Tag Archives: Italy

ARPICO offers scholarship for Canadian grad. students and young postdocs at Italy’s School on Neutron Scattering (SoNS)

ARPICO (Society of Italian Researchers and Professionals in Western Canada) is offering a scholarship (deadline Mar. 31, 2014) for Canadian students according to its Feb. 14, 2014 announcement,

ARPICO is pleased to announce the 2014 ARPICO Scholarship to attend the 12th School on Neutron Scattering Francesco Paolo Ricci:

Erice (Italy) from 30 April to 9 May 2014

ARPICO invites graduate students and post-doctoral researchers
at Canadian Universities and Laboratories to apply.

How to apply:

* Graduate students and post-doctoral researchers at Canadian
Universities/Laboratories are eligible
* Please, send a cover letter and your CV to [email protected] (.pdf format)

Deadline for application: March 31st, 2014

Scholarship covers for return-airfare from home institution to Italy,
school registration fee, lodging, and meals. The winner will be notified
by email by April 3rd, 2014.

For more information, please contact us at [email protected]

For anyone curious about Erice’s location in Italy, that would be the west coast of Sicily,

Erice (Vagabonda, May 2008) [downloaded from http://www.tripadvisor.ca/Tourism-g194757-Erice_Province_of_Trapani_Sicily-Vacations.html#17970260]

Erice (Vagabonda, May 2008) [downloaded from http://www.tripadvisor.ca/Tourism-g194757-Erice_Province_of_Trapani_Sicily-Vacations.html#17970260]

Good luck!

Canada-European Union research and Horizon 2020 funding opportunities

Thanks to the Society of Italian Researchers and Professionals of Western Canada (ARPICO), I received a Jan. 15, 2014 notice about ERA-Can‘s (European Research Area and Canada) upcoming Horizon 2020 information sessions, i.e., funidng opportunities for Canadian researchers,

The Canadian partners* to ERA-Can+ invite you to learn about Horizon 2020, a European funding opportunity that is accessible to Canadians working in science, technology, and innovation.

Horizon 2020 is a multi-year (2014-2020) program for science and technology funded by the European Commission. With a budget of almost Euro 80 billion (CAD $118 billion) Horizon 2020 forms a central part of the EU’s economic policy agenda. The program’s main goals are to encourage scientific excellence, increase the competitiveness of industries, and develop solutions to societal challenges in Europe and abroad.

ERA-Can+ has been established to help Canadians access Horizon 2020 funding. Building on several years of successful collaboration, ERA-Can+ will encourage bilateral exchange across the science, technology, and innovation chain. The project will also enrich the EU-Canada policy dialogue, enhance coordination between European and Canadian sector leaders, and stimulate transatlantic collaboration by increasing awareness of the funding opportunities available.

The European Commission released its first call for proposals under Horizon 2020 in December 2013. Canadian and European researchers and innovators can submit proposals for projects in a variety of fields including personalized health and care; food security; the sustainable growth of marine and maritime sectors; digital security; smart cities and communities; competitive low-carbon energy; efficient transportation; waste management; and disaster resilience. Further calls for proposals will be released later this year.

You are invited to attend one of four upcoming information sessions on Horizon 2020 opportunities for Canadians. These sessions will explain the structure of research funding in Europe and provide information on upcoming funding opportunities and the mechanisms by which Canadians can participate. Martina De Sole, Coordinator of ERA-Can+, and numerous Canadian partners will be on hand to share their expertise on these topics. Participants also will have the opportunity to learn about current and developing collaborations between Canadian and European researchers and innovators.

ERA-CAN+ Information Session Dates – Precise times to be confirmed.

Toronto: Morning of January 28th
MaRS Discovery District, 101 College Street

Kitchener-Waterloo: Morning of January 29th
Canadian Digital Media Network, 151 Charles Street West, Suite 100, Kitchener

Ottawa: Morning of January 30th
University of Ottawa; precise location on campus to be confirmed.

Montreal: Morning of January 31st
Intercontinental Hotel, 360 Rue Saint Antoine Ouest

This session is organised in partnership with the Ministère de l’Enseignement supérieur, de la Recherche, de la Science, de la Technologie du Québec.

For further information please contact [email protected]

* ERA-Can+ Project Partners
APRE – Agenzia per la Promozione della Ricerca Europea (Italy)
AUCC – Association of Universities and Colleges of Canada (Canada)
CNRS – Centre National de la Recherche Scientifique (France)
DFATD – Department of Foreign Affairs, Trade and Development Canada (Canada)
DLR – Deutsches Zentrum fur Luft- und Raumfahrt e.V. (Germany)
PPF – The Public Policy Forum (Canada)
ZSI – Zentrum fur Soziale Innovation (Austria)

You can go to ERA-Can’s Information Sessions webpage to register for a specific event.

There are plans to hold sessions elsewhere in Canada,

Plans to have Info Sessions in other parts of Canada are underway.

For further information please contact [email protected]

Atomic force microscopes, images, and friction

To me, this looks like the ‘batman’ symbol but it’s not.

Nanofriction at the tip of the microscope. Courtesy SISSA [Scuola Internazionale Superiore di Studi Avanzat], Italy

Nanofriction at the tip of the microscope. Courtesy SISSA [Scuola Internazionale Superiore di Studi Avanzat], Italy

Here’s more about the work that produced this image from a Dec. 17, 2013 news item on Azonano,

Atomic force microscopes are able to reproduce spectacular images, at the scale of single atoms. This is made possible by the oscillation of a very sharp probe tip over the surface being observed. The tip never touches the surface but gets so close to it, at distances in the order of one billionth of a metre, that it “feels” the force due to the interaction with the atoms making up the material being observed.

