.
  5. Retroviruses, like Hepatitis C, poliovirus, and HIV, are very large RNAs coated with proteins.
  6. And much much more… shRNA, piRNA, snRNA, and other new classes of important RNAs are being discovered every year.

Thermus Thermophilus – Large Subunit Ribosomal RNA
Source: Center for Molecular Biology (downloaded from the About EteRNA webpage)

I do wonder about the wordplay EteRNA/eternal. Are these scientists trying to tell us something?

Magical nanobots at University of Florida kill (almost) 100% of Hepatitis C virus—in the lab

I’ve always preferred the term nanobots but the folks at the University of Florida are calling them nanorobots, from the July 16, 2012 news item on phys.org,

University of Florida researchers have moved a step closer to treating diseases on a cellular level by creating a tiny particle that can be programmed to shut down the genetic production line that cranks out disease-related proteins.

In laboratory tests, these newly created “nanorobots” all but eradicated hepatitis C virus infection. The programmable nature of the particle makes it potentially useful against diseases such as cancer and other viral infections.

The research effort, led by Y. Charles Cao, a UF associate professor of chemistry, and Dr. Chen Liu, a professor of pathology and endowed chair in gastrointestinal and liver research in the UF College of Medicine, is described online this week in the Proceedings of the National Academy of Sciences.

The news item originated with a July 16, 2012 news release from the University of Florida which goes on to explain how the researchers succeeded,

The Holy Grail of nanotherapy is an agent so exquisitely selective that it enters only diseased cells, targets only the specified disease process within those cells and leaves healthy cells unharmed.

To demonstrate how this can work, Cao and colleagues, with funding from the National Institutes of Health, the Office of Naval Research and the UF [University of Florida] Research Opportunity Seed Fund, created and tested a particle that targets hepatitis C virus in the liver and prevents the virus from making copies of itself.

Hepatitis C infection causes liver inflammation, which can eventually lead to scarring and cirrhosis. The disease is transmitted via contact with infected blood, most commonly through injection drug use, needlestick injuries in medical settings, and birth to an infected mother. More than 3 million people in the United States are infected and about 17,000 new cases are diagnosed each year, according to the Centers for Disease Control and Prevention. Patients can go many years without symptoms, which can include nausea, fatigue and abdominal discomfort.

Current hepatitis C treatments involve the use of drugs that attack the replication machinery of the virus. But the therapies are only partially effective, on average helping less than 50 percent of patients, according to studies published in The New England Journal of Medicine and other journals. Side effects vary widely from one medication to another, and can include flu-like symptoms, anemia and anxiety.

Cao and colleagues, including graduate student Soon Hye Yang and postdoctoral associates Zhongliang Wang, Hongyan Liu and Tie Wang, wanted to improve on the concept of interfering with the viral genetic material in a way that boosted therapy effectiveness and reduced side effects.

The particle they created can be tailored to match the genetic material of the desired target of attack, and to sneak into cells unnoticed by the body’s innate defense mechanisms.

Recognition of genetic material from potentially harmful sources is the basis of important treatments for a number of diseases, including cancer, that are linked to the production of detrimental proteins. It also has potential for use in detecting and destroying viruses used as bioweapons.

The new virus-destroyer, called a nanozyme, has a backbone of tiny gold particles and a surface with two main biological components. The first biological portion is a type of protein called an enzyme that can destroy the genetic recipe-carrier, called mRNA, for making the disease-related protein in question. The other component is a large molecule called a DNA oligonucleotide that recognizes the genetic material of the target to be destroyed and instructs its neighbor, the enzyme, to carry out the deed. By itself, the enzyme does not selectively attack hepatitis C, but the combo does the trick.

“They completely change their properties,” Cao said.

In laboratory tests, the treatment led to almost a 100 percent decrease in hepatitis C virus levels. In addition, it did not trigger the body’s defense mechanism, and that reduced the chance of side effects. Still, additional testing is needed to determine the safety of the approach. [emphases mine]

This treatment builds on some previous research,

The UF nanoparticle design takes inspiration from the Nobel prize-winning discovery of a process in the body in which one part of a two-component complex destroys the genetic instructions for manufacturing protein, and the other part serves to hold off the body’s immune system attacks. This complex controls many naturally occurring processes in the body, so drugs that imitate it have the potential to hijack the production of proteins needed for normal function. The UF-developed therapy tricks the body into accepting it as part of the normal processes, but does not interfere with those processes.

