Tag Archives: Italy

Shooting drugs to an infection site with a slingshot

It seems as if I’ve been writing up nanomedicine research a lot lately, so I would have avoided this piece. However, since I do try to cover Canadian nanotechnology regardless of the topic and this work features researchers from l’Université de Montréal (Québec, Canada), here’s one of the latest innovations in the field of nanomedicine. (I have some additional comments about the nano scene in Canada and one major issue concerning nanomedicine at the end of this posting.) From a May 8, 2017 news item on ScienceDaily,

An international team of researchers from the University of Rome Tor Vergata and the University of Montreal has reported, in a paper published this week in Nature Communications, the design and synthesis of a nanoscale molecular slingshot made of DNA that is 20,000 times smaller than a human hair. This molecular slingshot could “shoot” and deliver drugs at precise locations in the human body once triggered by specific disease markers.

A May 8, 2017 University of Montreal news release (also on EurekAlert), which originated the news item, delves further into the research (Note: A link has been removed),

The molecular slingshot is only a few nanometres long and is composed of a synthetic DNA strand that can load a drug and then effectively act as the rubber band of the slingshot. The two ends of this DNA “rubber band” contain two anchoring moieties that can specifically stick to a target antibody, a Y-shaped protein expressed by the body in response to different pathogens such as bacteria and viruses. When the anchoring moieties of the slingshot recognize and bind to the arms of the target antibody the DNA “rubber band” is stretched and the loaded drug is released.

“One impressive feature about this molecular slingshot,” says Francesco Ricci, Associate Professor of Chemistry at the University of Rome Tor Vergata, “is that it can only be triggered by the specific antibody recognizing the anchoring tags of the DNA ‘rubber band’. By simply changing these tags, one can thus program the slingshot to release a drug in response to a variety of specific antibodies. Since different antibodies are markers of different diseases, this could become a very specific weapon in the clinician’s hands.”

“Another great property of our slingshot,” adds Alexis Vallée-Bélisle, Assistant Professor in the Department of Chemistry at the University of Montreal, “is its high versatility. For example, until now we have demonstrated the working principle of the slingshot using three different trigger antibodies, including an HIV antibody, and employing nucleic acids as model drugs. But thanks to the high programmability of DNA chemistry, one can now design the DNA slingshot to ‘shoot’ a wide range of threrapeutic molecules.”

“Designing this molecular slingshot was a great challenge,” says Simona Ranallo, a postdoctoral researcher in Ricci’s team and principal author of the new study. “It required a long series of experiments to find the optimal design, which keeps the drug loaded in ‘rubber band’ in the absence of the antibody, without affecting too much its shooting efficiency once the antibody triggers the slingshot.”

The group of researchers is now eager to adapt the slingshot for the delivery of clinically relevant drugs, and to demonstrate its clinical efficiency. [emphasis mine] “We envision that similar molecular slingshots may be used in the near future to deliver drugs to specific locations in the body. This would drastically improve the efficiency of drugs as well as decrease their toxic secondary effects,” concludes Ricci.

Here’s a link to and a citation for the paper,

Antibody-powered nucleic acid release using a DNA-based nanomachine by Simona Ranallo, Carl Prévost-Tremblay, Andrea Idili, Alexis Vallée-Bélisle, & Francesco Ricci. Nature Communications 8, Article number: 15150 (2017) doi:10.1038/ncomms15150 Published online: 08 May 2017

This is an open access paper.

A couple of comments

The Canadian nanotechnology scene is pretty much centered in Alberta and Québec. The two provinces have invested a fair amount of money in their efforts. Despite the fact that the province of Alberta also hosts the federal government’s National Institute of Nanotechnology, it seems that the province of Québec is the one making the most progress in its various ‘nano’ fields of endeavour. Another province that should be mentioned with regard to its ‘nano’ efforts is Ontario. As far as I can tell, nanotechnology there doesn’t enjoy the same level of provincial funding support as the other two but there is some important work coming out of Ontario.

My other comment has to do with nanomedicine. While it is an exciting field, there is a tendency toward a certain hyperbole. For anyone who got excited about the ‘slingshot’, don’t forget this hasn’t been tested on any conditions close to the conditions found in a human body nor have they even used, “... clinically relevant drugs,  … .”  It’s also useful to know that less than 1% of the drugs used in nanoparticle-delivery systems make their way to the affected site (from an April 27, 2016 posting about research investigating the effectiveness of nanoparticle-based drug delivery systems). By the way, it was a researcher at the University of Toronto (Ontario, Canada) who first noted this phenomenon after a meta-analysis of the research,

More generally, the authors argue that, in order to increase nanoparticle delivery efficiency, a systematic and coordinated long-term strategy is necessary. To build a strong foundation for the field of cancer nanomedicine, researchers will need to understand a lot more about the interactions between nanoparticles and the body’s various organs than they do today. …

It’s not clear from the news release, the paper, or the May 8, 2017 article by Sherry Noik for the Canadian Broadcasting Corporation’s News Online website, how this proposed solution would be administered but presumably the same factors which affect other nano-based drug deliveries could affect this new one,

Scientists have for many years been working on improving therapies like chemo and radiation on that score, but most efforts have focused on modifying the chemistry rather than altering the delivery of the drug.

“It’s all about tuning the concentration of the drug optimally in the body: high concentration where you want it to be active, and low concentration where you don’t want to affect other healthy parts,” says Prof. Alexis Vallée-Bélisle of the University of Montreal, co-author of the report published this week in Nature Communications.

