Tag Archives: Mexico

Gold nanoparticles used to catalyze biofuel waste and create a useful additive

This work is the result of an international collaboration including Russia (from a May 23, 2017 news item on Nanowerk),

Gold nanoparticles serve as catalysts for obtaining valuable chemical products based on glycerol. Scientists from Tomsk Polytechnic University and their international colleagues are developing gold catalysts to recycle one of the main byproducts of biofuel production. The obtained products are in high demand in medicine, agriculture, cosmetic industry and other sectors.

Scientists from the University of Milano (Italy), the National Autonomous University of Mexico, the Institute of Catalysis and Petrochemistry of Madrid (Spain) and the University of Porto (Portugal) take part in the study of gold nanoparticles.

A May 23, 2027 Tomsk Polytechnic University press release, which originated the news item, expands on the theme,

Today the production of biofuels is an important area in many countries. They can be obtained from a great variety of biomasses. In Latin America it is orange and tangerine peel as well as banana skin. In USA biofuels are produced from corn, in the central part of Russia and Europe – from rape (Brassica napus). When processing these plants into biofuels a large amount of glycerol is formed. Its esters constitute the basis of oils and fats. Glycerol is widely used in cosmetic industry as an individual product. However, much more glycerol is obtained in the production of biofuels – many thousands of tons a year. As a result, unused glycerol merely becomes waste,’ describes the problem Alexey Pestryakov, the Head of the Department of Physical and Analytical Chemistry. ‘Now, a lot of research groups are engaged in this issue as to how to transform excess glycerol into other useful products. Along with our foreign colleagues we offered catalysts based on gold nanoparticles.’

The authors of the research note that catalytic oxidation on gold is one of the most effective techniques to obtain from glycerol such useful products as aldehydes, esters, carboxylic acids and other substances.

‘All these substances are products of fine organic chemistry and are in demand in a wide range of industries, first of all, in the pharmaceutical and cosmetic industries. In agriculture they are applied as part of different feed additives, veterinary drugs, fertilizers, plant treatment products, etc.

Thus, unused glycerol after being processed will further be applied,’ sums up Alexey Pestryakov.

Gold catalysts are super active. They can enter into chemical reactions with other substances at room temperature (other catalysts need to be heated), in some case even under zero. However, gold can be a catalyst only at the nanolevel.

‘If you take a piece of gold, even very tiny, there will be no chemical reaction. In order to make gold become chemically active, the size of its particle should be less than two nanometers. Only then it gets its amazing properties,’ explains the scientist.

As a catalyst gold was discovered not so long ago, in the early 1990s, by Japanese chemists.

To date, TPU scientists and their colleagues are not the only ones who develop such catalysts.

Unlike their counterparts the gold catalysts developed at TPU are more stable (they retain their activity longer).

‘A great challenge in this area is that gold catalysts are very rapidly deactivated, not only during work, but even during storage. Our objective is to ensure their longer shelf life. It is also important to use oxygen as an oxidizer, since toxic and corrosive peroxide compounds are often used for such purposes,’ says Alexey Petryakov.

Here’s a link to and a citation for the paper,

More Insights into Support and Preparation Method Effects in Gold Catalyzed Glycerol Oxidation by Nina Bogdanchikova, Inga Tuzovskaya, Laura Prati, Alberto Villa, Alexey Pestryakov, Mario Farías. Current Organic Synthesis VOLUME: 14 ISSUE: 3 Year: 2017Page: [377 – 382] Pages: 6 DOI: 10.2174/1570179413666161031114833

This paper is behind a paywall. (Scroll down the page to find the article.)

Cleaning wastewater with fruit peel

A March 23, 2017 news item on phys.org announces a water purification process based on fruit peel,’

A collaborative of researchers has developed a process to clean water containing heavy metals and organic pollutants using a new adsorbent material made from the peels of oranges and grapefruits.

A March 23, 2017 University of Granada press release explains more about the research (Note: Links have been removed),

Researchers from the University of Granada (UGR), and from the Center for Electrochemical Research and Technological Development (Centro de Investigación y Desarrollo Tecnológico en Electroquímica, CIDETEQ) and the Center of Engineering and Industrial Development (Centro de Ingeniería y Desarrollo Industrial, CIDESI), both in Mexico, have developed a process that allows to clean waters containing heavy metals and organic compounds considered pollutants, using a new adsorbent material made from the peels of fruits such as oranges and grapefruits.

Said peels are residues which pose a problem for the food industry, given that they take up a great volume and aren’t very useful nowadays. 38.2 million tons of said fruit peels are estimated to be produced worldwide each year in the food industry.

The research, in which the UGR participates, has served for designing a new process by which, thanks to an Instant Controlled Pressure Drop treatment, it is possible to modify the structure of said residues, giving them adsorbent properties such as a greater porosity and surface area.

Researcher Luis Alberto Romero Cano, from the Carbon Materials Research Team (Grupo de Investigación en Materiales de Carbón) at the Faculty of Science, UGR, explains that, by a subsequent chemical treatment, they “have managed to add functional groups to the material, thus making it selective in order to remove metals and organic pollutants present in water”.

A subsequent research carried out by the authors of this paper has showed that it is possible to pack those new materials in fixed bed columns, in a way similar to a filter by which wastewater runs on a constant flux process, like the usual wastewater treatments. This laboratory-scale study has allowed to obtain parameters to design a large-scale use of said materials.

