Tag Archives: Italy

Being solid and liquid over a range of 1000 degrees Fahrenheit means it’s perpetual ice

Duke University researchers along with their international collaborators have made an extraordinary observation. From an Aug. 3, 2016 news item on ScienceDaily,

Imagine pouring a glass of ice water and having the ice cubes remain unchanged hours later, even under a broiler’s heat or in the very back corner of the freezer.

That’s fundamentally the surprising discovery recently made by an international group of researchers led by an electrical engineering professor at Duke University in a paper published online in Nature Matter on July 25, 2016. But instead of a refreshing mixture of H2O in a pint glass, the researchers were working with the chemical element gallium on a nanoscopic scale.

This image shows a single gallium nanoparticle sitting on top of a sapphire base. The black sphere in the center reveals the presence of solid gallium within the liquid drop exterior. The sapphire base is important, as it is rigid with a relatively high surface energy. As the nanoparticle and sapphire try to minimize their total energy, this combination of properties drives the formation and coexistence of the two phases. Courtesy: Duke University

This image shows a single gallium nanoparticle sitting on top of a sapphire base. The black sphere in the center reveals the presence of solid gallium within the liquid drop exterior. The sapphire base is important, as it is rigid with a relatively high surface energy. As the nanoparticle and sapphire try to minimize their total energy, this combination of properties drives the formation and coexistence of the two phases. Courtesy: Duke University

An Aug. 3, 2016 Duke University news release (also on EurekAlert), which originated the news item, explains more about gallium and about this new state,

Gallium is a soft, silvery bluish metal at room temperature. Raise the heat to 86 degrees Fahrenheit, however, and it melts. Drop the temperature to subzero levels, and it becomes hard and brittle. But when gallium nanoparticles sit on top of a sapphire surface, they form a solid core surrounded by a liquid outer layer. The discovery marks the first time that this stable phase coexistence phenomenon at the nanoscale has ever been directly observed.

“This odd combination of a liquid and solid state existing together has been predicted theoretically and observed indirectly in other materials in narrow bands of specific temperatures,” said April Brown, the John Cocke Professor of Electrical and Computer Engineering at Duke. “But this finding was very unexpected, especially because of its stability over such a large temperature range.”

The temperature range Brown is referring to covers more than 1,000 degrees Fahrenheit, all the way from -135 to 980 degrees.

“At a fundamental level, this finding reveals the need to reconsider all our presumptions about solid–liquid equilibrium,” wrote Andrés Aguado, professor of theoretical, atomic and optical physics at the University of Valladolid in Spain, in a News and Views piece appearing in the same edition of Nature Matter. “At a more applied level, the results hold much promise for future nanotechnology applications.”

Gallium is an important element in electronics and is used in microwave circuits, high-speed switching circuits and infrared circuits. The discovery of this novel part-solid, part-liquid nanoparticle phase could be useful in ultraviolet sensors, molecular sensing devices and enhanced photodetectors.

Brown hopes this work is just the tip of the iceberg, as she is planning on creating a facility at Duke to investigate what other nanoparticles might have similar unexpected phase qualities.

The research was conducted in conjunction with researchers at the Institute of Nanotechnology-CNR-Italy, the University of Western Australia, the University of Melbourne and Johannes Kepler University Linz.

This is an atomic view of liquid and solid gallium coexisting in a single nanoparticle taken by a transmission electron microscope. The circular shape on the left-hand side shows gallium atoms in an organized, crystalline, solid structure, while the atoms on the right are in liquid form, showing no organized structure at all. Courtesy: Duke University

This is an atomic view of liquid and solid gallium coexisting in a single nanoparticle taken by a transmission electron microscope. The circular shape on the left-hand side shows gallium atoms in an organized, crystalline, solid structure, while the atoms on the right are in liquid form, showing no organized structure at all. Courtesy: Duke University

Here’s a link to and a citation for the paper,

Thermally stable coexistence of liquid and solid phases in gallium nanoparticles by Maria Losurdo, Alexandra Suvorova, Sergey Rubanov, Kurt Hingerl, & April S. Brown.  Nature Materials (2016) doi:10.1038/nmat4705 Published online 25 July 2016

This paper is behind a paywall.

A carbon nanotube ‘bridge’ for nerves

Italian researchers have developed a three-dimensional carbon nanotube sponge (or bridge) that could be used in conjunction with neural explants according to a July 15, 2016 SISSA press release (also on EurekAlert), which describes the work,

A complex study, lasting several years and involving work groups with specialties in various fields, has shown that a new material (a three-dimensional sponge made of carbon nanotubes) supports the growth of nerve fibers, bridging segregated neural explants and providing a functional re-connection. The study, which was coordinated by the International School for Advanced Studies (SISSA) in Trieste, in collaboration with the University of Rome Tor Vergata and the University of Trieste, also observed biocompatibility in vivo of the material, demonstrating that implanting it into  the brain of small rodents does not cause large scars or a marked immune response.

“Under the microscope, it looks like a knotted tangle of tubes. It was initially studied by Maurizio De Crescenzi’s team at the University of Rome Tor Vergata for cleaning up spilled hydrocarbons in the sea,” explains Laura Ballerini, SISSA Professor and coordinator of the recently-published study. It was Maurizio Prato’s intuition, however, that pushed them to investigate the possibility of applying such a material to nerve tissue. The idea of developing the hybrids of neurons and nano-materials was the result of a long-term project and collaboration between Prato (University of Trieste) and Ballerini’s (SISSA) groups.

In the present study, Ballerini and her team first investigated the material’s reaction to nerve tissue in vitro. “We explanted two spinal cord segments and cultured them together but separated by 300 microns,” says Sadaf Usmani, a PhD student at the School and first author of the study. “In those conditions, without any scaffolds reconstructing the space between the two explants, we observed growth of nerve fibers which extended in a straight bundles in any direction, but not necessarily towards the other tissue. If we insert a small piece of the carbon sponge into the space between the two, however, we see dense growth of nerve fibers that fill the structure and intertwine with the other sample.”

“Observing fiber reaching the contralateral explant is not enough, however,” points out University of Trieste researcher and one of the authors of the study, Denis Scaini. “You have to show that there is a functional connection between the two populations of neurons.” For this, SISSA Professor, David Zoccolan and his team’s contribution was crucial. “With signal analysis techniques they had already developed, we were able to demonstrate two things: first, that spontaneous nervous activity in the two samples was actually correlated, indicating a connection, that was not there when the sponge was absent, and second,, that by applying an electrical signal to one of the samples, the activity of the second sample could be triggered, but only when the nanotubes were present.”

Tests for Biocompatibility

The results in the lab were extremely positive. But this was not sufficient for Ballerini and her colleagues. “In order to continue to invest additional energy and resources to the study for potential applications, is crucial to test if the material is accepted by living organisms without negative consequences,” says Ballerini.

To perform these tests, Ballerini’s team worked closely with SISSA Post-Doc researcher, and member of Zoccolan’s team, Federica Rosselli. “We implanted small portions of the material into the brain of healthy rodents. After four weeks, we observed that the material was well tolerated. There were limited scars, as well as low immune responses, some biological indicators even showed that there could be positive implications. There was also a progressive invasion of neurons within the sponge. The rats were vital and healthy during the entire four weeks,” says Usmani.

“In conclusion,” says Ballerini, “the excellent results at the structural and functional level in vitro and in vivo showed biocompatibility are encouraging us to continue this line of research. These materials could be useful for covering electrodes used for treating movement disorders like Parkinson’s because they are well accepted by tissue, while the implants being used today become less effective over time because of scar tissue. We hope this encourages other research teams with multidisciplinary expertise to expand this type of study even further.”

Here’s a link to and a citation for the paper,

3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants by Sadaf Usmani, Emily Rose Aurand, Manuela Medelin, Alessandra Fabbro, Denis Scaini, Jummi Laishram, Federica B. Rosselli, Alessio Ansuini, Davide Zoccola1, Manuela Scarselli, Maurizio De Crescenzi, Susanna Bosi, Maurizio Prato, and Laura Ballerini. Science Advances  15 Jul 2016: Vol. 2, no. 7, e1600087 DOI: 10.1126/sciadv.1600087 Published 01 July 2016

This paper is open access.

H/t July 15, 2016 news item on phys.org.

Calming a synapse (part of a neuron) with graphene flakes

As we continue to colonize our own brains, there’s more news of graphene and neurons (see my Feb. 1, 2016 post featuring research from the same team in Italy featured in this post). A May 10, 2016 news item on ScienceDaily highlights work that could be used for epilepsy,

Innovative graphene technology to buffer the activity of synapses– this is the idea behind a recently-published study in the journal ACS Nano coordinated by the International School for Advanced Studies in Trieste (SISSA) and the University of Trieste. In particular, the study showed how effective graphene oxide flakes are at interfering with excitatory synapses, an effect that could prove useful in new treatments for diseases like epilepsy.