Since there’s no mention of human clinical trials, I’m guessing that we are at least 10 years from seeing this therapeutic agent on the market.

After drafting this post yesterday (July 17, 2012) and while waiting to post it today, I found Dexter Johnson’s July 17 2012 posting where he makes some important points about this research (Note: I have removed a link),

Of course, this is a long way from becoming a treatment anytime soon. A major caveat is that the use of nanotreatments for the targeting and destroying of abnormal cells like cancer cells is always problematic since those cells are “still us” as George Whitesides noted some time back.  It’s always a bit of a tricky business to make sure that nanoparticles are targeting those biological processes within us that we want stopped and not the ones we want to keep.

Dexter goes on to comment about using the terms ‘nanobots’ or ‘nano robots’; he’s less sanguine about it than I am.

Driving stick with your nanobots

According to a May 24, 2012 news item on Nanowerk, Chinese scientists have developed a ‘clutch’ to control speed in nanomotors. There’s an excellent explanation of the research in a May 29, 2012 posting by Guest_Jim_* on the Overclockers Club website,

Automatic transmission is fairly useful for many people who just need a car that gets them from point A to point B. They may not have as much control during the trip as someone with a manual transmission, but they do not need it. In the nanoscale world though, control is needed, which is why Chinese researchers have created a nanoclutch, as reported by the American Institute of Physics.

Unlike the transmission in your car, this device does not use any gears.

Here’s how it works (from the May 24,2012 news item on Nanowerk),

The nanoclutch consists of two carbon nanotubes (CNTs), one inside the other, separated by a film of water. Electrowetting forces control the friction between the water and the inner and outer walls of the CNTs. When the two tubes are electrically charged, the water confined between them can transmit the torque from the inner tube to the outer tube, and the device is said to be in the engaged state. When the CNTs are uncharged, the device is in the disengaged state.

… Though further work is needed, they say the model may be helpful in designing and manufacturing nanorobots.

You can find the abstract for the paper here  (although the paper itself is behind a paywall). From the abstract,

Importantly, the proposed CNT-CC-SRNC [charge-controlled speed-regulating nanoclutch] can perform stepless speed-regulating function through changing the magnitude of the charge assigned on CNT atoms.

If I read this rightly, it means that they can exert a very high level of control which could prove handy with nanobots. Here’s the full citation for the paper,

J. Appl. Phys. 111, 114304 (2012); http://dx.doi.org/10.1063/1.4724344 (5 pages)

Carbon nanotube-based charge-controlled speed-regulating nanoclutch

Zhong-Qiang Zhang, Hong-Fei Ye, Zhen Liu, Jian-Ning Ding, Guang-Gui Cheng, Zhi-Yong Ling, Yong-Gang Zheng, Lei Wang, and Jin-Bao Wang

For anyone who may not be familiar with the slang, ‘driving stick’ means driving with a manual transmission.

NASA, patents, swarmbots, and auctions

NASA was selling some of its patents a week ago according to Robert McMillan in a March 29, 2012 article for Wired Enterprise,

Psst. If you’re thinking of getting into the intelligent smoke-detector business or building a swarm of nano-bots, NASA has a few patents for you.

In fact, you might even get them at a bargain price. They’re up for auction Thursday [March 29, 2012] in Los Angeles, at an event run by the patent-selling company ICAP Patent Brokerage. NASA (the National Aeronautics and Space Administration) is listing them as part of a pilot program that has been running for the past four years, trying to make its space-aged technology available to the public.

Who wouldn’t want a crack at the NASA patent, “Swarm Autonomic Agents with Self-Destruct Capability?”

You can still find the listing of patents up for auction here at ICAP’s (patent brokerage) Spring 2012 catalog page. I was amused to note that the NASA patents were classified as ‘open outcry’ auction items. That’s exactly what it sounds like, from the Wikipedia essay (I have removed footnotes, etc.),

An English auction is a type of auction, whose most typical form is the “open outcry” auction. The auctioneer opens the auction by announcing a Suggested Opening Bid, a starting price or reserve for the item on sale and then accepts increasingly higher bids from the floor consisting of buyers with a possible interest in the item. Unlike sealed bid auctions, “open outcry” auctions are “open” or fully transparent as the identity of all bidders is disclosed to each other during the auction. The highest bidder at any given moment is considered to have the standing bid, which can only be displaced by a higher bid from a competing buyer. If no competing bidder challenges the standing bid within a given time frame, the standing bid becomes the winner, and the item is sold to the highest bidder at a price equal to his or her bid.