“The results show a great potential for the use of said materials as adsorbents capable of competing with commercial activated carbon for the adsorption and recovery of metals present in wastewater, in a way that it could be possible to carry out sustainable processes in which products with a great commercial value could be obtained from food industry residues”, Romero Cano says.

Here’s a link to and a citation for the paper,

Biosorbents prepared from orange peels using Instant Controlled Pressure Drop for Cu(II) and phenol removal by Luis A. Romero-Cano, Linda V. Gonzalez-Gutierrez, Leonardo A. Baldenegro-Perez. Industrial Crops and Products Volume 84, June 2016, Pages 344–349  http://dx.doi.org/10.1016/j.indcrop.2016.02.027

I’m not sure why they decided to promote this research so long after it was published but I’m glad they did. It’s always good to see work designed to make use of what is currently waste. By the way, this paper is behind a paywall.

The character of water: both types

This is to use an old term, ‘mindblowing’. Apparently, there are two types of the liquid we call water according to a Nov. 10, 2016 news item on phys.org,

There are two types of liquid water, according to research carried out by an international scientific collaboration. This new peculiarity adds to the growing list of strange phenomena in what we imagine is a simple substance. The discovery could have implications for making and using nanoparticles as well as in understanding how proteins fold into their working shape in the body or misfold to cause diseases such as Alzheimer’s or CJD [Creutzfeldt-Jakob Disease].

A Nov. 10, 2016 Inderscience Publishers news release, which originated the news item, expands on the theme,

Writing in the International Journal of Nanotechnology, Oxford University’s Laura Maestro and her colleagues in Italy, Mexico, Spain and the USA, explain how the physical and chemical properties of water have been studied for more than a century and revealed some odd behavior not seen in other substances. For instance, when water freezes it expands. By contrast, almost every other known substance contracts when it is cooled. Water also exists as solid, liquid and gas within a very small temperature range (100 degrees Celsius) whereas the melting and boiling points of most other compounds span a much greater range.

Many of water’s bizarre properties are due to the molecule’s ability to form short-lived connections with each other known as hydrogen bonds. There is a residual positive charge on the hydrogen atoms in the V-shaped water molecule either or both of which can form such bonds with the negative electrons on the oxygen atom at the point of the V. This makes fleeting networks in water possible that are frozen in place when the liquid solidifies. They bonds are so short-lived that they do not endow the liquid with any structure or memory, of course.

The team has looked closely at several physical properties of water like its dielectric constant (how well an electric field can permeate a substance) or the proton-spin lattice relaxation (the process by which the magnetic moments of the hydrogen atoms in water can lose energy having been excited to a higher level). They have found that these phenomena seem to flip between two particular characters at around 50 degrees Celsius, give or take 10 degrees, i.e. from 40 to 60 degrees Celsius. The effect is that thermal expansion, speed of sound and other phenomena switch between two different states at this crossover temperature.

These two states could have important implications for studying and using nanoparticles where the character of water at the molecule level becomes important for the thermal and optical properties of such particles. Gold and silver nanoparticles are used in nanomedicine for diagnostics and as antibacterial agents, for instance. Moreover, the preliminary findings suggest that the structure of liquid water can strongly influence the stability of proteins and how they are denatured at the crossover temperature, which may well have implications for understanding protein processing in the food industry but also in understanding how disease arises when proteins misfold.

Here’s a link to and a citation for the paper,

On the existence of two states in liquid water: impact on biological and nanoscopic systems
by L.M. Maestro, M.I. Marqués, E. Camarillo, D. Jaque, J. García Solé, J.A. Gonzalo, F. Jaque, Juan C. Del Valle, F. Mallamace, H.E. Stanley.
International Journal of Nanotechnology (IJNT), Vol. 13, No. 8/9, 2016 DOI: 10.1504/IJNT.2016.079670

This paper is behind a paywall.

Breathing nanoparticles into your brain

Thanks to Dexter Johnson and his Sept. 8, 2016 posting (on the Nanoclast blog on the IEEE [Institute for Electrical and Electronics Engineers]) for bringing this news about nanoparticles in the brain to my attention (Note: Links have been removed),

An international team of researchers, led by Barbara Maher, a professor at Lancaster University, in England, has found evidence that suggests that the nanoparticles that were first detected in the human brain over 20 years ago may have an external rather an internal source.

These magnetite nanoparticles are an airborne particulate that are abundant in urban environments and formed by combustion or friction-derived heating. In other words, they have been part of the pollution in the air of our cities since the dawn of the Industrial Revolution.

However, according to Andrew Maynard, a professor at Arizona State University, and a noted expert on the risks associated with nanomaterials,  the research indicates that this finding extends beyond magnetite to any airborne nanoscale particles—including those deliberately manufactured.

“The findings further support the possibility of these particles entering the brain via the olfactory nerve if inhaled.  In this respect, they are certainly relevant to our understanding of the possible risks presented by engineered nanomaterials—especially those that are iron-based and have magnetic properties,” said Maynard in an e-mail interview with IEEE Spectrum. “However, ambient exposures to airborne nanoparticles will typically be much higher than those associated with engineered nanoparticles, simply because engineered nanoparticles will usually be manufactured and handled under conditions designed to avoid release and exposure.”