These are tiny forces, in the order of nanonewtons (meaning one billion times smaller than the weight of an apple). By measuring these forces one can reproduce an image of the material. A research group, which brings together experimental physicists from the University of Basel and theoretical physicists from SISSA, has observed and explained a peculiar effect, a source of “friction” in this type of nanoscopic observations.

The Dec. 16,  2013 SISSA (Scuola Internazionale Superiore di Studi Avanzat) press release, which originated the news item, provides more specific detail,

 When the tip of the microscope oscillates over certain surfaces, in this case over NbSe2 (niobium selenide), peaks of “dissipation” (i.e., loss of energy) can be seen when the tip is at specific distances from the surface, as if it were held back, at certain locations, by some frictional force. This effect, which is related to a property of the surface known as charge density waves (CDW), was experimentally observed by the Basel physicists and first explained by Franco Pellegrini, Giuseppe Santoro and Erio Tosatti, of SISSA, by means of a theoretical model analysed with the use of numerical simulations.

“Our model describes in detail the interaction between the tip of the atomic force microscope and the CDW,” explains Pellegrini. “The model reproduces – and predicts – the data observed experimentally”.

“Knowledge of nanofriction is important today. Progressive miniaturization of electronic devices makes it crucial to understand the mechanisms underlying energy losses, continues Pelligrini.

Here’s a link to and a citation for the paper,

Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface by Markus Langer, Marcin Kisiel, Rémy Pawlak, Franco Pellegrini, Giuseppe E. Santoro, Renato Buzio, Andrea Gerbi, Geetha Balakrishnan, Alexis Baratoff, Erio Tosatti & Ernst Meyer. Nature Materials (2013) doi:10.1038/nmat3836 Published online 15 December 2013

This paper is behind a paywall although you can obtain a preview through ReadCube Access.

Anatase and rutile titanium dioxide and nanosunscreens

The American Chemical Society (ACS) features some research into nanoscreens and the anatase form of titanium dioxide in a Sept. 25, 2013 news release,,

Using a particular type of titanium dioxide — a common ingredient in cosmetics, food products, toothpaste and sunscreen — could reduce the potential health risks associated with the widely used compound. The report on the substance, produced by the millions of tons every year for the global market, appears in the ACS journal Chemical Research in Toxicology.
Francesco Turci and colleagues explain that titanium dioxide (TiO2) is generally considered a safe ingredient in commercially available skin products because it doesn’t penetrate healthy skin. But there’s a catch. Research has shown that TiO2 can cause potentially toxic effects when exposed to ultraviolet light, which is in the sun’s rays and is the same kind of light that the compound is supposed to offer protection against. To design a safer TiO2 for human use, the researchers set out to test different forms of the compound, each with its own architecture.

They tested titanium dioxide powders on pig skin (which often substitutes for human skin in these kinds of tests) with indoor lighting, which has very little ultraviolet light in it. They discovered that one of the two most commonly used crystalline forms of TiO2, called rutile, easily washes off and has little effect on skin. Anatase, the other commonly used form, however, was difficult to wash off and damaged the outermost layer of skin — even in low ultraviolet light. It appears to do so via “free radicals,” which are associated with skin aging. “The present findings strongly encourage the use of the less reactive, negatively charged rutile to produce safer TiO2-based cosmetic and pharmaceutical products,” the researchers conclude.

It should be noted that the researchers used pig skin, i.e., the skin was not on a pig and, therefore, not part of a living organism with its various biological systems coming into play. As well, the testing was done indoors not under direct sunlight which is the condition under which most of us use sunscreen. This research points to problems  with using anatase nanoscale titanium dioxide in sunscreens but it doesn’t provide unequivocal proof.

The Danish Environmental Protection Agency report (this Oct. 3, 2013 posting of mine) on the state of the art of research into nanomateial dermal absorption does refer to research in this area, although it does not include Turci’s work (Note: The numbers n the excerpted text are reference numbers for the bibliography)),

When looking at bulk composition and the level of dermal penetration noted in studies using a specific material type, there appears to be very little pattern between bulk composition and penetration depth. Taking for example TiO2 as one of the most widely studied nanoparticles, we see reports of penetration no further than the SC [subcutaneous skin layer] 78, 86, 91 but also several studies suggesting deeper penetration (basal cell layer) and even penetration into the dermis 63, 84 although this is often reported as being a very small fraction/infrequent. Another compositional issue in relation to nanoparticles and in particular TiO2 is the crystalline structure. TiO2 is often used in either its anatase or rutile form or as mixture of both. Within the literature, there are studies using both the anatase form 86, 94, the rutile form 91, 114 or a mixture 84, 114 although we were unable to find any studies which appear to systematically evaluate the role of crystal form in TiO2 absorption into the skin. [emphasis mine] (p. 44 of this report: Dermal Absorption of Nanomaterials Part of the ”Better control of nano” initiative 2012 – 2015 Environmental Project No. 1504, 2013).

For those who would like to read Turci’s research for themselves,

Crystalline Phase Modulates the Potency of Nanometric TiO2 to Adhere to and Perturb the Stratum Corneum of Porcine Skin under Indoor Light by Francesco Turci, Elena Peira, Ingrid Corazzari, Ivana Fenoglio, Michele Trotta, and Bice Fubini. Chem. Res. Toxicol., Article ASAP DOI: 10.1021/tx400285j Publication Date (Web): September 12, 2013
Copyright © 2013 American Chemical Society

This research is behind a paywall.

