Tag Archives: European Commission

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

NanoCelluComp (nanocellulose composites, a European Union project) waves goodbye

As I noted in my Feb. 6, 2014 posting about NanoCelluComp and its appearance at the JEC 2014 Composites Show and Conferences in Paris (France), 11-13th March, 2014, the project is experiencing its sunset days.

The project’s (European Commission-funded project under the European Union’s 7th Framework Programme) final (6th) newsletter (which can be found here) has just been published and there are a few interesting items to be found.

They list each of their ‘work packages’ and then describe the progress,

Work Package 1
Extraction of nanocellulose from carrot.
Work Packages 2 & 3
Stabilization and modification of nanocellulose suspensions.
Work Package 4
Nanocellulose based materials.
Work Package 5
Integrated technology for making new materials.
Work Package 6
Assessment of new technology.

NanoCelluComp Work Programme Activities.
Work packages 1, 2 and 3 are complete; nonetheless, these methods have been further improved as we have learned more about the properties of the extracted nanocellulose and better ways of removing unwanted components of the vegetable waste.

Activities in work package 4 have provided larger-scale production (100’s of g) of fibres that have been incorporated into resins (work package 5). Production and processing aspects were further fine-tuned over the autumn and early winter to achieve the best performance characteristics in the final composites. Different methods have been used to produce composite materials and full mechanical testing of each has been performed. Finally, demonstrator products have been produced for the JEC Europe 2014 show in Paris (March 11-13).

In work package 6, full life-cycle assessment has been performed on the different production technologies and final demonstrator products.

I’m particularly intrigued by Work Package 1 and its reference to carrots, the first time I’ve heard of carrot-derived nanocellulose. I hope to hear more about these carrots some day. In the meantime, there is more information about vegetable waste and nanocellulose at the JEC conference where NanoCelluComp can be found at Exhibition Stand D83 or in my Feb. 6, 2014 posting.

The 6th newsletter also offers a list of recent papers and publications, their own and others related to nanocellulose. Included here is the list of publications from other agencies,

From cellulose to textile fibre and a ready product

Aalto University has developed a new process with global significance for working cellulose into a textile fibre.

The world’s first textile product made from Ioncell cellulose fibre as well as other results yielded by research programs were introduced at a seminar held by the Finnish Bioeconomy Cluster FIBIC Oy on November 20, 2013.

www.nanocellucomp.eu/from-cellulose-to-textile-fibre-and-a-ready-product

This Self-Cleaning Plate May Mean You’ll Never Have To Do The Dishes

Researchers at the KTH Royal Institute of Technology (Stockholm) in collaboration with Innventia, have designed a prototype dinner plate made from nanocellulose and coated with a super-hydrophobic material.

www.nanocellucomp.eu/latest-news/this-sel-cleaning-plate-may-mean-youll-never-have-to-do-the-dishes

New report – Biocomposites 350,000t production of wood and natural fibre composites in the European Union in 2012

This market report gives the first comprehensive and detailed picture of the use and amount of wood and natural fibre reinforced composites in the European bio-based economy.

www.nanocellucomp.eu/latest-news/new-report-biocomposites-350000t-production-of-wood-and-natural-fibre-composites-in-the-european-union-in-2012

It looks like some good work has been done and I applaud the group for reaching out to communicate. I wish the Canadian proponents would adopt the practice.

All the best to the NanoCelluComp team and may the efforts be ‘fruitful’.

 

 

Nano workshop with the International Federation of Societies of Cosmetic Chemists and ‘in-cosmetics’ on March 1, 2014

The International Federation of Societies of Cosmetic Chemists (IFSCC) is presenting a March 31, 2014 nanotechnology workshop prior to the ‘in-cosmetics exhibition’ due to be held April 1-2, 2014 in Hamburg in partnership with the in-cosmetics organizers.  From a Feb. 17, 2014 IFSCC news release,

The IFSCC has organised a Recent Perspectives in Nanotechnology workshop in association with in-cosmetics which will be held immediately before the show (1-3 April) on 31 March 2014 in Hamburg.

Moderated by IFSCC Vice President and President of the French Society Claudie Willemin, the workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Topics and speakers include:

Nanotechnology in Cosmetics – Current status in EU and Other Countries

Dr Florian Schellauf, Technical Regulatory Affairs – Cosmetics Europe

Characterisation Methods for Nanomaterials for Regulatory Purposes

Dr Hubert Rauscher, European Commission – Joint Research Centre – Nanobiosciences Unit

Nanomaterials’ Safety:  A Summary of the Latest Studies

Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – Berlin

Nanomaterial’s Evaluation Tests

Dr Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASF

Click here for full programme details and to register.

The focus is primarily on the European Union’s efforts according to the workshop programme webpage,

This IFSCC Workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Organised by the IFSCC, a federation dedicated to international cooperation in cosmetic science and technology, this workshop demonstrates its aims.

Moderator: Claudie Willemin

  • 14:00-14:30: Welcome and Introduction
    IFSCC – What does this Acronym mean?
    > Claudie Willemin, Vice President of  the International Federation of the Societies of Cosmetic Chemists and President of La Société Française de Cosmétologie – SFC
  • 14:30-15:15: Nanotechnology in Cosmetics – Current status in EU and Other Countries
    > Dr. Florian Schellauf, Technical Regulatory Affairs- Cosmetics EuropeThe legislator introduced two requirements into the EU Regulation 1223/2009 related to nanomaterials in cosmetic products.The first requirement is the obligation to inform the consumer when nanomaterials are used in cosmetic products (“nano labelling”). The second requirement requires notification to the European Commission of cosmetic products containing certain nanomaterials. These requirements are based on the definition of a nanomaterial provided in the Regulation.