“If you can increase the concentration of that drug at the specific location, that drug will be more efficient,” he told CBC News in an interview.

‘Like a weapon’

Restricting the movement of the drug also reduces potentially harmful secondary effects on other parts of the body — for instance, the hair loss that can result from toxic cancer treatments, or the loss of so-called good bacteria due to antibiotic use.

The idea of the slingshot is to home in on the target cells at a molecular level.

The two ends of the strand anchor themselves to the antibody, stretching the strand taut and catapulting the drug to its target.

“Imagine our slingshot like a weapon, and this weapon is being used by our own antibody,” said Vallée-Bélisle, who heads the Laboratory of Biosensors & Nanomachines at U of M. “We design a specific weapon targeting, for example, HIV. We provide the weapon in the body with the bullet — the drug. If the right solider is there, the soldier can use the weapon and shoot the problem.”

Equally important: if the wrong soldier is present, the weapon won’t be deployed.

So rather than delay treatment for an unidentified infection that could be either viral or bacterial, a patient could receive the medication for both and their body would only use the one it needed.

Getting back to my commentary, how does the drug get to its target? Through the bloodstream?  Does it get passed through various organs? How do we increase the amount of medication (in nano-based drug delivery systems) reaching affected areas from less than 1%?

The researchers deserve to be congratulated for this work and given much encouragement and thanks as they grapple with the questions I’ve posed and with all of the questions I don’t know how to ask.

Figuring out how stars are born by watching neutrons ‘quantum tunnelling’ on graphene

A Feb. 3, 2017 news item on Nanowerk announces research that could help us better understand how stars are ‘born’,

Graphene is known as the world’s thinnest material due to its 2D structure, where each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity.

In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star.

Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of atomic defects, either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H atoms into one H2 molecule. The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2).

This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds.

A Feb. 2, 2017 Institut Laue-Langevin press release, which originated the news item, provides more insight into the research,

Their [astrochemists’s] theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail. These sites, in the form of atomic defects at the surface or edge of the carbon flakes, should be such that the C-H bond formed thereafter allows the H atom to be released easily to recombine with another H atom flying nearby.

A collaboration between the Institut Laue-Langevin (ILL), France, the University of Parma, Italy, and the ISIS Neutron and Muon Source, UK, combined neutron spectroscopy with density functional theory (DFT) molecular dynamics simulations in order to characterise the local environment and vibrations of hydrogen atoms chemically bonded at the surface of substantially defected graphene flakes. Additional analyses were carried out using muon spectroscopy (muSR) and nuclear magnetic resonance (NMR). As availability of the samples is very low, these highly specific techniques were necessary to study the samples; neutron spectroscopy is highly sensitive to hydrogen and allowed accurate data to be gathered at small concentrations.

For the first time ever, this study showed ‘quantum tunnelling’ in these systems, allowing the H atoms bound to C atoms to explore relatively long distances at temperatures as low as those in interstitial clouds. The process involves hydrogen ‘quantum hopping’ from one carbon atom to another in its direct vicinity, tunnelling through energy barriers which could not be overcome given the lack of heat in the interstellar cloud environment. This movement is sustained by the fluctuations of the graphene structure, which bring the H atom into unstable regions and catalyse the recombination process by allowing the release of the chemically bonded H atom. Therefore, it is believed that quantum tunnelling facilitates the reaction for the formation of molecular H2.

ILL scientist and carbon nanostructure specialist, Stéphane Rols says: “The question of how molecular hydrogen forms at the low temperatures in interstellar clouds has always been a driver in astrochemistry research. We’re proud to have combined spectroscopy expertise with the sensitivity of neutrons to identify the intriguing quantum tunnelling phenomenon as a possible mechanism behind the formation of H2; these observations are significant in furthering our understanding of the universe.”

Here’s a link to and a citation for the paper (which dates from Aug. 2016),

Hydrogen motions in defective graphene: the role of surface defects by Chiara Cavallari, Daniele Pontiroli, Mónica Jiménez-Ruiz, Mark Johnson, Matteo Aramini, Mattia Gaboardi, Stewart F. Parker, Mauro Riccó, and Stéphane Rols. Phys. Chem. Chem. Phys., 2016, Issue 36, 18, 24820-24824 DOI: 10.1039/C6CP04727K First published online 22 Aug 2016

This paper is behind a paywall.

Synthetic genetics and imprinting a sequence of a single DNA (deoxyribonucleic acid) strand

Caption: A polymer negative of a sequence of the genetic code, chemically active and able to bind complementary nucleobases, has been created by researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. Credit: IPC PAS, Grzegorz Krzyzewski

Those are very large hands! In any event, I think they left out the word ‘model’ when describing what the researcher is holding.

A Jan. 19, 2017 news item on phys.org announces the research from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS),

In a carefully designed polymer, researchers at the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA. The resulting negative remained chemically active and was capable of binding the appropriate nucleobases of a genetic code. The polymer matrix—the first of its type—thus functioned exactly like a sequence of real DNA.

A Jan. 18, 2017 IPC PAS press release, which originated the news item, provides more detail about the breakthrough and explains how it could lead to synthetic genetics,

Imprinting of chemical molecules in a polymer, or molecular imprinting, is a well-known method that has been under development for many years. However, no-one has ever before used it to construct a polymer chain complementing a sequence of a single strand of DNA. This feat has just been accomplished by researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw in collaboration with the University of North Texas (UNT) in Denton, USA, and the University of Milan in Italy. In an appropriately selected polymer, they reproduced a genetically important DNA sequence, constructed of six nucleobases.