I guess the press release took a while to make its way through translation, here’s more from the April 10, 2016 SISSA (International School for Advanced Studies) press release (also on EurekAlert),

The laboratory of SISSA’s Laura Ballerini in collaboration with the University of Trieste, the University of Manchester and the University of Castilla -la Mancha, has discovered a new approach to modulating synapses. This methodology could be useful for treating diseases in which electrical nerve activity is altered. Ballerini and Maurizio Prato (University of Trieste) are the principal investigators of the project within the European flagship on graphene, a far-reaching 10-year international collaboration (one billion euros in funding) that studies innovative uses of the material.

Traditional treatments for neurological diseases generally include drugs that act on the brain or neurosurgery. Today however, graphene technology is showing promise for these types of applications, and is receiving increased attention from the scientific community. The method studied by Ballerini and colleagues uses “graphene nano-ribbons” (flakes) which buffer activity of synapses simply by being present.

“We administered aqueous solutions of graphene flakes to cultured neurons in ‘chronic’ exposure conditions, repeating the operation every day for a week. Analyzing functional neuronal electrical activity, we then traced the effect on synapses” says Rossana Rauti, SISSA researcher and first author of the study.

In the experiments, size of the flakes varied (10 microns or 80 nanometers) as well as the type of graphene: in one condition graphene was used, in another, graphene oxide. “The ‘buffering’ effect on synaptic activity happens only with smaller flakes of graphene oxide and not in other conditions,” says Ballerini. “The effect, in the system we tested, is selective for the excitatory synapses, while it is absent in inhibitory ones”

A Matter of Size

What is the origin of this selectivity? “We know that in principle graphene does not interact chemically with synapses in a significant way- its effect is likely due to the mere presence of synapses,” explains SISSA researcher and one of the study’s authors, Denis Scaini. “We do not yet have direct evidence, but our hypothesis is that there is a link with the sub-cellular organization of the synaptic space.”

A synapse is a contact point between one neuron and another where the nervous electrical signal “jumps” between a pre and post-synaptic unit. [emphasis mine] There is a small gap or discontinuity where the electrical signal is “translated” by a neurotransmitter and released by pre-synaptic termination into the extracellular space and reabsorbed by the postsynaptic space, to be translated again into an electrical signal. The access to this space varies depending on the type of synapses: “For the excitatory synapses, the structure’s organization allows higher exposure for the graphene flakes interaction, unlike inhibitory synapses, which are less physically accessible in this experimental model,” says Scaini.

Another clue that distance and size could be crucial in the process is found in the observation that graphene performs its function only in the oxidized form. “Normal graphene looks like a stretched and stiff sheet while graphene oxide appears crumpled, and thus possibly favoring interface with the synaptic space, ” adds Rauti.

Administering graphene flake solutions leaves the neurons alive and intact. For this reason the team thinks they could be used in biomedical applications for treating certain diseases. “We may imagine to target a drug by exploiting the apparent flakes’ selectivity for synapses, thus targeting directly the basic functional unit of neurons”concludes Ballerini.

That’s a nice description of neurons, synapses, and neurotransmitters.

Here’s a link to and a citation for the paper,

Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks by Rossana Rauti, Neus Lozano, Veronica León, Denis Scaini†, Mattia Musto, Ilaria Rago, Francesco P. Ulloa Severino, Alessandra Fabbro, Loredana Casalis, Ester Vázquez, Kostas Kostarelos, Maurizio Prato, and Laura Ballerini. ACS Nano, 2016, 10 (4), pp 4459–4471
DOI: 10.1021/acsnano.6b00130 Publication Date (Web): March 31, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

The Leonardo Project and the master’s DNA (deoxyribonucleic acid)

I’ve never really understood the mania for digging up bodies of famous people in history and trying to ascertain how the person really died or what kind of diseases they may have had but the practice fascinates me. The latest famous person to be subjected to a forensic inquiry centuries after death is Leonardo da Vinci. A May 5, 2016 Human Evolution (journal) news release on EurekAlert provides details,

A team of eminent specialists from a variety of academic disciplines has coalesced around a goal of creating new insight into the life and genius of Leonardo da Vinci by means of authoritative new research and modern detective technologies, including DNA science.

The Leonardo Project is in pursuit of several possible physical connections to Leonardo, beaming radar, for example, at an ancient Italian church floor to help corroborate extensive research to pinpoint the likely location of the tomb of his father and other relatives. A collaborating scholar also recently announced the successful tracing of several likely DNA relatives of Leonardo living today in Italy (see endnotes).

If granted the necessary approvals, the Project will compare DNA from Leonardo’s relatives past and present with physical remnants — hair, bones, fingerprints and skin cells — associated with the Renaissance figure whose life marked the rebirth of Western civilization.

The Project’s objectives, motives, methods, and work to date are detailed in a special issue of the journal Human Evolution, published coincident with a meeting of the group hosted in Florence this week under the patronage of Eugenio Giani, President of the Tuscan Regional Council (Consiglio Regionale della Toscana).

The news release goes on to provide some context for the work,

Born in Vinci, Italy, Leonardo died in 1519, age 67, and was buried in Amboise, southwest of Paris. His creative imagination foresaw and described innovations hundreds of years before their invention, such as the helicopter and armored tank. His artistic legacy includes the iconic Mona Lisa and The Last Supper.

The idea behind the Project, founded in 2014, has inspired and united anthropologists, art historians, genealogists, microbiologists, and other experts from leading universities and institutes in France, Italy, Spain, Canada and the USA, including specialists from the J. Craig Venter Institute of California, which pioneered the sequencing of the human genome.

The work underway resembles in complexity recent projects such as the successful search for the tomb of historic author Miguel de Cervantes and, in March 2015, the identification of England’s King Richard III from remains exhumed from beneath a UK parking lot, fittingly re-interred 500 years after his death.

Like Richard, Leonardo was born in 1452, and was buried in a setting that underwent changes in subsequent years such that the exact location of the grave was lost.

If DNA and other analyses yield a definitive identification, conventional and computerized techniques might reconstruct the face of Leonardo from models of the skull.”

In addition to Leonardo’s physical appearance, information potentially revealed from the work includes his ancestry and additional insight into his diet, state of health, personal habits, and places of residence.

According to the news release, the researchers have an agenda that goes beyond facial reconstruction and clues about  ancestry and diet,

Beyond those questions, and the verification of Leonardo’s “presumed remains” in the chapel of Saint-Hubert at the Château d’Amboise, the Project aims to develop a genetic profile extensive enough to understand better his abilities and visual acuity, which could provide insights into other individuals with remarkable qualities.

It may also make a lasting contribution to the art world, within which forgery is a multi-billion dollar industry, by advancing a technique for extracting and sequencing DNA from other centuries-old works of art, and associated methods of attribution.

Says Jesse Ausubel, Vice Chairman of the Richard Lounsbery Foundation, sponsor of the Project’s meetings in 2015 and 2016: “I think everyone in the group believes that Leonardo, who devoted himself to advancing art and science, who delighted in puzzles, and whose diverse talents and insights continue to enrich society five centuries after his passing, would welcome the initiative of this team — indeed would likely wish to lead it were he alive today.”

The researchers aim to have the work complete by 2019,

In the journal, group members underline the highly conservative, precautionary approach required at every phase of the Project, which they aim to conclude in 2019 to mark the 500th anniversary of Leonardo’s death.

For example, one objective is to verify whether fingerprints on Leonardo’s paintings, drawings, and notebooks can yield DNA consistent with that extracted from identified remains.

Early last year, Project collaborators from the International Institute for Humankind Studies in Florence opened discussions with the laboratory in that city where Leonardo’s Adoration of the Magi has been undergoing restoration for nearly two years, to explore the possibility of analyzing dust from the painting for possible DNA traces. A crucial question is whether traces of DNA remain or whether restoration measures and the passage of time have obliterated all evidence of Leonardo’s touch.

In preparation for such analysis, a team from the J. Craig Venter Institute and the University of Florence is examining privately owned paintings believed to be of comparable age to develop and calibrate techniques for DNA extraction and analysis. At this year’s meeting in Florence, the researchers also described a pioneering effort to analyze the microbiome of a painting thought to be about five centuries old.

If human DNA can one day be obtained from Leonardo’s work and sequenced, the genetic material could then be compared with genetic information from skeletal or other remains that may be exhumed in the future.

Here’s a list of the participating organizations (from the news release),

  • The Institut de Paléontologie Humaine, Paris
  • The International Institute for Humankind Studies, Florence
  • The Laboratory of Molecular Anthropology and Paleogenetics, Biology Department, University of Florence
  • Museo Ideale Leonardo da Vinci, in Vinci, Italy
  • J. Craig Venter Institute, La Jolla, California
  • Laboratory of Genetic Identification, University of Granada, Spain
  • The Rockefeller University, New York City

You can find the special issue of Human Evolution (HE Vol. 31, 2016 no. 3) here. The introductory essay is open access but the other articles are behind a paywall.