Saving lives at birth 2013: Round 3 award nominees and their technologies

As I have noted before (most recently in a Feb. 13, 2013 posting) there are at least two Grand Challenges, one is a Bill & Melinda Gates Foundation program and the other, Grand Challenges Canada, is funded by the Canadian government. Both organizations along with the U.S. Agency for International Development (USAID), the Government of Norway, and the U.K’s Department for International Development (DFID) have combined their efforts on maternal health in a partnership, Saving Lives at Birth: A Grand Challenge for Development. 2013 is the third year for this competitive funding program, which attracts entries from around the world.

The organization’s July 31, 2013 news release announces the latest funding nominees,

The Saving Lives at Birth: A Grand Challenge for Development today announced 22 Round 3 award nominees from a pool of 53 finalists – innovators who descended on Washington for three days (DevelopmentXChange) to showcase bold, new ideas to save the lives of mothers and newborns in developing countries with aspirations of international funding to realize their vision.

The award nominees cut across maternal and neonatal health, family planning, nutrition and HIV and they present not only cutting-edge technologies that can be used in resource-poor settings, but innovative approaches to delivering services and the adoption of healthy behaviors. The announcement was made at the closing forum of the DevelopmentXChange by the Saving Lives at Birth partners. The nominees will now enter into final negotiations before awards are issued. [emphasis mine]

If I read this rightly, the nominees do not receive a set amount but negotiate for the money they need to implement and/or develop their ‘solution’. The news release provides more details about the process that applicants undertake when they reach the finalist stage,

The Saving Lives at Birth DevelopmentXChange provided a platform for top global innovators to present their ideas in an open, dynamic marketplace and exchange ideas with development experts and potential funders to help meet the immense challenge of protecting mothers and newborns in the poorest places on earth, during their most vulnerable hours. Other promising ideas will be considered for “incubator awards” to assist innovators in further developing their ideas through dialogue and mentorship.


The Saving Lives at Birth DevelopmentXChange featured discussions focused on meeting the needs and realities of women and children in low-resource settings as well as workshops that explored business planning, market research, impact investing, and strategies for scaling their innovations.  The three-day event concluded with a forum featuring Ambassador Susan E. Rice, National Security Advisor; Dr. Rajiv Shah, Administrator, USAID; HRH Princess Sarah Zeid of Jordan; New York Times best-selling author Dan Heath and NASA astronaut Col. Ron Garan (ret.).

Leading into the DevelopmentXChange, existing Saving Lives at Birth grantees participated in a three-day, customized training program – a focal point of the global health Xcelerator.  This eight-month program, offered through a partnership between National Collegiate Inventors and Innovators Alliance (NCIIA), the Lemelson Foundation and USAID, provides grantees the tools and knowledge to scale their ideas and maximize the impact of their innovations.

Here’s the list of nominees who emerged from the process (there is one overtly nanotechnology project listed and I suspect others are also enabled by nanotechnology),

Award nominees of Saving Lives at Birth Round 3 include 4 transition-to-scale grant nominees:

· Africare – Dakar, Senegal: A collaborative community-based technology that integrates community support services with mobile and telemedicine platforms to increase demand for, and access to, quality prenatal care services in Senegal.  More: http://savinglivesatbirth.net/summaries/232

· Epidemiological Research Center in Sexual and Reproductive Health – Guatemala City, Guatemala: An integrated approach to reduce maternal and perinatal mortality in Northern Guatemala through simulation-based training, social marketing campaigns and formal health care system engagement.  More: http://savinglivesatbirth.net/summaries/246

· Massachusetts General Hospital – Boston, MA, USA: A next-generation uterine balloon tamponade (UBT) device to treat postpartum hemorrhage (PPH) in Kenya and South Sudan.  More: http://savinglivesatbirth.net/summaries/255

· The Research Institute at Nationwide Children’s Hospital – Columbus, OH, USA: A low-cost paper-based urine test for early diagnosis of pre-eclampsia to reduce pre-eclampsia morbidity and mortality in resource-limited areas.  http://savinglivesatbirth.net/summaries/275

And 18 seed grant nominees:

· BILIMETRIX SRL – Trieste, Italy: An inexpensive system to rapidly test for markers of hyperbilirubinemia (kernicterus)-an often fatal form of brain damage caused by excessive jaundice- in low resource settings in Nigeria, Egypt, and Indonesia.  More: http://savinglivesatbirth.net/summaries/235

· JustMilk - Dept. of Chemical Engineering, University of Cambridge – Cambridge, UK: A low-cost system that aids the administration of drugs and nutrients to breastfeeding infants via easily disintegrating tablets housed within a modified Nipple Shield Delivery System (NSDS).  http://savinglivesatbirth.net/summaries/241

· The University of Melbourne - Melbourne, Australia: A low-cost, electricity-free oxygen concentrator suitable for providing provisional oxygen for neonates in low-resource settings.  http://savinglivesatbirth.net/summaries/277

· University of Toronto - Toronto, Canada: A spray-encapsulated iron premix that will be attached to tea leaves to reduce rates of iron deficiency of pregnant women in South Asia.  http://savinglivesatbirth.net/summaries/279

· University of Valencia - Valencia, Spain: A rapid point-of-care test strips for early diagnosis of sepsis in pregnancy and childbirth. More: http://savinglivesatbirth.net/summaries/281

· Mbarara University of Science and Technology - Mbarara, Uganda: The Augmented Infant Resuscitator (AIR) which gives instant feedback to healthcare professionals performing newborn resuscitation to reduce neonatal deaths from intrapartum birth asphyxia or prematurity.  http://savinglivesatbirth.net/summaries/256

· Bioceptive, Inc. – New Orleans, LA, USA: A low-cost, reusable, and intuitive intrauterine device (IUD) inserter to make the IUD insertion procedure easier and safer in low-resource settings. http://savinglivesatbirth.net/summaries/236