Typically, molecular imprinting is accomplished in several steps. The molecules intended for imprinting are first placed to a solution of monomers (i.e. the basic “building blocks” from which the future polymer is to be formed). The monomers are selected so as to automatically arrange themselves around the molecules being imprinted. Next, the resulting complex is electrochemically polymerized and then the imprinted molecules are extracted from the fixed structure. This process results in a polymer structure with molecular cavities matching the original molecules with their size and shape, and even their local chemical properties.

“Using molecular imprinting, we can produce, e.g. recognition films for chemical sensors, capturing molecules of only a specific chemical compound from the surroundings – since only these molecules fit into the existing molecular cavities. However, there’s no rose without a thorn. Molecular imprinting is perfect for smaller chemical molecules, but the larger the molecule, the more difficult it is to imprint it accurately into the polymer,” explains Prof. Wlodzimierz Kutner (IPC PAS).

Molecules of deoxyribonucleic acid, or DNA, are really large: their lengths are of the order of centimetres. These molecules generally consist of of two long strands, paired up with each other. A single strand is made up of nucleotides with multiple repetitions, each of which contains one of the nucleobases: adenine (A), guanine (G), cytosine (C), or thymine (T). The bases on both strands are not arranged freely: adenine on one strand always corresponds to thymine on the other, and guanine to cytosine. So, when we have one thread, we can always recreate its complement, which is the second strand.

The complementarity of nucleobases in DNA strands is very important for cells. Not only does it increase the permanence of the record of the genetic code (damage in one strand can be repaired based on the construction of the other), but it also makes it possible to transfer it from DNA to RNA in the process known as transcription. Transcription is the first step in the synthesis of proteins.

“Our idea was to try to imprint in the polymer a sequence of a single-stranded DNA. At the same time, we wanted to reproduce not only the shape of the strand, but also the sequential order of the constituent nucleobases,” says Dr. Agnieszka Pietrzyk-Le (IPC PAS).

In the study, financed on the Polish side by grants from the Foundation for Polish Science and the National Centre for Science, researchers from the IPC PAS used sequences of the genetic code known as TATAAA. This sequence plays an important biological role: it participates in deciding on the activation of the gene behind it. TATAAA is found in most eukaryotic cells (those containing a nucleus); in humans it is present in about every fourth gene.

A key step of the research was to design synthetic monomers undergoing electrochemical polymerization. These had to be capable of accurately surrounding the imprinted molecule in such a way that each of the adenines and thymines on the DNA strand were accompanied by their complementary bases. The mechanical requirements were also important, because after polymerization the matrix had to be stable. Suitable monomers were synthesized by the group of Prof. Francis D’Souza (UNT).

“When all the reagents and apparatus have been prepared, the imprinting itself of the TATAAA oligonucleotide is not especially complicated. The most important processes take place automatically in solutions in no more than a few dozen minutes. Finally, on the electrode used for electropolymerization, we obtain a layer of conductive polymer with molecular cavities where the nucleobases are arranged in the TTTATA sequence, that is, complementary to the extracted original”, describes doctoral student Katarzyna Bartold (IPC PAS).

Do polymer matrices prepared in this manner really reconstruct the original sequence of the DNA chain? To answer this question, at the IPC PAS careful measurements were carried out on the properties of the new polymers and a series of experiments was performed that confirmed the interaction of the polymers with various nucleobases in solutions. The results leave no doubt: the polymer DNA negative really is chemically active and selectively binds the TATAAA oligonucleotide, correctly reproducing the sequence of nucleobases.

The possibility of the relatively simple and low-cost production of stable polymer equivalents of DNA sequences is an important step in the development of synthetic genetics, especially in terms of its widespread applications in biotechnology and molecular medicine. If an improvement in the method developed at the IPC PAS is accomplished in the future, it will be possible to reproduce longer sequences of the genetic code in polymer matrices. This opens up inspiring perspectives associated not only with learning about the details of the process of transcription in cells or the construction of chemosensors for applications in nanotechnologies operating on chains of DNA, but also with the permanent archiving and replicating of the genetic code of different organisms.

Here’s a link to and a citation for the paper,

Programmed transfer of sequence information into molecularly imprinted polymer (MIP) for hexa(2,2’-bithien-5-yl) DNA analog formation towards single nucleotide polymorphism (SNP) detection by Katarzyna Bartold, Agnieszka Pietrzyk-Le, Tan-Phat Huynh, Zofia Iskierko, Marta I. Sosnowska, Krzysztof Noworyta, Wojciech Lisowski, Francesco Maria Enrico Sannicolo, Silvia Cauteruccio, Emanuela Licandro, Francis D’Souza, and Wlodzimierz Kutner. ACS Appl. Mater. Interfaces, Just Accepted Manuscript
DOI: 10.1021/acsami.6b14340 Publication Date (Web): January 10, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Nanotech business news from Turkey and from Northern Ireland

I have two nanotech business news bits, one from Turkey and one from Northern Ireland.

Turkey

A Turkish company has sold one of its microscopes to the US National Aeronautics and Space Administration (NASA), according to a Jan. 20, 2017 news item on dailysabah.com,

Turkish nanotechnology company Nanomanyetik has begun selling a powerful microscope to the U.S. space agency NASA, the company’s general director told Anadolu Agency on Thursday [Jan. 19, 2017].