I also found that this event is more than just an auction, from the Spring 2012 Schedule page,

Spring 2012 Auction Full Event Schedule

Navigating the Catalina Channel: The ICAP Patent Brokerage Summit on IP Strategy and 15th ICAP Ocean Tomo IP Auction  

Tuesday, March 27 

Welcome Reception Lobby Bar- (7:00pm-9:00pm)

Wednesday, March 28 

Registration Opens (8:00am) 

Breakfast (8:00am – 9:00am) – Catalina

General Session (9:15am – 12:00p) – Point Vicente

Opening Remarks and Welcome from Dean Becker, CEO ICAP Patent Brokerage

Every Company is an IP Company – The “Glassybaby Syndrome”

Louis Carbonneau; The Point Law

Take-away:  Every company needs an IP Strategy

Practical Aspects of Intellectual Property as Strategic Business Tools – Swords & Shields

Speaker:  Peter McDermott; Banner, Witcoff

Take-away:  Co-managing prosecution and litigation – an integration strategy

Lunch (12:00pm – 1:30pm) – Catalina

Breakout Sessions (1:30pm – 3:30pm)

Commercialization & Monetization Strategies to Drive Business Value – Point Vicente 1

Moderator:  John Pryor; ICAP Patent Brokerage

Building Business Value Through IP Management – Point Vicente 2

Moderator:  Dr. Elvir Causevic, Ocean Tomo

IP Marketing to Build Business Value – Point Vicente 3

Moderator:  Jennifer Wolfe, Wolfe SBMC; Author Brand ReWired – invited

Networking Break (3:30pm – 4:30pm) – Catalina

Breakout Sessions Continue (4:45pm – 5:45pm) 

Commercialization & Monetization Strategies to Drive Business Value – Point Vicente 1

Moderator:  John Pryor, ICAP Patent Brokerage

Building Business Value Through IP Management – Point Vicente 2

Moderator:  Dr. Elvir Causivic, Ocean Tomo

IP Marketing to Build Business Value – Point Vicente 3

Moderator:  Jennifer Wolfe, Wolfe SBMC; Author Brand ReWired – invited

Dinner (6:30pm cocktails, followed by dinner) – Terranea  

Thursday, March 29

Registration Opens (8:00am)

Breakfast (8:00am – 9:00am) – Catalina

General Session (9:15am – 12:30pm) – Point Vicente 

Building Company Value Through IP – Lessons from Mom, Pop, David and Goliath

Speaker: Louis Foreman; Enventys

Take-away:  In the area of IP Strategy, one size does not fit all

Flat World:  International Patent Strategy

Speaker:  Robert Cantrell:  ThinkIP Strategy 

Take-away:  Managing global Freedom to Operate

Breakout Session Reports

Commercialization & Monetization – Moderator:  John Pryor, ICAP Patent Brokerage

IP Management Roundtable – Moderator:  Dr. Elvir Causivic, Ocean Tomo

IP Marketing to Build Business Value – Moderator:  Jennifer Wolfe, Wolfe SBMC; Author Brand ReWired – invited

Lunch (12:30 – 1:30) – Catalina

Auction (Doors Open 1:45pm; Auction begins 2:00pm) – Ballroom 

They charged a $1495 US registration fee with hotel accommodation additional to the fee. You may want to start saving for the next event now.

I wonder if anyone bid on the ‘swarmbots’ and if so, who? Finally, if I were to hazard a guess, I’d say these folks are firmly committed to patents as a means of control rather than as a means of stimulating innovation.

Bacteria, pyramids, cancer, and Sylvain Martel

Canada’s national newspaper (as they like to bill themselves), the Globe and Mail featured Québec researcher’s (Sylvain Martel) work in a Dec. 13, 2011 article by Bertrand Marotte. From the news article,

Professor Sylvain Martel is already a world leader in the field of nano-robotics, but now he’s working to make a medical dream reality: To deliver toxic drug treatments directly to cancerous cells without damaging the body’s healthy tissue.

I have profiled Martel’s work before in an April 6 2010 posting about bacterial nanobots (amongst other subjects) and in a March 16, 2011 posting about his work with remote-controlled microcarriers.

