Category Archives: nanophotonics

Viburnum and a new kind of structural colo(u)r

I love structural colo(u) and the first such story here was this February 7, 2013 posting, which is where you’ll find the image below,

AGELESS BRILLIANCE: Although the pigment-derived leaf color of this decades-old specimen of the African perennial Pollia condensata has faded, the fruit still maintains its intense metallic-blue iridescence.COURTESY OF P.J. RUDALL [downloaded from http://www.the-scientist.com/?articles.view/articleNo/34200/title/Color-from-Structure/]

Those berries are stunning especially when you realize they are part of a long-dead Pollia plant. Scientist, Rox Middleton of University of Bristol (UK) was studying the structures that render the Pollia plant’s berries (fruit) blue when she decided to study another, more conveniently accessible plant with blue fruit. That’s when she got a surprise (from an August 11, 2020 article by Véronique Greenwood for the New York Times),

Big, leafy viburnum bushes have lined yards in the United States and Europe for decades — their domes of blossoms have an understated attractiveness. But once the flowers of the Viburnum tinus plant fade, the shrub makes something unusual: shiny, brilliantly blue fruit.

Scientists had noticed that pigments related to those in blueberries exist in viburnum fruit, and assumed that this must be the source of their odd hue. Blue fruit, after all, is rare. But researchers reported last week in Current Biology that viburnum’s blue is actually created by layers of molecules arranged under the surface of the skin, a form of what scientists call structural color. By means still unknown, the plant’s cells create thin slabs of fat [emphasis mine] arranged in a stack, like the flakes of puff pastry, and their peculiar gleam is the result.

Rox Middleton, a researcher at University of Bristol in England and an author of the new paper, had been studying the African pollia plant, which produces its own exotic blue fruit. But viburnum fruit were everywhere, and she realized that their blue had not been well-studied. Along with Miranda Sinnott-Armstrong, a researcher at the University of Colorado, Boulder, and other colleagues, she set out to take a closer look at the fruit’s skin.

The pollia fruit’s blue is a form of structural color, in which light bounces off a regularly spaced arrangement of tiny structures such that certain wavelengths, usually those that look blue or green to us, are reflected back at the viewer. In pollia fruit, the color comes from light interacting with thin sheets of cellulose packed together. At first the team thought there would be something similar in viburnum. But they saw no cellulose stacks.

The research team has concluded that all it comes down the arrangement of fat molecules, which are also responsible for the cloudier, metallic blue in viburnum berries,

Caption Closeup of viburnum tinus. Credit: Rox Middleton Courtesy University of Cambridge

I encourage you to read Greenwood’s August 11, 2020 article in its entirety. For those who like more details, there are two press releases. The first is an August 6, 2020 University of Cambridge press release on EurekAlert. Middleton completed the ‘Virbunum’ research while completing her PhD at Cambridge. As mentioned earlier, Middleton is currently a researcher at the University of Bristol and they issued an August 11, 2020 press release touting her accomplishment.

Finally, for the insatiably curious, here’s a link to and a citation for the paper,

Viburnum tinus Fruits Use Lipids to Produce Metallic Blue Structural Color by Rox Middleton, Miranda Sinnott-Armstrong, Yu Ogawa, Gianni Jacucci, Edwige Moyroud, Paula J. Rudall, Chrissie Prychid, Maria Conejero, Beverley J. Glover, Michael J. Donoghue, Silvia Vignolini. Current Biology DOI:https://doi.org/10.1016/j.cub.2020.07.005 Published:August 06, 2020

This paper is behind a paywall.

Shining a light on flurocarbon bonds and robotic ‘soft’ matter research

Both of these news bits are concerned with light for one reason or another.

Rice University (Texas, US) and breaking fluorocarbon bonds

The secret to breaking fluorocarbon bonds is light according to a June 22, 2020 news item on Nanowerk,

Rice University engineers have created a light-powered catalyst that can break the strong chemical bonds in fluorocarbons, a group of synthetic materials that includes persistent environmental pollutants.

A June 22, 2020 Rice University news release (also on EurekAlert), which originated the news item, describes the work in greater detail,

In a study published this month in Nature Catalysis, Rice nanophotonics pioneer Naomi Halas and collaborators at the University of California, Santa Barbara (UCSB) and Princeton University showed that tiny spheres of aluminum dotted with specks of palladium could break carbon-fluorine (C-F) bonds via a catalytic process known as hydrodefluorination in which a fluorine atom is replaced by an atom of hydrogen.

The strength and stability of C-F bonds are behind some of the 20th century’s most recognizable chemical brands, including Teflon, Freon and Scotchgard. But the strength of those bonds can be problematic when fluorocarbons get into the air, soil and water. Chlorofluorocarbons, or CFCs, for example, were banned by international treaty in the 1980s after they were found to be destroying Earth’s protective ozone layer, and other fluorocarbons were on the list of “forever chemicals” targeted by a 2001 treaty.

“The hardest part about remediating any of the fluorine-containing compounds is breaking the C-F bond; it requires a lot of energy,” said Halas, an engineer and chemist whose Laboratory for Nanophotonics (LANP) specializes in creating and studying nanoparticles that interact with light.

Over the past five years, Halas and colleagues have pioneered methods for making “antenna-reactor” catalysts that spur or speed up chemical reactions. While catalysts are widely used in industry, they are typically used in energy-intensive processes that require high temperature, high pressure or both. For example, a mesh of catalytic material is inserted into a high-pressure vessel at a chemical plant, and natural gas or another fossil fuel is burned to heat the gas or liquid that’s flowed through the mesh. LANP’s antenna-reactors dramatically improve energy efficiency by capturing light energy and inserting it directly at the point of the catalytic reaction.

