Tag Archives: European Commission

Radical copyright reform proposal in the European Union

It seems the impulse to maximize copyright control has overtaken European Union officials. A Sept. 14, 2016 news item on phys.org lays out a few details,

The EU will overhaul copyright law to shake up how online news and entertainment is paid for in Europe, under proposals announced by European Commission chief Jean-Claude Juncker Wednesday [Sept. 14, 2016].

Pop stars such as Coldplay and Lady Gaga will hail part of the plan as a new weapon to bring a fair fight to YouTube, the Google-owned video service that they say is sapping the music business.

But the reform plans have attracted the fury of filmmakers and start-up investors who see it as a threat to European innovation and a wrong-headed favour to powerful media groups.

A Sept. 14, 2016 European Commission press release provides the European Union’s version of why more stringent copyright is needed,

“I want journalists, publishers and authors to be paid fairly for their work, whether it is made in studios or living rooms, whether it is disseminated offline or online, whether it is published via a copying machine or commercially hyperlinked on the web.”–President Juncker, State of the Union 2016

On the occasion of President Juncker’s 2016 State of the Union address, the Commission today set out proposals on the modernisation of copyright to increase cultural diversity in Europe and content available online, while bringing clearer rules for all online players. The proposals will also bring tools for innovation to education, research and cultural heritage institutions.

Digital technologies are changing the way music, films, TV, radio, books and the press are produced, distributed and accessed. New online services such as music streaming, video-on-demand platforms and news aggregators have become very popular, while consumers increasingly expect to access cultural content on the move and across borders. The new digital landscape will create opportunities for European creators as long as the rules offer legal certainty and clarity to all players. As a key part of its Digital Single Market strategy, the Commission has adopted proposals today to allow:

  • Better choice and access to content online and across borders
  • Improved copyright rules on education, research, cultural heritage and inclusion of disabled people
  • A fairer and sustainable marketplace for creators, the creative industries and the press

Andrus Ansip, Vice-President for the Digital Single Market, said: “Europeans want cross-border access to our rich and diverse culture. Our proposal will ensure that more content will be available, transforming Europe’s copyright rules in light of a new digital reality. Europe’s creative content should not be locked-up, but it should also be highly protected, in particular to improve the remuneration possibilities for our creators. We said we would deliver all our initiatives to create a Digital Single Market by the end of the year and we keep our promises. Without a properly functioning Digital Single Market we will miss out on creativity, growth and jobs.

Günther H. Oettinger, Commissioner for the Digital Economy and Society, said: “Our creative industries [emphasis mine] will benefit from these reforms which tackle the challenges of the digital age successfully while offering European consumers a wider choice of content to enjoy. We are proposing a copyright environment that is stimulating, fair and rewards investment.”

Today, almost half of EU internet users listen to music, watch TV series and films or play games online; however broadcasters and other operators find it hard to clear rights for their online or digital services when they want to offer them in other EU countries. Similarly, the socio-economically important sectors of education, research and cultural heritage too often face restrictions or legal uncertainty which holds back their digital innovation when using copyright protected content, including across borders. Finally, creators, other right holders and press publishers are often unable to negotiate the conditions and also payment for the online use of their works and performances.

Altogether, today’s copyright proposals have three main priorities:

1. Better choice and access to content online and across borders

With our proposal on the portability of online content presented in December 2015, we gave consumers the right to use their online subscriptions to films, music, ebooks when they are away from their home country, for example on holidays or business trips. Today, we propose a legal mechanism for broadcasters to obtain more easily the authorisations they need from right holders to transmit programmes online in other EU Member States. This is about programmes that broadcasters transmit online at the same time as their broadcast as well as their catch-up services that they wish to make available online in other Member States, such as MyTF1 in France, ZDF Mediathek in Germany, TV3 Play in Denmark, Sweden and the Baltic States and AtresPlayer in Spain. Empowering broadcasters to make the vast majority of their content, such as news, cultural, political, documentary or entertainment programmes, shown also in other Member States will give more choice to consumers.

Today’s rules also make it easier for operators who offer packages of channels (such as Proximus TV in Belgium, Movistar+ in Spain, Deutsche Telekom’s IPTV Entertain in Germany), to get the authorisations they need: instead of having to negotiate individually with every right holder in order to offer such packages of channels originating in other EU Member States, they will be able to get the licenses from collective management organisations representing right holders. This will also increase the choice of content for their customers.

To help development of Video-on-Demand (VoD) offerings in Europe, we ask Member States to set up negotiation bodies to help reach licensing deals, including those for cross-border services, between audiovisual rightholders and VoD platforms. A dialogue with the audiovisual industry on licensing issues and the use of innovative tools like licensing hubs will complement this mechanism.

To enhance access to Europe’s rich cultural heritage, the new Copyright Directive will help museums, archives and other institutions to digitise and make available across borders out-of commerce works, such as books or films that are protected by copyright, but no longer available to the public.

In parallel the Commission will use its €1.46 billion Creative Europe MEDIA programme to further support the circulation of creative content across borders . This includes more funding for subtitling and dubbing; a new catalogue of European audiovisual works for VoD providers that they can directly use for programming; and online tools to improve the digital distribution of European audiovisual works and make them easier to find and view online.

These combined actions will encourage people to discover TV and radio programmes from other European countries, keep in touch with their home countries when living in another Member State and enhance the availability of European films, including across borders, hence highlighting Europe’s rich cultural diversity.

2. Improving copyright rules on research, education and inclusion of disable [sic] people

Students and teachers are eager to use digital materials and technologies for learning, but today almost 1 in 4 educators encounter copyright-related restrictions in their digital teaching activities every week. The Commission has proposed today a new exception to allow educational establishments to use materials to illustrate teaching through digital tools and in online courses across borders.

The proposed Directive will also make it easier for researchers across the EU to use text and data mining (TDM) technologies to analyse large sets of data. This will provide a much needed boost to innovative research considering that today nearly all scientific publications are digital and their overall volume is increasing by 8-9% every year worldwide.

The Commission also proposes a new mandatory EU exception which will allow cultural heritage institutions to preserve works digitally, crucial for the survival of cultural heritage and for citizens’ access in the long term.

Finally, the Commission is proposing legislation to implement the Marrakesh Treaty to facilitate access to published works for persons who are blind, have other visual impairments or are otherwise print disabled. These measures are important to ensure that copyright does not constitute a barrier to the full participation in society of all citizens and will allow for the exchange of accessible format copies within the EU and with third countries that are parties to the Treaty, avoiding duplication of work and waste of resources.

3. A fairer and sustainable marketplace for creators and press

The Copyright Directive aims to reinforce the position of right holders to negotiate and be remunerated for the online exploitation of their content on video-sharing platforms such as YouTube or Dailymotion. Such platforms will have an obligation to deploy effective means such as technology to automatically detect songs or audiovisual works which right holders have identified and agreed with the platforms either to authorise or remove.

Newspapers, magazines and other press publications have benefited from the shift from print to digital and online services like social media and news aggregators. It has led to broader audiences, but it has also impacted advertising revenue and made the licensing and enforcement of the rights in these publications increasingly difficult.The Commission proposes to introduce a new related right for publishers, similar to the right that already exists under EU law for film producers, record (phonogram) producers and other players in the creative industries like broadcasters.

The new right recognises the important role press publishers play in investing in and creating quality journalistic content, which is essential for citizens’ access to knowledge in our democratic societies. As they will be legally recognised as right holders for the very first time they will be in a better position when they negotiate the use of their content with online services using or enabling access to it, and better able to fight piracy. This approach will give all players a clear legal framework when licensing content for digital uses, and help the development of innovative business models for the benefit of consumers.

The draft Directive also obliges publishers and producers to be transparent and inform authors or performers about profits they made with their works. It also puts in place a mechanism to help authors and performers to obtain a fair share when negotiating remuneration with producers and publishers. This should lead to higher level of trust among all players in the digital value chain.

Towards a Digital Single Market

As part of the Digital Single Market strategy presented in May 2015, today’s proposals complement the proposed regulation on portability of legal content (December 2015), the revised Audiovisual Media and Services Directive, the Communication on online platforms (May 2016). Later this autumn the Commission will propose to improve enforcement of all types of intellectual property rights, including copyright.

Today’s EU copyright rules, presented along with initiatives to boost internet connectivity in the EU (press releasepress conference at 15.15 CET), are part of the EU strategy to create a Digital Single Market (DSM). The Commission set out 16 initiatives (press release) and is on the right track to deliver all of them the end of this year.

While Juncker mixes industry (publishers) with content creators (journalists, authors), Günther H. Oettinger, Commissioner for the Digital Economy and Society clearly states that ‘creative industries’ are to be the beneficiaries. Business interests have tended to benefit disproportionately under current copyright regimes. The disruption posed by digital content has caused these businesses some agony and they have responded by lobbying vigorously to maximize copyright. For the most part, individual musicians, authors, visual artists and other content creators are highly unlikely to benefit from this latest reform.

I’m not a big fan of Google or its ‘stepchild’, YouTube but it should be noted that at least one career would not have existed without free and easy access to videos, Justin Bieber’s. He may not have made a penny from his YouTube videos but that hasn’t hurt his financial picture. Without YouTube, he would have been unlikely to get the exposure and recognition which have in turn led him to some serious financial opportunities.