Dr. Ahmet Oral, who also teaches physics at Middle East Technical University, said Nanomanyetik developed a microscope that is able to map surfaces on the nanometric and atomic levels, or extremely small particles.

Nanomanyetik’s foreign customers are drawn to the microscope because of its higher quality yet cheaper price compared to its competitors.

“There are almost 30 firms doing this work,” according to Oral. “Ten of them are active and we are among these active firms. Our aim is to be in the top three,” he said, adding that Nanomanyetik jumps to the head of the line because of its after-sell service.

In addition to sales to NASA, the Ankara-based firm exports the microscope to Brazil, Chile, France, Iran, Israel, Italy, Japan, Poland, South Korea and Spain.

Electronics giant Samsung is also a customer.

“Where does Samsung use this product? There are pixels in the smartphones’ displays. These pixels are getting smaller each year. Now the smallest pixel is 15X10 microns,” he said. Human hair is between 10 and 100 microns in diameter.

“They are figuring inner sides of pixels so that these pixels can operate much better. These patterns are on the nanometer level. They are using these microscopes to see the results of their works,” Oral said.

Nanomanyetik’s microscopes produces good quality, high resolution images and can even display an object’s atoms and individual DNA fibers, according to Oral.

You can find the English language version of the Nanomanyetik (NanoMagnetics Instruments) website here . For those with the language skills there is the Turkish language version, here.

Northern Ireland

A Jan. 22, 2017 news article by Dominic Coyle for The Irish Times (Note: Links have been removed) shares this business news and mention of a world first,

MOF Technologies has raised £1.5 million (€1.73 million) from London-based venture capital group Excelsa Ventures and Queen’s University Belfast’s Qubis research commercialisation group.

MOF Technologies chief executive Paschal McCloskey welcomed the Excelsa investment.

Established in part by Qubis in 2012 in partnership with inventor Prof Stuart James, MOF Technologies began life in a lab at the School of Chemistry and Chemical Engineering at Queen’s.

Its metal organic framework (MOF) technology is seen as having significant potential in areas including gas storage, carbon capture, transport, drug delivery and heat transformation. Though still in its infancy, the market is forecast to grow to £2.2 billion by 2022, the company says.

MOF Technologies last year became the first company worldwide to successfully commercialise MOFs when it agreed a deal with US fruit and vegetable storage provider Decco Worldwide to commercialise MOFs for use in a food application.

TruPick, designed by Decco and using MOF Technologies’ environmentally friendly technology, enables nanomaterials control the effects of ethylene on fruit produce so it maintains freshness in storage or transport.

MOFs are crystalline, sponge-like materials composed of two components – metal ions and organic molecules known as linkers.

“We very quickly recognised the market potential of MOFs in terms of their unmatched ability for gas storage,” said Moritz Bolle from Excelsa Ventures. “This technology will revolutionise traditional applications and open countless new opportunities for industry. We are confident MOF Technologies is the company that will lead this seismic shift in materials science.

You can find MOF Technologies here.

Drip dry housing

This piece on new construction materials does have a nanotechnology aspect although it’s not made clear exactly how nanotechnology plays a role.

From a Dec. 28, 2016 news item on phys.org (Note: A link has been removed),

The construction industry is preparing to use textiles from the clothing and footwear industries. Gore-Tex-like membranes, which are usually found in weather-proof jackets and trekking shoes, are now being studied to build breathable, water-resistant walls. Tyvek is one such synthetic textile being used as a “raincoat” for homes.

You can find out more about Tyvek here.on the Dupont website.

A Dec. 21, 2016 press release by Chiara Cecchi for Youris ((European Research Media Center), which originated the news item, proceeds with more about textile-type construction materials,

Camping tents, which have been used for ages to protect against wind, ultra-violet rays and rain, have also inspired the modern construction industry, or “buildtech sector”. This new field of research focuses on the different fibres (animal-based such as wool or silk, plant-based such as linen and cotton and synthetic such as polyester and rayon) in order to develop technical or high-performance materials, thus improving the quality of construction, especially for buildings, dams, bridges, tunnels and roads. This is due to the fibres’ mechanical properties, such as lightness, strength, and also resistance to many factors like creep, deterioration by chemicals and pollutants in the air or rain.

“Textiles play an important role in the modernisation of infrastructure and in sustainable buildings”, explains Andrea Bassi, professor at the Department of Civil and Environmental Engineering (DICA), Politecnico of Milan, “Nylon and fiberglass are mixed with traditional fibres to control thermal and acoustic insulation in walls, façades and roofs. Technological innovation in materials, which includes nanotechnologies [emphasis mine] combined with traditional textiles used in clothes, enables buildings and other constructions to be designed using textiles containing steel polyvinyl chloride (PVC) or ethylene tetrafluoroethylene (ETFE). This gives the materials new antibacterial, antifungal and antimycotic properties in addition to being antistatic, sound-absorbing and water-resistant”.

Rooflys is another example. In this case, coated black woven textiles are placed under the roof to protect roof insulation from mould. These building textiles have also been tested for fire resistance, nail sealability, water and vapour impermeability, wind and UV resistance.

Photo: Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK

In Spain three researchers from the Technical University of Madrid (UPM) have developed a new panel made with textile waste. They claim that it can significantly enhance both the thermal and acoustic conditions of buildings, while reducing greenhouse gas emissions and the energy impact associated with the development of construction materials.