· Convergent Engineering Inc. – Newberry, FL, USA: An inexpensive, easy-to-use, handheld early-warning system that detects pre-eclampsia 10-12 weeks before the onset symptoms. The system pairs a wrist strap embedded with inexpensive ECG and photoplethysmography sensors with a smart phone for processing, data aggregation, and communication.  http://savinglivesatbirth.net/summaries/239

· Dimagi, Inc. (CommTrack) – Cambridge, MA, USA: An open-source distribution management system integrating mobile and GPS technology to improve transparency, supply chain functioning, communication, and the timely delivery of medicine to hard to reach, low-income areas in Africa.  http://savinglivesatbirth.net/summaries/243

· Duke University- Durham, NC, USA:  Healthcare system integration of the “Pratt Pouch”-a tiny ketchup-like packet that stores antiretroviral AIDS medication for a year-to enable the pouch to be used in home-birth settings to prevent transmission of HIV from mother to child. Testing taking place in Zambia.  http://savinglivesatbirth.net/summaries/244

· Emory University – Atlanta, GA, USA: A micro-needle patch that co-administers the influenza and tetanus toxoid vaccines to pregnant mothers and children in developing countries.  http://savinglivesatbirth.net/summaries/245

· Nanobiosym, Inc – Cambridge, MA, USA: A nanotech platform which enables rapid, accurate and mobile HIV diagnosis at point-of-care, allowing for timely treatment with antiretroviral therapy to reduce HIV-related mortality in infants in Rwanda.  http://savinglivesatbirth.net/summaries/259

· Oregon Health and Science University – Portland, OR, USA: The Xstat mini-sponge applicator for the treatment of postpartum hemorrhage (PPH).  http://savinglivesatbirth.net/summaries/260

· Population Services International – Washington DC, USA: A new inserter for immediate postpartum intrauterine device (PPIUD) insertions to increase contraceptive uptake in developing countries.  http://savinglivesatbirth.net/summaries/263

· President and Fellows of Harvard College – Boston, MA, USA: A handheld vital sign monitor for the rapid diagnosis of frail and sick newborns.  http://savinglivesatbirth.net/summaries/264

· Program for Appropriate Technology in Health (PATH) – Seattle, WA, USA: A heat-stable oxytocin in a fast-dissolving oral tablet to treat postpartum hemorrhage (PPH).  http://savinglivesatbirth.net/summaries/268

· Program for Appropriate Technology in Health (PATH) – Seattle, WA, USA: A magnesium sulfate (MgSO4) gel that simplifies treatment of pre-eclampsia and eclampsia.  http://savinglivesatbirth.net/summaries/267

· The Board of Regents of the University of Wisconsin System – Madison, WI, USA: A Lactobacillus casei strain that enables the sustainable home production of beta-Carotene enriched dairy products for at-risk mothers and families in Southern Asia.  http://savinglivesatbirth.net/summaries/272

While it’s not stated explicitly, the main focus for Saving Lives at Birth appears to be the continent of Africa as per this video animation which represents the organization’s goals and focus,

Macramé and molecular entanglement at the nanoscale from Italy

It’s all about the knots in Cristian Micheletti’s work on polymers in the June 10, 2013 news item on Nanowerk,

Timing and properties of spontaneous knotting in the macromolecular world. Courtesy: Sissa Medialab

of spontaneous
in the macromolecular world. Courtesy: Sissa Medialab

From the news item (Note: A link has been removed),

Nanotechnologies require a detailed knowledge of the molecular state. For instance, it is useful to know when and how a generic polymer, a long chain of polymers (chain of beads), knots. The study of molecular entanglement is an important field of study as the presence of knots affects its physical properties, for instance the resistance to traction. Previous studies had mainly obtained “static” data on the knotting probability of such molecules. In other words, they focused on the likelihood that a polymer may knot. The novelty of the study (“Spontaneous Knotting and Unknotting of Flexible Linear Polymers: Equilibrium and Kinetic Aspects”) carried out by Micheletti and colleagues lies in the fact that this time the dynamic aspect of the phenomenon has been simulated.

Sissa (Scuola Internazionale Superiore di Studi Avanzati in Italy [my very rough translation: International School of Higher Learning and Advanced Studies]), has issued a June 10, 2013 press release which provides some insight into Micheletti’s perspective and more details about the work,

“It’s a little like the difference that lies between a disorganized collection of photographs and a
video. With the former we obtain statistical information (for instance, how many times a knot will appear), but we don’t know how that situation occurred and how it will evolve”, explained Micheletti. “Thanks to dynamic simulation we have found, for instance, that knots tend to form at the ends, where they are very frequent yet ephemeral, that is, they are short lived.”

According to the team’s observations, in fact, once formed the knot moves along the chain in an apparently casual manner, it may take a step to the left, then two to the right and so on, so that at the end of the chain it generally tends to disappear,“ falling ” outside the filament. Micheletti also explains that, although more infrequently, it has been observed that the knot moves towards the centre of the polymer: “When this occurs, the knots average lifetime is higher than when they remain trapped at the ends.”

At the center of the polymer also slip knots or pseudo knots, may form. “At first a loop is formed and this blocks another part of the filament. If thermal fluctuations pull to the correct side the knot disappears, while if they pull to the loop side, a proper knot may be created. These knots are very long lived,” explains Rosa [Angelo Rosa, a researcher at SISSA ].