A Sept. 5, 2016 University of Lancaster press release made the research announcement,

Researchers at Lancaster University found abundant magnetite nanoparticles in the brain tissue from 37 individuals aged three to 92-years-old who lived in Mexico City and Manchester. This strongly magnetic mineral is toxic and has been implicated in the production of reactive oxygen species (free radicals) in the human brain, which are associated with neurodegenerative diseases including Alzheimer’s disease.

Professor Barbara Maher, from Lancaster Environment Centre, and colleagues (from Oxford, Glasgow, Manchester and Mexico City) used spectroscopic analysis to identify the particles as magnetite. Unlike angular magnetite particles that are believed to form naturally within the brain, most of the observed particles were spherical, with diameters up to 150 nm, some with fused surfaces, all characteristic of high-temperature formation – such as from vehicle (particularly diesel) engines or open fires.

The spherical particles are often accompanied by nanoparticles containing other metals, such as platinum, nickel, and cobalt.

Professor Maher said: “The particles we found are strikingly similar to the magnetite nanospheres that are abundant in the airborne pollution found in urban settings, especially next to busy roads, and which are formed by combustion or frictional heating from vehicle engines or brakes.”

Other sources of magnetite nanoparticles include open fires and poorly sealed stoves within homes. Particles smaller than 200 nm are small enough to enter the brain directly through the olfactory nerve after breathing air pollution through the nose.

“Our results indicate that magnetite nanoparticles in the atmosphere can enter the human brain, where they might pose a risk to human health, including conditions such as Alzheimer’s disease,” added Professor Maher.

Leading Alzheimer’s researcher Professor David Allsop, of Lancaster University’s Faculty of Health and Medicine, said: “This finding opens up a whole new avenue for research into a possible environmental risk factor for a range of different brain diseases.”

Damian Carrington’s Sept. 5, 2016 article for the Guardian provides a few more details,

“They [the troubling magnetite particles] are abundant,” she [Maher] said. “For every one of [the crystal shaped particles] we saw about 100 of the pollution particles. The thing about magnetite is it is everywhere.” An analysis of roadside air in Lancaster found 200m magnetite particles per cubic metre.

Other scientists told the Guardian the new work provided strong evidence that most of the magnetite in the brain samples come from air pollution but that the link to Alzheimer’s disease remained speculative.

For anyone who might be concerned about health risks, there’s this from Andrew Maynard’s comments in Dexter Johnson’s Sept. 8, 2016 posting,

“In most workplaces, exposure to intentionally made nanoparticles is likely be small compared to ambient nanoparticles, and so it’s reasonable to assume—at least without further data—that this isn’t a priority concern for engineered nanomaterial production,” said Maynard.

While deliberate nanoscale manufacturing may not carry much risk, Maynard does believe that the research raises serious questions about other manufacturing processes where exposure to high concentrations of airborne nanoscale iron particles is common—such as welding, gouging, or working with molten ore and steel.

It seems everyone is agreed that the findings are concerning but I think it might be good to remember that the percentage of people who develop Alzheimer’s Disease is much smaller than the population of people who have crystals in their brains. In other words, these crystals might (they don’t know) be a factor and likely there would have to be one or more factors to create the condition for developing Alzheimer’s.

Here’s a link to and a citation for the paper,

Magnetite pollution nanoparticles in the human brain by Barbara A. Maher, Imad A. M. Ahmed, Vassil Karloukovski, Donald A. MacLaren, Penelope G. Fouldsd, David Allsop, David M. A. Mann, Ricardo Torres-Jardón, and Lilian Calderon-Garciduenas. PNAS [Proceedings of the National Academy of Sciences] doi: 10.1073/pnas.1605941113

This paper is behind a paywall but Dexter’s posting offers more detail for those who are still curious.

Canadian science petition and a science diplomacy event in Ottawa on June 21, 2016*

The Canadian science policy and science funding scene is hopping these days. Canada’s Minister of Science, Kirsty Duncan, announced a new review of federal funding for fundamental science on Monday, June 13, 2016 (see my June 15, 2016 post for more details and a brief critique of the panel) and now, there’s a new Parliamentary campaign for a science advisor and a Canadian Science Policy Centre event on science diplomacy.

Petition for a science advisor

Kennedy Stewart, Canadian Member of Parliament (Burnaby South) and NDP (New Democratic Party) Science Critic, has launched a campaign for independent science advice for the government. Here’s more from a June 15, 2016 announcement (received via email),

After years of muzzling and misuse of science by the Conservatives, our scientists need lasting protections in order to finally turn the page on the lost Harper decade.

I am writing to ask your support for a new campaign calling for an independent science advisor.

While I applaud the new Liberal government for their recent promises to support science, we have a long way to go to rebuild Canada’s reputation as a global knowledge leader. As NDP Science Critic, I continue to push for renewed research funding and measures to restore scientific integrity.

Canada badly needs a new science advisor to act as a public champion for research and evidence in Ottawa. Although the Trudeau government has committed to creating a Chief Science Officer, the Minister of Science – Dr. Kirsty Duncan – has yet to state whether or not the new officer will be given real independence and a mandate protected by law.

Today, we’re launching a new parliamentary petition calling for just that: https://petitions.parl.gc.ca/en/Petition/Sign/e-415

Can you add your name right now?

Canada’s last national science advisor lacked independence from the government and was easily eliminated in 2008 after the anti-science Harper Conservatives took power.

That’s why the Minister needs to build the new CSO to last and entrench the position in legislation. Rhetoric and half-measures aren’t good enough.