Besides textiles, innovative natural fibre composite materials are a parallel field of the research on insulators that can preserve indoor air quality. These bio-based materials, such as straw and hemp, can reduce the incidence of mould growth because they breathe. The breathability of materials refers to their ability to absorb and desorb moisture naturally”, says expert Finlay White from Modcell, who contributed to the construction of what they claim are the world’s first commercially available straw houses, “For example, highly insulated buildings with poor ventilation can build-up high levels of moisture in the air. If the moisture meets a cool surface it will condensate and producing mould, unless it is managed. Bio-based materials have the means to absorb moisture so that the risk of condensation is reduced, preventing the potential for mould growth”.

The Bristol-based green technology firm [Modcell] is collaborating with the European Isobio project, which is testing bio-based insulators which perform 20% better than conventional materials. “This would lead to a 5% total energy reduction over the lifecycle of a building”, explains Martin Ansell, from BRE Centre for Innovative Construction Materials (BRE CICM), University of Bath, UK, another partner of the project.

“Costs would also be reduced. We are evaluating the thermal and hygroscopic properties of a range of plant-derived by-products including hemp, jute, rape and straw fibres plus corn cob residues. Advanced sol-gel coatings are being deposited on these fibres to optimise these properties in order to produce highly insulating and breathable construction materials”, Ansell concludes.

You can find Modcell here.

Here’s another image, which I believe is a closeup of the processed fibre shown in the above,

Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK [Note: This caption appears to be a copy of the caption for the previous image]

Luminous electronic tiles (lumentile)

A Dec. 19, 2016 news item on Nanowerk introduces a ceramic tile that can be given a different look at the touch of a fingertip,

Using pioneering photonics technology, The ‘Luminous Electronic Tile’, or LUMENTILE, project mixes the simplicity of a plain ceramic tile with the complexity of today’s sophisticated touch screen technology, creating a light source and unparalleled interaction. All it takes is one tap to change the colour, look or mood of any room in your house.

This is the first time anyone has tried to embed electronics into ceramics or glass for a large-scale application. With the ability to play videos or display images, the tiles allow the user to turn their walls into a large ‘cinema’ screen, where each unit acts as a set of pixels of the overall display.

An undated Horizon 2020 webpage describes the ‘digital wallpaper’ in more detail,

Scientists from Italy have created ‘digital wallpaper’, allowing for a constant change in design and aesthetic controlled via a smartphone, tablet or computer.

Each Luminous Electronic Tile – or Lumentile – acts as a touch screen which can change colour, pattern or light intensity, play videos or display images.

If numerous tiles are arranged together, they can create a ‘cinema’ screen with each tile acting as a set of pixels for the overall display.

The combination of ceramic, glass and electronics could allow the user to have interchangeable control of the look and design of their surroundings by tapping the tile.

Each tile can be arranged to completely or partially cover walls of a room, floor or ceiling.

However, they can also be transferred to the exterior of buildings, as either flat or curved tiles to fit around columns or uneven surfaces.

Project co-ordinator Professor Guido Giuliani, said: “It may sound like the stuff of James Bond but external tiles would create a ‘chameleonic skin’ or instant camouflage.

“Although we are a long way off this yet, this would allow a car or building to blend completely into its surroundings, and hence ‘disappear’.”

Although these tiles cannot be purchased yet, they hope to be available to users in two years, with mass production by the end of 2020.

Lumentile received a grant of more than €2.4m from the Horizon 2020 programme via the Photonics Public Private Partnership. Created in Italy by the Universita Degli Studi Di Pavia, the Lumentile project also has a number of European partners from Finland, Switzerland and Spain.

A combination of ceramic, glass and organic electronics, the luminous tile includes structural materials, solid-state light sources and electronic chips and can be controlled with a central computer, a smart phone or tablet. [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=45417.php]

You can find a bit more information on the Lumentile project website.

The character of water: both types

This is to use an old term, ‘mindblowing’. Apparently, there are two types of the liquid we call water according to a Nov. 10, 2016 news item on phys.org,

There are two types of liquid water, according to research carried out by an international scientific collaboration. This new peculiarity adds to the growing list of strange phenomena in what we imagine is a simple substance. The discovery could have implications for making and using nanoparticles as well as in understanding how proteins fold into their working shape in the body or misfold to cause diseases such as Alzheimer’s or CJD [Creutzfeldt-Jakob Disease].

A Nov. 10, 2016 Inderscience Publishers news release, which originated the news item, expands on the theme,

Writing in the International Journal of Nanotechnology, Oxford University’s Laura Maestro and her colleagues in Italy, Mexico, Spain and the USA, explain how the physical and chemical properties of water have been studied for more than a century and revealed some odd behavior not seen in other substances. For instance, when water freezes it expands. By contrast, almost every other known substance contracts when it is cooled. Water also exists as solid, liquid and gas within a very small temperature range (100 degrees Celsius) whereas the melting and boiling points of most other compounds span a much greater range.

Many of water’s bizarre properties are due to the molecule’s ability to form short-lived connections with each other known as hydrogen bonds. There is a residual positive charge on the hydrogen atoms in the V-shaped water molecule either or both of which can form such bonds with the negative electrons on the oxygen atom at the point of the V. This makes fleeting networks in water possible that are frozen in place when the liquid solidifies. They bonds are so short-lived that they do not endow the liquid with any structure or memory, of course.