It seems that his next project will combine the work on bacteria and microcarriers (from the Globe and Mail article),

Bolstered by his recent success in guiding micro-carriers loaded with cancer-fighting medications into a rabbit’s liver, he and his team of up to 20 researchers from several disciplines are working to transfer the method to the treatment of colorectal cancer in humans within four years.

This time around he is not using micro-carriers to deliver the drug to the tumour, but rather bacteria.

Here’s a video of the bacteria which illustrates Martel’s earlier success with ‘training’ them to build a pyramid.

The latest breakthrough reported in March 2011 (from my posting) implemented an MRI (magnetic resonance imaging) machine,

Known for being the world’s first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Here’s what Martel is trying to accomplish now (from the Globe and Mail article),

The MRI machine’s magnetic field is manipulated by [a] sophisticated software program that helps guide the magnetically sensitive bacteria to the tumour mass.

Attached to the bacteria is a capsule containing the cancer-fighting drug. The bacteria are tricked into swimming to an artificially created “magnetic north” at the centre of the tumour, where they will die off after 30 to 40 minutes. The micro-mules, however, have left their precious cargo: the capsule, whose envelope breaks and releases the drug.

I’m not entirely sure why the drug won’t destroy health tissue after it’s finished with the tumour but that detail is not offered in Marotte’s story which, in the last few paragraphs, switches focus from medical breakthroughs to the importance of venture capital funding for Canadian biotech research.

I wish Martel and his team great success.

Bot bot here and bot bot there and a bot bot everywhere but not Old Macdonald’s Farm

The Materials Research Society (MRS) has a Fall 2011 meeting in Boston, Massachusetts scheduled for Nov. 28, 2011 to Dec. 2, 2011, which will feature amongst other exhibits,  ‘mibots’. From the Nov. 9, 2011 news item on Azonano,

…  new “miBots” from Imina Technologies (Ecublens, Switzerland).

.. are more than nanomanipulators. Unlike conventional systems, they are virtually untethered and move independently. Working individually or in groups, they can be fitted with a variety of tools such as grippers, probes, and optical fibers so that, in addition to manipulating the sample, they can illuminate a nano workspace and conduct force or electrical measurements. Vacuum ready, miBots’ proprietary monolithic structure makes them robust, mechanically and thermally stable, and less sensitive to vibration.

Imina Technologies has engineered a variety of stage options for these novel mini robots. For conventional installation on inverted light microscopes (LM), SEMs, or focused-ion beam systems (FIBs), the “miBase” provides control and maneuvering room for up to four miBots. Special apertures accommodate illumination for the LM and stubs for SEMs, and multiple coaxial I/O connections enable electrical characterization and testing.

You can find out more about Imina Technologies and their ‘mibots’ here.

For a completely different kind of bot, a company named Nanobotmodels, situated in the Ukraine, offers illustration, animations, and presentation materials. From the company’s About page,

Our company Nanobotmodels was founded in 2007 and its goal is todevelop modern art-science-technology intersections. Nanotechnology boosts medicine, engineering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

We are making hi-end nanotechnology and nanomedicine illustration and animation. You can imagine any interesting-to-you animation, illustration or presentation materials, and we can make them real.

The level of detail in each medical illustration can be used to simplify complex structures and make them visually attractive.

Our clients include the largest medicine photobanks, nanotechnology magazines and publications, educational organization, and private companies.

Company was founded by CEO Svidinenko Yuriy, futurist and nanotechnology artist.

Our team consists of modern artists, modelers and nanotechnology scientists.

Here’s a bit more about the company’s work in medical illustration from a Nov. 11, 2011 news item at Nanotechnology Now,

One heat therapy to destroy cancer tumors using nanoparticles is called AuroShell™. The AuroShell™ nanoparticles circulate through a patient’s bloodstream, exiting where the blood vessels are leaking at the site of cancer tumors. Once the nanoparticles accumulate at the tumor the AuroShell™ nanoparticles are used to concentrate the heat from infrared light to destroy cancer cells with minimal damage to surrounding healthy cells. Nanobotmodels company provides good visual illustration of this process. Nanospectra Biosciences has developed such a treatment using AuroShell™ that has been approved for a pilot trial with human patients.

Gold nanoparticles can absorb different frequencies of light, depending on their shape. Rod-shaped particles absorb light at near-infrared frequency; this light heats the rods but passes harmlessly through human tissue. Sphere-shaped nanoparticles absorb laser radiation and passes harmlessly through human tissue too.