Please add your voice for public science by signing our petition to the Minister of Science.

Thank you for your support,

Breakfast session on science diplomacy

One June 21, 2016 the Canadian Science Policy Centre is presenting a breakfast session on Parliament Hill in Ottawa, (from an announcement received via email),

“Science Diplomacy in the 21st Century: The Potential for Tomorrow”
Remarks by Dr. Vaughan Turekian,
Science and Technology Adviser to Secretary of State John Kerry

Event Information
Tuesday, June 21, 2016, Room 238-S, Parliament Hill
7:30am – 8:00am – Continental Breakfast
8:00am – 8:10am – Opening Remarks, MP Terry Beech
8:10am – 8:45am – Dr. Vaughan Turekian Remarks and Q&A

Dr. Turekian’s visit comes during a pivotal time as Canada is undergoing fundamental changes in numerous policy directions surrounding international affairs. With Canada’s comeback on the world stage, there is great potential for science to play an integral role in the conduct of our foreign affairs.  The United States is currently one of the leaders in science diplomacy, and as such, listening to Dr.Turekian will provide a unique perspective from the best practices of science diplomacy in the US.

Actually, Dr. Turekian’s visit comes before a North American Summit being held in Ottawa on June 29, 2016 and which has already taken a scientific turn. From a June 16, 2016 news item on phys.org,

Some 200 intellectuals, scientists and artists from around the world urged the leaders of Mexico, the United States and Canada on Wednesday to save North America’s endangered migratory Monarch butterfly.

US novelist Paul Auster, environmental activist Robert F. Kennedy Jr., Canadian poet [Canadian media usually describe her as a writer] Margaret Atwood, British writer Ali Smith and India’s women’s and children’s minister Maneka Sanjay Gandhi were among the signatories of an open letter to the three leaders.

US President Barack Obama, Canadian Prime Minister Justin Trudeau and Mexican President Enrique Pena Nieto will hold a North American summit in Ottawa on June 29 [2016].

The letter by the so-called Group of 100 calls on the three leaders to “take swift and energetic actions to preserve the Monarch’s migratory phenomenon” when they meet this month.

In 1996-1997, the butterflies covered 18.2 hectares (45 acres) of land in Mexico’s central mountains.

It fell to 0.67 hectares in 2013-2014 but rose to 4 hectares this year. Their population is measured by the territory they cover.

They usually arrive in Mexico between late October and early November and head back north in March.

Given this turn of events, I wonder how Turekian, given that he’s held his current position for less than a year, might (or might not) approach the question of Monarch butterflies and diplomacy.

I did a little research about Turekian and found this Sept. 10, 2016 news release announcing his appointment as the Science and Technology Adviser to the US Secretary of State,

On September 8, Dr. Vaughan Turekian, formerly the Chief International Officer at The American Association for the Advancement of Science (AAAS), was named the 5th Science and Technology Adviser to the Secretary of State. In this capacity, Dr. Turekian will advise the Secretary of State and the Under Secretary for Economic Growth, Energy, and the Environment on international environment, science, technology, and health matters affecting the foreign policy of the United States. Dr. Turekian will draw upon his background in atmospheric chemistry and extensive policy experience to promote science, technology, and engineering as integral components of U.S. diplomacy.

Dr. Turekian brings both technical expertise and 14 years of policy experience to the position. As former Chief International Officer for The American Association for the Advancement of Science (AAAS) and Director of AAAS’s Center for Science Diplomacy, Dr. Turekian worked to build bridges between nations based on shared scientific goals, placing special emphasis on regions where traditional political relationships are strained or do not exist. As Editor-in-Chief of Science & Diplomacy, an online quarterly publication, Dr. Turekian published original policy pieces that have served to inform international science policy recommendations. Prior to his work at AAAS, Turekian worked at the State Department as Special Assistant and Adviser to the Under Secretary for Global Affairs on issues related to sustainable development, climate change, environment, energy, science, technology, and health and as a Program Director for the Committee on Global Change Research at the National Academy of Sciences where he was study director for a White House report on climate change science.

Turekian’s last editorial for Science & Diplomacy dated June 30, 2015 features a title (Evolving Institutions for Twenty-First Century [Science] Diplomacy) bearing a resemblance to the title for his talk in Ottawa and perhaps it provides a preview (spoilers),

Over the recent decade, its treatment of science and technology issues has increased substantially, with a number of cover stories focused on topics that bridge science, technology, and foreign affairs. This thought leadership reflects a broader shift in thinking within institutions throughout the world about the importance of better integrating the communities of science and diplomacy in novel ways.

In May, a high-level committee convened by Japan’s minister of foreign affairs released fifteen recommendations for how Japan could better incorporate its scientific and technological expertise into its foreign policy. While many of the recommendations were to be predicted, including the establishment of the position of science adviser to the foreign minister, the breadth of the recommendations highlighted numerous new ways Japan could leverage science to meet its foreign policy objectives. The report itself marks a turning point for an institution looking to upgrade its ability to meet and shape the challenges of this still young century.

On the other side of the Pacific, the U.S. National Academy of Sciences released its own assessment of science in the U.S. Department of State. Their report, “Diplomacy for the 21st Century: Embedding a Culture of Science and Technology Throughout the Department of State,” builds on its landmark 1999 report, which, among other things, established the position of science and technology adviser to the secretary of state. The twenty-seven recommendations in the new report are wide ranging, but as a whole speak to the fact that while one of the oldest U.S. institutions of government has made much progress toward becoming more scientifically and technologically literate, there are many more steps that could be taken to leverage science and technology as a key element of U.S. foreign policy.