The team has looked closely at several physical properties of water like its dielectric constant (how well an electric field can permeate a substance) or the proton-spin lattice relaxation (the process by which the magnetic moments of the hydrogen atoms in water can lose energy having been excited to a higher level). They have found that these phenomena seem to flip between two particular characters at around 50 degrees Celsius, give or take 10 degrees, i.e. from 40 to 60 degrees Celsius. The effect is that thermal expansion, speed of sound and other phenomena switch between two different states at this crossover temperature.

These two states could have important implications for studying and using nanoparticles where the character of water at the molecule level becomes important for the thermal and optical properties of such particles. Gold and silver nanoparticles are used in nanomedicine for diagnostics and as antibacterial agents, for instance. Moreover, the preliminary findings suggest that the structure of liquid water can strongly influence the stability of proteins and how they are denatured at the crossover temperature, which may well have implications for understanding protein processing in the food industry but also in understanding how disease arises when proteins misfold.

Here’s a link to and a citation for the paper,

On the existence of two states in liquid water: impact on biological and nanoscopic systems
by L.M. Maestro, M.I. Marqués, E. Camarillo, D. Jaque, J. García Solé, J.A. Gonzalo, F. Jaque, Juan C. Del Valle, F. Mallamace, H.E. Stanley.
International Journal of Nanotechnology (IJNT), Vol. 13, No. 8/9, 2016 DOI: 10.1504/IJNT.2016.079670

This paper is behind a paywall.

Memristive-like qualities with pectin

As the drive to create a synthetic neuronal network, as powered by memristors, continues, scientists are investigating pectin. From a Nov. 11, 2016 news item on ScienceDaily,

Most of us know pectin as a key ingredient for making delicious jellies and jams, not as a component for a complex hybrid device that links biological and electronic systems. But a team of Italian scientists have built on previous work in this field using pectin with a high degree of methylation as the medium to create a new architecture of hybrid device with a double-layered polyelectrolyte that alone drives memristive behavior.

A Nov. 11, 2016 American Institute of Physics news release on EurekAlert, which originated the news item, defines memristors and describes the research,

A memristive device can be thought of as a synapse analogue, a device that has a memory. Simply stated, its behavior in a certain moment depends on its previous activity, similar to the way information in the human brain is transmitted from one neuron to another.

In an article published this week in AIP Advances, from AIP Publishing, the team explains the creation of the hybrid device. “In this research, we applied materials generally used in the pharmaceutical and food industries in our electrochemical devices,” said Angelica Cifarelli, a doctoral candidate at the University of Parma in Italy. “The idea of using the ‘buffering’ capability of these biocompatible materials as solid polyelectrolyte is completely innovative and our work is the first time that these bio-polymers have been used in devices based on organic polymers and in a memristive device.”

Memristors can provide a bridge for interfacing electronic circuits with nervous systems, moving us closer to realization of a double-layer perceptron, an element that can perform classification functions after an appropriate learning procedure. The main difficulty the research team faced was understanding the complex electrochemical interplay that is the basis for the memristive behavior, which would give them the means to control it. The team addressed this challenge by using commercial polymers, and modifying their electrochemical properties at the macroscopic level. The most surprising result was that it was possible to check the electrochemical response of the device by changing the formulation of gels acting as polyelectrolytes, allowing study of the ionic exchanges relating to the biological object, which activates the electrochemical response of the conductive polymer.

“Our developments open the way to make compatible polyaniline based devices with an interface that should be naturally, biologically and electrochemically compatible and functional,” said Cifarelli. The next steps are interfacing the memristor network with other living beings, for example, plants and ultimately the realization of hybrid systems that can “learn” and perform logic/classification functions.

Here’s a link to and a citation for the paper,

Polysaccarides-based gels and solid-state electronic devices with memresistive properties: Synergy between polyaniline electrochemistry and biology by Angelica Cifarelli, Tatiana Berzina, Antonella Parisini, Victor Erokhin, and Salvatore Iannotta. AIP Advances 6, 111302 (2016); http://dx.doi.org/10.1063/1.4966559 Published Nov. 8, 2016

This paper appears to be open access.

Sustainable Nanotechnologies (SUN) project draws to a close in March 2017

Two Oct. 31, 2016 news item on Nanowerk signal the impending sunset date for the European Union’s Sustainable Nanotechnologies (SUN) project. The first Oct. 31, 2016 news item on Nanowerk describes the projects latest achievements,

The results from the 3rd SUN annual meeting showed great advancement of the project. The meeting was held in Edinburgh, Scotland, UK on 4-5 October 2016 where the project partners presented the results obtained during the second reporting period of the project.

SUN is a three and a half year EU project, running from 2013 to 2017, with a budget of about €14 million. Its main goal is to evaluate the risks along the supply chain of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable manufacturing.

The ultimate goal of the SUN Project is the development of an online software Decision Support System – SUNDS – aimed at estimating and managing occupational, consumer, environmental and public health risks from nanomaterials in real industrial products along their lifecycles. The SUNDS beta prototype has been released last October, 2015, and since then the main focus has been on refining the methodologies and testing them on selected case studies i.e. nano-copper oxide based wood preserving paint and nano- sized colourants for plastic car part: organic pigment and carbon black. Obtained results and open issues were discussed during the third annual meeting in order collect feedbacks from the consortium that will inform, in the next months, the implementation of the final version of the SUNDS software system, due by March 2017.