I am somewhat less interested in the show business aspect than I am in the impact this could have on science as per section (2. Improving copyright rules on research, education and inclusion of disable [sic] people) of the European Commission press release. A Sept. 14, 2016 posting about a previous ruling on copyright in Europe by Mike Masnick for Techdirt provides some insight into the possible future impacts on science research,

Last week [Sept. 8, 2016 posting], we wrote about a terrible copyright ruling from the Court of Justice of the EU, which basically says that any for-profit entity that links to infringing material can be held liable for direct infringement, as the “for-profit” nature of the work is seen as evidence that they knew or should have known the work was infringing. We discussed the problems with this standard in our post, and there’s been a lot of commentary on what this will mean for Europe — with a variety of viewpoints being expressed. One really interesting set of concerns comes from Egon Willighagen, from Maastricht University, noting what a total and complete mess this is going to be for scientists, who rarely consider the copyright status of various data as databases they rely on are built up …

This is, of course, not the first time we’ve noted the problems of intellectual property in the science world. From various journals locking up research to the rise of patents scaring off researchers from sharing data, intellectual property keeps getting in the way of science, rather than supporting it. And that’s extremely unfortunate. I mean, after all, in the US specifically, the Constitution specifically says that copyrights and patents are supposed to be about “promoting the progress of science and the useful arts.”

Over and over again, though, we see that the law has been twisted and distorted and extended and expanded in such a way that is designed to protect a very narrow set of interests, at the expense of many others, including the public who would benefit from greater sharing and collaboration and open flow of data among scientific researchers. …

Masnick has also written up a Sept. 14, 2016 posting devoted to the EU copyright proposal itself,

This is not a surprise given the earlier leaks of what the EU Commission was cooking up for a copyright reform package, but the end result is here and it’s a complete disaster for everyone. And I do mean everyone. Some will argue that it’s a gift to Hollywood and legacy copyright interests — and there’s an argument that that’s the case. But the reality is that this proposal is so bad that it will end up doing massive harm to everyone. It will clearly harm independent creators and the innovative platforms that they rely on. And, because those platforms have become so important to even the legacy entertainment industry, it will harm them too. And, worst of all, it will harm the public greatly. It’s difficult to see how this proposal will benefit anyone, other than maybe some lawyers.

So the EU Commission has taken the exact wrong approach. It’s one that’s almost entirely about looking backwards and “protecting” old ways of doing business, rather than looking forward, and looking at what benefits the public, creators and innovators the most. If this proposal actually gets traction, it will be a complete disaster for the EU innovative community. Hopefully, Europeans speak out, vocally, about what a complete disaster this would be.

So, according to Masnick not even business interests will benefit.

Promethean Particles claims to be world’s largest nanomaterial production plant

It’s a bit puzzling initially as both the SHYMAN (Sustainable Hydrothermal Manufacturing of Nanomaterials) project and Promethean Particles are claiming to be the world’s biggest nanomaterials production facility. In a battle of press release titles (one from CORDIS and one from the University of Nottingham) it becomes clear after reading both that the SHYMAN project is the name for a European Commission 7th Framework Programme funded project and Promethean Particles, located at the University of Nottingham (UK), is a spinoff from that project. So, both claims are true, although confusing at first glance.

An Aug. 1, 2016 news item on Nanowerk breaks the news about the ‘SHYMAN project’s’ production facility (Note: A link has been removed),

The European SHYMAN project aims to establish continuous hydrothermal synthesis as the most flexible and sustainable process to create nanomaterials at industrial scale. After demonstrating this potential in the lab, the project has now announced the opening of its first facility in Nottingham.

An (Aug. 1, 2016?) CORDIS press release, which originated the news item,

‘This new facility opens up a significant amount of new opportunities for us,’ says Professor Ed Lester, Technical Coordinator of Promethean Particles. This spin-out of the University of Nottingham is in charge of operating the new plant, which is expected to produce over 1 000 tonnes of nanomaterials every year. The production cost is lower than that of other facilities and the chosen production method – continuous hydrothermal synthesis – is expected to impact even markets for which sale prices had so far been an obstacle.

‘We have already had a lot of interest from companies in a diverse range of sectors. From healthcare, where nano-particles can be used in coatings on medical devices, to enhanced fabrics, where nano-materials can add strength and flexibility to textiles, and in printed electronics, as we are able to print materials such as copper,’ Prof. Lester continues. Solvay, Fiat, PPG and Repsol are among the major companies already set to benefit from the plant’s products.

To reach these impressive levels of production, the plant notably relies on high pressure triplex plunger pumps manufactured by Cat Pumps. These pumps have helped the 18-strong consortium to overcome engineering issues related to the mixing of the heated fluid and the aqueous metal salt flow, by creating the continuous pressure and fluid flow necessary to achieve continuous production.

Another enabling technology is the Nozzle Reactor, a customised design that uses buoyancy-induced eddies to produce an ‘ideal’ mixing scenario in a pipe-in-pip concentric configuration in which the internal pipe has an open-ended nozzle. This technology allows Promethean Particles to dramatically improve reproducibility and reliability whilst controlling particles properties such as size, composition and shape.

Betting on hydrothermal synthesis

Started in 2012, SHYMAN built upon the observation that hydrothermal synthesis had numerous advantages compared to alternatives: it doesn’t resort to noxious chemicals, uses relatively simple chemistry relying on cheap precursors, allows straightforward downstream processing, can avoid agglomeration and allows for narrow and well-controlled size and shape distribution.

The optimisation of hydrothermal synthesis has been a key objective of the University of Nottingham for the past 14 years, and SHYMAN is the pinnacle: the project began with the development of bench scale reactors, followed by a 30-times-larger pilot scale reactor. The reactor at the heart of the new production plant is 80 times larger than the latter and features four Cat Pumps Model 3801 high pressure triplex plunger pumps.

‘These are very exciting times for Promethean Particles,’ said Dr Susan Huxtable, Director of Intellectual Property and Commercialisation at the University of Nottingham. ‘The new facility opens up a myriad of opportunities for them to sell their services into new markets right across the world. It is a great example of how many of the technologies developed by academics here at the University of Nottingham have the potential to benefit both industry and society.’

The July 12, 2016 University of Nottingham press release, while covering much of the same ground, offers some additional detail,

The plant [Promethean Particles] was developed as part of a pan-European nano-materials research programme, known as SHYMAN (Sustainable Hydrothermal Manufacturing of Nanomaterials). The project, which had a total value of €9.7 million Euros, included partner universities and businesses from 12 European countries.

The outcome of the project was the creation of the largest multi-material nano-particle plant in the world, based in Nottingham. The plant is now operated by Promethean, and it is able to operate at supercritical conditions, producing up to 200 kg of nano-particles per hour.

You can find out more about the SHYMAN project here and Promethean Particles here.

Replicating brain’s neural networks with 3D nanoprinting

An announcement about European Union funding for a project to reproduce neural networks by 3D nanoprinting can be found in a June 10, 2016 news item on Nanowerk,

The MESO-BRAIN consortium has received a prestigious award of €3.3million in funding from the European Commission as part of its Future and Emerging Technology (FET) scheme. The project aims to develop three-dimensional (3D) human neural networks with specific biological architecture, and the inherent ability to interrogate the network’s brain-like activity both electrophysiologically and optically. It is expected that the MESO-BRAIN will facilitate a better understanding of human disease progression, neuronal growth and enable the development of large-scale human cell-based assays to test the modulatory effects of pharmacological and toxicological compounds on neural network activity. The use of more physiologically relevant human models will increase drug screening efficiency and reduce the need for animal testing.

A June 9, 2016 Institute of Photonic Sciences (ICFO) press release (also on EurekAlert), which originated the news item, provides more detail,

About the MESO-BRAIN project

The MESO-BRAIN project’s cornerstone will use human induced pluripotent stem cells (iPSCs) that have been differentiated into neurons upon a defined and reproducible 3D scaffold to support the development of human neural networks that emulate brain activity. The structure will be based on a brain cortical module and will be unique in that it will be designed and produced using nanoscale 3D-laser-printed structures incorporating nano-electrodes to enable downstream electrophysiological analysis of neural network function. Optical analysis will be conducted using cutting-edge light sheet-based, fast volumetric imaging technology to enable cellular resolution throughout the 3D network. The MESO-BRAIN project will allow for a comprehensive and detailed investigation of neural network development in health and disease.

Prof Edik Rafailov, Head of the MESO-BRAIN project (Aston University) said: “What we’re proposing to achieve with this project has, until recently, been the stuff of science fiction. Being able to extract and replicate neural networks from the brain through 3D nanoprinting promises to change this. The MESO-BRAIN project has the potential to revolutionise the way we are able to understand the onset and development of disease and discover treatments for those with dementia or brain injuries. We cannot wait to get started!”

The MESO-BRAIN project will launch in September 2016 and research will be conducted over three years.

About the MESO-BRAIN consortium

Each of the consortium partners have been chosen for the highly specific skills & knowledge that they bring to this project. These include technologies and expertise in stem cells, photonics, physics, 3D nanoprinting, electrophysiology, molecular biology, imaging and commercialisation.