“This research is useful since the data on simple knotting probability reveal nothing about knotting timing”, underlines Tubiana [Luca Tubianam a former SISSA student, now working at the Josef Stefan Institute of Ljubljana]. “If knots form and disappear very quickly, after a certain amount of time we may observe a given percentage of average knotting, yet we do not know whether the knots have remained the same or if they have changed through time. Researchers who carry out experiments of this kind need, instead, more detailed information.”

Micheletti was asked to present this latest work at Harvard University (US) today (June 10, 2013) at an Engineering and Physical Biology Symposium. For the curious who were not able to attend the symposium, here’s a link to and a citation for the team’s research paper,

Spontaneous Knotting and Unknotting of Flexible Linear Polymers: Equilibrium and Kinetic Aspects by L. Tubiana, A. Rosa, F. Fragiacomo, and C. Micheletti. Macromolecules, 2013, 46 (9), pp 3669–3678 DOI: 10.1021/ma4002963 Publication Date (Web): April 15, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

I have a couple of extra comments. First, there’s a Sissa Medialab which seems to be the school’s  science communication initiative. You can go there to see more but you will need Italian language skills if you plan to do much more than look at the pictures. Second, I have referenced macramé (art of knotted textiles) before in a Nov. 10, 2011 posting about a synthetic molecular pentafoil knot

European nanotech roadmap

No event, document, or specific announcement appears to have occasioned the May 10, 2013 news item on Nanowerk about Europe’s nanotechnology roadmap (Note: A link was removed),

Nanotechnology is opening the way to a new industrial revolution. From ‘individualised’ medical treatments tailored for each patient to new, environmentally-friendly energy storage and generation systems, nanotechnology is bringing significant advances. Exciting new futures await those businesses able to get ahead in the race to turn this wealth of promise into commercial success. But in a field which requires a high degree of coordinated effort involving many different stakeholder groups, including researchers, policymakers and commercial players across a wide variety of industrial sectors, it has perhaps been inevitable that fragmentation, disconnectedness and duplication have stood in the way.

NANOfutures was set up in 2010 to tackle exactly this problem of fragmentation. Supported by European Union (EU) funding, NANOfutures is a European Technology and Innovation Platform (ETIP) bringing together industry, research institutions and universities, NGOs [nongovernmental organizations], financial institutions, civil society and policymakers at regional, national and European levels. Acting as a kind of ‘nano-hub’ for Europe, NANOfutures is dedicated to fostering a shared vision and strategy on the future of nanotechnology.

The May 9, 2013 European Commission news release, which originated the news item, goes on to describe the NANOfutures project which ended in Sept. 2012,

Reflecting its objective of achieving a truly cross-sectoral approach, breaking out of individual industry silos and addressing the major nanotech issues which are common to all sectors, NANOfutures set up a steering committee which included representatives from 11 European Technology Platforms (ETPs) – sector-specific networks of industry and academia – including those for textiles, nanomedicine, construction and transportation. Chaired by Professor Paolo Matteazzi of Italian specialist nanomaterials company MBN Nanomaterialia, the committee also included ten nanotechnology experts, each one chairing a NANOfutures working group on cross-sectoral topics such as safety, standardisation, regulation, technology transfer and innovative financing.

This approach allowed NANOfutures to identify key aspects of nanotechnology and its exploitation in which all players – from researcher to politician, financier, commercial developer, regulator or end-user – were involved and therefore had common interests.

One of the major successes achieved by the two-year project was securing an agreement by all 11 ETPs on a set of research and innovation themes for the next decade. “The ETPs agreed to focus their private efforts, and call for increasing public efforts, on such themes in order to bring European nano-enabled products to successful commercialisation, with benefits for the grand challenges of our time such as climate change, affordable and effective medicine, green mobility and manufacturing,” says the project’s coordinator, Margherita Cioffi of Italian engineering consultancy D’Appolonia.

The most tangible result of this, and the key outcome from NANOfutures, was the development and publication of a ‘Research and Industrial Roadmap’ setting out, in Ms Cioffi’s words, “a pathway up to 2020 which will enable European industry and researchers to deliver and successfully commercialise sustainable and safe nano-enabled products.” Divided into seven separate thematic areas, or ‘value-chains’, the roadmap covers European priorities from materials research to product design, manufacturing, assembly, use and disposal. It describes both short- and longer-term actions with the aim of providing a practical guide for EC and Member State governments, research centres and industry, as well as standardisation and regulation bodies.

Other benefits directly resulting from the project, Ms Cioffi adds, were the sharing of safety best practices, the creation of partnerships to promote product development, training and other services, and the bringing together of relevant SME businesses with potential users and investors during specially organised Technology Transfer workshops.

Since it is not a product in itself, but a method with an enormous range of potential applications, nanotechnology naturally reaches into a diverse range of human activities. Paradoxically, almost, this very richness and universality of its benefits leads to a fragmentation of effort which acts as a barrier to its efficient exploitation. By bringing together the various stakeholders to create a unified, strategic approach, replacing fragmentation and duplication with a focus on areas of agreed priority and common interest, NANOfutures has played an invaluable role in promoting the rapid development of nanotechnology – with its twin benefits of societal usefulness and enhanced European competitiveness.

Project details

Project acronym: NANOFUTURES

  • Participants: Italy (Coordinator), Belgium, Spain
  • Project FP7 266789
  • Total costs: €1 171 011
  • EU contribution: €999 980
  • Duration: October 2010 – September 2012

The NANOfutures website provides more resources including a list of documents/deliverables  featuring a 148 pp. July 2012 roadmap. Unfortunately, I cannot provide a direct link to the roadmap or the documents page, for that matter.

At this point, the site is probably most valuable for its links to other project as a host of resources are organized under buttons (the left side of the home page) titled with Communication Projects, Finance Projects, Safety Projects, etc.