An Oct. 27, 2016 SUN project press release, which originated the news item, adds more information,

Significant interest has been payed towards the results obtained in WP2 (Lifecycle Thinking) which main objectives are to assess the environmental impacts arising from each life cycle stage of the SUN case studies (i.e. Nano-WC-Cobalt (Tungsten Carbide-cobalt) sintered ceramics, Nanocopper wood preservatives, Carbon Nano Tube (CNT) in plastics, Silicon Dioxide (SiO2) as food additive, Nano-Titanium Dioxide (TiO2) air filter system, Organic pigment in plastics and Nanosilver (Ag) in textiles), and compare them to conventional products with similar uses and functionality, in order to develop and validate criteria and guiding principles for green nano-manufacturing. Specifically, the consortium partner COLOROBBIA CONSULTING S.r.l. expressed its willingness to exploit the results obtained from the life cycle assessment analysis related to nanoTiO2 in their industrial applications.

On 6th October [2016], the discussions about the SUNDS advancement continued during a Stakeholder Workshop, where representatives from industry, regulatory and insurance sectors shared their feedback on the use of the decision support system. The recommendations collected during the workshop will be used for the further refinement and implemented in the final version of the software which will be released by March 2017.

The second Oct. 31, 2016 news item on Nanowerk led me to this Oct. 27, 2016 SUN project press release about the activities in the upcoming final months,

The project has designed its final events to serve as an effective platform to communicate the main results achieved in its course within the Nanosafety community and bridge them to a wider audience addressing the emerging risks of Key Enabling Technologies (KETs).

The series of events include the New Tools and Approaches for Nanomaterial Safety Assessment: A joint conference organized by NANOSOLUTIONS, SUN, NanoMILE, GUIDEnano and eNanoMapper to be held on 7 – 9 February 2017 in Malaga, Spain, the SUN-CaLIBRAte Stakeholders workshop to be held on 28 February – 1 March 2017 in Venice, Italy and the SRA Policy Forum: Risk Governance for Key Enabling Technologies to be held on 1- 3 March in Venice, Italy.

Jointly organized by the Society for Risk Analysis (SRA) and the SUN Project, the SRA Policy Forum will address current efforts put towards refining the risk governance of emerging technologies through the integration of traditional risk analytic tools alongside considerations of social and economic concerns. The parallel sessions will be organized in 4 tracks:  Risk analysis of engineered nanomaterials along product lifecycle, Risks and benefits of emerging technologies used in medical applications, Challenges of governing SynBio and Biotech, and Methods and tools for risk governance.

The SRA Policy Forum has announced its speakers and preliminary Programme. Confirmed speakers include:

  • Keld Alstrup Jensen (National Research Centre for the Working Environment, Denmark)
  • Elke Anklam (European Commission, Belgium)
  • Adam Arkin (University of California, Berkeley, USA)
  • Phil Demokritou (Harvard University, USA)
  • Gerard Escher (École polytechnique fédérale de Lausanne, Switzerland)
  • Lisa Friedersdor (National Nanotechnology Initiative, USA)
  • James Lambert (President, Society for Risk Analysis, USA)
  • Andre Nel (The University of California, Los Angeles, USA)
  • Bernd Nowack (EMPA, Switzerland)
  • Ortwin Renn (University of Stuttgart, Germany)
  • Vicki Stone (Heriot-Watt University, UK)
  • Theo Vermeire (National Institute for Public Health and the Environment (RIVM), Netherlands)
  • Tom van Teunenbroek (Ministry of Infrastructure and Environment, The Netherlands)
  • Wendel Wohlleben (BASF, Germany)

The New Tools and Approaches for Nanomaterial Safety Assessment (NMSA) conference aims at presenting the main results achieved in the course of the organizing projects fostering a discussion about their impact in the nanosafety field and possibilities for future research programmes.  The conference welcomes consortium partners, as well as representatives from other EU projects, industry, government, civil society and media. Accordingly, the conference topics include: Hazard assessment along the life cycle of nano-enabled products, Exposure assessment along the life cycle of nano-enabled products, Risk assessment & management, Systems biology approaches in nanosafety, Categorization & grouping of nanomaterials, Nanosafety infrastructure, Safe by design. The NMSA conference key note speakers include:

  • Harri Alenius (University of Helsinki, Finland,)
  • Antonio Marcomini (Ca’ Foscari University of Venice, Italy)
  • Wendel Wohlleben (BASF, Germany)
  • Danail Hristozov (Ca’ Foscari University of Venice, Italy)
  • Eva Valsami-Jones (University of Birmingham, UK)
  • Socorro Vázquez-Campos (LEITAT Technolоgical Center, Spain)
  • Barry Hardy (Douglas Connect GmbH, Switzerland)
  • Egon Willighagen (Maastricht University, Netherlands)
  • Nina Jeliazkova (IDEAconsult Ltd., Bulgaria)
  • Haralambos Sarimveis (The National Technical University of Athens, Greece)

During the SUN-caLIBRAte Stakeholder workshop the final version of the SUN user-friendly, software-based Decision Support System (SUNDS) for managing the environmental, economic and social impacts of nanotechnologies will be presented and discussed with its end users: industries, regulators and insurance sector representatives. The results from the discussion will be used as a foundation of the development of the caLIBRAte’s Risk Governance framework for assessment and management of human and environmental risks of MN and MN-enabled products.

The SRA Policy Forum: Risk Governance for Key Enabling Technologies and the New Tools and Approaches for Nanomaterial Safety Assessment conference are now open for registration. Abstracts for the SRA Policy Forum can be submitted till 15th November 2016.
For further information go to:
www.sra.org/riskgovernanceforum2017
http://www.nmsaconference.eu/

There you have it.