These two recent reports highlight the importance of foreign ministries as vital instruments of science diplomacy. These agencies of foreign affairs, like their counterparts around the world, are often viewed as conservative and somewhat inflexible institutions focused on stability rather than transformation. However, they are adjusting to a world in which developments in science and technology move rapidly and affect relationships and interactions at bilateral, regional, and global scales.

At the same time that some traditional national instruments of diplomacy are evolving to better incorporate science, international science institutions are also evolving to meet the diplomatic and foreign policy drivers of this more technical century. …

It’s an interesting read and I’m glad to see the mention of Japan in his article. I’d like to see Canadian science advice and policy initiatives take more notice of the rest of the world rather than focusing almost solely on what’s happening in the US and Great Britain (see my June 15, 2016 post for an example of what I mean). On another note, it was disconcerting to find out that Turekian believes that we are only now moving past the Cold War politics of the past.

Unfortunately for anyone wanting to attend the talk, ticket sales have ended even though they were supposed to be open until June 17, 2016. And, there doesn’t seem to be a wait list.

You may want to try arriving at the door and hoping that people have cancelled or fail to arrive therefore acquiring a ticket. Should you be an MP (Member of Parliament), Senator, or guest of the Canadian Science Policy Conference, you get a free ticket. Should you be anyone else, expect to pay $15, assuming no one is attempting to scalp (sell one for more than it cost) these tickets.

*’ … on June’ in headline changed to ‘ … on June 21, 2016’ on June 17, 2016.

Copyright and patent protections and human rights

The United Nations (UN) and cultural rights don’t immediately leap to mind when the subjects of copyright and patents are discussed. A Mar. 13, 2015 posting by Tim Cushing on Techdirt and an Oct. 14, 2015 posting by Glyn Moody also on Techdirt explain the connection in the person of Farida Shaheed, the UN Special Rapporteur on cultural rights and the author of two UN reports one on copyright and one on patents.

From the Mar. 13, 2015 posting by Tim Cushing,

… Farida Shaheed, has just delivered a less-than-complimentary report on copyright to the UN’s Human Rights Council. Shaheed’s report actually examines where copyright meshes with arts and science — the two areas it’s supposed to support — and finds it runs contrary to the rosy image of incentivized creation perpetuated by the MPAAs and RIAAs of the world.

Shaheed said a “widely shared concern stems from the tendency for copyright protection to be strengthened with little consideration to human rights issues.” This is illustrated by trade negotiations conducted in secrecy, and with the participation of corporate entities, she said.

She stressed the fact that one of the key points of her report is that intellectual property rights are not human rights. “This equation is false and misleading,” she said.

The last statement fires shots over the bows of “moral rights” purveyors, as well as those who view infringement as a moral issue, rather than just a legal one.

Shaheed also points out that the protections being installed around the world at the behest of incumbent industries are not necessarily reflective of creators’ desires. …

Glyn Moody’s Oct. 14, 2015 posting features Shaheed’s latest report on patents,

… As the summary to her report puts it:

There is no human right to patent protection. The right to protection of moral and material interests cannot be used to defend patent laws that inadequately respect the right to participate in cultural life, to enjoy the benefits of scientific progress and its applications, to scientific freedoms and the right to food and health and the rights of indigenous peoples and local communities.

Patents, when properly structured, may expand the options and well-being of all people by making new possibilities available. Yet, they also give patent-holders the power to deny access to others, thereby limiting or denying the public’s right of participation to science and culture. The human rights perspective demands that patents do not extend so far as to interfere with individuals’ dignity and well-being. Where patent rights and human rights are in conflict, human rights must prevail.

The report touches on many issues previously discussed here on Techdirt. For example, how pharmaceutical patents limit access to medicines by those unable to afford the high prices monopolies allow — a particularly hot topic in the light of TPP’s rules on data exclusivity for biologics. The impact of patents on seed independence is considered, and there is a warning about corporate sovereignty chapters in trade agreements, and the chilling effects they can have on the regulatory function of states and their ability to legislate in the public interest — for example, with patent laws.

I have two Canadian examples for data exclusivity and corporate sovereignty issues, both from Techdirt. There’s an Oct. 19, 2015 posting by Glyn Moody featuring a recent Health Canada move to threaten a researcher into suppressing information from human clinical trials,

… one of the final sticking points of the TPP negotiations [Trans Pacific Partnership] was the issue of data exclusivity for the class of drugs known as biologics. We’ve pointed out that the very idea of giving any monopoly on what amounts to facts is fundamentally anti-science, but that’s a rather abstract way of looking at it. A recent case in Canada makes plain what data exclusivity means in practice. As reported by CBC [Canadian Broadcasting Corporation] News, it concerns unpublished clinical trial data about a popular morning sickness drug:

Dr. Navindra Persaud has been fighting for four years to get access to thousands of pages of drug industry documents being held by Health Canada.

He finally received the material a few weeks ago, but now he’s being prevented from revealing what he has discovered.

That’s because Health Canada required him to sign a confidentiality agreement, and has threatened him with legal action if he breaks it.