Prosthetics and the human brain

On the heels of research which suggests that humans tend to view their prostheses, including wheel chairs, as part of their bodies, researchers in Europe  have announced the development of a working exoskeleton powered by the wearer’s thoughts.

First, there’s the ‘wheelchair’ research, from the Mar. 6, 2013 news item on ScienceDaily,

People with spinal cord injuries show strong association of wheelchairs as part of their body, not extension of immobile limbs.

The human brain can learn to treat relevant prosthetics as a substitute for a non-working body part, according to research published March 6 in the open access journal PLOS ONE by Mariella Pazzaglia and colleagues from Sapienza University and IRCCS Fondazione Santa Lucia of Rome in Italy, supported by the International Foundation for Research in Paraplegie.

The researchers found that wheelchair-bound study participants with spinal cord injuries perceived their body’s edges as being plastic and flexible to include the wheelchair, independent of time since their injury or experience with using a wheelchair. Patients with lower spinal cord injuries who retained upper body movement showed a stronger association of the wheelchair with their body than those who had spinal cord impairments in the entire body.

According to the authors, this suggests that rather than being thought of only as an extension of the immobile limbs, the wheelchairs had become tangible, functional substitutes for the affected body part. …

As I mentioned in a Jan. 30, 2013 posting,

There have been some recent legal challenges as to what constitutes one’s body (from The Economist article, You, robot? [you can find the article here: http://www.economist.com/node/21560986]),

If you are dependent on a robotic wheelchair for mobility, for example, does the wheelchair count as part of your body? Linda MacDonald Glenn, an American lawyer and bioethicist, thinks it does. Ms Glenn (who is not involved in the RoboLaw project) persuaded an initially sceptical insurance firm that a “mobility assistance device” damaged by airline staff was more than her client’s personal property, it was an extension of his physical body. The airline settled out of court.

According to the Mar. 6, 2013 news release on EurekAlert from the Public Library of Science (PLoS), the open access article by Pazzaglia and her colleagues can be found here (Note: I have added a link),

Pazzaglia M, Galli G, Scivoletto G, Molinari M (2013) A Functionally Relevant Tool for the Body following Spinal Cord Injury. PLOS ONE 8(3): e58312.doi:10.1371/journal.pone.0058312

At almost the same time as Pazzaglia’s work,  a “Mind-controlled Exoskeleton” is announced in a Mar. 7, 2013 news item on ScienceDaily,

Every year thousands of people in Europe are paralysed by a spinal cord injury. Many are young adults, facing the rest of their lives confined to a wheelchair. Although no medical cure currently exists, in the future they could be able to walk again thanks to a mind-controlled robotic exoskeleton being developed by EU-funded researchers.

The system, based on innovative ‘Brain-neural-computer interface’ (BNCI) technology — combined with a light-weight exoskeleton attached to users’ legs and a virtual reality environment for training — could also find applications in there habilitation of stroke victims and in assisting astronauts rebuild muscle mass after prolonged periods in space.

The Mar. 7, 2013 news release on CORDIS, which originated the news item, offers a description of the “Mindwalker” project,

‘Mindwalker was proposed as a very ambitious project intended to investigate promising approaches to exploit brain signals for the purpose of controlling advanced orthosis, and to design and implement a prototype system demonstrating the potential of related technologies,’ explains Michel Ilzkovitz, the project coordinator at Space Applications Services in Belgium.

The team’s approach relies on an advanced BNCI system that converts electroencephalography (EEG) signals from the brain, or electromyography (EMG) signals from shoulder muscles, into electronic commands to control the exoskeleton.

The Laboratory of Neurophysiology and Movement Biomechanics at the Université Libre de Bruxelles (ULB) focused on the exploitation of EEG and EMG signals treated by an artificial neural network, while the Foundation Santa Lucia in Italy developed techniques based on EMG signals modelled by the coupling of neural and biomechanical oscillators.

One approach for controlling the exoskeleton uses so-called ‘steady-state visually evoked potential’, a method that reads flickering visual stimuli produced at different frequencies to induce correlated EEG signals. Detection of these EEG signals is used to trigger commands such as ‘stand’, ‘walk’, ‘faster’ or ‘slower’.

A second approach is based on processing EMG signals generated by the user’s shoulders and exploits the natural arm-leg coordination in human walking: arm-swing patterns can be perceived in this way and converted into control signals commanding the exoskeleton’s legs.

A third approach, ‘ideation’, is also based on EEG-signal processing. It uses the identification and exploitation of EEG Theta cortical signals produced by the natural mental process associated with walking. The approach was investigated by the Mindwalker team but had to be dropped due to the difficulty, and time needed, in turning the results of early experiments into a fully exploitable system.

Regardless of which method is used, the BNCI signals have to be filtered and processed before they can be used to control the exoskeleton. To achieve this, the Mindwalker researchers fed the signals into a ‘Dynamic recurrent neural network’(DRNN), a processing technique capable of learning and exploiting the dynamic character of the BNCI signals.

‘This is appealing for kinematic control and allows a much more natural and fluid way of controlling an exoskeleton,’ Mr Ilzkovitz says.

The team adopted a similarly practical approach for collecting EEG signals from the user’s scalp. Most BNCI systems are either invasive, requiring electrodes to be placed directly into brain tissue, or require users to wear a ‘wet’ capon their head, necessitating lengthy fitting procedures and the use of special gels to reduce the electrical resistance at the interface between the skin and the electrodes. While such systems deliver signals of very good quality and signal-to-noise ratio, they are impractical for everyday use.