Graphene Flagship high points

The European Union’s Graphene Flagship project has provided a series of highlights in place of an overview for the project’s ramp-up phase (in 2013 the Graphene Flagship was announced as one of two winners of a science competition, the other winner was the Human Brain Project, with two prizes of 1B Euros for each project). Here are the highlights from the April 19, 2016 Graphene Flagship press release,

Graphene and Neurons – the Best of Friends

Flagship researchers have shown that it is possible to interface untreated graphene with neuron cells whilst maintaining the integrity of these vital cells [1]. This result is a significant first step towards using graphene to produce better deep brain implants which can both harness and control the brain.

Graphene and Neurons
 

This paper emerged from the Graphene Flagship Work Package Health and Environment. Prof. Prato, the WP leader from the University of Trieste in Italy, commented that “We are currently involved in frontline research in graphene technology towards biomedical applications, exploring the interactions between graphene nano- and micro-sheets with the sophisticated signalling machinery of nerve cells. Our work is a first step in that direction.”

[1] Fabbro A., et al., Graphene-Based Interfaces do not Alter Target Nerve Cells. ACS Nano, 10 (1), 615 (2016).

Pressure Sensing with Graphene: Quite a Squeeze

The Graphene Flagship developed a small, robust, highly efficient squeeze film pressure sensor [2]. Pressure sensors are present in most mobile handsets and by replacing current sensor membranes with a graphene membrane they allow the sensor to decrease in size and significantly increase its responsiveness and lifetime.

Discussing this work which emerged from the Graphene Flagship Work Package Sensors is the paper’s lead author, Robin Dolleman from the Technical University of Delft in The Netherlands “After spending a year modelling various systems the idea of the squeeze-film pressure sensor was formed. Funding from the Graphene Flagship provided the opportunity to perform the experiments and we obtained very good results. We built a squeeze-film pressure sensor from 31 layers of graphene, which showed a 45 times higher response than silicon based devices, while reducing the area of the device by a factor of 25. Currently, our work is focused on obtaining similar results on monolayer graphene.”

 

[2] Dolleman R. J. et al., Graphene Squeeze-Film Pressure Sensors. Nano Lett., 16, 568 (2016)

Frictionless Graphene


Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Research done within the Graphene Flagship, has observed the onset of superlubricity in graphene nanoribbons sliding on a surface, unravelling the role played by ribbon size and elasticity [3]. This important finding opens up the development potential of nanographene frictionless coatings. This research lead by the Graphene Flagship Work Package Nanocomposites also involved researchers from Work Package Materials and Work Package Health and the Environment, a shining example of the inter-disciplinary, cross-collaborative approach to research undertaken within the Graphene Flagship. Discussing this further is the Work Package Nanocomposites Leader, Dr Vincenzo Palermo from CNR National Research Council, Italy “Strengthening the collaboration and interactions with other Flagship Work Packages created added value through a strong exchange of materials, samples and information”.

[3] Kawai S., et al., Superlubricity of graphene nanoribbons on gold surfaces. Science. 351, 6276, 957 (2016) 

​Graphene Paddles Forward

Work undertaken within the Graphene Flagship saw Spanish automotive interiors specialist, and Flagship partner, Grupo Antolin SA work in collaboration with Roman Kayaks to develop an innovative kayak that incorporates graphene into its thermoset polymeric matrices. The use of graphene and related materials results in a significant increase in both impact strength and stiffness, improving the resistance to breakage in critical areas of the boat. Pushing the graphene canoe well beyond the prototype demonstration bubble, Roman Kayaks chose to use the K-1 kayak in the Canoe Marathon World Championships held in September in Gyor, Hungary where the Graphene Canoe was really put through its paces.

Talking further about this collaboration from the Graphene Flagship Work Package Production is the WP leader, Dr Ken Teo from Aixtron Ltd., UK “In the Graphene Flagship project, Work Package Production works as a technology enabler for real-world applications. Here we show the worlds first K-1 kayak (5.2 meters long), using graphene related materials developed by Grupo Antolin. We are very happy to see that graphene is creating value beyond traditional industries.” 

​Graphene Production – a Kitchen Sink Approach

Researchers from the Graphene Flagship have devised a way of producing large quantities of graphene by separating graphite flakes in liquids with a rotating tool that works in much the same way as a kitchen blender [4]. This paves the way to mass production of high quality graphene at a low cost.

The method was produced within the Graphene Flagship Work Package Production and is talked about further here by the WP deputy leader, Prof. Jonathan Coleman from Trinity College Dublin, Ireland “This technique produced graphene at higher rates than most other methods, and produced sheets of 2D materials that will be useful in a range of applications, from printed electronics to energy generation.” 

[4] Paton K.R., et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).

Flexible Displays – Rolled Up in your Pocket

Working with researchers from the Graphene Flagship the Flagship partner, FlexEnable, demonstrated the world’s first flexible display with graphene incorporated into its pixel backplane. Combined with an electrophoretic imaging film, the result is a low-power, durable display suitable for use in many and varied environments.

Emerging from the Graphene Flagship Work Package Flexible Electronics this illustrates the power of collaboration.  Talking about this is the WP leader Dr Henrik Sandberg from the VTT Technical Research Centre of Finland Ltd., Finland “Here we show the power of collaboration. To deliver these flexible demonstrators and prototypes we have seen materials experts working together with components manufacturers and system integrators. These devices will have a potential impact in several emerging fields such as wearables and the Internet of Things.”

​Fibre-Optics Data Boost from Graphene

A team of researches from the Graphene Flagship have demonstrated high-performance photo detectors for infrared fibre-optic communication systems based on wafer-scale graphene [5]. This can increase the amount of information transferred whilst at the same time make the devises smaller and more cost effective.

Discussing this work which emerged from the Graphene Flagship Work Package Optoelectronics is the paper’s lead author, Daniel Schall from AMO, Germany “Graphene has outstanding properties when it comes to the mobility of its electric charge carriers, and this can increase the speed at which electronic devices operate.”

[5] Schall D., et al., 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics. 1 (9), 781 (2014)

​Rechargeable Batteries with Graphene

A number of different research groups within the Graphene Flagship are working on rechargeable batteries. One group has developed a graphene-based rechargeable battery of the lithium-ion type used in portable electronic devices [6]. Graphene is incorporated into the battery anode in the form of a spreadable ink containing a suspension of graphene nanoflakes giving an increased energy efficiency of 20%. A second group of researchers have demonstrated a lithium-oxygen battery with high energy density, efficiency and stability [7]. They produced a device with over 90% efficiency that may be recharged more than 2,000 times. Their lithium-oxygen cell features a porous, ‘fluffy’ electrode made from graphene together with additives that alter the chemical reactions at work in the battery.

Graphene Flagship researchers show how the 2D material graphene can improve the energy capacity, efficiency and stability of lithium-oxygen batteries.

Both devices were developed in different groups within the Graphene Flagship Work Package Energy and speaking of the technology further is Prof. Clare Grey from Cambridge University, UK “What we’ve achieved is a significant advance for this technology, and suggests whole new areas for research – we haven’t solved all the problems inherent to this chemistry, but our results do show routes forward towards a practical device”.

[6] Liu T., et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science. 350, 6260, 530 (2015)

[7] Hassoun J., et al., An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett., 14 (8), 4901 (2014)

Graphene – What and Why?

Graphene is a two-dimensional material formed by a single atom-thick layer of carbon, with the carbon atoms arranged in a honeycomb-like lattice. This transparent, flexible material has a number of unique properties. For example, it is 100 times stronger than steel, and conducts electricity and heat with great efficiency.

A number of practical applications for graphene are currently being developed. These include flexible and wearable electronics and antennas, sensors, optoelectronics and data communication systems, medical and bioengineering technologies, filtration, super-strong composites, photovoltaics and energy storage.

Graphene and Beyond

The Graphene Flagship also covers other layered materials, as well as hybrids formed by combining graphene with these complementary materials, or with other materials and structures, ranging from polymers, to metals, cement, and traditional semiconductors such as silicon. Graphene is just the first of thousands of possible single layer materials. The Flagship plans to accelerate their journey from laboratory to factory floor.

Especially exciting is the possibility of stacking monolayers of different elements to create materials not found in nature, with properties tailored for specific applications. Such composite layered materials could be combined with other nanomaterials, such as metal nanoparticles, in order to further enhance their properties and uses.​

Graphene – the Fruit of European Scientific Excellence

Europe, North America and Asia are all active centres of graphene R&D, but Europe has special claim to be at the centre of this activity. The ground-breaking experiments on graphene recognised in the award of the 2010 Nobel Prize in Physics were conducted by European physicists, Andre Geim and Konstantin Novoselov, both at Manchester University. Since then, graphene research in Europe has continued apace, with major public funding for specialist centres, and the stimulation of academic-industrial partnerships devoted to graphene and related materials. It is European scientists and engineers who as part of the Graphene Flagship are closely coordinating research efforts, and accelerating the transfer of layered materials from the laboratory to factory floor.