The clinical trials data is so secret that he’s been told that he must destroy the documents once he’s read them, and notify Health Canada in writing that he has done so….

For those who aren’t familiar with it, the Trans Pacific Partnership is a proposed trade agreement including 12 countries (Australia, Brunei Darussalam, Canada, Chile, Japan, Malaysia, Mexico, New Zealand, Peru, Singapore, United States, and Vietnam) from the Pacific Rim. If all the countries sign on (it looks as if they will; Canada’s new Prime Minister as of Oct. 19, 2015 seems to be in favour of the agreement although he has yet to make a definitive statement), the TPP will represent a trading block that is almost double the size of the European Union.

An Oct. 8, 2015 posting by Mike Masnick provides a description of corporate sovereignty and of the Eli Lilly suit against the Canadian government.

We’ve pointed out a few times in the past that while everyone refers to the Trans Pacific Partnership (TPP) agreement as a “free trade” agreement, the reality is that there’s very little in there that’s actually about free trade. If it were truly a free trade agreement, then there would be plenty of reasons to support it. But the details show it’s not, and yet, time and time again, we see people supporting the TPP because “well, free trade is good.” …
… it’s that “harmonizing regulatory regimes” thing where the real nastiness lies, and where you quickly discover that most of the key factors in the TPP are not at all about free trade, but the opposite. It’s about as protectionist as can be. That’s mainly because of the really nasty corprorate sovereignty clauses in the agreement (which are officially called “investor state dispute settlement” or ISDS in an attempt to make it sound so boring you’ll stop paying attention). Those clauses basically allow large incumbents to force the laws of countries to change to their will. Companies who feel that some country’s regulation somehow takes away “expected profits” can convene a tribunal, and force a country to change its laws. Yes, technically a tribunal can only issue monetary sanctions against a country, but countries who wish to avoid such monetary payments will change their laws.

Remember how Eli Lilly is demanding $500 million from Canada after Canada rejected some Eli Lilly patents, noting that the new compound didn’t actually do anything new and useful? Eli Lilly claims that using such a standard to reject patents unfairly attacks its expected future profits, and thus it can demand $500 million from Canadian taxpayers. Now, imagine that on all sorts of other systems.

Cultural rights, human rights, corporate rights. It would seem that corporate rights are going to run counter to human rights, if nothing else.

Hector Barron Escobar and his virtual nanomaterial atomic models for the oil, mining, and energy industries

I think there’s some machine translation at work in the Aug. 27, 2015 news item about Hector Barron Escobar on Azonano,

By using supercomputers the team creates virtual atomic models that interact under different conditions before being taken to the real world, allowing savings in time and money.

With the goal of potentiate the oil, mining and energy industries, as well as counteract the emission of greenhouse gases, the nanotechnologist Hector Barron Escobar, designs more efficient and profitable nanomaterials.

The Mexican who lives in Australia studies the physical and chemical properties of platinum and palladium, metal with excellent catalytic properties that improve processes in petrochemistry, solar cells and fuel cells, which because of their scarcity have a high and unprofitable price, hence the need to analyze their properties and make them long lasting.

Structured materials that the specialist in nanotechnology designs can be implemented in the petrochemical and automotive industries. In the first, they accelerate reactions in the production of hydrocarbons, and in the second, nanomaterials are placed in catalytic converters of vehicles to transform the pollutants emitted by combustion into less harmful waste.

An August 26, 2015 Investigación y Desarrollo press release on Alpha Galileo, which originated the news item, continues Barron Escobar’s profile,

PhD Barron Escobar, who majored in physics at the National University of Mexico (UNAM), says that this are created by using virtual supercomputers to interact with atomic models under different conditions before being taken to the real world.

Barron recounts how he came to Australia with an invitation of his doctoral advisor, Amanda Partner with whom he analyzed the electronic properties of gold in the United States.

He explains that using computer models in the Virtual Nanoscience Laboratory (VNLab) in Australia, he creates nanoparticles that interact in different environmental conditions such as temperature and pressure. He also analyzes their mechanical and electronic properties, which provide specific information about behavior and gives the best working conditions. Together, these data serve to establish appropriate patterns or trends in a particular application.

The work of the research team serves as a guide for experts from the University of New South Wales in Australia, with which they cooperate, to build nanoparticles with specific functions. “This way we perform virtual experiments, saving time, money and offer the type of material conditions and ideal size for a specific catalytic reaction, which by the traditional way would cost a lot of money trying to find what is the right substance” Barron Escobar comments.

Currently he designs nanomaterials for the mining company Orica, because in this industry explosives need to be controlled in order to avoid damaging the minerals or the environment.

Research is also immersed in the creation of fuel cells, with the use of the catalysts designed by Barron is possible to produce more electricity without polluting.

Additionally, they enhance the effectiveness of catalytic converters in petrochemistry, where these materials help accelerate oxidation processes of hydrogen and carbon, which are present in all chemical reactions when fuel and gasoline are created. “We can identify the ideal particles for improving this type of reactions.”

The nanotechnology specialist also seeks to analyze the catalytic properties of bimetallic materials like titanium, ruthenium and gold, as their reaction according to size, shape and its components.

Escobar Barron chose to study nanomaterials because it is interesting to see how matter at the nano level completely changes its properties: at large scale it has a definite color, but keep another at a nanoscale, besides many applications can be obtained with these metals.

For anyone interested in Orica, there’s more here on their website; as for Dr. Hector Barron Escobar, there’s this webpage on  Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) website.