In the Nature Catalysis study, the energy-capturing antenna is an aluminum particle smaller than a living cell, and the reactors are islands of palladium scattered across the aluminum surface. The energy-saving feature of antenna-reactor catalysts is perhaps best illustrated by another of Halas’ previous successes: solar steam. In 2012, her team showed its energy-harvesting particles could instantly vaporize water molecules near their surface, meaning Halas and colleagues could make steam without boiling water. To drive home the point, they showed they could make steam from ice-cold water.

The antenna-reactor catalyst design allows Halas’ team to mix and match metals that are best suited for capturing light and catalyzing reactions in a particular context. The work is part of the green chemistry movement toward cleaner, more efficient chemical processes, and LANP has previously demonstrated catalysts for producing ethylene and syngas and for splitting ammonia to produce hydrogen fuel.

Study lead author Hossein Robatjazi, a Beckman Postdoctoral Fellow at UCSB who earned his Ph.D. from Rice in 2019, conducted the bulk of the research during his graduate studies in Halas’ lab. He said the project also shows the importance of interdisciplinary collaboration.

“I finished the experiments last year, but our experimental results had some interesting features, changes to the reaction kinetics under illumination, that raised an important but interesting question: What role does light play to promote the C-F breaking chemistry?” he said.

The answers came after Robatjazi arrived for his postdoctoral experience at UCSB. He was tasked with developing a microkinetics model, and a combination of insights from the model and from theoretical calculations performed by collaborators at Princeton helped explain the puzzling results.

“With this model, we used the perspective from surface science in traditional catalysis to uniquely link the experimental results to changes to the reaction pathway and reactivity under the light,” he said.

The demonstration experiments on fluoromethane could be just the beginning for the C-F breaking catalyst.

“This general reaction may be useful for remediating many other types of fluorinated molecules,” Halas said.

Caption: An artist’s illustration of the light-activated antenna-reactor catalyst Rice University engineers designed to break carbon-fluorine bonds in fluorocarbons. The aluminum portion of the particle (white and pink) captures energy from light (green), activating islands of palladium catalysts (red). In the inset, fluoromethane molecules (top) comprised of one carbon atom (black), three hydrogen atoms (grey) and one fluorine atom (light blue) react with deuterium (yellow) molecules near the palladium surface (black), cleaving the carbon-fluorine bond to produce deuterium fluoride (right) and monodeuterated methane (bottom). Credit: H. Robatjazi/Rice University

Here’s a link to and a citation for the paper,

Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways by Hossein Robatjazi, Junwei Lucas Bao, Ming Zhang, Linan Zhou, Phillip Christopher, Emily A. Carter, Peter Nordlander & Naomi J. Halas. Nature Catalysis (2020) DOI: https://doi.org/10.1038/s41929-020-0466-5 Published: 08 June 2020

This paper is behind a paywall.

Northwestern University (Illinois, US) brings soft robots to ‘life’

This June 22, 2020 news item on ScienceDaily reveals how scientists are getting soft robots to mimic living creatures,

Northwestern University researchers have developed a family of soft materials that imitates living creatures.

When hit with light, the film-thin materials come alive — bending, rotating and even crawling on surfaces.

A June 22, 2020 Northwestern University news release (also on EurekAlert) by Amanda Morris, which originated the news item, delves further into the details,

Called “robotic soft matter by the Northwestern team,” the materials move without complex hardware, hydraulics or electricity. The researchers believe the lifelike materials could carry out many tasks, with potential applications in energy, environmental remediation and advanced medicine.

“We live in an era in which increasingly smarter devices are constantly being developed to help us manage our everyday lives,” said Northwestern’s Samuel I. Stupp, who led the experimental studies. “The next frontier is in the development of new science that will bring inert materials to life for our benefit — by designing them to acquire capabilities of living creatures.”

The research will be published on June 22 [2020] in the journal Nature Materials.

Stupp is the Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern and director of the Simpson Querrey Institute He has appointments in the McCormick School of Engineering, Weinberg College of Arts and Sciences and Feinberg School of Medicine. George Schatz, the Charles E. and Emma H. Morrison Professor of Chemistry in Weinberg, led computer simulations of the materials’ lifelike behaviors. Postdoctoral fellow Chuang Li and graduate student Aysenur Iscen, from the Stupp and Schatz laboratories, respectively, are co-first authors of the paper.

Although the moving material seems miraculous, sophisticated science is at play. Its structure comprises nanoscale peptide assemblies that drain water molecules out of the material. An expert in materials chemistry, Stupp linked the peptide arrays to polymer networks designed to be chemically responsive to blue light.

When light hits the material, the network chemically shifts from hydrophilic (attracts water) to hydrophobic (resists water). As the material expels the water through its peptide “pipes,” it contracts — and comes to life. When the light is turned off, water re-enters the material, which expands as it reverts to a hydrophilic structure.

This is reminiscent of the reversible contraction of muscles, which inspired Stupp and his team to design the new materials.

“From biological systems, we learned that the magic of muscles is based on the connection between assemblies of small proteins and giant protein polymers that expand and contract,” Stupp said. “Muscles do this using a chemical fuel rather than light to generate mechanical energy.”