Aston University (UK) Aston Institute of Photonic Technologies (School of Engineering and Applied Science) is one of the largest photonic groups in UK and an internationally recognised research centre in the fields of lasers, fibre-optics, high-speed optical communications, nonlinear and biomedical photonics. The Cell & Tissue Biomedical Research Group (Aston Research Centre for Healthy Ageing) combines collective expertise in genetic manipulation, tissue engineering and neuronal modelling with the electrophysiological and optical analysis of human iPSC-derived neural networks. Axol Bioscience Ltd. (UK) was founded to fulfil the unmet demand for high quality, clinically relevant human iPSC-derived cells for use in biomedical research and drug discovery. The Laser Zentrum Hannover (Germany) is a leading research organisation in the fields of laser development, material processing, laser medicine, and laser-based nanotechnologies. The Neurophysics Group (Physics Department) at University of Barcelona (Spain) are experts in combing experiments with theoretical and computational modelling to infer functional connectivity in neuronal circuits. The Institute of Photonic Sciences (ICFO) (Spain) is a world-leading research centre in photonics with expertise in several microscopy techniques including light sheet imaging. KITE Innovation (UK) helps to bridge the gap between the academic and business sectors in supporting collaboration, enterprise, and knowledge-based business development.

For anyone curious about the FET funding scheme, there’s this from the press release,

Horizon 2020 aims to ensure Europe produces world-class science by removing barriers to innovation through funding programmes such as the FET. The FET (Open) funds forward-looking collaborations between advanced multidisciplinary science and cutting-edge engineering for radically new future technologies. The published success rate is below 1.4%, making it amongst the toughest in the Horizon 2020 suite of funding schemes. The MESO-BRAIN proposal scored a perfect 5/5.

You can find out more about the MESO-BRAIN project on its ICFO webpage.

They don’t say anything about it but I can’t help wondering if the scientists aren’t also considering the possibility of creating an artificial brain.

Lungs: EU SmartNanoTox and Pneumo NP

I have three news bits about lungs one concerning relatively new techniques for testing the impact nanomaterials may have on lungs and two concerning developments at PneumoNP; the first regarding a new technique for getting antibiotics to a lung infected with pneumonia and the second, a new antibiotic.

Predicting nanotoxicity in the lungs

From a June 13, 2016 news item on Nanowerk,

Scientists at the Helmholtz Zentrum München [German Research Centre for Environmental Health] have received more than one million euros in the framework of the European Horizon 2020 Initiative [a major European Commission science funding initiative successor to the Framework Programme 7 initiative]. Dr. Tobias Stöger and Dr. Otmar Schmid from the Institute of Lung Biology and Disease and the Comprehensive Pneumology Center (CPC) will be using the funds to develop new tests to assess risks posed by nanomaterials in the airways. This could contribute to reducing the need for complex toxicity tests.

A June 13, 2016 Helmholtz Zentrum München (German Research Centre for Environmental Health) press release, which originated the news item, expands on the theme,

Nanoparticles are extremely small particles that can penetrate into remote parts of the body. While researchers are investigating various strategies for harvesting the potential of nanoparticles for medical applications, they could also pose inherent health risks*. Currently the hazard assessment of nanomaterials necessitates a complex and laborious procedure. In addition to complete material characterization, controlled exposure studies are needed for each nanomaterial in order to guarantee the toxicological safety.

As a part of the EU SmartNanoTox project, which has now been funded with a total of eight million euros, eleven European research partners, including the Helmholtz Zentrum München, want to develop a new concept for the toxicological assessment of nanomaterials.

Reference database for hazardous substances

Biologist Tobias Stöger and physicist Otmar Schmid, both research group heads at the Institute of Lung Biology and Disease, hope that the use of modern methods will help to advance the assessment procedure. “We hope to make more reliable nanotoxicity predictions by using modern approaches involving systems biology, computer modelling, and appropriate statistical methods,” states Stöger.

The lung experts are concentrating primarily on the respiratory tract. The approach involves defining a representative selection of toxic nanomaterials and conducting an in-depth examination of their structure and the various molecular modes of action that lead to their toxicity. These data are then digitalized and transferred to a reference database for new nanomaterials. Economical tests that are easy to conduct should then make it possible to assess the toxicological potential of these new nanomaterials by comparing the test results s with what is already known from the database. “This should make it possible to predict whether or not a newly developed nanomaterial poses a health risk,” Otmar Schmid says.

* Review: Schmid, O. and Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, DOI:10.1016/j.jaerosci.2015.12.006

The SmartNanoTox webpage is here on the European Commission’s Cordis website.

Carrying antibiotics into lungs (PneumoNP)

I received this news from the European Commission’s PneumoNP project (I wrote about PneumoNP in a June 26, 2014 posting when it was first announced). This latest development is from a March 21, 2016 email (the original can be found here on the How to pack antibiotics in nanocarriers webpage on the PneumoNP website),

PneumoNP researchers work on a complex task: attach or encapsulate antibiotics with nanocarriers that are stable enough to be included in an aerosol formulation, to pass through respiratory tracts and finally deliver antibiotics on areas of lungs affected by pneumonia infections. The good news is that they finally identify two promising methods to generate nanocarriers.

So far, compacting polymer coils into single-chain nanoparticles in water and mild conditions was an unsolved issue. But in Spain, IK4-CIDETEC scientists developed a covalent-based method that produces nanocarriers with remarkable stability under those particular conditions. Cherry on the cake, the preparation is scalable for more industrial production. IK4-CIDETEC patented the process.

Fig.: A polymer coil (step 1) compacts into a nanocarrier with cross-linkers (step 2). Then, antibiotics get attached to the nanocarrier (step 3).

Fig.: A polymer coil (step 1) compacts into a nanocarrier with cross-linkers (step 2). Then, antibiotics get attached to the nanocarrier (step 3).

At the same time, another route to produce lipidic nanocarriers have been developed by researchers from Utrecht University. In particular, they optimized the method consisting in assembling lipids directly around a drug. As a result, generated lipidic nanocarriers show encouraging stability properties and are able to carry sufficient quantity of antibiotics.

Fig.: On presence of antibiotics, the lipidic layer (step 1) aggregates the the drug (step 2) until the lipids forms a capsule around the antibiotics (step 3).

Fig.: On presence of antibiotics, a lipidic layer (step 1) aggregates the drug (step 2) until the lipids forms a capsule around antibiotics (step 3).

Assays of both polymeric and lipidic nanocarriers are currently performed by ITEM Fraunhofer Institute in Germany, Ingeniatrics Tecnologias in Spain and Erasmus Medical Centre in the Netherlands. Part of these tests allows to make sure that the nanocarriers are not toxic to cells. Other tests are also done to verify that the efficiency of antibiotics on Klebsiella Pneumoniae bacteria when they are attached to nanocarriers.

A new antibiotic for pneumonia (PneumoNP)

A June 14, 2016 PneumoNP press release (received via email) announces work on a promising new approach to an antibiotic for pneumonia,

The antimicrobial peptide M33 may be the long-sought substitute to treat difficult lung infections, like multi-drug resistant pneumonia.

In 2013, the European Respiratory Society predicted 3 millions cases of pneumonia in Europe every year [1]. The standard treatment for pneumonia is an intravenous administration of a combination of drugs. This leads to the development of antibiotic resistance in the population. Gradually, doctors are running out of solutions to cure patients. An Italian company suggests a new option: the M33 peptide.

Few years ago, the Italian company SetLance SRL decided to investigate the M33 peptide. The antimicrobial peptide is an optimized version of an artificial peptide sequence selected for its efficacy and stability. So far, it showed encouraging in-vitro results against multidrug-resistant Gram-negative bacteria, including Klebsiella Pneumoniae. With the support of EU funding to the PneumoNP project, SetLance SRL had the opportunity to develop a new formulation of M33 that enhances its antimicrobial activity.

The new formulation of M33 fights Gram-negative bacteria in three steps. First of all, the M33 binds with the lipopolysaccharides (LPS) on the outer membrane of bacteria. Then, the molecule forms a helix and finally disrupts the membrane provoking cytoplasm leaking. The peptide enabled up to 80% of mices to survive Pseudomonas Aeruginosa-based lung infections. Beyond these encouraging results, toxicity to the new M33 formulation seems to be much lower than antimicrobial peptides currently used in clinical practice like colistin [2].

Lately, SetLance scaled-up the synthesis route and is now able to produce several hundred milligrams per batch. The molecule is robust enough for industrial production. We may expect this drug to go on clinical development and validation at the beginning of 2018.

[1] http://www.erswhitebook.org/chapters/acute-lower-respiratory-infections/pneumonia/
[2] Ceccherini et al., Antimicrobial activity of levofloxacin-M33 peptide conjugation or combination, Chem Med Comm. 2016; Brunetti et al., In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Scientific Reports 2016

I believe all the references are open access.

Brief final comment

The only element linking these news bits together is that they concern the lungs.