Mexican company “Medical and Surgical Center for Retina” and its painless eye drop treatment

I am confined to the materials which have been translated into English so this story is lighter on detail than I would prefer. A June 26, 2015 news item on Azonano describes a company which provides a new painless treatment for secondary blindness,

The Mexican company “Medical and Surgical Center for Retina” created a way to transport drugs, in order to avoid risks and painful treatments in people with secondary blindness due to chronic degenerative blindness such as diabetic retinopathy and degeneration of the eye. The innovative formula results eliminates the need to administrate the drug by intraocular injection.

It is a nanotechnology product, which works with last generation liposomes particles, concentrated in droplets, which function as a conveyor that wraps proteins or antibody fragments and allow its passage into the eye. Once inside, it releases the drugs.

With the nanotechnology product the costs are reduced by 80 to 90 percent and enables the elderly population to make use of it. “With this technology hospitals that have no resources can apply the needed drugs, without requiring a a specialist or a particular facility for the administration. It is necessary to be prescribed by a physician, but it can be administered at home, which lowers the cost. “

A June 25, 2015 Investigación y Desarrollo news release on Alpha Galileo, which originated the news item, provides more information about the company and what seems to be a series of clinical trials both current and upcoming,

The doctor Juan Carlos Altamirano Vallejo, medical director of the Medical and Surgical Center for Retina, mentions that the conditions that originate in the retina are mostly caused by chronic degenerative diseases such as diabetes (diabetic retinopathy) or macular alteration . Patients with this conditions usually require one injection per month which comes at a very high cost and increases if the procedure is needed for both eyes.

The company, located in Jalisco (central west state of Mexico) won the Mexican National Prize for Technology and Innovation and plans to conclude the Clinical Research regulated by the Federal Commission for Protection Against Health Risks (COFEPRIS) next year. The idea is for the medicine to be distributed in state and private health institutions. So far, the achieved results are the same as the ones obtained with intraocular injection, but without the inherent risks of this procedure, such as infection or retinal detachment.

Current talks are being held with COFEPRIS to conduct a study within several diseases and increase its use for different conditions. In the United States, patients who have followed the treatment have had positive results.

The Medical and Surgical Center for Retina provides medical care and a specialized retina Ophthalmology Clinic provides consultation, which also has an area of ​​Biotechnology and Drug Research of Biomedical Engineering, Diagnosis and Treatment Equipment.

Altamirano Vallejo says that receiving the award opens the doors to reach more people and prevent blindness. “It is the most important prize delivered by the Presidency of the Republic in the area of ​​technology and innovation. For us, to have an entity such as the award foundation to guide us and allows us to learn, know skills, strengths and company administration makes us proud, specially the opportunity for a product like this to reach the market and prevent blindness.

Back in an Oct. 9, 2014 posting, I wrote about a couple of nanotechnology-enabled eye drop projects and some of the challenges with trying to bypass the eye’s natural protections.

Finally, I was not able to locate the company (without the Spanish language name that’s not likely to be easy) but there is more information about Investigación y Desarrollo here.

South American countries and others visit Iran’s Nanotechnology Initiative Council

The Iran Nanotechnology Initiative Council (INIC) news release states eight South American countries visited. By my count there were six South American countries (Argentina, Brazil, Ecuador, Bolivia, Venezuela, and Uruguay,), one North American country (Mexico), and one Caribbean country (Cuba). All eight can be described as Latin American countries.

An easy to understand error (I once forgot Mexico is part of North America and, for heaven sakes, I live in Canada and really should know better) as the designations can be confusing. That cleared up, here’s what the June 15, 2015 INIC news release had to say about the visit,

The ambassadors and charge d’affaires of 8 South American countries of Argentina, Brazil, Ecuador, Bolivia, Cuba, Venezuela, Uruguay and Mexico paid a visit to Iran Nanotechnology Initiative Council (INIC) to become familiar with its activities.

Among the objectives of the visit, which was requested by the abovementioned countries, mention can be made of introduction with INIC and its activities, presentation of nanotechnology achievements and products in the country by the INIC, creation and modification of international cooperation and creation of appropriate environment for exporting nanotechnology-based products to these countries.

In this visit, the programs, achievements and objectives of nanotechnology development in Iran were explained by the authorities of INIC. In addition and due to the needs of the countries whose representatives were present in the visit, a number of experts from the Iranian knowledge-based companies presented their nanotechnology products in the fields of packaging of agricultural products with long durability and water purification.

As usual with something from INIC, I long for more detail, e.g., when did the visit take place?

H/t to Nanotechnology Now June 15, 2015 news item.

Abakan makes good on Alberta (Canada) promise (coating for better pipeline transport of oil)

It took three years but it seems that US company Abakan Inc.’s announcement of a joint research development centre at the Northern Alberta Institute of Technology (NAIT), (mentioned here in a May 7, 2012 post [US company, Abakan, wants to get in on the Canadian oils sands market]), has borne fruit. A June 8, 2015 news item on Azonano describes the latest developments,

Abakan Inc., an emerging leader in the advanced coatings and metal formulations markets, today announced that it has begun operations at its joint-development facility in Edmonton, Alberta.