For anyone who would like links to the published papers, you can check out an April 20, 2016 news item featuring the Graphene Flagship highlights on Nanowerk.

Macchiarini controversy and synthetic trachea transplants (part 2 of 2)

For some bizarre frosting on this disturbing cake (see part 1 of the Macchiarini controversy and synthetic trachea transplants for the medical science aspects), a January 5, 2016 Vanity Fair article by Adam Ciralsky documents Macchiarini’s courtship of an NBC ([US] National Broadcasting Corporation) news producer who was preparing a documentary about him and his work,

Macchiarini, 57, is a magnet for superlatives. He is commonly referred to as “world-renowned” and a “super-surgeon.” He is credited with medical miracles, including the world’s first synthetic organ transplant, which involved fashioning a trachea, or windpipe, out of plastic and then coating it with a patient’s own stem cells. That feat, in 2011, appeared to solve two of medicine’s more intractable problems—organ rejection and the lack of donor organs—and brought with it major media exposure for Macchiarini and his employer, Stockholm’s Karolinska Institute, home of the Nobel Prize in Physiology or Medicine. Macchiarini was now planning another first: a synthetic-trachea transplant on a child, a two-year-old Korean-Canadian girl named Hannah Warren, who had spent her entire life in a Seoul hospital. …

Macchiarini had come to Vieira’s [Meredith Vieira, American journalist] attention in September 2012, when she read a front-page New York Times story about the doctor. She turned to [Benita] Alexander, one of her most seasoned and levelheaded producers, to look into a regenerative-medicine story for television.

When Alexander and Macchiarini found themselves together in Illinois for a period of weeks in the spring of 2013—brought there by the NBC special—they met frequently for quiet dinners. The trachea transplant on Hannah Warren, the Korean-Canadian girl, was being performed at Children’s Hospital of Illinois, in Peoria, and the procedure was fraught with risks, not least because Macchiarini’s technique was still a work in progress even for adults. (Christopher Lyles, an American who became the second person to receive an artificial trachea, died less than four months after his surgery at Karolinska.) “He’s a brilliant scientist and a great technical surgeon,” said Dr. Richard Pearl, who operated alongside Macchiarini in Illinois. Like others, Pearl described his Italian colleague as a Renaissance man, fluent in half a dozen languages. Another person, who would get to know him through Alexander, compared Macchiarini to “the Most Interesting Man in the World,” the character made famous in Dos Equis beer commercials.

In Peoria, Macchiarini’s medical magic appeared to have its limitations. Hannah Warren died from post-surgical complications less than three months after the transplant. Her anatomy “was much more challenging than we realized,” Pearl recounted. “Scientifically, the operation itself worked. It was just a shame what happened. When you’re doing something for the first time, you don’t have a textbook. It was the hardest operation I’ve ever scrubbed on.”

Then, there was the romance (from the Ciralsky article),

The personal relationship between Alexander and Macchiarini continued to blossom. In June 2013, they flew to Venice for what Alexander called “an incredibly romantic weekend.” Macchiarini bought her red roses and Venetian-glass earrings and took her on a gondola ride under the Bridge of Sighs. Like a pair of teenagers, they attached love locks to the Ponte dell’Accademia bridge, one of them bearing the inscription “B—P 23/6/13, 4 Ever.” Alexander told me that, “when he took me to Venice, we were still shooting the story … He always paid for everything … gifts, expensive dinners, flowers—the works. When it came to money, he was incredibly generous.”

It is a bedrock principle at NBC and every other news organization that journalists must avoid conflicts of interest, real or apparent. Alexander was not oblivious to this. “I knew that I was crossing the line in the sense that it’s a basic and well-understood rule of journalism that you don’t become involved with one of the subjects of your story, because your objectivity could clearly become compromised,” she told me. “I never once thought about him paying for the trip as him ‘buying’ me in some fashion, or potentially using money to influence me, because, from my perspective anyway … that just wasn’t the case. We were just crazy about each other, and I was falling in love.”

Alexander made her way to Stockholm at a later date (from the Ciralsky article),

Macchiarini was in Stockholm to attend to Yesim Cetir, a 25-year-old Turkish woman whose artificial trachea had failed. As Swedish television later reported, “It has taken nearly 100 surgeries to support the cell tissue around the airpipes. Her breathing is bad, and to avoid suffocation, her respiratory tract must be cleansed from mucus every fourth hour. She has now been lying in the hospital for nearly 1,000 days.” NBC’s special would come to include skeptical commentary from Dr. Joseph Vacanti, who questioned the sufficiency of Macchiarini’s research, but Cetir’s post-operative complications were not mentioned.

Prior to the NBC documentary’s (A Leap of Faith) airing, the romance became an engagement (from the Ciralsky article),

Macchiarini proposed to Benita Alexander on Christmas Day 2013, Alexander said. In the months leading up to the airing of A Leap of Faith, in June 2014, Macchiarini and Alexander went on trips to the Bahamas, Turkey, Mexico, Greece, and Italy. They went on shopping sprees and ate their way through Michelin-starred restaurants. Macchiarini even took Alexander and her daughter to meet his mother at her home, in Lucca. “She cooked homemade gnocchi,” Alexander recalled. Macchiarini’s mother shared pictures from the family photo album while her son translated. Emanuela Pecchia, the woman whom Macchiarini had married years earlier, lived only a short distance away. When Macchiarini informed Alexander, during a dinner cruise later that summer, that his divorce had finally come through, she recounted, he gave her an engagement ring.

In the months that followed, the doctor and his fiancée began planning their wedding in earnest. They set a date for July 11, 2015, in Rome. But their desire to marry in the Catholic Church was complicated by the fact that she is Episcopalian and divorced. Divorce would have been an issue for Macchiarini as well. However, Alexander said, Macchiarini insisted that he would fix things by visiting his friend and patient in the Vatican.

In October 2014, Alexander recalled, Macchiarini told her that he had met with Pope Francis for four hours and that the Pontiff consented to the couple’s marriage and, in yet another sign of his progressive tenure, vowed to officiate. Alexander said Macchiarini referred to himself as Pope Francis’s “personal doctor” and maintained that in subsequent meetings his patient offered to host the wedding at his summer residence, the Apostolic Palace of Castel Gandolfo.

Shortly after quitting her job in anticipation of her July 2015 wedding to Macchiarini, Alexander learned that Pope Francis who was supposed to officiate was in fact scheduled to be in South America during that time.  From the Ciralsky article,

As Alexander would discover with the help of a private investigator named Frank Murphy, virtually every detail Macchiarini provided about the wedding was false. A review of public records in Italy would also seem to indicate that Macchiarini remains married to Emanuela Pecchia, his wife of nearly 30 years. Murphy, who spent 15 years as a Pennsylvania State Police detective, told me, “I’ve never in my experience witnessed a fraud like this, with this level of international flair…. The fact that he could keep all the details straight and compartmentalize these different lives and lies is really amazing.

Ciralsky broaches the question of why someone with Macchiarini’s accomplishments would jeopardize his position in such a way,

To understand why someone of considerable stature could construct such elaborate tales and how he could seemingly make others believe them, I turned to Dr. Ronald Schouten, a Harvard professor who directs the Law and Psychiatry Service at Massachusetts General Hospital. “We’re taught from an early age that when something is too good to be true, it’s not true,” he said. “And yet we ignore the signals. People’s critical judgment gets suspended. In this case, that happened at both the personal and institutional level.” Though he will not diagnose from a distance, Schouten, who is one of the nation’s foremost authorities on psychopathy, observed, “Macchiarini is the extreme form of a con man. He’s clearly bright and has accomplishments, but he can’t contain himself. There’s a void in his personality that he seems to want to fill by conning more and more people.” When I asked how Macchiarini stacks up to, say, Bernie Madoff, he laughed and said, “Madoff was an ordinary con man with a Ponzi scheme. He never claimed to be the chairman of the Federal Reserve. He didn’t suggest he was part of a secret international society of bankers. This guy is really good.”

In addition to the romance, Ciralsky and Vanity Fair checked out Macchiarini’s résumé,

Vanity Fair contacted many of the schools at which Macchiarini claimed to have either earned a degree or held an academic post. While the University of Pisa confirmed that he indeed received an M.D. and had specialized in surgery, the University of Alabama at Birmingham denied that Macchiarini earned a master’s in biostatistics or that he participated in a two-year fellowship in thoracic surgery. In fact, according to U.A.B. spokesman Bob Shepard, the only record the school has for Macchiarini indicates that he did a six-month non-surgical fellowship in hematology/oncology—which according to the current Accreditation Council for Graduate Medical Education guidelines is 30 months shy of what is required for a clinical fellowship in that field. The University of Paris—Sud never responded to repeated requests for comment, but Hannover Medical School wrote to say that Macchiarini had been neither a full nor an associate professor there, merely an adjunct.