The Mindwalker team therefore turned to a ‘dry’ technology developed by Berlin-based eemagine Medical Imaging Solutions: a cap covered in electrodes that the user can fit themselves, and which uses innovative electronic components to amplify and optimise signals before sending them to the neural network.

‘The dry EEG cap can be placed by the subject on their head by themselves in less than a minute, just like a swimming cap,’ Mr Ilzkovitz says.

Before proceeding any further with details, here’s what the Mindwalker looks like,

© MINDWALKER (downladed from http://cordis.europa.eu/fetch?CALLER=OFFR_TM_EN&ACTION=D&RCN=10601)

© MINDWALKER (downloaded from http://cordis.europa.eu/fetch?CALLER=OFFR_TM_EN&ACTION=D&RCN=10601)

After finding a way to collect the EEG/EMG signals and interpret them, the researchers needed to create the exoskeleton (from the CORDIS news release),

The universities of Delft and Twente in the Netherlands proposed an innovative approach for the design of the exoskeleton and its control. The exoskeletonis designed to be sufficiently robust to bear the weight of a 100 kg adult and powerful enough to recover balance from external causes of instability such as the user’s own torso movements during walking or a gentle push from the back or side. Compared to other exoskeletons developed to date it is relatively light, weighing less than 30 kg without batteries, and, because a final version of the system should be self-powered, it is designed to minimise energy consumption.

The Mindwalker researchers achieved energy efficiency through the use of springs fitted inside the joints that are capable of absorbing and recovering some of the energy otherwise dissipated during walking, and through the development of an efficient strategy for controlling the exoskeleton.

Most exoskeletons are designed to be balanced when stationary or quasi-static and to move by little steps inside their ground stability perimeter, an approach known as ‘Zero moment point’, or ZMP. Although this approach is commonly used for controlling humanoid robots, when applied to exoskeletons, it makes them heavy and slow – and usually requires users to be assisted by a walking frame, sticks or some other support device when they move.

Alternatively, a more advanced and more natural control strategy can replicate the way humans actually walk, with a controlled loss of balance in the walking direction.

‘This approach is called “Limit-cycle walking” and has been implemented using model predictive control to predict the behaviour of the user and exoskeleton and for controlling the exoskeleton during the walk. This was the approach investigated in Mindwalker,’ Mr Ilzkovitz says.

To train users to control the exoskeleton, researchers from Space Applications Services developed a virtual-reality training platform, providing an immersive environment in which new users can safely become accustomed to using the system before testing it out in a clinical setting, and, the team hope, eventually using it in everyday life.

By the end of this year, tests with able-bodied trial users will be completed. The system will then be transferred to the Foundation Santa Lucia for conducting a clinical evaluation until May 2013 with five to 10volunteers suffering from spinal cord injuries. These trials will help identify shortcomings and any areas of performance improvement, the project coordinator says.

In the meantime, the project partners are continuing research on different components for a variety of potential applications. The project coordinator notes, for example, that elements of the system could be adapted for the rehabilitation of stroke victims or to develop easy-to-use exoskeletons for elderly people for mobility support.

Space Applications Services, meanwhile, is also exploring applications of the Mindwalker technology to train astronauts and help them rebuild muscle mass after spending long periods of time in zero-gravity environments.

There’s more about the European Commission’s Seventh Programme-funded Mindwalker project here.

Parallel with these developments in Europe, Miguel Nicolelis of Duke University has stated that he will have a working exoskeleton (Walk Again Project)  for the kickoff by a paraplegic individual for the opening of the World Cup (soccer/football) in Brazil in 2014. I mentioned Nicolelis and his work most recently in a Mar. 4, 2013 posting.

Taken together, this research which strongly suggests that people can perceive prostheses as being part of their bodies and exoskeletons that are powered by the wearer’s thoughts, we seem to be edging closer to a world where machines and humans become one.

Biosensing cocaine

Amusingly, the Feb. 13, 2013 news item on Nanowerk highlights the biosensing aspect of the work in its title,

New biosensing nanotechnology adopts natural mechanisms to detect molecules

(Nanowerk News) Since the beginning of time, living organisms have developed ingenious mechanisms to monitor their environment.

The Feb. 13, 2013 news release from the University of Montreal (Université de Montréal) takes a somewhat different tack by focusing on cocaine,

Detecting cocaine “naturally”

Since the beginning of time, living organisms have developed ingenious mechanisms to monitor their environment. As part of an international study, a team of researchers has adapted some of these natural mechanisms to detect specific molecules such as cocaine more accurately and quickly. Their work may greatly facilitate the rapid screening—less than five minutes—of many drugs, infectious diseases, and cancers.

Professor Alexis Vallée-Bélisle of the University of Montreal Department of Chemistry has worked with Professor Francesco Ricci of the University of Rome Tor Vergata and Professor Kevin W. Plaxco of the University of California at Santa Barbara to improve a new biosensing nanotechnology. The results of the study were recently published in the Journal of American Chemical Society (JACS).

The scientists have provided an interesting image to illustrate their work,

Artist's rendering: the research team used an existing cocaine biosensor (in green) and revised its design to react to a series of inhibitor molecules (in blue). They were able to adapt the biosensor to respond optimally even within a large concentration window. Courtesy: University of Montreal

Artist’s rendering: the research team used an existing cocaine biosensor (in green) and revised its design to react to a series of inhibitor molecules (in blue). They were able to adapt the biosensor to respond optimally even within a large concentration window. Courtesy: University of Montreal

The news release provides some insight into the current state of biosensing and what the research team was attempting to accomplish,

“Nature is a continuing source of inspiration for developing new technologies,” says Professor Francesco Ricci, senior author of the study. “Many scientists are currently working to develop biosensor technology to detect—directly in the bloodstream and in seconds—drug, disease, and cancer molecules.”