For Northwestern’s bio-inspired material, localized light can trigger directional motion. In other words, bending can occur in different directions, depending on where the light is located. And changing the direction of the light also can force the object to turn as it crawls on a surface.

Stupp and his team believe there are endless possible applications for this new family of materials. With the ability to be designed in different shapes, the materials could play a role in a variety of tasks, ranging from environmental clean-up to brain surgery.

“These materials could augment the function of soft robots needed to pick up fragile objects and then release them in a precise location,” he said. “In medicine, for example, soft materials with ‘living’ characteristics could bend or change shape to retrieve blood clots in the brain after a stroke. They also could swim to clean water supplies and sea water or even undertake healing tasks to repair defects in batteries, membranes and chemical reactors.”

Fascinating, eh? No batteries, no power source, just light to power movement. For the curious, here’s a link to and a citation for the paper,

Supramolecular–covalent hybrid polymers for light-activated mechanical actuation by Chuang Li, Aysenur Iscen, Hiroaki Sai, Kohei Sato, Nicholas A. Sather, Stacey M. Chin, Zaida Álvarez, Liam C. Palmer, George C. Schatz & Samuel I. Stupp. Nature Materials (2020) DOI: https://doi.org/10.1038/s41563-020-0707-7 Published: 22 June 2020

This paper is behind a paywall.

Seeing into silicon nanoparticles with ‘mining’ hardware

This was not the mining hardware I expected and it enters the picture after this paragraph which has been excerpted from a February 28, 2018 news item on Nanowerk,

For the first time, researchers developed a three-dimensional dynamic model of an interaction between light and nanoparticles. They used a supercomputer with graphic accelerators for calculations. Results showed that silicon particles exposed to short intense laser pulses lose their symmetry temporarily. Their optical properties become strongly heterogeneous. Such a change in properties depends on particle size, therefore it can be used for light control in ultrafast information processing nanoscale devices. …

A March 2, 2018 ITMO University (Russia) press release (also on EurekAlert), which originated the news item, provides more detail and a mention of ‘cryptocurrency mining’ hardware,

Improvement of computing devices today focuses on increasing information processing speeds. Nanophotonics is one of the sciences that can solve this problem by means of optical devices. Although optical signals can be transmitted and processed much faster than electronic ones, first, it is necessary to learn how to quickly control light on a small scale. For this purpose, one could use metal particles. They are efficient at localizing light, but weaken the signal, causing significant losses. However, dielectric and semiconducting materials, such as silicon, can be used instead of metal.

Silicon nanoparticles are now actively studied by researchers all around the world, including those at ITMO University. The long-term goal of such studies is to create ultrafast, compact optical signal modulators. They can serve as a basis for computers of the future. However, this technology will become feasible only once we understand how nanoparticles interact with light.

Silicon nanoparticles
Silicon nanoparticles

“When a laser pulse hits the particle, a lot of free electrons are formed inside,” explains Sergey Makarov, head of ITMO’s Laboratory of Hybrid Nanophotonics and Optoelectronics. “A region saturated with oppositely charged particles is created. It is usually called electron-hole plasma. Plasma changes optical properties of particles and, up until today, it was believed that it spreads over the whole particle simultaneously, so that the particle’s symmetry is preserved. We demonstrated that this is not entirely true and an even distribution of plasma inside particles is not the only possible scenario.”

Scientists found that the electromagnetic field caused by an interaction between light and particles has a more complex structure. This leads to a light distortion which varies with time. Therefore, the symmetry of particles is disturbed and optical properties become different throughout one particle.

“Using analytical and numerical methods, we were the first to look inside the particle and we proved that the processes taking place there are far more complicated than we thought,” says Konstantin Ladutenko, staff member of ITMO’s International Research Center of Nanophotonics and Metamaterials.  “Moreover, we found that by changing the particle size, we can affect its interaction with the light signal. This means we might be able to predict the signal path in an entire system of nanoparticles.”

In order to create a tool to study processes inside nanoparticles, scientists from ITMO University joined forces with colleagues from Jean Monnet University in France.

Sergey Makarov
Sergey Makarov

We developed analytical methods to determine the size range of the particles and their refractive index which would make a change in optical properties likely. Afterwards, we used powerful computational methods to monitor processes inside particles. Our colleagues performed calculations on a computer with graphics accelerators. Such computers are often used for cryptocurrency mining [emphasis mine]. However, we decided to enrich humanity with new knowledge, rather than enrich ourselves. Besides, bitcoin rate had just started to go down then,” adds Konstantin.

Devices based on these nanoparticles may become basic elements of optical computers, just as transistors are basic elements of electronics today. They will make it possible to distribute and redirect or branch the signal.

“Such asymmetric structures have a variety of applications, but we are focusing on ultra-fast signal processing,” continues Sergey.We now have a powerful theoretical tool which will help us develop light management systems that will operate on a small scale – in terms of both time and space”.