Comments

As I noted in part 1, there are medical science and ethical issues to be considered. As well, Macchiarini’s romantic behaviour certainly seems fraudulent as do parts of his curriculum vitae (CV) and there’s more about Macchiarini’s professional accomplishments (read Ciralsky’s entire January 5, 2016 Vanity Fair article for details).

The romantic and CV chicanery may or may not suggest serious problems with Macchiarini’s revolutionary procedure and ethics. History is littered with stories of people who achieved extraordinary advances and were not the most exemplary human beings. Paracelsus, founder of the field of toxicology and an important contributor in the fields of medicine and science, was reputedly a sketchy character. Caravaggio now remembered for his art, killed someone (accidentally or not) and was known for his violent behaviour even in a time when there was higher tolerance for it.

What I’m saying is that Macchiarini may be pioneering something important regardless of how you view his romantic chicanery and falsified CV. Medical research can be high risk and there is no way to avoid that sad fact. However, criticisms of the work from Macchiarini’s colleagues need to be addressed and the charge that a Russian patient who was not in imminent danger and not properly advised of the extremely high risk must also be addressed.

It should also be remembered that Macchiarini did not pull this off by himself. Institutions such as the Karolinska Institute failed to respond appropriately in the initial stages. As well, the venerable medical journal, The Lancet seems reluctant to address the situation even now.

Before dissecting the Alexander situation, it should be said that she showed courage in admitting her professional transgression and discussing a painful and humiliating romantic failure. All of us are capable of misjudgments and wishful thinking, unfortunately for her, this became an international affair.

More critically, Alexander, a journalist, set aside her ethics for a romance and what seems to be surprisingly poor research by Alexander’s team.  (Even I had a little something about this in 2013.) How did a crack NBC research team miss the problems? (For the curious, this Bryan Burrough April 30, 2015 article for Vanity Fair highlighting scandals plaguing NBC News may help to answer the question about NBC research.)

Finally, there’s an enormous amount of pressure on stem cell scientists due to the amounts of money and the degree of prestige involved. Ciralsky’s story notes the pressure when he describes how Macchiarini got one of this positions at an Italian facility in Florence through political machinations. (The situation is a little more complicated than I’ve described here but an accommodation in Macchiarini’s favour was made.) Laura Margottini’s Oct. 7, 2014 article for Science magazine provides a synopsis of another stem cell controversy in Italy.

Stem cell controversies have not been confined to Italy or Europe for that matter. There was the South Korean scandal in 2006 (see a Sept. 19, 2011 BBC [British Broadcasting Corporation] news online post for an update and synopsis) when a respected scientist was found to have falsified research results. Up to that  point, South Korea was considered the world leader in the field.

Finally,  if there are two survivors, is there a possibility that this procedure could be made successful for more patients or that some patients are better candidates than others?

Additional notes

Macchiarini is mounting a defence for himself according to a March 30, 2016 news item on phys.org and a Swedish survey indicates that the average Swede’s trust in researchers still remains high despite the Macchiarini imbroglio according to an April 15, 2016 news item on phys.org.

For anyone interested in the timeline and updates for this scandal, Retraction Watch offers this: http://retractionwatch.com/2016/02/12/reading-about-embattled-trachea-surgeon-paolo-macchiarini-heres-what-you-need-to-know/

Macchiarini controversy and synthetic trachea transplants (part 1 of 2)

Having featured Paolo Macchiarini and his work on transplanting synthetic tracheas into humans when it was lauded (in an Aug. 2, 2011 post titled: Body parts nanostyle), it seems obligatory to provide an update now that he and his work are under a very large cloud. Some of this is not new, there were indications as early as this Dec. 27, 2013 post titled: Trachea transplants: an update which featured an article by Gretchen Vogel in Science magazine hinting at problems.

Now, a Feb. 4, 2016 article by Gretchen Vogel for Science magazine provides a more current update and opens with this (Note: Links have been removed),

The Karolinska Institute (KI) in Stockholm “has lost its confidence” in surgeon Paolo Macchiarini, a senior researcher at the institute, and will end its ties with him. In a statement issued today, KI said that it won’t renew Macchiarini’s contract after it expires on 30 November 2016.

The move comes in the wake of a chilling three-part TV documentary about Macchiarini, a former media darling who was cleared of scientific misconduct charges by KI vice-chancellor Anders Hamsten last summer. Among other things, The Experiments, broadcast in January by Swedish public television channel SVT, suggests that Macchiarini didn’t fully inform his patients about the risks of his pioneering trachea implants. Most of the patients died, including at least one—a woman treated in Krasnodar, Russia—who was not seriously ill before the surgery.

For a profession that has “do no harm” as one of its universal tenets, the hint that a patient not in dire need agreed to a very risky procedure without being properly apprised of the risks is chilling.

Macchiarini’s behavriour is not the only concern, the Karolinska Institute is also being held to account (from the Vogel article),

The film has also raised questions about the way Hamsten and other administrators at KI, Sweden’s most prestigious university and home of the selection committee for the Nobel Prize in Physiology or Medicine, have handled the scandal. Today [Feb. 4, 2016], the Institute’s Board decided to launch an independent review, to be led by an experienced lawyer, into KI’s 5-year relationship with Macchiarini. Among the things the inquiry should address is whether any errors were made or laws were broken when Macchiarini was hired; whether misconduct charges against him were handled properly; and why, given the controversy, he was given a new 1-year contract  as a senior researcher after his appointment as a visiting professor at KI ended in October 2015.

Getting back to Macchiarini (from the Vogel article),

In 2014, colleagues at KI alleged that Macchiarini’s papers made his transplants seem more successful than they were, omitting serious complications. Two patients treated at Karolinska died, and a third has been in intensive care since receiving a trachea in 2012. The Illinois patient also died, as did three patients in Russia. Bengt Gerdin, a professor emeritus of surgery at Uppsala University in Sweden who investigated the charges at KI’s request, concluded in May 2015 that differences between published papers and lab records constituted scientific misconduct. But Hamsten rejected that conclusion in August, based on additional material Macchiarini submitted later.

The documentary shows footage of a patient who says Macchiarini reassured him before the surgery that experiments had been done on pigs, when in fact none had taken place. It also follows the wrenching story of the first patient in Krasnodar. A 33-year-old woman, she was living with a tracheostomy that she said caused her pain, but her condition was not life-threatening. The film suggests that she wasn’t fully aware of the risks of the operation, and that Macchiarini and his colleagues knew about problems with the implant before the surgery. The patient’s first implant failed, and she received a second one in 2013. She died in 2014.

So in May 2015, an investigator concluded there had been scientific misconduct and, yet, Macchiarini’s contract is renewed in the fall of 2015.

Kerry Grens in a March 7, 2016 article for The Scientist provides information about the consequences of the latest investigation into Macchiarini’s work (Note: Links have been removed),

Karl-Henrik Grinnemo, a surgeon at the Karolinska Institute and one of a number of colleagues who voiced concerns about the conduct of fellow surgeon Paolo Macchiarini, is no longer a coauthor on a 2011 The Lancet study led by Macchiarini that described an artificial windpipe. Grinnemo asked to be removed from the paper, and the journal complied last week (March 3).

Grinnemo’s removal from the study is the latest in a string of repercussions related to an investigation of Macchiarini’s work. Last month, the head of the Karolinska Institute, Anders Hamsten, resigned because the institution’s initial investigation concluded no wrongdoing. Hamsten said he and his colleagues were probably wrong about Macchiarini; the institute has launched another investigation into the surgeon’s work.

A March 23, 2016 news item on phys.org announces Macchiarini’s firing from the Karolinska Institute and provides a brief description of his work with synthetic tracheas (Note: A link has been removed),

Sweden’s Karolinska Institute (KI), which awards the Nobel Prize for Medicine, on Wednesday [March 23, 2016] dismissed a Italian transplant surgeon suspected of research fraud and ethical breaches, in an affair that has plunged the renowned institution into crisis.

“It is impossible for KI to continue to have any cooperation with Paolo Macchiarini. He has acted in a way that has had very tragic consequences for the people affected and their families. His conduct has seriously damaged confidence in KI,” human resource director Mats Engelbrektson said in a statement.

Macchiarini, a 57-year-old visiting professor at Karolinska since 2010, rose to fame for carrying out the first synthetic trachea, or windpipe, transplant in 2011.

It was a plastic structure seeded with the patient’s own stem cells—immature cells that grow into specialised cells of the body’s organs.

The surgeon performed three such operations in Stockholm and five others around the world, and the exploit was initially hailed as a game-changer for transplant medicine.

But six of the eight patients reportedly died, and allegations ensued that the risky procedure had been carried out on at least one individual who had not been life-threateningly ill.

Macchiarini is also suspected of lying about his scientific research and his past experience with prestigious medical research centres.

“Paolo Macchiarini supplied false or misleading information in the CV he submitted to KI” and “demonstrated scientific negligence” in his research, said the institute.