Graphene Malaysia 2016 gathering and Malaysia’s National Graphene Action Plan 2020

Malaysia is getting ready to host a graphene conference according to an Oct. 10, 2016 news item on Nanotechnology Now,

The Graphene Malaysia 2016 [Nov. 8 – 9, 2016] (www.graphenemalaysiaconf.com) is jointly organized by NanoMalaysia Berhad and Phantoms Foundation. The conference will be centered on graphene industry interaction and collaborative innovation. The event will be launched under the National Graphene Action Plan 2020 (NGAP 2020), which will generate about 9,000 jobs and RM20 (US$4.86) billion GNI impact by the year 2020.

First speakers announced:
Murni Ali (Nanomalaysia, Malaysia) | Francesco Bonaccorso (Istituto Italiano di Tecnologia, Italy) | Antonio Castro Neto (NUS, Singapore) | Antonio Correia (Phantoms Foundation, Spain)| Pedro Gomez-Romero (ICN2 (CSIC-BIST), Spain) | Shu-Jen Han (Nanoscale Science & Technology IBM T.J. Watson Research Center, USA) | Kuan-Tsae Huang (AzTrong, USA/Taiwan) | Krzysztof Koziol (FGV Cambridge Nanosystems, UK) | Taavi Madiberk (Skeleton Technologies, Estonia) | Richard Mckie (BAE Systems, UK) | Pontus Nordin (Saab AB, Saab Aeronautics, Sweden) | Elena Polyakova (Graphene Laboratories Inc., USA) | Ahmad Khairuddin Abdul Rahim (Malaysian Investment Development Authority (MIDA), Malaysia) | Adisorn Tuantranont (Thailand Organic and Printed Electronics Innovation Center, Thailand) |Archana Venugopal (Texas Instruments, USA) | Won Jong Yoo (Samsung-SKKU Graphene-2D Center (SSGC), South Korea) | Hongwei Zhu (Tsinghua University, China)

You can check for more information and deadlines in the Nanotechnology Now Oct. 10, 2016 news item.

The Graphene Malalysia 2016 conference website can be found here and Malaysia’s National Graphene Action Plan 2020, which is well written, can be found here (PDF).  This portion from the executive summary offers some insight into Malyasia’s plans to launch itself into the world of high income nations,

Malaysia’s aspiration to become a high-income nation by 2020 with improved jobs and better outputs is driving the country’s shift away from “business as usual,” and towards more innovative and high value add products. Within this context, and in accordance with National policies and guidelines, Graphene, an emerging, highly versatile carbon-based nanomaterial, presents a unique opportunity for Malaysia to develop a high value economic ecosystem within its industries.  Isolated only in 2004, Graphene’s superior physical properties such as electrical/ thermal conductivity, high strength and high optical transparency, combined with its manufacturability have raised tremendous possibilities for its application across several functions and make it highly interesting for several applications and industries.  Currently, Graphene is still early in its development cycle, affording Malaysian companies time to develop their own applications instead of relying on international intellectual property and licenses.

Considering the potential, several leading countries are investing heavily in associated R&D. Approaches to Graphene research range from an expansive R&D focus (e.g., U.S. and the EU) to more focused approaches aimed at enhancing specific downstream applications with Graphene (e.g., South Korea). Faced with the need to push forward a multitude of development priorities, Malaysia must be targeted in its efforts to capture Graphene’s potential, both in terms of “how to compete” and “where to compete”. This National Graphene Action Plan 2020 lays out a set of priority applications that will be beneficial to the country as a whole and what the government will do to support these efforts.

Globally, much of the Graphene-related commercial innovation to date has been upstream, with producers developing techniques to manufacture Graphene at scale. There has also been some development in downstream sectors, as companies like Samsung, Bayer MaterialScience, BASF and Siemens explore product enhancement with Graphene in lithium-ion battery anodes and flexible displays, and specialty plastic and rubber composites. However the speed of development has been uneven, offering Malaysian industries willing to invest in innovation an opportunity to capture the value at stake. Since any innovation action plan has to be tailored to the needs and ambitions of local industry, Malaysia will focus its Graphene action plan initially on larger domestic industries (e.g., rubber) and areas already being targeted by the government for innovation such as energy storage for electric vehicles and conductive inks.

In addition to benefiting from the physical properties of Graphene, Malaysian downstream application providers may also capture the benefits of a modest input cost advantage for the domestic production of Graphene.  One commonly used Graphene manufacturing technique, the chemical vapour deposition (CVD) production method, requires methane as an input, which can be sourced economically from local biomass. While Graphene is available commercially from various producers around the world, downstream players may be able to enjoy some cost advantage from local Graphene supply. In addition, co-locating with a local producer for joint product development has the added benefit of speeding up the R&D lifecycle.

That business about finding downstream applications could also to the Canadian situation where we typically offer our resources (upstream) but don’t have an active downstream business focus. For example, we have graphite mines in Ontario and Québec which supply graphite flakes for graphene production which is all upstream. Less well developed are any plans for Canadian downstream applications.

Finally, it was interesting to note that the Phantoms Foundation is organizing this Malaysian conference since the same organization is organizing the ‘2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition’ (you can find out more about the Oct. 18 – 20, 2016 event in my Sept. 23, 2016 posting). I think the Malaysians have a better title for their conference, far less unwieldy.