Introducing the LIFE project NanoMONITOR

I believe LIFE in the project title refers to life cycle. Here’s more from a June 9, 2016 news item from Nanowerk (Note: A link has been removed),

The newly started European Commission LIFE project NanoMONITOR addresses the challenges of supporting the risk assessment of nanomaterials under REACH by development of a real-time information and monitoring system. At the project’s kickoff meeting held on the 19th January 2016 in Valencia (Spain) participants discussed how this goal could be achieved.

Despite the growing number of engineered nanomaterials (ENMs) already available on the market and in contract to their benefits the use, production, and disposal of ENMs raises concerns about their environmental impact.

A REACH Centre June 8, 2016 press release, which originated the news item, expands on the theme,

Within this context, the overall aim of LIFE NanoMONITOR is to improve the use of environmental monitoring data to support the implementation of REACH regulation and promote the protection of human health and the environment when dealing with ENMs. Within the EU REACH Regulation, a chemical safety assessment report, including risk characterisation ratio (RCR), must be provided for any registered ENMs. In order to address these objectives, the project partners have developed a rigorous methodology encompassing the following aims:

  • Develop a novel software application to support the acquisition, management and processing of data on the concentration of ENMs.
  • Develop an on-line environmental monitoring database (EMD) to support the sharing of information.
  • Design and develop a proven monitoring station prototype for continuous monitoring of particles below 100 nm in air (PM0.1).
  • Design and develop standardized sampling and data analysis procedures to ensure the quality, comparability and reliability of the monitoring data used for risk assessment.
  • Support the calculation of the predicted environmental concentration (PEC) of ENMs in the context of REACH.

Throughout the project’s kick off meeting, participants discussed the status of the research area, project goals, and expectations of the different stakeholders with respect to the project outcome.

The project has made this graphic available,

LIFE_NanoMONITOR

You can find the LIFE project NanoMONITOR website here.

Nanosafety Cluster newsletter—excerpts from the Spring 2016 issue

The European Commission’s NanoSafety Cluster Newsletter (no.7) Spring 2016 edition is some 50 pp. long and it provides a roundup of activities and forthcoming events. Here are a few excerpts,

“Closer to the Market” Roadmap (CTTM) now finalised

Hot off the press! the Cluster’s “Closer to the Market” Roadmap (CTTM)  is  a  multi-dimensional,  stepwise  plan  targeting  a framework to deliver safe nano-enabled products to the market. After some years of discussions, several consultations of a huge number of experts in the nanosafety-field, conferences at which the issue of market implementation of nanotechnologies was talked  about,  writing  hours/days,  and  finally  two public consultation rounds, the CTTM is now finalized.

As stated in the Executive Summary: “Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates  navigation  through  the  complex  regulatory and approval processes under which different product categories fall.

Download it here, and get involved in its implementation through the Cluster!
Authors: Andreas Falk* 1, Christa Schimpel1, Andrea Haase3, Benoît Hazebrouck4, Carlos Fito López5, Adriele Prina-Mello6, Kai Savolainen7, Adriënne Sips8, Jesús M. Lopez de Ipiña10, Iseult Lynch11, Costas Charitidis12, Visser Germ13

NanoDefine hosts Synergy Workshop with NSC projects

NanoDefine  organised  the  2nd Nanosafety  Cluster  (NSC)  Synergy Workshop  at  the  Netherlands  House  for Education  and  Research  in Brussels  on  2nd  February  2016. The  aim  was  to  identify  overlaps and synergies existing between different projects that could develop into
outstanding cooperation opportunities.

One central issue was the building of a common ontology and a European framework for data management and analysis, as planned within eNanoMapper, to facilitate a closer interdisciplinary collaboration between  NSC projects and to better address the need for proper data storage, analysis and sharing (Open Access).

Unexpectedly, there’s a Canadian connection,

Discovering protocols for nanoparticles: the soils case
NanoFASE WP7 & NanoSafety Cluster WG3 Exposure

In NanoFASE, of course, we focus on the exposure to nanomaterials. Having consistent and meaningful protocols to characterize the fate of nanomaterials in different environments is therefore of great interest to us. Soils and sediments are in this respect very cumbersome. Also in the case of conventional chemicals has the development of  protocols for fate description in terrestrial systems been a long route.

The special considerations of nanomaterials make this job even harder. For instance, how does one handle the fact that the interaction between soils and nanoparticles is always out of equilibrium? How does one distinguish between the nanoparticles that are still mobile and those that are attached to soil?

In the case of conventional chemicals, a single measurement of a filtered soil suspension often suffices to find the mobile fraction, as long one is sure that equilibrium has been attained. Equilibrium never occurs in the case of  nanoparticles, and the distinction between attached/suspended particles is analytically less clear to do.

Current activity in NanoFASE is focusing at finding protocols to characterize this interaction. Not only does the protocol have to provide meaningful parameters that can be used, e.g. in modelling, but also the method itself should be fast and cheap enough so that a lot of data can be collected in a reasonable amount of time. NanoFASE is  in a good position to do this, because of its focus on fate and because of the many international collaborators.

For  instance,  the Swedish  Agricultural  University (Uppsala)  is  collaborating  with  McGill  University (Montreal, Canada [emphasis mine]), an advisory partner to NanoFASE, in developing the OECD [Organization for Economic Cooperation and Development] protocol for column tests (OECD test nr 312:  “Leaching in soil columns”). The effort is led by Yasir Sultan from Environment Canada and by Karlheinz Weinfurtner from the Frauenhofer institute in Germany. Initial results show the transport of nanomaterials in soil columns to be very limited.

The OECD protocol therefore does not often lead to measurable breakthrough curves that can be modelled to provide information about  nanomaterial  mobility  in  soils  and  most  likely  requires adaptations  to  account  for  the  relatively  low mobility  of  typical pristine nanomaterials.

OECD 312 prescribes to use 40 cm columns, which is most likely too long to show a breakthrough in the case of nanoparticles. Testing in NanoFASE will therefore focus on working with shorter columns and also investigating the effect of the flow speed.

The progress and the results of this action will be reported on our website (www.nanofase.eu).

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

Now, wastewater,

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

WP5 led by Ralf Kaegi of EAWAG [Swiss Federal Institute of Aquatic Science and Technology] (Switzerland) will establish transformation and release rates of ENM during their passage through different reactors. We are focusing on wastewater treatment plants (WWTPs), solid waste and dedicated sewage sludge incinerators as well as landfills (see figure below). Additionally, lab-scale experiments using pristine and well characterized materials, representing the realistic fate relevant forms at each stage, will allow us to obtain a mechanistic understanding of the transformation processes in waste treatment reactors. Our experimental results will feed directly into the development of a mathematical model describing the transformation and transfer of ENMs through the investigated reactors.

I’m including this since I’ve been following the ‘silver nanoparticle story’ for some time,

NanoMILE publication update: NanoMILE on the air and on the cover

Dramatic  differences  in  behavior  of  nano-silver during  the  initial  wash  cycle  and  for  its  further dissolution/transformation potential over time depending on detergent composition and form.

In an effort to better relate nanomaterial aging procedures to those which they are most likely to undergo during the life cycle of nano-enhanced products, in this paper we describe the various transformations which are possible when exposing Ag engineered nanoparticles (ENPs) to a suite of commercially available washing detergents (Figure 1). While Ag ENP transformation and washing of textiles has received considerable attention in recent years, our study is novel in that we (1) used several commercially available detergents allowing us to estimate the various changes possible in individual homes and commercial washing settings; (2) we have continued  method  development  of  state  of  the  art nanometrology techniques, including single particle ICP-MS, for the detection and characterization of ENPs in complex media; and (3) we were able to provide novel additions to the knowledge base of the environmental nanotechnology research community both in terms of the analytical methods (e.g. the first time ENP aggregates have been definitively analyzed via single particle ICP-MS) and broadening the scope of “real world” conditions that should be considered when understanding AgENP through their life cycle.

Our findings, which were recently published in Environmental Science and Toxicology (2015, 49: 9665), indicate that the washing detergent chemistry causes dramatic differences in ENP behavior during the initial wash cycle and has ramifications for the dissolution/transformation potential of the Ag ENPs over time (see Figure 2). The use of silver as an  antimicrobial  treatment  in  textiles  continues  to garner  considerable  attention.  Last  year  we  published  a manuscript in ACS Nano that considered how various silver treatments to textiles (conventional and nano) both release  nano-sized  material  after  the  wash  cycle  with  similar chemical  characteristics.  That  study  essentially conveyed that multiple silver treatments would become more similar through the product life cycle. Our newest  work expands this by investigating one silver ENP under various washing conditions thereby creating more varied silver products as an end result.

Fascinating stuff if you’ve been following the issues around nanotechnology and safety.

Towards the end of the newsletter on pp. 46-48, they list opportunities for partnerships, collaboration, and research posts and they list websites where you can check out job opportunities. Good Luck!

Graphene Flagship high points

The European Union’s Graphene Flagship project has provided a series of highlights in place of an overview for the project’s ramp-up phase (in 2013 the Graphene Flagship was announced as one of two winners of a science competition, the other winner was the Human Brain Project, with two prizes of 1B Euros for each project). Here are the highlights from the April 19, 2016 Graphene Flagship press release,

Graphene and Neurons – the Best of Friends

Flagship researchers have shown that it is possible to interface untreated graphene with neuron cells whilst maintaining the integrity of these vital cells [1]. This result is a significant first step towards using graphene to produce better deep brain implants which can both harness and control the brain.