H/t to Don Bright, a reader who informed me about this April 2, 2016 posting by Pierre Delaere (a long time Macchiarini critic), published in Leonid Schneider’s blog, For Better Science,

I have written this overview as a trachea surgeon working at KU Leuven and privileged witness of the “Tracheal regeneration scandal” from the very start.

Because of its immense scale, the scandal is difficult to grasp and explain. Fortunately, we have recently been provided with an excellent overview in the 3 x 1-hour documentary by Bosse Lindquist on Swedish national TV. Due to Paolo Macchiarini’s appetite for the spotlights and thanks to the professional standards of the Swedish top producer this is probably the very first case of a medical crime played out in the media. Anyone who has seen this brilliant investigative documentary cannot help but wonder why there are still people who doubt that this is a case of gross medical misconduct.

The story began in Barcelona in 2008 with the publication in The Lancet of a report on a regenerated windpipe, featuring Paolo Macchiarini (PM) as its first author (Macchiarini et al. Lancet 2008). This ground-breaking achievement consisted of bringing to life a dead windpipe from a donor, by putting it in a plastic box, a so-called ‘bioreactor’ together with bone marrow fluid (stem cells). A few weeks later, I wrote a letter to The Lancet, pointing out:

    “The main drawback of the proposed reconstruction is the lack of an intrinsic blood supply to the trachea. We know that a good blood supply is the first requirement in all other tissue and organ transplantations. Therefore, the reported success of this technique is questionable” (correspondence by Delaere and Hermans, Lancet 2009).

Delaere goes on to recount and critique the story of the first synthetic trachea,

…  PM had mounted bone marrow extract (‘stem cells’) on a plastic tube (‘bioartificial trachea’) in a plastic box (‘bioreactor’). After a day or two this creation was ‘successfully’ transplanted in a patient with a trachea defect. This occurred in the Karolinska hospital in July 2011 and was reported on in The Lancet shortly afterwards . Biologically speaking, the procedure is absolutely implausible.

In reality an important part of the windpipe had been replaced by a synthetic tube, and the presence of stem cells made no difference to this whatsoever.

For those not in the field, this procedure may still seem acceptable. A blood vessel can also be replaced by synthetic material because the material can grow into the sterile environment of the blood stream. However, this is completely impossible if the synthetic material is exposed to an environment of inhaled air full of bacteria. The laws of biology allow us to predict accurately what will happen after part of the windpipe has been replaced by a synthetic tube. After some time, the suturing between the synthetic tube and the surrounding tissue will come loose, leading to a number of serious complications. These complications inevitably lead to death in the short (months) or in the mid-long term (a few years). How long the patient will survive also depends on the options still left to treat complications. In most cases so far, a metal stent had to be implanted to keep the airway open in the sutured area.It is entirely predictable that additional complications after placement of the metal stent will ultimately lead to the patient’s death, usually by asphyxiation or by bleeding out after complete rupture of the sutures. This gruesome fate awaiting patients was clearly shown in the documentary. Replacing a part of the trachea by a synthetic tube can therefore be compared to death by medical torture. The amount of suffering it induces is directly proportional to the duration between implantation and the patient’s death.

Delaere describes his own and others’ efforts to bring these issues to light,

Since 2011, I have contacted both the President of KI and the Editors of The Lancet with well-documented information to clarify that what had happened was completely unacceptable. These alerts were repeated in 2013 and 2014. Since 2014, four doctors from KI, who had seen it all happen, have been collecting evidence to show the extent of misconduct [Matthias Corbascio, Thomas Fux, Karl-Henrik Grinnemo and Oscar Simonsson, their letter to Vice-Chancellor Hamsten from June 22, 2015, and its attachments available here; -LS]. Not only did KI not react to the doctors’ complaint, these doctors were in fact intimidated and threatened with dismissal. KI’s Ethical Commission came to a verdict of ‘no misconduct’ in April 2015 following an inquiry based on a series of complaints filed by myself [verdict available from SVT here, -LS]. The Lancet Editor did not even bother to reply to my complaints.

In the reports, eight patients were given synthetic tracheas with six now dead and, allegedly, two still living. Delaere comments,

… To prove that this transplantation technique is effective, reports about the long-term success of this technique in the first 2 patients in Barcelona and London is still being spread. What the real situation of the two patients is at the moment is very difficult to establish. For some time now, reports about these two cases seem to have disappeared from the face of the earth. After the air has been cleared in Sweden, the same will probably happen in London and Barcelona.

Comments

Sometimes medical research can be very dangerous. While, a 25% chance of success (two of Macchiarini’s eight patients undergoing the synthetic trachea transplant have allegedly survived) is not encouraging, it’s understandable that people in dire circumstances and with no other options might want to take a chance.

It’s troubling that the woman in Russia was not in dire straights and that she may not have known how dangerous the procedure is. It would have been unethical of Macchiarini to knowingly perform the procedure under those circumstances.

I am wrestling with some questions about the composite used to create the synthetic trachea and the surviving patients. My understanding is that the composite was designed for eventual deterioration as the patient’s own harvested stem cells fully formed the trachea. Whether the trachea is the one I imagined or he plastic one described by Delaere, how did two patients survive and what is their condition now? The first patient Andemariam Teklesenbet Beyene in 2011 had apparently completed his PhD studies by 2013 (my Dec. 27, 2013 posting). Assuming Beyene is one of the two survivors, what has happened to him and the other one?

As for Delaere’s comments, he certainly raises some red flags not only regarding the procedure but the behaviour of the Lancet editorial team and the Karolinska Institute (they seem to be addressing the issues by firing Macchiarini and with the  resignations of the staff and board).

There are two more twists to this story, which carries on in part 2.

When based on plastic materials, contemporary art can degrade quickly

There’s an intriguing April 1, 2016 article by Josh Fischman for Scientific American about a problem with artworks from the 20th century and later—plastic-based materials (Note: A link has been removed),

Conservators at museums and art galleries have a big worry. They believe there is a good chance the art they showcase now will not be fit to be seen in one hundred years, according to researchers in a project  called Nanorestart. Why? After 1940, artists began using plastic-based material that was a far cry from the oil-based paints used by classical painters. Plastic is also far more fragile, it turns out. Its chemical bonds readily break. And they cannot be restored using techniques historically relied upon by conservators.

So art conservation scientists have turned to nanotechnology for help.

Sadly, there isn’t any detail in Fischman’s article (*ETA June 17, 2016 article [for Fast Company] by Charlie Sorrel, which features some good pictures, a succinct summary of Fischman’s article and a literary reference [Kurt Vonnegut’s Bluebeard]I*) about how nanotechnology is playing or might play a role in this conservation effort. Further investigation into the two projects (NanoRestART and POPART) mentioned by Fischman didn’t provide much more detail about NanoRestART’s science aspect but POPART does provide some details.

NanoRestART

It’s probably too soon (this project isn’t even a year-old) to be getting much in the way of the nanoscience details but NanoRestART has big plans according to its website homepage,

The conservation of this diverse cultural heritage requires advanced solutions at the cutting edge of modern chemistry and material science in an entirely new scientific framework that will be developed within NANORESTART project.

The NANORESTART project will focus on the synthesis of novel poly-functional nanomaterials and on the development of highly innovative restoration techniques to address the conservation of a wide variety of materials mainly used by modern and contemporary artists.

In NANORESTART, enterprises and academic centers of excellence in the field of synthesis and characterization of nano- and advanced materials have joined forces with complementary conservation institutions and freelance restorers. This multidisciplinary approach will cover the development of different materials in response to real conservation needs, the testing of such materials, the assessment of their environmental impact, and their industrial scalability.

NanoRestART’s (NANOmaterials for the REStoration of works of ART) project page spells out their goals in the order in which they are being approached,

The ground-breaking nature of our research can be more easily outlined by focussing on specific issues. The main conservation challenges that will be addressed in the project are:

 

Conservation challenge 1Cleaning of contemporary painted and plastic surfaces (CC1)

Conservation challenge 2Stabilization of canvases and painted layers in contemporary art (CC2)

Conservation challenge 3Removal of unwanted modern materials (CC3)

Conservation challenge 4Enhanced protection of artworks in museums and outdoors (CC4)

The European Commission provides more information about the project on its CORDIS website’s NanoRestART webpage including the start and end dates for the project and the consortium members,

From 2015-06-01 to 2018-12-01, ongoing project

CHALMERS TEKNISKA HOEGSKOLA AB
Sweden
MIRABILE ANTONIO
France
NATIONALMUSEET
Denmark
CONSIGLIO NAZIONALE DELLE RICERCHE
Italy
UNIVERSITY COLLEGE CORK, NATIONAL UNIVERSITY OF IRELAND, CORK
Ireland
MBN NANOMATERIALIA SPA
Italy
KEMIJSKI INSTITUT
Slovenia
CHEVALIER AURELIA
France
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Brazil
UNIVERSITA CA’ FOSCARI VENEZIA
Italy
AKZO NOBEL PULP AND PERFORMANCE CHEMICALS AB
Sweden
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
France
ARKEMA FRANCE SA
France
UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Spain
UNIVERSITY COLLEGE LONDON
United Kingdom
ZFB ZENTRUM FUR BUCHERHALTUNG GMBH
Germany
UNIVERSITAT DE BARCELONA
Spain
THE BOARD OF TRUSTEES OF THE TATE GALLERY
United Kingdom
ASSOCIAZIONE ITALIANA PER LA RICERCA INDUSTRIALE – AIRI
Italy
THE ART INSTITUTE OF CHICAGO
United States
MINISTERIO DE EDUCACION, CULTURA Y DEPORTE
Spain
STICHTING HET RIJKSMUSEUM
Netherlands
UNIVERSITEIT VAN AMSTERDAM
Netherlands
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
Brazil
ACCADEMIA DI BELLE ARTI DI BRERA
Italy

It was a bit surprising to see Brazil and the US as participants but The Art Institute of Chicago has done nanotechnology-enabled conservation in the past as per my March 24, 2014 posting about a Renoir painting. I’m not familiar with the Brazilian organization.