Here’s a little more about ITMO University from its Wikipedia entry (Note: Links have been removed),

ITMO University (Russian: Университет ИТМО) is a large state university in Saint Petersburg and is one of Russia’s National Research Universities.[1] ITMO University is one of 15 Russian universities that were selected to participate in Russian Academic Excellence Project 5-100[2] by the government of the Russian Federation to improve their international competitiveness among the world’s leading research and educational centers.[3]

Here’s a link to and a citation for the paper,

Photogenerated Free Carrier-Induced Symmetry Breaking in Spherical Silicon Nanoparticle by Anton Rudenko, Konstantin Ladutenko, Sergey Makarov, and Tatiana E. Itina.Advanced Optical Materials Vol. 6 Issue 5 DOI: 10.1002/adom.201701153 Version of Record online: 29 JAN 2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Australian peacock spiders, photonic nanostructures, and making money

Researcher Bor-Kai Hsiung’s work has graced this blog before but the topic was tarantulas and their structural colour. This time, it’s all about Australian peacock spiders and their structural colour according to a December 22, 2017 news item on ScienceDaily,

Even if you are arachnophobic, you probably have seen pictures or videos of Australian peacock spiders (Maratus spp.). These tiny spiders are only 1-5 mm long but are famous for their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements.

The spiders extremely large anterior median eyes have excellent color vision and combine with their bright colors to make peacock spiders cute enough to cure most people of their arachnophobia. But these displays aren’t just pretty to look at, they also inspire new ways for humans to produce color in technology.

One species of peacock spider — the rainbow peacock spider (Maratus robinsoni) is particularly neat, because it showcases an intense rainbow iridescent signal in males’ courtship displays to the females. This is the first known instance in nature of males using an entire rainbow of colors to entice females. Dr. Bor-Kai Hsiung led an international team of researchers from the US (UAkron, Cal Tech, UC San Diego, UNL [University of Nebraska-Lincoln]), Belgium (Ghent University), Netherlands (UGroningen), and Australia to discover how rainbow peacock spiders produce this unique multi-color iridescent signal.

A December 22, 2017 Ghent University (Belgium) press release on Alpha Galileo, which originated the news item, provides more technical detail,

Using a diverse array of research techniques, including light and electron microscopy, hyperspectral imaging, imaging scatterometry, nano 3D printing and optical modeling, the team found the origin of this intense rainbow iridescence emerged from specialized abdominal scales of the spiders. These scales have an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface.

The interaction between the surface nano-diffraction grating and the microscopic curvature of the scales enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current manmade engineering technologies.

Inspiration from these super iridescent scales can be used to overcome current limitations in spectral manipulation, and to further reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems. And it could have a wide array of implications to fields ranging from life sciences and biotechnologies to material sciences and engineering.

Here’s a video of an Australian rainbow peacock spider,

Here’s more from the YouTube description published on April 13, 2017 by Peacockspiderman,

Scenes of Maratus robinsoni, a spider Peter Robinson discovered and David Hill and I named it after him in 2012. You can read our description on pages 36-41 in Peckhamia 103.2, which can be downloaded from the Peckhamia website http://peckhamia.com/peckhamia_number…. This is one of the two smallest species of peacock spider (2.5 mm long) and the only spider we know of in which colour changes occur every time it moves, this video was created to document this. Music: ‘Be Still’ by Johannes Bornlöf licensed through my MCN ‘Brave Bison’ from ‘Epidemic Sound’ For licensing inquiries please contact Brave Bison licensing@bravebison.io

The University of California at San Diego also published a December 22, 2017 news release about this work, which covers some of the same ground while providing a few new tidbits of information,

Brightly colored Australian peacock spiders (Maratus spp.) captivate even the most arachnophobic viewers with their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements – all packed into miniature bodies measuring less than five millimeters in size for many species. However, these displays are not just pretty to look at. They also inspire new ways for humans to produce color in technology.

One species of peacock spider – the rainbow peacock spider (Maratus robinsoni) – is particularly impressive, because it showcases an intense rainbow iridescent signal in males’ courtship displays to females. This is the first known instance in nature of males using an entire rainbow of colors to entice females to mate. But how do males make their rainbows? A new study published in Nature Communications looked to answer that question.

Figuring out the answers was inherently interdisciplinary so Bor-Kai Hsiung, a postdoctoral scholar at Scripps Institution of Oceanography at the University of California San Diego, assembled an international team that included biologists, physicists and engineers. Starting while he was a Ph.D. student at The University of Akron under the mentorship of Todd Blackledge and Matthew Shawkey, the team included researchers from UA, Scripps Oceanography, California Institute of Technology, and University of Nebraska-Lincoln, the University of Ghent in Belgium, University of Groningen in Netherlands, and Australia to discover how rainbow peacock spiders produce this unique iridescent signal.

The team investigated the spider’s photonic structures using techniques that included light and electron microscopy, hyperspectral imaging, imaging scatterometry and optical modeling to generate hypotheses about how the spider’s scale generate such intense rainbows. The team then used cutting-edge nano 3D printing to fabricate different prototypes to test and validate their hypotheses. In the end, they found that the intense rainbow iridescence emerged from specialized abdominal scales on the spiders. These scales combine an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface. It is the interaction between the surface nano-diffraction grating and the microscopic curvature of the scales that enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current engineering technologies.

“Who knew that such a small critter would create such an intense iridescence using extremely sophisticated mechanisms that will inspire optical engineers,” said Dimitri Deheyn, Hsuing’s advisor at Scripps Oceanography and a coauthor of the study.

For Hsiung, the finding wasn’t quite so unexpected.

“One of the main questions that I wanted to address in my Ph.D. dissertation was ‘how does nature modulate iridescence?’ From a biomimicry perspective, to fully understand and address a question, one has to take extremes from both ends into consideration. I purposefully chose to study these tiny spiders with intense iridescence after having investigated the non-iridescent blue tarantulas,” said Hsiung.