Graphene and Neurons
 

This paper emerged from the Graphene Flagship Work Package Health and Environment. Prof. Prato, the WP leader from the University of Trieste in Italy, commented that “We are currently involved in frontline research in graphene technology towards biomedical applications, exploring the interactions between graphene nano- and micro-sheets with the sophisticated signalling machinery of nerve cells. Our work is a first step in that direction.”

[1] Fabbro A., et al., Graphene-Based Interfaces do not Alter Target Nerve Cells. ACS Nano, 10 (1), 615 (2016).

Pressure Sensing with Graphene: Quite a Squeeze

The Graphene Flagship developed a small, robust, highly efficient squeeze film pressure sensor [2]. Pressure sensors are present in most mobile handsets and by replacing current sensor membranes with a graphene membrane they allow the sensor to decrease in size and significantly increase its responsiveness and lifetime.

Discussing this work which emerged from the Graphene Flagship Work Package Sensors is the paper’s lead author, Robin Dolleman from the Technical University of Delft in The Netherlands “After spending a year modelling various systems the idea of the squeeze-film pressure sensor was formed. Funding from the Graphene Flagship provided the opportunity to perform the experiments and we obtained very good results. We built a squeeze-film pressure sensor from 31 layers of graphene, which showed a 45 times higher response than silicon based devices, while reducing the area of the device by a factor of 25. Currently, our work is focused on obtaining similar results on monolayer graphene.”

 

[2] Dolleman R. J. et al., Graphene Squeeze-Film Pressure Sensors. Nano Lett., 16, 568 (2016)

Frictionless Graphene


Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Research done within the Graphene Flagship, has observed the onset of superlubricity in graphene nanoribbons sliding on a surface, unravelling the role played by ribbon size and elasticity [3]. This important finding opens up the development potential of nanographene frictionless coatings. This research lead by the Graphene Flagship Work Package Nanocomposites also involved researchers from Work Package Materials and Work Package Health and the Environment, a shining example of the inter-disciplinary, cross-collaborative approach to research undertaken within the Graphene Flagship. Discussing this further is the Work Package Nanocomposites Leader, Dr Vincenzo Palermo from CNR National Research Council, Italy “Strengthening the collaboration and interactions with other Flagship Work Packages created added value through a strong exchange of materials, samples and information”.

[3] Kawai S., et al., Superlubricity of graphene nanoribbons on gold surfaces. Science. 351, 6276, 957 (2016) 

​Graphene Paddles Forward

Work undertaken within the Graphene Flagship saw Spanish automotive interiors specialist, and Flagship partner, Grupo Antolin SA work in collaboration with Roman Kayaks to develop an innovative kayak that incorporates graphene into its thermoset polymeric matrices. The use of graphene and related materials results in a significant increase in both impact strength and stiffness, improving the resistance to breakage in critical areas of the boat. Pushing the graphene canoe well beyond the prototype demonstration bubble, Roman Kayaks chose to use the K-1 kayak in the Canoe Marathon World Championships held in September in Gyor, Hungary where the Graphene Canoe was really put through its paces.

Talking further about this collaboration from the Graphene Flagship Work Package Production is the WP leader, Dr Ken Teo from Aixtron Ltd., UK “In the Graphene Flagship project, Work Package Production works as a technology enabler for real-world applications. Here we show the worlds first K-1 kayak (5.2 meters long), using graphene related materials developed by Grupo Antolin. We are very happy to see that graphene is creating value beyond traditional industries.” 

​Graphene Production – a Kitchen Sink Approach

Researchers from the Graphene Flagship have devised a way of producing large quantities of graphene by separating graphite flakes in liquids with a rotating tool that works in much the same way as a kitchen blender [4]. This paves the way to mass production of high quality graphene at a low cost.

The method was produced within the Graphene Flagship Work Package Production and is talked about further here by the WP deputy leader, Prof. Jonathan Coleman from Trinity College Dublin, Ireland “This technique produced graphene at higher rates than most other methods, and produced sheets of 2D materials that will be useful in a range of applications, from printed electronics to energy generation.” 

[4] Paton K.R., et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).

Flexible Displays – Rolled Up in your Pocket

Working with researchers from the Graphene Flagship the Flagship partner, FlexEnable, demonstrated the world’s first flexible display with graphene incorporated into its pixel backplane. Combined with an electrophoretic imaging film, the result is a low-power, durable display suitable for use in many and varied environments.

Emerging from the Graphene Flagship Work Package Flexible Electronics this illustrates the power of collaboration.  Talking about this is the WP leader Dr Henrik Sandberg from the VTT Technical Research Centre of Finland Ltd., Finland “Here we show the power of collaboration. To deliver these flexible demonstrators and prototypes we have seen materials experts working together with components manufacturers and system integrators. These devices will have a potential impact in several emerging fields such as wearables and the Internet of Things.”

​Fibre-Optics Data Boost from Graphene

A team of researches from the Graphene Flagship have demonstrated high-performance photo detectors for infrared fibre-optic communication systems based on wafer-scale graphene [5]. This can increase the amount of information transferred whilst at the same time make the devises smaller and more cost effective.

Discussing this work which emerged from the Graphene Flagship Work Package Optoelectronics is the paper’s lead author, Daniel Schall from AMO, Germany “Graphene has outstanding properties when it comes to the mobility of its electric charge carriers, and this can increase the speed at which electronic devices operate.”

[5] Schall D., et al., 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics. 1 (9), 781 (2014)

​Rechargeable Batteries with Graphene

A number of different research groups within the Graphene Flagship are working on rechargeable batteries. One group has developed a graphene-based rechargeable battery of the lithium-ion type used in portable electronic devices [6]. Graphene is incorporated into the battery anode in the form of a spreadable ink containing a suspension of graphene nanoflakes giving an increased energy efficiency of 20%. A second group of researchers have demonstrated a lithium-oxygen battery with high energy density, efficiency and stability [7]. They produced a device with over 90% efficiency that may be recharged more than 2,000 times. Their lithium-oxygen cell features a porous, ‘fluffy’ electrode made from graphene together with additives that alter the chemical reactions at work in the battery.

Graphene Flagship researchers show how the 2D material graphene can improve the energy capacity, efficiency and stability of lithium-oxygen batteries.

Both devices were developed in different groups within the Graphene Flagship Work Package Energy and speaking of the technology further is Prof. Clare Grey from Cambridge University, UK “What we’ve achieved is a significant advance for this technology, and suggests whole new areas for research – we haven’t solved all the problems inherent to this chemistry, but our results do show routes forward towards a practical device”.

[6] Liu T., et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science. 350, 6260, 530 (2015)

[7] Hassoun J., et al., An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett., 14 (8), 4901 (2014)

Graphene – What and Why?

Graphene is a two-dimensional material formed by a single atom-thick layer of carbon, with the carbon atoms arranged in a honeycomb-like lattice. This transparent, flexible material has a number of unique properties. For example, it is 100 times stronger than steel, and conducts electricity and heat with great efficiency.

A number of practical applications for graphene are currently being developed. These include flexible and wearable electronics and antennas, sensors, optoelectronics and data communication systems, medical and bioengineering technologies, filtration, super-strong composites, photovoltaics and energy storage.

Graphene and Beyond

The Graphene Flagship also covers other layered materials, as well as hybrids formed by combining graphene with these complementary materials, or with other materials and structures, ranging from polymers, to metals, cement, and traditional semiconductors such as silicon. Graphene is just the first of thousands of possible single layer materials. The Flagship plans to accelerate their journey from laboratory to factory floor.

Especially exciting is the possibility of stacking monolayers of different elements to create materials not found in nature, with properties tailored for specific applications. Such composite layered materials could be combined with other nanomaterials, such as metal nanoparticles, in order to further enhance their properties and uses.​

Graphene – the Fruit of European Scientific Excellence

Europe, North America and Asia are all active centres of graphene R&D, but Europe has special claim to be at the centre of this activity. The ground-breaking experiments on graphene recognised in the award of the 2010 Nobel Prize in Physics were conducted by European physicists, Andre Geim and Konstantin Novoselov, both at Manchester University. Since then, graphene research in Europe has continued apace, with major public funding for specialist centres, and the stimulation of academic-industrial partnerships devoted to graphene and related materials. It is European scientists and engineers who as part of the Graphene Flagship are closely coordinating research efforts, and accelerating the transfer of layered materials from the laboratory to factory floor.

For anyone who would like links to the published papers, you can check out an April 20, 2016 news item featuring the Graphene Flagship highlights on Nanowerk.

Harmonized nano terminology for environmental health and safety

According to Lynn Bergeson’s April 11, 2016 posting on Nanotechnology Now, the European Commission’s Joint Research Centre (JRC) has published a document about harmonizing terminology for environmental health and safety of nanomaterials,

The European Commission (EC) Joint Research Center (JRC) recently published a report entitled NANoREG harmonised terminology for environmental health and safety assessment of nanomaterials, developed within the NANoREG project: “A common European approach to the regulatory testing of nanomaterials.”