Abakan’s subsidiary, MesoCoat Inc., along with the lead project partner, Northern Alberta Institute of Technology (NAIT) will embark on an 18-month collaborative effort to establish a prototype demonstration facility for developing, testing and commercializing wear-resistant clad pipe and components. Western Economic Diversification Canada is also supporting this initiative through a $1.5 million investment toward NAIT. Improvements in wear resistance are expected to make a significant impact in reducing maintenance and downtime costs while increasing productivity in oil sands and other mining applications.

A June 4, 2015 Abakan news release, which originated the news item, provides more detail about the proposed facility, the difficulties encountered during the setup, and some interesting information about pipes,

Abakan shipped its CermaClad high-speed large-area cladding system for installation at the Northern Alberta Institute of Technology’s (NAIT) campus in Edmonton, Alberta in early 2015. Despite delays associated with the installation of some interrelated equipment and machinery, the CermaClad system and other ancillary equipment are now installed at the Edmonton facility. The Edmonton facility is intended to serve as a pilot-scale wear-resistant clad pipe manufacturing facility for the development and qualification of wear-resistant clad pipes, and as a stepping stone for setting-up a full-scale wear-resistant clad pipe manufacturing facility in Alberta. The new facility will also serve as a platform for Abakan’s introduction to the Alberta oil sands market, which, with proven reserves estimated at more than 169 billion barrels, is one of the largest oil resources in the world and a major source of oil for Canada, the United States and Asia. Since Alberta oil sands production is expected to increase significantly over the next decade, producers want to extend the life of the carbon steel pipes used for the hydro-transportation of tailings with harder, tougher coatings that protect pipes from the abrasiveness of tar-like bituminous oil sands.

“Our aim is to fast-track market entry of our wear-resistant clad pipe products for the transportation of oil sands and mining slurries. We have received commitments from oil sands producers in Canada and mining companies in Mexico and Brazil to field-test CermaClad wear-resistant clad pipe products as soon as our system is ready for testing. Apart from our work with conventional less expensive chrome carbide and the more expensive tungsten carbide wear-resistant cladding on pipes, Abakan also expects to introduce new iron-based structurally amorphous metal (SAM) alloy cladding that in testing has exhibited better performance than tungsten carbide cladding, but at a fraction of the cost.” Robert Miller stated further that “although more expensive than the more widely used chrome carbide cladding, our new alloy cladding is expected to be a significantly better value proposition when you consider an estimated life of three times that of chrome carbide cladding and those cost efficiencies that correspond to less downtime revenue losses, and lower maintenance and replacement costs.”

The costs associated with downtime and maintenance in the Alberta oil sands industry estimated at more than $10 billion a year are expected to grow as production expands, according to the Materials and Reliability in Oil Sands (MARIOS) consortium in Alberta. The development of Alberta’s oil sands has been held up by the lack of materials for transport lines and components that are resistant to the highly abrasive slurry. Due to high abrasion, the pipelines have to be rotated every three to four months and replaced every 12 to 15 months. [emphasis mine] The costs involved just in rotating and replacing the pipes is approximately $2 billion annually. The same is true of large components, for example the steel teeth on the giant electric shovels used to recover oil sands, must be replaced approximately every two days.

Abakan’s combination of high productivity coating processes and groundbreaking materials are expected to facilitate significant efficiencies associated with the extraction of these oil resources. Our proprietary materials combined with CermaClad large-area based fusion cladding technology, have demonstrated in laboratory tests a three to eight times improvement in wear and corrosion resistance when compared with traditional weld overlays at costs comparable to rubber and metal matrix composite alternatives. Abakan intends to complete development and initiate field-testing by end of year 2016 and begin the construction of a full-scale wear-resistant clad pipe manufacturing facility in Alberta in early-2017.

Given that there is extensive talk about expanding oil pipelines from Alberta to British Columbia (where I live), the information about the wear and tear is fascinating and disturbing. Emotions are high with regard to the proposed increase in oil flow to the coast as can be seen in a May 27, 2015 article by Mike Howell for the Vancouver Courier about a city hall report on the matter,

A major oil spill in Vancouver waters could potentially expose up to one million people to unsafe levels of a toxic vapour released from diluted bitumen, city council heard Wednesday in a damning city staff report on Kinder Morgan’s proposal to build a pipeline from Alberta to Burnaby [British Columbia].

In presenting the report, deputy city manager Sadhu Johnston outlined scenarios where exposure to the chemical benzene could lead to adverse health effects for residents and visitors, ranging from dizziness to nausea to possible death.

“For folks that are on the seawall, they could be actually struck with this wave of toxic gases that could render them unable to evacuate,” said Johnston, noting 25,000 residents live within 300 metres of the city’s waterfront. “These are serious health impacts. So this is not just about oil hitting shorelines, this is about our residents being exposed to very serious health effects.

  • Kinder Morgan’s own estimate is that pipeline leaks under 75 litres per hour may not be detected.

While I find the presentation’s hysteria a little off-putting, it did alert me to one or two new issues, benzene gas and when spillage from the pipes raises an alarm. For anyone curious about benzene gas and other chemical aspects of an oil spill, there’s a US National Oceanic and Atmospheric Administration (NOAA) webpage titled, Chemistry of an Oil Spill.

Getting back to the pipes, that figure of 75 litres per hour puts a new perspective on the proposed Abakan solution and it suggests that whether or not more and bigger pipes are in our future, we should do a better of job of protecting our environment now. That means better cladding for the pipes and better dispersants and remediation for water, earth, air when there’s a spill.