The mechanism behind these tiny rainbows may inspire new color technology, but would not have been discovered without research combining basic natural history with physics and engineering, the researchers said.

“Nanoscale 3D printing allowed us to experimentally validate our models, which was really exciting,” said Shawkey. “We hope that these techniques will become common in the future.”

“As an engineer, what I found fascinating about these spider structural colors is how these long evolved complex structures can still outperform human engineering,” said Radwanul Hasan Siddique, a postdoctoral scholar at Caltech and study coauthor. “Even with high-end fabrication techniques, we could not replicate the exact structures. I wonder how the spiders assemble these fancy structural patterns in the first place!”

Inspiration from these super iridescent spider scales can be used to overcome current limitations in spectral manipulation, and to reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems.

In the end, peacock spiders don’t just produce nature’s smallest rainbows.They could also have implications for a wide array of fields ranging from life sciences and biotechnologies to material sciences and engineering.

Before citing the paper and providing a link, here’s a story by Robert F. Service for Science magazine about attempts to capitalize on ‘spider technology’, in this case spider silk,

The hype over spider silk has been building since 1710. That was the year François Xavier Bon de Saint Hilaire, president of the Royal Society of Sciences in Montpellier, France, wrote to his colleagues, “You will be surpriz’d to hear, that Spiders make a Silk, as beautiful, strong and glossy, as common Silk.” Modern pitches boast that spider silk is five times stronger than steel yet more flexible than rubber. If it could be made into ropes, a macroscale web would be able to snare a jetliner.

The key word is “if.” Researchers first cloned a spider silk gene in 1990, in hopes of incorporating it into other organisms to produce the silk. (Spiders can’t be farmed like silkworms because they are territorial and cannibalistic.) Today, Escherichia coli bacteria, yeasts, plants, silkworms, and even goats have been genetically engineered to churn out spider silk proteins, though the proteins are often shorter and simpler than the spiders’ own. Companies have managed to spin those proteins into enough high-strength thread to produce a few prototype garments, including a running shoe by Adidas and a lightweight parka by The North Face. But so far, companies have struggled to mass produce these supersilks.

Some executives say that may finally be about to change. One Emeryville, California-based startup, Bolt Threads, says it has perfected growing spider silk proteins in yeast and is poised to turn out tons of spider silk thread per year. In Lansing, Michigan, Kraig Biocraft Laboratories says it needs only to finalize negotiations with silkworm farms in Vietnam to produce mass quantities of a combination spider/silkworm silk, which the U.S. Army is now testing for ballistics protection. …

I encourage you to read Service’s article in its entirety if the commercialization prospects for spider silk interest you as it includes gems such as this,

Spider silk proteins are already making their retail debut—but in cosmetics and medical devices, not high-strength fibers. AMSilk grows spider silk proteins in E. coli and dries the purified protein into powders or mixes it into gels, for use as additives for personal care products, such as moisture-retaining skin lotions. The silk proteins supposedly help the lotions form a very smooth, but breathable, layer over the skin. Römer says the company now sells tons of its purified silk protein ingredients every year.

Finally, here’s a citation for and a link to the paper about Australian peacock spiders and nanophotonics,

Rainbow peacock spiders inspire miniature super-iridescent optics by Bor-Kai Hsiung, Radwanul Hasan Siddique, Doekele G. Stavenga, Jürgen C. Otto, Michael C. Allen, Ying Liu, Yong-Feng Lu, Dimitri D. Deheyn, Matthew D. Shawkey, & Todd A. Blackledge. Nature Communications 8, Article number: 2278 (2017) doi:10.1038/s41467-017-02451-x Published online: 22 December 2017

This paper is open access.

As for Bor-Kai Hsiung’s other mentions here:

How tarantulas get blue (December 7, 2015 posting)

Noniridescent photonics inspired by tarantulas (October 19, 2016 posting)

More on the blue tarantula noniridescent photonics (December 28, 2016 posting)

Multicolor, electrochromic glass

Electrochromic (changes color to block light and heat) glass could prove to be a significant market by 2020 according to a March 8, 2017 news item on phys.org,

Rice University’s latest nanophotonics research could expand the color palette for companies in the fast-growing market for glass windows that change color at the flick of an electric switch.

In a new paper in the American Chemical Society journal ACS Nano, researchers from the laboratory of Rice plasmonics pioneer Naomi Halas report using a readily available, inexpensive hydrocarbon molecule called perylene to create glass that can turn two different colors at low voltages.

“When we put charges on the molecules or remove charges from them, they go from clear to a vivid color,” said Halas, director of the Laboratory for Nanophotonics (LANP), lead scientist on the new study and the director of Rice’s Smalley-Curl Institute. “We sandwiched these molecules between glass, and we’re able to make something that looks like a window, but the window changes to different types of color depending on how we apply a very low voltage.”

Adam Lauchner, an applied physics graduate student at Rice and co-lead author of the study, said LANP’s color-changing glass has polarity-dependent colors, which means that a positive voltage produces one color and a negative voltage produces a different color.

“That’s pretty novel,” Lauchner said. “Most color-changing glass has just one color, and the multicolor varieties we’re aware of require significant voltage.”

Glass that changes color with an applied voltage is known as “electrochromic,” and there’s a growing demand for the light- and heat-blocking properties of such glass. The projected annual market for electrochromic glass in 2020 has been estimated at more $2.5 billion.