The NANoREG harmonised terminology for environmental health and safety assessment of nanomaterials (PDF)  has an unexpected description for itself on p. 8 (Note: A link has been removed),

Consistent  use  of  terminology  is  important  in  any  field  of  science  and  technology  to ensure  common  understanding  of  concepts  and  tools among  experts  and  different stakeholders, such as regulatory authorities, industry and consumers. Several  terms  in  the  field of  environmental  health  and  safety  (EHS)  assessment of nanomaterials  (hereinafter  NMs) have  been  indeed  defined  or  used  by  the  scientific community and various organisations, including   international   bodies,   European authorities, and industry associations.

This  is true  for multidisciplinary  projects  such  as  NANoREG, which  aims  at supporting regulatory  authorities, and  industry,  in  dealing  with EHS issues  of  manufactured NMs (‘nanoEHS’) (http://cordis.europa.eu/project/rcn/107159_en.html,www.nanoreg.eu). Terminology  thus  plays  an  important  role  in  NANoREG’s internal  process  of producing diverse types of output with regulatory relevance (e.g. physicochemical characterisation and test protocols, grouping and read-across approaches, exposure models, a framework for  safety  assessment  of NMs,  etc.). The  process  takes  place  in a  collaborative  effort across severalNANoREG work packages or tasks,  involvingquite a  few partners. Moreover,  the  different  types  of NANoREG output (‘deliverables’) are  addressed  to  a large  audience  of  scientists,  industry  and  regulatory  bodies,  extending beyond  Europe. Hence, a coordinated initiative has been undertaken by the Joint Research Centre (JRC) to harmonise the use of specific wording within NANoREG.

The objective of this JRC report is to disseminate the harmonised terminology that has been developed and used with in NANoREG. This collection of key terms has been agreed upon by all  project  partners and adopted  in  their  activities  and  related  documents, as recommended by the NANoREG internal Guidance Document.

Accordingly,  Section  2  of  the  report  illustrates  the  methodology  used  i)  to  select  key terms  that  form  the  ‘NANoREG  Terminology’,  ii)  to  develop  harmonised  ‘NANoREG Definitions’, and iii) it also explains the thinking that led to the choices made in drafting a  definition.  In  Section  3,  those  definitions, adopted  by  the  project  Consortium,  are reported  in  a  table  format  and  constitute  the  ‘NANoREG  Harmonised  Terminology’. Section 4 summarises the existing literature definitions that have been used as starting point to elaborate, for each key term, a NANoREG Definition. It also shortly discusses the reason(s) behind the choices that have been made in drafting a definition.

2. Methodology

The NANoREG Harmonised Terminology illustrated in this report is not a ‘dictionary’ [emphasis mine] that collects a long list of well-known, well-defined scientific and/or regulatory terms relevant to  the  field  of nanoEHS.  Rather,  the  NANoREG Harmonised  Terminology  focuses  on  a relatively short list of key terms that may be interpreted in various ways, depending on where the reader is located on the globe or on the reader’s scientific area of expertise. Moreover,  it  focuses  on  few  terms  that  are  specifically relevant  in  a  REACH [Registration, Evaluation, Authorization, & Restriction of Chemicals]  context, which represents the regulatory framework of reference for NANoREG.

This is having it both ways. As I read it, what they’re saying is this: ‘Our document is not a dictionary but here are the definitions we’re using and you can use them that way if you like’.

You can find a link to the ‘harmonisation’ document and one other related document on this page.

With over 150 partners from over 20 countries, the European Union’s Graphene Flagship research initiative unveils its work package devoted to biomedical technologies

An April 11, 2016 news item on Nanowerk announces the Graphene Flagship’s latest work package,

With a budget of €1 billion, the Graphene Flagship represents a new form of joint, coordinated research on an unprecedented scale, forming Europe’s biggest ever research initiative. It was launched in 2013 to bring together academic and industrial researchers to take graphene from the realm of academic laboratories into European society in the timeframe of 10 years. The initiative currently involves over 150 partners from more than 20 European countries. The Graphene Flagship, coordinated by Chalmers University of Technology (Sweden), is implemented around 15 scientific Work Packages on specific science and technology topics, such as fundamental science, materials, health and environment, energy, sensors, flexible electronics and spintronics.

Today [April 11, 2016], the Graphene Flagship announced in Barcelona the creation of a new Work Package devoted to Biomedical Technologies, one emerging application area for graphene and other 2D materials. This initiative is led by Professor Kostas Kostarelos, from the University of Manchester (United Kingdom), and ICREA Professor Jose Antonio Garrido, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain). The Kick-off event, held in the Casa Convalescència of the Universitat Autònoma de Barcelona (UAB), is co-organised by ICN2 (ICREA Prof Jose Antonio Garrido), Centro Nacional de Microelectrónica (CNM-IMB-CSIC, CIBER-BBN; CSIC Tenured Scientist Dr Rosa Villa), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS; ICREA Prof Mavi Sánchez-Vives).

An April 11, 2016 ICN2 press release, which originated the news item, provides more detail about the Biomedical Technologies work package and other work packages,

The new Work Package will focus on the development of implants based on graphene and 2D-materials that have therapeutic functionalities for specific clinical outcomes, in disciplines such as neurology, ophthalmology and surgery. It will include research in three main areas: Materials Engineering; Implant Technology & Engineering; and Functionality and Therapeutic Efficacy. The objective is to explore novel implants with therapeutic capacity that will be further developed in the next phases of the Graphene Flagship.

The Materials Engineering area will be devoted to the production, characterisation, chemical modification and optimisation of graphene materials that will be adopted for the design of implants and therapeutic element technologies. Its results will be applied by the Implant Technology and Engineering area on the design of implant technologies. Several teams will work in parallel on retinal, cortical, and deep brain implants, as well as devices to be applied in the periphery nerve system. Finally, The Functionality and Therapeutic Efficacy area activities will centre on development of devices that, in addition to interfacing the nerve system for recording and stimulation of electrical activity, also have therapeutic functionality.

Stimulation therapies will focus on the adoption of graphene materials in implants with stimulation capabilities in Parkinson’s, blindness and epilepsy disease models. On the other hand, biological therapies will focus on the development of graphene materials as transport devices of biological molecules (nucleic acids, protein fragments, peptides) for modulation of neurophysiological processes. Both approaches involve a transversal innovation environment that brings together the efforts of different Work Packages within the Graphene Flagship.

A leading role for Barcelona in Graphene and 2D-Materials

The kick-off meeting of the new Graphene Flagship Work Package takes place in Barcelona because of the strong involvement of local institutions and the high international profile of Catalonia in 2D-materials and biomedical research. Institutions such as the Catalan Institute of Nanoscience and Nanotechnology (ICN2) develop frontier research in a supportive environment which attracts talented researchers from abroad, such as ICREA Research Prof Jose Antonio Garrido, Group Leader of the ICN2 Advanced Electronic Materials and Devices Group and now also Deputy Leader of the Biomedical Technologies Work Package. Until summer 2015 he was leading a research group at the Technische Universität München (Germany).

Further Graphene Flagship events in Barcelona are planned; in May 2016 ICN2 will also host a meeting of the Spintronics Work Package. ICREA Prof Stephan Roche, Group Leader of the ICN2 Theoretical and Computational Nanoscience Group, is the deputy leader of this Work Package led by Prof Bart van Wees, from the University of Groningen (The Netherlands). Another Work Package, on optoelectronics, is led by Prof Frank Koppens from the Institute of Photonic Sciences (ICFO, Spain), with Prof Andrea Ferrari from the University of Cambridge (United Kingdom) as deputy. Thus a number of prominent research institutes in Barcelona are deeply involved in the coordination of this European research initiative.

Kostas Kostarelos, the leader of the Biomedical Technologies Graphene Flagship work package, has been mentioned here before in the context of his blog posts for The Guardian science blog network (see my Aug. 7, 2014 post for a link to his post on metaphors used in medicine).

Science advice conference in Brussels, Belgium, Sept. 29 – 30, 2016 and a call for speakers

This is the second such conference and they are issuing a call for speakers; the first was held in New Zealand in 2014 (my April 8, 2014 post offers an overview of the then proposed science advice conference). Thanks to David Bruggeman and his Feb. 23, 2016 posting (on the Pasco Phronesis blog) for the information about this latest one (Note: A link has been removed),

The International Network for Global Science Advice (INGSA) is holding its second global conference in Brussels this September 29 and 30, in conjunction with the European Commission. The organizers have the following goals for the conference:

  • Identify core principles and best practices, common to structures providing scientific advice for governments worldwide.
  • Identify practical ways to improve the interaction of the demand and supply side of scientific advice.
  • Describe, by means of practical examples, the impact of effective science advisory processes.

Here’s a little more about the conference from its webpage on the INGSA website,

Science and Policy-Making: towards a new dialogue

29th – 30th September 2016, Brussels, Belgium

Call for suggestions for speakers for the parallel sessions

BACKGROUND:

“Science advice has never been in greater demand; nor has it been more contested.”[1] The most complex and sensitive policy issues of our time are those for which the available scientific evidence is ever growing and multi-disciplined, but still has uncertainties. Yet these are the very issues for which scientific input is needed most. In this environment, the usefulness and legitimacy of expertise seems obvious to scientists, but is this view shared by policy-makers?