POPART

POPART (Preservation of Plastic Artefacts in museum collections) mentioned by Fischman was a European Commission project which ran from 2008 – 2012. Reports can be found on the CORDIS Popart webpage. The final report has some interesting bits (Note: I have added subheads in the [] square brackets),

To achieve a valid comparison of the various invasive and non-invasive techniques proposed for the identification and characterisation of plastics, a sample collection (SamCo) of plastics artefacts of about 100 standard and reference plastic objects was gathered. SamCo was made up of two kinds of reference materials: standards and objects. Each standard represents the reference material of a ‘pure’ plastic; while each object represents the reference of the same plastic as in the standards, but compounded with pigments, dyestuffs, fillers, anti oxidants, plasticizers etc.  Three partners ICN [Instituut Collectie Nederland], V&A [Victoria and Albert Museum] and Natmus [National Museet] collected different natural and synthetic plastics from the ICN reference collections of plastic objects, from flea markets, antique shops and from private collections and from their own collection to contribute to SamCo, the sample collection for identification by POPART partners. …

As a successive step, the collections of the following museums were surveyed:

-Victoria & Albert Museum (V&A), London, U.K.
-Stedelijk Museum, Amsterdam, The Netherlands
-Musée d’Art Moderne et d’Art Contemporaine (MAMAC) Nice, France
-Musée d’Art moderne, St. Etienne, France
-Musée Galliera, Paris, France

At the V&A approximately 200 objects were surveyed. Good or fair conservation conditions were found for about 85% of the objects, whereas the remaining 15% was in poor or even in unacceptable (3%) conditions. In particular, crazing and delamination of polyurethane faux leather and surface stickiness and darkening of plasticized PVC were observed. The situation at the Stedelijk Museum in Amsterdam was particularly favourable because a previous survey had been done in 1995 so that it was possible to make a comparison with the Popart survey in 2010. A total number of 40 objects, which comprised plastics early dating from the 1930’s until the newer plastics from the 1980’s, were considered and their actual conservation state compared with the 1995 records. Of the objects surveyed in 2010, it can be concluded that 21 remained in the same condition. 13 objects containing PA, PUR, PVC, PP or natural rubber changed due to chemical and physical degradation while works of art containing either PMMA or PS changed due to mechanical damages and incorrect artist’s technique (inappropriate adhesive) into a lesser condition. 6 works of art (containing either PA or PMMA or both) changed into a better condition due to restoration or replacements.  More than 230 objects have been examined in the 3 museums in France. A particular effort was devoted to the identification of the constituting plastics materials. Surveys have been undertaken without any sophisticated equipment, in order to work in museums everyday conditions. Plastics hidden by other materials or by paint layers were not or hardly accessible, it is why the final count of some plastics may be under estimated in the final results. Another outcome is that plastic identification has been made at a general level only, by trying to identify the polymer family each plastic belongs to. Lastly, evidence of chemical degradation processes that do not cause visible or perceptible damage have not been detected and could not be taken in account in the final results.

… The most damaged artefacts resulted constituted by cellulose acetate, cellulose nitrate and PVC.

[Polly (the doll)]

One of the main issues that is of interest for conservators and curators is to assess which kinds of plastics are most vulnerable to deterioration and to what extent they can deteriorate under the environmental conditions normally encountered in museums. Although one might expect that real time deterioration could be ascertained by a careful investigation of museum objects on display or in storage, real objects or artworks may not sampled due to ethical considerations. Therefore, reference objects were prepared by Natmus in the form of a doll (Polly) for simultaneous exposures in different environmental conditions. The doll comprised of 11 different plastics representative of types typically found in modern museum collections. The 16 identical dolls realized were exposed in different places, not only in normal exhibit conditions, but also in some selected extreme conditions to ascertain possible acceleration of the deterioration process. In most cases the environmental parameters were also measured. The dolls were periodically evaluated by visual inspection and in selected cases by instrumental analyses. 

In conclusion the experimental campaign carried out with Polly dolls can be viewed as a pilot study aimed at tackling the practical issues related to the monitoring of real three dimensional plastic artworks and the surrounding environment.

The overall exposure period (one year and half) was sufficient to observe initial changes in the more susceptible polymers, such as polyurethane ethers and esters, and polyamide, with detectable chromatic changes and surface effects. Conversely the other polymers were shown to be stable in the same conditions over this time period.

[Polly as an awareness raising tool]

Last but not least, the educational and communication benefits of an object like Polly facilitated the dissemination of the Popart Project to the public, and increased the awareness of issues associated with plastics in museum collections.

[Cleaning issues]

Mechanical cleaning has long been perceived as the least damaging technique to remove soiling from plastics. The results obtained from POPART suggest that the risks of introducing scratches or residues by mechanical cleaning are measurable. Some plastics were clearly more sensitive to mechanical damage than others. From the model plastics evaluated, HIPS was the most sensitive followed by HDPE, PVC, PMMA and CA. Scratches could not be measured on XPS due to its inhomogeneous surfaces. Plasticised PVC scratched easily, but appeared to repair itself because plasticiser migrated to surfaces and filled scratches.

Photo micrographs revealed that although all 22 cleaning materials evaluated in POPART scratched test plastics, some scratches were sufficiently shallow to be invisible to the naked eye. Duzzit and Scotch Brite sponges as well as all paper based products caused more scratching of surfaces than brushes and cloths. Some cleaning materials, notably Akapad yellow and white sponges, compressed air, latex and synthetic rubber sponges and goat hair brushes left residues on surfaces. These residues were only visible on glass-clear, transparent test plastics such as PMMA. HDPE and HIPS surfaces both had matte and roughened appearances after cleaning with dry-ice. XPS was completely destroyed by the treatment. No visible changes were present on PMMA and PVC.

Of the cleaning methods evaluated, only canned air, natural and synthetic feather duster left surfaces unchanged. Natural and synthetic feather duster, microfiber-, spectacle – and cotton cloths, cotton bud, sable hair brush and leather chamois showed good results when applied to clean model plastics.

Most mechanical cleaning materials induced static electricity after cleaning, causing immediate attraction of dust. It was also noticed that generally when adding an aqueous cleaning agent to a cleaning material, the area scratched was reduced. This implied that cleaning agents also functioned as lubricants. A similar effect was exhibited by white spirit and isopropanol.
Based on cleaning vectors, Judith Hofenk de Graaff detergent, distilled water and Dehypon LS45 were the least damaging cleaning agents for all model plastics evaluated. None of the aqueous cleaning agents caused visible changes when used in combination with the least damaging cleaning materials. Sable hair brush, synthetic feather duster and yellow Akapad sponge were unsuitable for applying aqueous cleaning agents. Polyvinyl acetate sponge swelled in contact with solvents and was only suitable for aqueous cleaning processes.

Based on cleaning vectors, white spirit was the least damaging solvent. Acetone and Surfynol 61 were the most damaging for all model plastics and cannot be recommended for cleaning plastics. Surfynol 61 dissolved polyvinyl acetate sponge and left a milky residue on surfaces, which was particularly apparent on clear PMMA surfaces. Surfynol 61 left residues on surfaces on evaporating and acetone evaporated too rapidly to lubricate cleaning materials thereby increasing scratching of surfaces.

Supercritical carbon dioxide induced discolouration and mechanical damage to the model plastics, particularly to XPS, CA and PMMA and should not be used for conservation cleaning of plastics.