A March 8, 2017 Rice University news release (also on EurekAlert), which originated the news item, provides more detail about the research,

Lauchner said the glass project took almost two years to complete, and he credited co-lead author Grant Stec, a Rice undergraduate researcher, with designing the perylene-containing nonwater-based conductive gel that’s sandwiched between glass layers.

“Perylene is part of a family of molecules known as polycyclic aromatic hydrocarbons,” Stec said. “They’re a fairly common byproduct of the petrochemical industry, and for the most part they are low-value byproducts, which means they’re inexpensive.”

Grant Stec and Adam Lauchner

Grant Stec and Adam Lauchner of Rice University’s Laboratory for Nanophotonics have used an inexpensive hydrocarbon molecule called perylene to create a low-voltage, multicolor, electrochromic glass. (Photo by Jeff Fitlow/Rice University)

There are dozens of polycyclic aromatic hydrocarbons (PAHs), but each contains rings of carbon atoms that are decorated with hydrogen atoms. In many PAHs, carbon rings have six sides, just like the rings in graphene, the much-celebrated subject of the 2010 Nobel Prize in physics.

“This is a really cool application of what started as fundamental science in plasmonics,” Lauchner said.

A plasmon is [a] wave of energy, a rhythmic sloshing in the sea of electrons that constantly flow across the surface of conductive nanoparticles. Depending upon the frequency of a plasmon’s sloshing, it can interact with and harvest the energy from passing light. In dozens of studies over the past two decades, Halas, Rice physicist Peter Nordlander and colleagues have explored both the basic physics of plasmons and potential applications as diverse as cancer treatment, solar-energy collection, electronic displays and optical computing.

The quintessential plasmonic nanoparticle is metallic, often made of gold or silver, and precisely shaped. For example, gold nanoshells, which Halas invented at Rice in the 1990s, consist of a nonconducting core that’s covered by a thin shell of gold.

Grant Stec, Naomi Halas and Adam Lauchner

Student researchers Grant Stec (left) and Adam Lauchner (right) with Rice plasmonics pioneer Naomi Halas, director of Rice University’s Laboratory for Nanophotonics. (Photo by Jeff Fitlow/Rice University)

“Our group studies many kinds of metallic nanoparticles, but graphene is also conductive, and we’ve explored its plasmonic properties for several years,” Halas said.

She noted that large sheets of atomically thin graphene have been found to support plasmons, but they emit infrared light that’s invisible to the human eye.

“Studies have shown that if you make graphene smaller and smaller, as you go down to nanoribbons, nanodots and these little things called nanoislands, you can actually get graphene’s plasmon closer and closer to the edge of the visible regime,” Lauchner said.

In 2013, then-Rice physicist Alejandro Manjavacas, a postdoctoral researcher in Nordlander’s lab, showed that the smallest versions of graphene — PAHs with just a few carbon rings — should produce visible plasmons. Moreover, Manjavacas calculated the exact colors that would be emitted by different types of PAHs.

“One of the most interesting things was that unlike plasmons in metals, the plasmons in these PAH molecules were very sensitive to charge, which suggested that a very small electrical charge would produce dramatic colors,” Halas said.

Electrochromic glass that glass that turns from clear to black

Rice University researchers demonstrated a new type of glass that turns from clear to black when a low voltage is applied. The glass uses a combination of molecules that block almost all visible light when they each gain a single electron. (Photo by Jeff Fitlow/Rice University)

Lauchner said the project really took off after Stec joined the research team in 2015 and created a perylene formulation that could be sandwiched between sheets of conductive glass.

In their experiments, the researchers found that applying just 4 volts was enough to turn the clear window greenish-yellow and applying negative 3.5 volts turned it blue. It took several minutes for the windows to fully change color, but Halas said the transition time could easily be improved with additional engineering.

Stec said the team’s other window, which turns from clear to black, was produced later in the project.

“Dr. Halas learned that one of the major hurdles in the electrochromic device industry was making a window that could be clear in one state and completely black in another,” Stec said. “We set out to do that and found a combination of PAHs that captured no visible light at zero volts and almost all visible light at low voltage.”

Here’s a link to and a citation for the paper,

Multicolor Electrochromic Devices Based on Molecular Plasmonics by Grant J. Stec, Adam Lauchner, Yao Cui, Peter Nordlander, and Naomi J. Halas. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b00364 Publication Date (Web): February 22, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Nanotechnology cracks Wall Street (Daily)

David Dittman’s Jan. 11, 2017 article for wallstreetdaily.com portrays a great deal of excitement about nanotechnology and the possibilities (I’m highlighting the article because it showcases Dexter Johnson’s Nanoclast blog),

When we talk about next-generation aircraft, next-generation wearable biomedical devices, and next-generation fiber-optic communication, the consistent theme is nano: nanotechnology, nanomaterials, nanophotonics.

For decades, manufacturers have used carbon fiber to make lighter sports equipment, stronger aircraft, and better textiles.

Now, as Dexter Johnson of IEEE [Institute of Electrical and Electronics Engineers] Spectrum reports [on his Nanoclast blog], carbon nanotubes will help make aerospace composites more efficient:

Now researchers at the University of Surrey’s Advanced Technology Institute (ATI), the University of Bristol’s Advanced Composite Centre for Innovation and Science (ACCIS), and aerospace company Bombardier [headquartered in Montréal, Canada] have collaborated on the development of a carbon nanotube-enabled material set to replace the polymer sizing. The reinforced polymers produced with this new material have enhanced electrical and thermal conductivity, opening up new functional possibilities. It will be possible, say the British researchers, to embed gadgets such as sensors and energy harvesters directly into the material.