OBJECTIVES:

A two-day conference will take place in Brussels, Belgium, on Thursday 29th and Friday 30th September 2016. Jointly organised by the European Commission and the International Network for Government Science Advice (INGSA), the conference will bring together users and providers of scientific advice on critical, global issues. Policy-makers, leading practitioners and scholars in the field of science advice to governments, as well as other stakeholders, will explore principles and practices in a variety of current and challenging policy contexts. It will also present the new Scientific Advice Mechanism [SAM] of the European Commission [emphasis mine; I have more about SAM further down in the post] to the international community. Through keynote lectures and plenary discussions and topical parallel sessions, the conference aims to take a major step towards responding to the challenge best articulated by the World Science Forum Declaration of 2015:

“The need to define the principles, processes and application of science advice and to address the theoretical and practical questions regarding the independence, transparency, visibility and accountability of those who receive and provide advice has never been more important. We call for concerted action of scientists and policy-makers to define and promulgate universal principles for developing and communicating science to inform and evaluate policy based on responsibility, integrity, independence, and accountability.”

The conference seeks to:

Identify core principles and best practices, common to structures providing scientific advice for governments worldwide.
Identify practical ways to improve the interaction of the demand and supply side of scientific advice.
Describe, by means of practical examples, the impact of effective science advisory processes.

The Programme Committee comprises:

Eva Alisic, Co-Chair of the Global Young Academy

Tateo Arimoto, Director of Science, Technology and Innovation Programme; The Japanese National Graduate Institute for Policy Studies

Peter Gluckman, Chair of INGSA and Prime Minister’s Chief Science Advisor, New Zealand (co-chair)

Robin Grimes, UK Foreign Office Chief Scientific Adviser

Heide Hackmann, International Council for Science (ICSU)

Theodoros Karapiperis, European Parliament – Head of Scientific Foresight Unit (STOA), European Parliamentary Research Service (EPRS) – Science and Technology Options Assessment Panel

Johannes Klumpers, European Commission, Head of Unit – Scientific Advice Mechanism (SAM) (co-chair)

Martin Kowarsch, Head of the Working Group Scientific assessments, Ethics and Public Policy, Mercator Research Institute on Global Commons and Climate Change

David Mair, European Commission – Joint Research Centre (JRC)

Rémi Quirion, Chief Scientist,  Province of Québec, Canada

Flavia Schlegel, UNESCO Assistant Director-General for the Natural Sciences

Henrik Wegener, Executive Vice President, Chief Academic Officer, Provost at Technical University of Denmark, Chair of the EU High Level Group of Scientific Advisors

James Wilsdon, Chair of INGSA, Professor of Research Policy, Director of Impact & Engagement, University of Sheffield
Format

The conference will be a combination of plenary lectures and topical panels in parallel (concurrent) sessions outlined below. Each session will include three speakers (15 minute address with 5 minute Q & A each) plus a 30 minute moderated discussion.

Parallel Session I: Scientific advice for global policy

The pathways of science advice are a product of a country’s own cultural history and will necessarily differ across jurisdictions. Yet, there is an increasing number of global issues that require science advice. Can scientific advice help to address issues requiring action at international level? What are the considerations for providing science advice in these contexts? What are the examples from which we can learn what works and what does not work in informing policy-making through scientific advice?

Topics to be addressed include:

Climate Change – Science for the Paris Agreement: Did it work?
Migration: How can science advice help?
Zika fever, dementia, obesity etc.; how can science advice help policy to address the global health challenges?

Parallel Session II: Getting equipped – developing the practice of providing scientific advice for policy

The practice of science advice to public policy requires a new set of skills that are neither strictly scientific nor policy-oriented, but a hybrid of both. Negotiating the interface between science and policy requires translational and navigational skills that are often not acquired through formal training and education. What are the considerations in developing these unique capacities, both in general and for particular contexts? In order to be best prepared for informing policy-making, up-coming needs for scientific advice should ideally be anticipated. Apart from scientific evidence sensu stricto, can other sources such as the arts, humanities, foresight and horizon scanning provide useful insights for scientific advice? How can scientific advice make best use of such tools and methods?

Topics to be addressed include:

How to close the gap between the need and the capacity for science advice in developing countries with limited or emerging science systems?
What skills do scientists and policymakers need for a better dialogue?
Foresight and science advice: can foresight and horizon scanning help inform the policy agenda?

Parallel Session III: Scientific advice for and with society

In many ways, the practice of science advice has become a key pillar in what has been called the ‘new social contract for science[2]’. Science advice translates knowledge, making it relevant to society through both better informed policy and by helping communities and their elected representatives to make better informed decisions about the impacts of technology. Yet providing science advice is often a distributed and disconnected practice in which academies, formal advisors, journalists, stakeholder organisations and individual scientists play an important role. The resulting mix of information can be complex and even contradictory, particularly as advocate voices and social media join the open discourse. What considerations are there in an increasingly open practice of science advice?

Topics to be addressed include:

Science advice and the media: Lost in translation?
Beyond the ivory tower: How can academies best contribute to science advice for policy?
What is the role of other stakeholders in science advice?

Parallel Session IV: Science advice crossing borders

Science advisors and advisory mechanisms are called upon not just for nationally-relevant advice, but also for issues that increasingly cross borders. In this, the importance of international alignment and collaborative possibilities may be obvious, but there may be inherent tensions. In addition, there may be legal and administrative obstacles to transnational scientific advice. What are these hurdles and how can they be overcome? To what extent are science advisory systems also necessarily diplomatic and what are the implications of this in practice?

Topics to be addressed include:

How is science advice applied across national boundaries in practice?
What support do policymakers need from science advice to implement the Sustainable Development Goals in their countries?
Science Diplomacy/Can Scientists extend the reach of diplomats?

Call for Speakers

The European Commission and INGSA are now in the process of identifying speakers for the above conference sessions. As part of this process we invite those interested in speaking to submit their ideas. Interested policy-makers, scientists and scholars in the field of scientific advice, as well as business and civil-society stakeholders are warmly encouraged to submit proposals. Alternatively, you may propose an appropriate speaker.

The conference webpage includes a form should you wish to submit yourself or someone else as a speaker.

New Scientific Advice Mechanism of the European Commission

For anyone unfamiliar with the Scientific Advice Mechanism (SAM) mentioned in the conference’s notes, once Anne Glover’s, chief science adviser for the European Commission (EC), term of office was completed in 2014 the EC president, Jean-Claude Juncker, obliterated the position. Glover, the first and only science adviser for the EC, was to replaced by an advisory council and a new science advice mechanism.

David Bruggemen describes the then situation in a May 14, 2015 posting (Note: A link has been removed),

Earlier this week European Commission President Juncker met with several scientists along with Commission Vice President for Jobs, Growth, Investment and Competitiveness [Jyrki] Katainen and the Commissioner for Research, Science and Innovation ]Carlos] Moedas. …

What details are publicly available are currently limited to this slide deck.  It lists two main mechanisms for science advice, a high-level group of eminent scientists (numbering seven), staffing and resource support from the Commission, and a structured relationship with the science academies of EU member states.  The deck gives a deadline of this fall for the high-level group to be identified and stood up.

… The Commission may use this high-level group more as a conduit than a source for policy advice.  A reasonable question to ask is whether or not the high-level group can meet the Commission’s expectations, and those of the scientific community with which it is expected to work.

David updated the information in a January 29,2016 posting (Note: Links have been removed),

Today the High Level Group of the newly constituted Scientific Advice Mechanism (SAM) of the European Union held its first meeting.  The seven members of the group met with Commissioner for Research, Science and Innovation Carlos Moedas and Andrus Ansip, the Commission’s Vice-President with responsibility for the Digital Single Market (a Commission initiative focused on making a Europe-wide digital market and improving support and infrastructure for digital networks and services).

Given it’s early days, there’s little more to discuss than the membership of this advisory committee (from the SAM High Level Group webpage),

Janusz Bujnicki

Professor, Head of the Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw

Janusz Bujnicki

Professor of Biology, and head of a research group at IIMCB in Warsaw and at Adam Mickiewicz University, Poznań, Poland. Janusz Bujnicki graduated from the Faculty of Biology, University of Warsaw in 1998, defended his PhD in 2001, was awarded with habilitation in 2005 and with the professor title in 2009.

Bujnicki’s research combines bioinformatics, structural biology and synthetic biology. His scientific achievements include the development of methods for computational modeling of protein and RNA 3D structures, discovery and characterization of enzymes involved in RNA metabolism, and engineering of proteins with new functions. He is an author of more than 290 publications, which have been cited by other researchers more than 5400 times (as of October 2015). Bujnicki received numerous awards, prizes, fellowships, and grants including EMBO/HHMI Young Investigator Programme award, ERC Starting Grant, award of the Polish Ministry of Science and award of the Polish Prime Minister, and was decorated with the Knight’s Cross of the Order of Polonia Restituta by the President of the Republic of Poland. In 2013 he won the national plebiscite “Poles with Verve” in the Science category.