Nanobotmodels Company provides visual illustration of nanoparticle cancer treatment. Our goal – make realistic vision of modern drug delivery technology.

I found this sample on the company’s website gallery,

Illustration from Nanobotmodels website: Nanomechanical robots attacking cancer cell

You can find more artwork here.

Those are all the bots for today.

Aussies, Yanks, Canucks, and Koreans collaborate on artificial muscles

I received a media release (from the University of British Columbia [UBC]) about artificial muscles. I was expecting to see Dr. Hongbin Li’s name as one of the researchers but this is an entirely different kind of artificial muscle. Dr. Li works with artificial proteins to create new biomaterials (my May 5, 2010 posting). This latest work published in Science Express, Oct. 13, 2011,  involves carbon nanotubes and teams from Australia, Canada, Korea, and the US. From the Oct. 13, 2011, UBC media release,

An international team of researchers has invented new artificial muscles strong enough to rotate objects a thousand times their own weight, but with the same flexibility of an elephant’s trunk or octopus limbs.

In a paper published online today on Science Express, the scientists and engineers from the University of British Columbia, the University of Wollongong in Australia, the University of Texas at Dallas and Hanyang University in Korea detail their innovation. The study elaborates on a discovery made by research fellow Javad Foroughi at the University of Wollongong.

Using yarns of carbon nanotubes that are enormously strong, tough and highly flexible, the researchers developed artificial muscles that can rotate 250 degrees per millimetre of muscle length. This is more than a thousand times that of available artificial muscles composed of shape memory alloys, conducting organic polymers or ferroelectrics, a class of materials that can hold both positive and negative electric charges, even in the absence of voltage.

Here’s how the UBC media release recounts the story of these artificial muscles (Aside: The Australians take a different approach; I haven’t seen any material from the University of Texas at Dallas or the University of Hanyang),

The new material was devised at the University of Texas at Dallas and then tested as an artificial muscle in Madden’s [Associate Professor, John Madden, Dept. of Electrical and Computer Engineering] lab at UBC. A chance discovery by collaborators from Wollongong showed the enormous twist developed by the device. Guided by theory at UBC and further experiments in Wollongong and Texas, the team was able to extract considerable torsion and power from the yarns.

The Australians, not unnaturally focus on their own contributions, and, somewhat unexpectedly discuss nanorobots. From the ARC (Australian Research Council) Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong news release (?) [ETA Oct. 17, 2011: I forgot to include a link to the Australian news item; and here’s a link to the Oct. 16, 2011 Australian news item on Nanowerk] ,

The possibility of a doctor using tiny robots in your body to diagnose and treat medical conditions is one step closer to becoming reality today, with the development of artificial muscles small and strong enough to push the tiny Nanobots along.

Although Nanorobots (Nanobots) have received much attention for the potential medical use in the body, such as cancer fighting, drug delivery and parasite removal, one major hurdle in their development has been the issue of how to propel them along in the bloodstream.

An international collaborative team led by researchers at UOW’s Intelligent Polymer Research Institute, part of the ARC Centre of Excellence for Electromaterials Science (ACES), have developed a new twisting artificial muscle that could be used for propelling nanobots.   The muscles use very tough and highly flexible yarns of carbon nanotubes (nanoscale cylinders of carbon), which are twist-spun into the required form.  When voltage is applied, the yarns rotate up to 600 revolutions per minute, then rotate in reverse when the voltage is changed.

Due to their complexity, conventional motors are very difficult to miniaturise, making them unsuitable for use in nanorobotics.  The twisting artificial muscles, on the other hand, are simple and inexpensive to construct either in very long, or in millimetre lengths.

Interesting, non?

There’s an animation illustrating the nanorobots and the muscles,

In the animated video below, you first see a few bacteria like creatures swimming about. Their rotating flagella are highlighted with some detail of the flagella motor turning the “hook” and “filament” parts of the tail. We next see a similar type of rotating tail produced by a length of carbon nanotube thread that is inside a futuristic microbot. The yarn is immersed in a liquid electrolyte along with another electrode wire. Batteries and an electrical circuit are also inside the bot. When a voltage is applied the yarn partially untwists and turns the filament. Slow discharging of the yarn causes it to re-twist. In this way, we can imagine the micro-bot is propelled along in a series of short spurts.