When it comes to flight, lighter is better, so building sensors and energy harvesters into the body of aircraft marks a significant leap forward.

Johnson also reports for IEEE Spectrum on a “novel hybrid nanomaterial” based on oscillations of electrons — a major advance in nanophotonics:

Researchers at the University of Texas at Austin have developed a hybrid nanomaterial that enables the writing, erasing and rewriting of optical components. The researchers believe that this nanomaterial and the techniques used in exploiting it could create a new generation of optical chips and circuits.

Of course, the concept of rewritable optics is not altogether new; it forms the basis of optical storage mediums like CDs and DVDs. However, CDs and DVDs require bulky light sources, optical media and light detectors. The advantage of the rewritable integrated photonic circuits developed here is that it all happens on a 2-D material.

“To develop rewritable integrated nanophotonic circuits, one has to be able to confine light within a 2-D plane, where the light can travel in the plane over a long distance and be arbitrarily controlled in terms of its propagation direction, amplitude, frequency and phase,” explained Yuebing Zheng, a professor at the University of Texas who led the research… “Our material, which is a hybrid, makes it possible to develop rewritable integrated nanophotonic circuits.”

Who knew that mixing graphene with homemade Silly Putty would create a potentially groundbreaking new material that could make “wearables” actually useful?

Next-generation biomedical devices will undoubtedly include some of this stuff:

A dash of graphene can transform the stretchy goo known as Silly Putty into a pressure sensor able to monitor a human pulse or even track the dainty steps of a small spider.

The material, dubbed G-putty, could be developed into a device that continuously monitors blood pressure, its inventors hope.

The guys who made G-putty often rely on “household stuff” in their research.

It’s nice to see a blogger’s work be highlighted. Congratulations Dexter.

G-putty was mentioned here in a Dec. 30, 2016 posting which also includes a link to Dexter’s piece on the topic.

Luminous electronic tiles (lumentile)

A Dec. 19, 2016 news item on Nanowerk introduces a ceramic tile that can be given a different look at the touch of a fingertip,

Using pioneering photonics technology, The ‘Luminous Electronic Tile’, or LUMENTILE, project mixes the simplicity of a plain ceramic tile with the complexity of today’s sophisticated touch screen technology, creating a light source and unparalleled interaction. All it takes is one tap to change the colour, look or mood of any room in your house.

This is the first time anyone has tried to embed electronics into ceramics or glass for a large-scale application. With the ability to play videos or display images, the tiles allow the user to turn their walls into a large ‘cinema’ screen, where each unit acts as a set of pixels of the overall display.

An undated Horizon 2020 webpage describes the ‘digital wallpaper’ in more detail,

Scientists from Italy have created ‘digital wallpaper’, allowing for a constant change in design and aesthetic controlled via a smartphone, tablet or computer.

Each Luminous Electronic Tile – or Lumentile – acts as a touch screen which can change colour, pattern or light intensity, play videos or display images.

If numerous tiles are arranged together, they can create a ‘cinema’ screen with each tile acting as a set of pixels for the overall display.

The combination of ceramic, glass and electronics could allow the user to have interchangeable control of the look and design of their surroundings by tapping the tile.

Each tile can be arranged to completely or partially cover walls of a room, floor or ceiling.

However, they can also be transferred to the exterior of buildings, as either flat or curved tiles to fit around columns or uneven surfaces.

Project co-ordinator Professor Guido Giuliani, said: “It may sound like the stuff of James Bond but external tiles would create a ‘chameleonic skin’ or instant camouflage.

“Although we are a long way off this yet, this would allow a car or building to blend completely into its surroundings, and hence ‘disappear’.”

Although these tiles cannot be purchased yet, they hope to be available to users in two years, with mass production by the end of 2020.

Lumentile received a grant of more than €2.4m from the Horizon 2020 programme via the Photonics Public Private Partnership. Created in Italy by the Universita Degli Studi Di Pavia, the Lumentile project also has a number of European partners from Finland, Switzerland and Spain.

A combination of ceramic, glass and organic electronics, the luminous tile includes structural materials, solid-state light sources and electronic chips and can be controlled with a central computer, a smart phone or tablet. [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=45417.php]

You can find a bit more information on the Lumentile project website.

More on the blue tarantula noniridescent photonics

Covered in an Oct. 19, 2016 posting here, some new details have been released about noniridescent photonics and blue tarantulas, this time from the Karlsruhe Institute of Technology (KIT) in a Nov. 17, 2016 (?) press release (also on EurekAlert; h/t Nanowerk Nov. 17, 2016 news item) ,

Colors are produced in a variety of ways. The best known colors are pigments. However, the very bright colors of the blue tarantula or peacock feathers do not result from pigments, but from nanostructures that cause the reflected light waves to overlap. This produces extraordinarily dynamic color effects. Scientists from Karlsruhe Institute of Technology (KIT), in cooperation with international colleagues, have now succeeded in replicating nanostructures that generate the same color irrespective of the viewing angle. DOI: 10.1002/adom.201600599

In contrast to pigments, structural colors are non-toxic, more vibrant and durable. In industrial production, however, they have the drawback of being strongly iridescent, which means that the color perceived depends on the viewing angle. An example is the rear side of a CD. Hence, such colors cannot be used for all applications. Bright colors of animals, by contrast, are often independent of the angle of view. Feathers of the kingfisher always appear blue, no matter from which angle we look. The reason lies in the nanostructures: While regular structures are iridescent, amorphous or irregular structures always produce the same color. Yet, industry can only produce regular nanostructures in an economically efficient way.