Potential Impact:
Cultural heritage is recognised as an economical factor, the cost of decay of cultural heritage and the risk associated to some material in collection may be high. It is generally estimated that plastics, developed at great numbers since the 20th century’s interbellum, will not survive that long. This means that fewer generations will have access to lasting plastic art for study, contemplation and enjoyment. On the other hand will it normally be easier to reveal a contemporary object’s technological secrets because of better documentation and easier access to artists’ working methods, ideas and intentions. A first more or less world encompassing recognition of the problems involved with museum objects made wholly or in part of plastics was through the conference ‘Saving the twentieth century” held in Ottawa, Canada in 1991. This was followed later by ‘Modern Art, who cares’ in Amsterdam, The Netherlands in 1997, ‘Mortality Immortality? The Legacy of Modern Art’ in Los Angeles, USA in 1998 and, for example much more recent, ‘Plastics –Looking at the future and learning from the Past’ in London, UK in 2007. A growing professional interest in the care of plastics was clearly reflected in the creation of an ICOM-CC working group dedicated to modern materials in 1996, its name change to Modern Materials and Contemporary Art in 2002, and its growing membership from 60 at inception to over 200 at the 16th triennial conference in Lisbon, Portugal in 2011 and tentatively to over 300 as one of the aims put forward in the 2011-2014 programme of that ICOM-CC working group. …

[Intellectual property]

Another element pertaining to conservation of modern art is the copyright of artists that extends at least 50 years beyond their death. Both, damage, value and copyright may influence the way by which damage is measured through scientific analysis, more specifically through the application of invasive or non invasive techniques. Any selection of those will not only have an influence on the extent of observable damage, but also on the detail of information gathered and necessary to explain damage and to suggest conservation measures.

[How much is deteriorating?]

… it is obvious from surveys carried out in several museums in France, the UK and The Netherlands that from 15 to 35 % of what I would then call an average plastic material based collection is in a poor to unacceptable condition. However, some 75 % would require cleaning,

I hope to find out more about how nanotechnology is expected to be implemented in the conservation and preservation of plastic-based art. The NanoRestART project started in June 2015 and hopefully more information will be disseminated in the next year or so.

While it’s not directly related, there was some work with conservation of daguerreotypes (19th century photographic technique) and nanotechnology mentioned in my Nov. 17, 2015 posting which was a followup to my Jan. 10, 2015 posting about the project and the crisis precipitating it.

*ETA June 30, 2016: Here’s clip from a BBC programme, Science in Action broadcast on June 30, 2016 featuring a chat with some of the scientists involved in the NanoRestArt project (Note: This excerpt is from a longer programme and seemingly starts in the middle of a conversation,)

Feeling with a bionic finger

From what I understand one of the most difficult aspects of an amputation is the loss of touch, so, bravo to the engineers. From a March 8, 2016 news item on ScienceDaily,

An amputee was able to feel smoothness and roughness in real-time with an artificial fingertip that was surgically connected to nerves in his upper arm. Moreover, the nerves of non-amputees can also be stimulated to feel roughness, without the need of surgery, meaning that prosthetic touch for amputees can now be developed and safely tested on intact individuals.

The technology to deliver this sophisticated tactile information was developed by Silvestro Micera and his team at EPFL (Ecole polytechnique fédérale de Lausanne) and SSSA (Scuola Superiore Sant’Anna) together with Calogero Oddo and his team at SSSA. The results, published today in eLife, provide new and accelerated avenues for developing bionic prostheses, enhanced with sensory feedback.

A March 8, 2016 EPFL press release (also on EurekAlert), which originated the news item, provides more information about Sorenson’s experience and about the other tests the research team performed,

“The stimulation felt almost like what I would feel with my hand,” says amputee Dennis Aabo Sørensen about the artificial fingertip connected to his stump. He continues, “I still feel my missing hand, it is always clenched in a fist. I felt the texture sensations at the tip of the index finger of my phantom hand.”

Sørensen is the first person in the world to recognize texture using a bionic fingertip connected to electrodes that were surgically implanted above his stump.

Nerves in Sørensen’s arm were wired to an artificial fingertip equipped with sensors. A machine controlled the movement of the fingertip over different pieces of plastic engraved with different patterns, smooth or rough. As the fingertip moved across the textured plastic, the sensors generated an electrical signal. This signal was translated into a series of electrical spikes, imitating the language of the nervous system, then delivered to the nerves.

Sørensen could distinguish between rough and smooth surfaces 96% of the time.

In a previous study, Sorensen’s implants were connected to a sensory-enhanced prosthetic hand that allowed him to recognize shape and softness. In this new publication about texture in the journal eLife, the bionic fingertip attains a superior level of touch resolution.

Simulating touch in non-amputees

This same experiment testing coarseness was performed on non-amputees, without the need of surgery. The tactile information was delivered through fine, needles that were temporarily attached to the arm’s median nerve through the skin. The non-amputees were able to distinguish roughness in textures 77% of the time.

But does this information about touch from the bionic fingertip really resemble the feeling of touch from a real finger? The scientists tested this by comparing brain-wave activity of the non-amputees, once with the artificial fingertip and then with their own finger. The brain scans collected by an EEG cap on the subject’s head revealed that activated regions in the brain were analogous.

The research demonstrates that the needles relay the information about texture in much the same way as the implanted electrodes, giving scientists new protocols to accelerate for improving touch resolution in prosthetics.

“This study merges fundamental sciences and applied engineering: it provides additional evidence that research in neuroprosthetics can contribute to the neuroscience debate, specifically about the neuronal mechanisms of the human sense of touch,” says Calogero Oddo of the BioRobotics Institute of SSSA. “It will also be translated to other applications such as artificial touch in robotics for surgery, rescue, and manufacturing.”

Here’s a link to and a citation for the paper,

Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans by Calogero Maria Oddo, Stanisa Raspopovic, Fiorenzo Artoni, Alberto Mazzoni, Giacomo Spigler, Francesco Petrini, Federica Giambattistelli, Fabrizio Vecchio, Francesca Miraglia, Loredana Zollo, Giovanni Di Pino, Domenico Camboni, Maria Chiara Carrozza, Eugenio Guglielmelli, Paolo Maria Rossini, Ugo Faraguna, Silvestro Micera. eLife, 2016; 5 DOI: 10.7554/eLife.09148 Published March 8, 2016

This paper appears to be open access.

Graphene like honey

Two teams have published results in Science magazine showing that graphene can flow like a liquid. The UK-Italian team has likened the movement to honey while the US team likened it to water (Feb. 18, 2016 posting). Here’s more about the honey from a Feb. 12, 2016 news item on Nanowerk (Note: A link has been removed),

Electrons which act like slow-pouring honey have been observed for the first time in graphene, prompting a new approach to fundamental physics.

Electrons are known to move through metals like bullets being reflected only by imperfections, but in graphene they move like in a very viscous liquid, University of Manchester researchers have found.

The possibility of a highly viscous flow of electrons in metals was predicted several decades ago but despite numerous efforts never observed, until now as reported in the journal Science (“Negative local resistance caused by viscous electron backflow in graphene”).

The observation and study of this effect allows better understanding of the counterintuitive behaviour of interacting particles, where the human knowledge and developed mathematical techniques are lacking.

A Feb. 11, 2016 University of Manchester press release, which originated the news item, offers more technical detail,

One-atom thick material graphene, first explored a decade ago by a team at The University of Manchester, is renowned for its many superlative properties and, especially, exceptionally high electrical conductivity.

It is widely believed that electrons in graphene can move ‘ballistically’, like bullets or billiard balls scattering only at graphene boundaries or other imperfections.

The reality is not quite so simple, as found by a Manchester group led by Sir Andre Geim in collaboration with Italian researchers led by Prof Marco Polini.

They observed that the electric current in graphene did not flow along the applied electric field, as in other materials, but travelled backwards forming whirlpools where circular currents appeared.Such behaviour is familiar for conventional liquids such as water which makes whirlpools when flowing around obstacles, for example, in rivers.

The scientists measured the viscosity of this strange new liquid in graphene, which consists not of water molecules but electrons. To the researchers surprise, the electron fluid can be 100 times more viscous than honey, even at room temperature.

The scientific breakthrough is important for understanding of how materials work at increasing smaller sizes required by the semiconducting industry because such whirlpools are more likely to appear at micro and nanoscale.

The observation also questions our current understanding of the physics of highly conductive metals, especially graphene itself.

The simultaneous existence of such seemingly incompatible properties, with electrons behaving like bullets and a liquid in the same material prompts a fundamental rethinking about our understanding of materials properties.

Professor Polini commented: “Giving decades long efforts to find even minor signs of a viscous flow in metals, we were flabbergasted that graphene exhibited not just some small blip on an experimental curve but the clear qualitative effect, a large backflow of electric current.”

Sir Andre Geim, who received a Nobel Prize for graphene, added: “Graphene cannot stop amazing us. Now we need to think long and hard how to connect such contradictory behaviour as ballistic motion of electrons, which is undoubtedly seen in graphene, with this new quantum weirdness arising from their collective motion. A strong adjustment of our understanding of the physics is due.”

Here’s a link to and a citation for the paper,

Negative local resistance caused by viscous electron backflow in graphene by D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, M. Polini. Science  11 Feb 2016: pp. DOI: 10.1126/science.aad0201

This paper is behind a paywall.

Here’s an image supplied by the University of Manchester illustrating the discovery,

Courtesy University of Manchester

Courtesy University of Manchester