I think the graphics resemble conception complete with sperm and eggs but I can see the nanorobots too. Here’s your chance to take a look,

ETA Oct. 14, 2011 11:20 am PST: I found a copy of the University of Texas at Dallas news release posted on Oct. 13, 2011 at Nanowerk. No mention of nanobots but if you’re looking for additional technical explanations, this would be good to read.

A nanotechnology wrinkle

A cosmetics ad (more about that in a minute) came back to memory this morning as I read Michael Berger’s Nanowerk Spotlight article (Using nanotechnology to unlock a fountain of bull) about a Thomson Reuters report on nanotechnology and the cosmetics industry. From the article,

Two days ago we ran a press release from Thomson Reuters about a brief report they compiled on patent data relating to nanotechnology in the cosmetics industry. …

It already begins with the sensational title: Can Nanotech Unlock The Fountain of Youth? (pdf). That certainly catches the eye of the layperson. What exactly face creams, shampoos and sunscreens have to do with the “fountain of youth” remains unexplained. Oh, and they do make a reference to ‘remote concepts’ like nanorobotics. So let your imagination run wild! Little NanoStretchinators (trademark pending Nanowerk) that remove wrinkles from underneath the skin maybe? Or the fully automated Follicle-NanoSeeder that restores the shining body of the male scalp?

After poking a little more fun at the report, Berger hones in on distortions such as this,

Not a word about potential risks, or health and environmental concerns. But when you look at these three quoted studies you get a different message. The initiative by the EPA they are referring to actually “will determine whether these materials present a potential environmental hazard or exposure over their life cycles, and how these materials, when used in products, may be modified or managed to avoid or mitigate potential human health or ecological impacts.”

Berger goes on to provide more eye opening references and comments. As for the ad I’d seen, it’s been a few months since I first saw it in one of my local daily newspapers but I clipped it since it featured this copy:

Euoko’s Eye Contour Nanolift
Like millions of very tiny plastic surgeons

Seems like a nanobot reference, doesn’t it?

It caught me eye because these days, it’s not often (almost never) that you see a cosmetics company overtly touting a nanotechnology product.  L’Oréal doesn’t mention ‘nanosomes’ after years of using the term in its marketing campaigns for its Revitalift ads (no nanosomes on the company’s Canadian website when I checked it this morning, July 15, 2010). If you’re interested in “millions of tiny plastic surgeons”, you can pay $320 CAD for 15 ml online here. Sadly, the website makes no mention of the plastic surgeons but there is this,

The cocktail for the post-injection, post-laser, post-surgery, post-peel era. Millions of lifting nanoparticles work with South American native rose moss and Asiatic pennywort to sustain instant and long-term surface smoothness. Lupine lipopeptides from France maximize optical properties of the skin to accentuate radiance. [emphasis mine]

On other wrinkling nanotechnology news, a news item on Nanowerk features this,

As a sign of aging or in a suit, wrinkles are almost never welcome, but two papers in the current issue of Physical Review Letters (“Smooth Cascade of Wrinkles at the Edge of a Floating Elastic Film” and “Draping Films: A Wrinkle to Fold Transition”) offer some perspective on what determines their size and shape in soft materials.

The experiments offer complimentary insights into how defects, such as an edge or a fold, influence the presence of wrinkles and could prove helpful in understanding the formation of wrinkles in biological tissue.

I’m curious as to funding details for this work being done by two different teams of physicists at the University of Massachusetts but I haven’t been able to track details. I was not able to access the research articles themselves and that’s usually where you can find those details.

Bacterial nanobots build a pyramid; solar cell breakthrough in Quebec; global nano regulatory framework conference at Northeastern University; Robert Fulford talks about the poetry of nanotechnology

Just when I was thinking that the Canadian nanotechnology scene was slowing down there’s this: A research team at the École Polytechnique de Montréal (Québec) has announced that they’ve trained bacteria to build structures shaped like pyramids. From the news item on Nanowerk,

Faster than lion tamers… More powerful than snake charmers… Make way for the bacteria trainers! Professor Sylvain Martel and his team at the École Polytechnique de Montréal NanoRobotics Laboratory have achieved a new world first: “training” living bacteria to build a nanopyramid.