Radwanul Hasan Siddique, researcher at KIT in collaboration with scientists from USA and Belgium has now discovered that the blue tarantula does not exhibit iridescence in spite of periodic structures on its hairs. First, their study revealed that the hairs are multi-layered, flower-like structure. Then, the researchers analyzed its reflection behavior with the help of computer simulations. In parallel, they built models of these structures using nano-3D printers and optimized the models with the help of the simulations. In the end, they produced a flower-like structure that generates the same color over a viewing angle of 160 degrees. This is the largest viewing angle of any synthetic structural color reached so far.


Flower-shaped nanostructures generate the color of the blue tarantula. (Graphics: Bill Hsiung, University of Akron)

 


The 3D print of the optimized flower structure is only 15 µm in dimension. A human hair is about three times as thick. (Photo: Bill Hsiung, Universtiy of Akron)

Apart from the multi-layered structure and rotational symmetry, it is the hierarchical structure from micro to nano that ensures homogeneous reflection intensity and prevents color changes.

Via the size of the “flower,” the resulting color can be adjusted, which makes this coloring method interesting for industry. “This could be a key first step towards a future where structural colorants replace the toxic pigments currently used in textile, packaging, and cosmetic industries,” says Radwanul Hasan Siddique of KIT’s Institute of Microstructure Technology, who now works at the California Institute of Technology. He considers short-term application in textile industry feasible.


The synthetically generated flower structure inspired by the blue tarantula reflects light in the same color over a viewing angle of 160 degrees. (Graphics: Derek Miller)  

Dr. Hendrik Hölscher thinks that the scalability of nano-3D printing is the biggest challenge on the way towards industrial use. Only few companies in the world are able to produce such prints. In his opinion, however, rapid development in this field will certainly solve this problem in the near future.

Once again, here’s a link to and a citation for the paper,

Tarantula-Inspired Noniridescent Photonics with Long-Range Order by Bor-Kai Hsiung, Radwanul Hasan Siddique, Lijia Jiang, Ying Liu, Yongfeng Lu, Matthew D. Shawkey, and Todd A. Blackledge. Advanced Materials DOI: 10.1002/adom.201600599 Version of Record online: 11 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The paper is behind a paywall. You can see the original Oct. 19, 2016 posting for my comments and some excerpts from the paper.

Gold nanoparticles concentrate light so atomic bonds can be viewed

 Artist's impression light waves capable of revealing atomic bonds Credit: NanoPhotonics Cambridge/Bart deNijs

Artist’s impression light waves capable of revealing atomic bonds Credit: NanoPhotonics Cambridge/Bart deNijs

This research upends centuries of scientific thought according to a Nov. 10, 2016 news item on ScienceDaily,

For centuries, scientists believed that light, like all waves, couldn’t be focused down smaller than its wavelength, just under a millionth of a metre. Now, researchers led by the University of Cambridge have created the world’s smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms.

If they’ve created is a ‘magnifying glass’ as they call it in the news item, then I suppose you could call the ‘pico-cavity’ mentioned in the following press release, a lens.

A Nov. 10, 2016 University of Cambridge press release (also on EurekAlert), which originated the news item, describes the research in more detail,

In collaboration with European colleagues, the team used highly conductive gold nanoparticles to make the world’s tiniest optical cavity, so small that only a single molecule can fit within it. The cavity – called a ‘pico-cavity’ by the researchers – consists of a bump in a gold nanostructure the size of a single atom, and confines light to less than a billionth of a metre. The results, reported in the journal Science, open up new ways to study the interaction of light and matter, including the possibility of making the molecules in the cavity undergo new sorts of chemical reactions, which could enable the development of entirely new types of sensors.

According to the researchers, building nanostructures with single atom control was extremely challenging. “We had to cool our samples to -260°C in order to freeze the scurrying gold atoms,” said Felix Benz, lead author of the study. The researchers shone laser light on the sample to build the pico-cavities, allowing them to watch single atom movement in real time.

“Our models suggested that individual atoms sticking out might act as tiny lightning rods, but focusing light instead of electricity,” said Professor Javier Aizpurua from the Center for Materials Physics in San Sebastian in Spain, who led the theoretical section of this work.

“Even single gold atoms behave just like tiny metallic ball bearings in our experiments, with conducting electrons roaming around, which is very different from their quantum life where electrons are bound to their nucleus,” said Professor Jeremy Baumberg of the NanoPhotonics Centre at Cambridge’s Cavendish Laboratory, who led the research.

The findings have the potential to open a whole new field of light-catalysed chemical reactions, allowing complex molecules to be built from smaller components. Additionally, there is the possibility of new opto-mechanical data storage devices, allowing information to be written and read by light and stored in the form of molecular vibrations.

Here’s a link to and a citation for the paper,

Single-molecule optomechanics in “picocavities” by Felix Benz, Mikolaj K. Schmidt, Alexander Dreismann, Rohit Chikkaraddy, Yao Zhang, Angela Demetriadou, Cloudy Carnegie, Hamid Ohadi, Bart de Nijs, Ruben Esteban, Javier Aizpurua, Jeremy J. Baumberg. Science  11 Nov 2016: Vol. 354, Issue 6313, pp. 726-729 DOI: 10.1126/science.aah5243

This paper is behind a paywall.