Bujnicki has been involved in various scientific organizations and advisory bodies, including the Polish Young Academy, civic movement Citizens of Science, Life, Environmental and Geo Sciences panel of the Science Europe organization, and Scientific Policy Committee – an advisory body of the Ministry of Science and Higher Education in Poland. He is also an executive editor of the scientific journal Nucleic Acids Research.

Curriculum vitae  PDF icon 206 KB

Pearl Dykstra

Professor of Sociology, Erasmus University Rotterdam

Pearl Dykstra

Professor Dykstra has a chair in Empirical Sociology and is Director of Research of the Department of Public Administration and Sociology at the Erasmus University Rotterdam. Previously, she had a chair in Kinship Demography at Utrecht University (2002-2009) and was a senior scientist at the Netherlands Interdisciplinary Demographic Institute (NIDI) in The Hague (1990-2009).

Her publications focus on intergenerational solidarity, aging societies, family change, aging and the life course, and late-life well-being. She is an elected member of the Netherlands Royal Academy of Arts and Sciences (KNAW, 2004) and Vice-President of the KNAW as of 2011, elected Member of the Dutch Social Sciences Council (SWR, 2006), and elected Fellow of the Gerontological Society of America (2010). In 2012 she received an ERC Advanced Investigator Grant for the research project “Families in context”, which will focus on the ways in which policy, economic, and cultural contexts structure interdependence in families.

Curriculum vitae  PDF icon 391 KB

Elvira Fortunato

Deputy Chair

Professor, Materials Science Department of the Faculty of Science and Technology, NOVA University, Lisbon

Elvira Fortunato

Professor Fortunato is a full professor in the Materials Science Department of the Faculty of Science and Technology of the New University of Lisbon, a Fellow of the Portuguese Engineering Academy since 2009 and decorated as a Grand Officer of the Order of Prince Henry the Navigator by the President of the Republic in 2010, due to her scientific achievements worldwide. In 2015 she was appointed by the Portuguese President Chairman of the Organizing Committee of the Celebrations of the National Day of Portugal, Camões and the Portuguese Communities.

She was also a member of the Portuguese National Scientific & Technological Council between 2012 and 2015 and a member of the advisory board of DG CONNECT (2014-15).

Currently she is the director of the Institute of Nanomaterials, Nanofabrication and Nanomodeling and of CENIMAT. She is member of the board of trustees of Luso-American Foundation (Portugal/USA, 2013-2020).

Fortunato pioneered European research on transparent electronics, namely thin-film transistors based on oxide semiconductors, demonstrating that oxide materials can be used as true semiconductors. In 2008, she received in the 1st ERC edition an Advanced Grant for the project “Invisible”, considered a success story. In the same year she demonstrated with her colleagues the possibility to make the first paper transistor, starting a new field in the area of paper electronics.

Fortunato published over 500 papers and during the last 10 years received more than 16 International prizes and distinctions for her work (e.g: IDTechEx USA 2009 (paper transistor); European Woman Innovation prize, Finland 2011).

Curriculum vitae  PDF icon 339 KB

Rolf-Dieter Heuer

Director-General of the European Organization for Nuclear Research (CERN)

Rolf-Dieter Heuer

Professor Heuer is an experimental particle physicist and has been CERN Director-General since January 2009. His mandate, ending December 2015, is characterised by the start of the Large Hadron Collider (LHC) 2009 as well as its energy increase 2015, the discovery of the H-Boson and the geographical enlargement of CERN Membership. He also actively engaged CERN in promoting the importance of science and STEM education for the sustainable development of the society. From 2004 to 2008, Prof. Heuer was research director for particle and astroparticle physics at the DESY laboratory, Germany where he oriented the particle physics groups towards LHC by joining both large experiments, ATLAS and CMS. He has initiated restructuring and focusing of German high energy physics at the energy frontier with particular emphasis on LHC (Helmholtz Alliance “Physics at the Terascale”). In April 2016 he will become President of the German Physical Society. He is designated President of the Council of SESAME (Synchrotron-Light for Experimental Science and Applications in the Middle East).

Prof. Heuer has published over 500 scientific papers and holds many Honorary Degrees from universities in Europe, Asia, Australia and Canada. He is Member of several Academies of Sciences in Europe, in particular of the German Academy of Sciences Leopoldina, and Honorary Member of the European Physical Society. In 2015 he received the Grand Cross 1st class of the Order of Merit of the Federal Republic of Germany.

Curriculum vitae  PDF icon

Julia Slingo

Chief Scientist, Met Office, Exeter

Julia Slingo

Dame Julia Slingo became Met Office Chief Scientist in February 2009 where she leads a team of over 500 scientists working on a very broad portfolio of research that underpins weather forecasting, climate prediction and climate change projections. During her time as Chief Scientist she has fostered much stronger scientific partnerships across UK academia and international research organisations, recognising the multi-disciplinary and grand challenge nature of weather and climate science and services. She works closely with UK Government Chief Scientific Advisors and is regularly called to give evidence on weather and climate related issues.

Before joining the Met Office she was the Director of Climate Research in NERC’s National Centre for Atmospheric Science, at the University of Reading. In 2006 she founded the Walker Institute for Climate System Research at Reading, aimed at addressing the cross disciplinary challenges of climate change and its impacts. Julia has had a long-term career in atmospheric physics, climate modelling and tropical climate variability, working at the Met Office, ECMWF and NCAR in the USA.

Dame Julia has published over 100 peer reviewed papers and has received numerous awards including the prestigious IMO Prize of the World Meteorological Organization for her outstanding work in meteorology, climatology, hydrology and related sciences. She is a Fellow of the Royal Society, an Honorary Fellow of the Royal Society of Chemistry and an Honorary Fellow of the Institute of Physics.

Curriculum vitae  PDF icon 239 KB

Cédric Villani

Director, Henri Poincaré Institute, Paris

Cédric Villani

Born in 1973 in France, Cédric Villani is a mathematician, director of the Institut Henri Poincaré in Paris (from 2009), and professor at the Université Claude Bernard of Lyon (from 2010). In December 2013 he was elected to the French Academy of Sciences.

He has worked on the theory of partial differential equations involved in statistical mechanics, specifically the Boltzmann equation, and on nonlinear Landau damping. He was awarded the Fields Medal in 2010 for his works.

Since then he has been playing an informal role of ambassador for the French mathematical community to media (press, radio, television) and society in general. His books for non-specialists, in particular Théorème vivant (2012, translated in a dozen of languages), La Maison des mathématiques (2014, with J.-Ph. Uzan and V. Moncorgé) and Les Rêveurs lunaires (2015, with E. Baudoin) have all found a wide audience. He has also given hundreds of lectures for all kinds of audiences around the world.

He participates actively in the administration of science, through the Institut Henri Poincaré, but also by sitting in a number of panels and committees, including the higher council of research and the strategic council of Paris. Since 2010 he has been involved in fostering mathematics in Africa, through programs by the Next Einstein Initiative and the World Bank.

Believing in the commitment of scientists in society, Villani is also President of the Association Musaïques, a European federalist and a father of two.

Website

Henrik C. Wegener

Chair

Executive Vice President, Chief Academic Officer and Provost, Technical University of Denmark

Henrik C. Wegener

Henrik C. Wegener is Executive Vice President and Chief Academic Officer at Technical University of Denmark since 2011. He received his M.Sc. in food science and technology at the University of Copenhagen in 1988, his Ph.D. in microbiology at University of Copenhagen in 1992, and his Master in Public Administration (MPA) form Copenhagen Business School in 2005.

Henrik C. Wegener was director of the National Food Institute, DTU from 2006-2011 and before that head of the Department of Epidemiology and Risk Assessment at National Food and Veterinary Research Institute, Denmark (2004-2006). From 1994-1999, he was director of the Danish Zoonosis Centre, and from 1999-2004 professor of zoonosis epidemiology at Danish Veterinary Institute. He was stationed at World Health Organization headquarters in Geneva from 1999-2000. With more than 3.700 citations (h-index 34), he is the author of over 150 scientific papers in journals, research monographs and proceedings, on food safety, zoonoses, antimicrobial resistance and emerging infectious diseases.

He has served as advisor and reviewer to national and international authorities & governments, international organizations and private companies, universities and research foundations, and he has served, and is presently serving, on several national and international committees and boards on food safety, veterinary public health and research policy.

Henrik C. Wegener has received several awards, including the Alliance for the Prudent Use of Antibiotics International Leadership Award in 2003.

That’s quite a mix of sciences and I’m happy to see a social scientist has been included.

Conference submissions

Getting back to the conference and its call for speakers, the deadline for submissions is March 25, 2016. Interestingly, there’s also this (from conference webpage),

The deadline for submissions is 25th March 2016. The conference programme committee with session chairs will review all proposals and select those that best fit the aim of each session while also representing a diverse range of perspectives. We aim to inform selected speakers within 4 weeks of the deadline to enable travel planning to Brussels.

To make the conference as accessible as possible, there is no registration fee. [emphasis mine] The European Commission will cover travel accommodation costs only for confirmed speakers for whom the travel and accommodation arrangements will be made by the Commission itself, on the basis of the speakers’ indication.

Good luck!

*Head for conference submissions added on Feb. 29, 2016 at 1155 hundred hours.