These miniature construction workers are magnetotactic bacteria (MTB): they have their own internal compasses, allowing them to be pulled by magnetic fields. MTB possess flagella bundles enabling each individual to generate a thrust force of approximately 4 picoNewtons. Professor Martel’s team has succeeded in directing the motion of a group of such bacteria using computer-controlled magnetic fields. In an experiment conducted by Polytechnique researchers, the bacteria transported several epoxy nanobricks and assembled them into a step-pyramid structure, completing the task in just 15 minutes. The researchers have also managed to pilot a group of bacteria through the bloodstream of a rat using the same control apparatus.

Nanowerk also features a video of the magnetotactic bacteria at work.

Solar cell breakthrough?

More Canadian nano from Québec: a researcher (Professor Benoît Marsan) and his team at the Université du Québec à Montréal (UQAM) have provided solutions to two problems which have been inhibiting the development of the very promising Graetzel solar cell that was developed in the 1990s in Switzerland. From the news item on Nanowerk a description of the problems,

Most of the materials used to make this cell are low-cost, easy to manufacture and flexible, allowing them to be integrated into a wide variety of objects and materials. In theory, the Graetzel solar cell has tremendous possibilities. Unfortunately, despite the excellence of the concept, this type of cell has two major problems that have prevented its large-scale commercialisation:

– The electrolyte is: a) extremely corrosive, resulting in a lack of durability; b) densely coloured, preventing the efficient passage of light; and c) limits the device photovoltage to 0.7 volts.

– The cathode is covered with platinum, a material that is expensive, non-transparent and rare. Despite numerous attempts, until Professor Marsan’s recent contribution, no one had been able to find a satisfactory solution to these problem

Now a description of the solutions,

– For the electrolyte, entirely new molecules have been created in the laboratory whose concentration has been increased through the contribution of Professor Livain Breau, also of the Chemistry Department. The resulting liquid or gel is transparent and non-corrosive and can increase the photovoltage, thus improving the cell’s output and stability.

– For the cathode, the platinum can be replaced by cobalt sulphide, which is far less expensive. It is also more efficient, more stable and easier to produce in the laboratory.

More details about the work and publication of the study are at Nanowerk.

Northeastern University and nano regulatory frameworks

According to a news item on Azonano, Northeastern University’s (Boston, MA) School of Law will be hosting a two-day conference on international regulatory frameworks for nanotechnology.

Leading international experts on the global regulation of nanotechnologies, including scientists, lawyers, ethicists and officials from governments, industry stakeholders, and NGOs will join in a two-day conference May 7-8, 2010 at Northeastern University’s School of Law.

The conference will identify best practices that address the needs of industries, the public and regulators. Speakers include representatives from the U.S. Environmental Protection Agency, the Brazil Ministry of Science and Technology, the Korean government, the International Conference of Chemicals Management and National Science Foundation-funded university-industry collaborations.

I checked out the law school’s conference website and noted a pretty good range of speakers from Asia, Europe, and North and South America. It can’t have been easy pulling such a diverse group together. Unfortunately, I didn’t recognize names other than two Canadian ones: Dr. Mark Saner and Pat Roy Mooney.

Saner who’s from Carleton University (Ottawa, Ontario) co-wrote a paper cited by Peter Julian (Canadian Member of Parliament) as one of the materials he used for reference when drawing up his recently tabled bill on nanotechnology regulation. (You can see Julian’s list here.) Saner, when he worked with the Council of Canadian Academies, was charged with drawing together the expert panel that wrote the council’s paper on nanotechnology. That panel put together a report (Small is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale) that does a thoughtful job of discussing nanotechnology, regulations, the precautionary principle, etc. and which you can find here. (As I recall I don’t agree with everything as written in the report but it is, as I noted, thoughtful.)

As for Pat Roy Mooney, he’s the executive director for the ETC Group which is a very well-known (to many scientists and businesses in the technology sectors) civil society group. There’s an Oct. 2009 interview with Mooney here where he discusses (in English) nanotechnology during a festival in Austria.

Robert Fulford and nanotechnology

Canadian journalist and author, Robert Fulford just penned an essay/article about nanotechnology for the National Post. From the article,

Fresh bulletins regularly bring news of startling developments in this era’s most surprising and perhaps most poetic form of science, nanotechnology, the study of the unthinkably small.

It’s a pleasure to read as a literary piece. Fulford mostly concerns himself with visions of what nanotechnology could accomplish and with a book (No small matter) by Felice Frankel and George Whitesides which I first saw mentioned by Andrew Maynard on his 2020 Science blog here.