“The most recent rapid and easy-to-use biosensors developed by scientists to determine the levels of various molecules such as drugs and disease markers in the blood only do so when the molecule is present in a certain concentration, called the concentration window,” adds Professor Vallée-Bélisle. “Below or above this window, current biosensors lose much of their accuracy.”

To overcome this limitation, the international team looked at nature: “In cells, living organisms often use inhibitor or activator molecules to automatically program the sensitivity of their receptors (sensors), which are able to identify the precise amount of thousand of molecules in seconds,” explains Professor Vallée-Bélisle. “We therefore decided to adapt these inhibition, activation, and sequestration mechanisms to improve the efficiency of artificial biosensors.”

The researchers put their idea to the test by using an existing cocaine biosensor and revising its design so that it would respond to a series of inhibitor molecules. They were able to adapt the biosensor to respond optimally even with a large concentration window. “What is fascinating,” says Alessandro Porchetta, a doctoral student at the University of Rome, “is that we were successful in controlling the interactions of this system by mimicking mechanisms that occur naturally.”

“Besides the obvious applications in biosensor design, I think this work will pave the way for important applications related to the administration of cancer-targeting drugs, an area of increasing importance,” says Professor Kevin Plaxco. “The ability to accurately regulate biosensor or nanomachine’s activities will greatly increase their efficiency.”

The funders for this project are (from the news release),

… the Italian Ministry of Universities and Research (MIUR), the Bill & Melinda Gates Foundation Grand Challenges Explorations program, the European Commission Marie Curie Actions program, the U.S. National Institutes of Health, and the Fonds de recherche du Québec Nature et Technologies.

Here’s a citation and a link to the research paper,

Using Distal-Site Mutations and Allosteric Inhibition To Tune, Extend, and Narrow the Useful Dynamic Range of Aptamer-Based Sensors by Alessandro Porchetta, Alexis Vallée-Bélisle, Kevin W. Plaxco, and Francesco Ricci. J. Am. Chem. Soc., 2012, 134 (51), pp 20601–20604 DOI: 10.1021/ja310585e Publication Date (Web): December 6, 2012

Copyright © 2012 American Chemical Society

This article is behind a paywall.

One final note, Alexis Vallée-Bélisle has been mentioned here before in the context of a ‘Grand Challenges Canada programme’ (not the Bill and Melinda Gates ‘Grand Challenges’) announcement of several fundees  in my Nov. 22, 2012 posting. That funding appears to be for a difference project.

The yin and the yang of carbon nanotubes and toxicity


Illustration courtesy of the University College of London (UCL). Downloaded from http://www.ucl.ac.uk/news/news-articles/0113/130115-chemistry-resolves-toxic-concerns-about-carbon-nanotubes

Illustration courtesy of the University College of London (UCL). Downloaded from http://www.ucl.ac.uk/news/news-articles/0113/130115-chemistry-resolves-toxic-concerns-about-carbon-nanotubes

Researchers at the University College of London (UCL), France’s Centre national de la recherche scientifique (CNRS), and Italy’s University of Trieste have determined that carbon nanotube toxicity issues can be addressed be reducing their length and treating them chemically. From the Jan. 15,2013 news item on ScienceDaily,

In a new study, published January 15 [2013] in the journal Angewandte Chemie, evidence is provided that the asbestos-like reactivity and pathogenicity reported for long, pristine nanotubes can be completely alleviated if their surface is modified and their effective length is reduced as a result of chemical treatment.

First atomically described in the 1990s, carbon nanotubes are sheets of carbon atoms rolled up into hollow tubes just a few nanometres in diameter. Engineered carbon nanotubes can be chemically modified, with the addition of chemotherapeutic drugs, fluorescent tags or nucleic acids — opening up applications in cancer and gene therapy.

Furthermore, these chemically modified carbon nanotubes can pierce the cell membrane, acting as a kind of ‘nano-needle’, allowing the possibility of efficient transport of therapeutic and diagnostic agents directly into the cytoplasm of cells.

Among their downsides however, have been concerns about their safety profile. One of the most serious concerns, highlighted in 2008, involves the carcinogenic risk from the exposure and persistence of such fibres in the body. Some studies indicate that when long untreated carbon nanotubes are injected to the abdominal cavity of mice they can induce unwanted responses resembling those associated with exposure to certain asbestos fibres.

In this paper, the authors describe two different reactions which ask if any chemical modification can render the nanotubes non-toxic. They conclude that not all chemical treatments alleviate the toxicity risks associated with the material. Only those reactions that are able to render carbon nanotubes short and stably suspended in biological fluids without aggregation are able to result in safe, risk-free material.

Here’s a citation and link for this latest  research, from the ScienceDaily news item where you can also read the lead researcher’s comments about carbon nanotubes, safety, and unreasonable proposals to halt production,

Hanene Ali-Boucetta, Antonio Nunes, Raquel Sainz, M. Antonia Herrero, Bowen Tian, Maurizio Prato, Alberto Bianco, Kostas Kostarelos. Asbestos-like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201207664

The article is behind a paywall. I have mentioned long carbon nanotubes and their resemblance to asbestos fibres in several posts. The  Oct. 26, 2009 posting [scroll down about 1/3 of the way] highlights research which took place after the study where mice had carbon nanotubes injected into their bellies; in this second piece of research they inhaled the nanotubes.

ETA Jan. 21, 2013: Dexter Johnson gives context and commentary about this latest research into long multiwalled nanotubes (MWNTs) which he sums up as the answer to this question “What if you kept the MWNTs short?”  in a Jan. 18, 2013 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website)