    The requirements come into application from 2013 and discussions have moved from legislation to practical implementation.

    This presentation will provide an overview over the use of nanomaterials in cosmetics, issues related to the implementation of the legal requirements and the interpretation of the cosmetic nanodefinition in relation to the Commission Recommendation of 18 October 2011.

    Also in the international arena, there have been harmonization attempts specifically for the cosmetic sector through the ICCR process (International Cooperation on Cosmetics Regulation). ICCR defined a set of criteria for determining whether or not a material should be considered as a nanomaterial for regulatory purposes. The presentation will also provide an insight into discussions occurring around nanomaterials in cosmetics in selected countries outside of the EU.

  • 15:15-15:50: Characterisation Methods for Nanomaterials for Regulatory Purposes
    > Dr. Hubert Rauscher, European Commission -Joint Research Centre – Nanobiosciences UnitNanomaterials are addressed in the European Regulation on Cosmetic Products (EC)1223/2009 as well as in several other sectors of national and international legislation and in various guidelines. This requires clear terminology, such as a definition of the term “nanomaterial” and implementation provisions. Such a definition for regulatory purposes and its individual elements needs to be legally clear and unambiguous, and enforceable through agreed measurement techniques and procedures. The presentation highlights the technical and scientific requirements for the characterisation of nanomaterials that need to be met for this purpose and reviews currently available techniques. The contribution also offers considerations on the way forward towards the development of new measurement techniques, the combination of experimental methods and the need for validation studies for the characterisation of nanomaterials for regulatory purposes.
  • 15:50-16:15: Coffee Break
  • 16:15-16:50: Nanomaterials’ Safety:  A Summary of the Latest Studies
    > Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – BerlinFor more than 20 years both academic institutions and industrial enterprises have been researching into the development of strategies for drug delivery through the human skin by means of nanoparticles. However, a commercial product based on that concept is still lacking as, obviously, nanoparticles of ≥30 nm do not penetrate the human skin barrier. Whether this applies also to smaller particles is currently a topic of intense research.First indications that nanoparticles might not penetrate the skin barrier resulted from investigations of sunscreens that contained TiO2 particles of approximately 100 nm in diameter. At the end of a 14 day test period, volunteers who had applied the sunscreen three times each day were measured for TiO2 penetration using the tape stripping method. In addition, biopsies were taken and histological sections were analyzed. The results clearly showed that the TiO2 nanoparticles were located upon the skin surface and in some of the hair follicles. The penetration profile also revealed low TiO2 concentrations near the boundary to the living epidermis.  However, in follow-up investigations these TiO2 concentrations turned out to be located in the hair follicles.

    Interestingly, only some of the hair follicles contained TiO2 particles. In a subsequent study it could be shown that the nanoparticles penetrated into the hair follicles only if the latter display sebum production or hair growth. This means that hair follicles are usually closed by a cover that must be opened from inside out by mass flow to permit the topically applied nanoparticles penetrating into the hair follicles.  Particles of 500-800 nm in diameter were found to penetrate into the hair follicles most efficiently; either in vivo or – in the case of porcine ear model skin – if the hairs are moved by a massage. Investigating the hair surface structure, it was found that the thickness of the cuticula on the hair amounts to 600-800 nm. Due to resonance effects and if the hairs are moving, nanoparticles within this diameter range obviously penetrate into the hair follicles where they can be stored for a period exceeding 10 days. Thereafter, they escape with the sebum onto the skin surface again. A penetration of particles through the intact skin barrier could not be detected.

    The problem of particulate structures, particularly of those exceeding 100 nm, is that they do not penetrate the intact skin barrier on the intercellular pathway. They remain on the skin surface and are removed by washing, textile contact and desquamation, so that scarcely any nanoparticles are detectable after 24 h. However, once the particles have been transported into the hair follicles part of them are stored there for more than 10 days and are then re-transferred to the skin surface with the sebum. In various papers nanoparticles were reported to pass the skin barrier. This is always correct if the skin barrier is disturbed. Such disturbance could have been caused by disease or mechanical manipulation, e.g., taking of biopsies, tape stripping or cyanoacrylate stripping. In such cases, nanoparticles could also be detected in the living skin. So far, no evidence has been provided to suggest that nanoparticles are capable of penetrating the intact skin. Therefore, a collaborative project was recently launched by the German Research Association (DFG) in which the excellent penetration properties of particles >100 mm shall be used to transport drugs, which would normally not penetrate into the hair follicles, efficiently to the target structures in the hair follicles where they can be released by an external trigger system.

  • 16:50-17:30: Nanomaterial’s Evaluation Tests
    > Dr. Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASFWarranting the safety of nanotechnological products is seen as a crucial element in ensuring that the benefits of the new technology can be fully exploited. One prominent trait of NM is the fact that, during the life-time of a given NM, humans can be exposed to different forms of the material, e.g. due to agglomeration or aggregation, corona formation or interaction with surrounding organic material, or dissolution. In order to remove the need to test each form of nanomaterial in all its uses with a pre-defined, fixed list of methods, a concern-driven approach is proposed. Such approaches should start out by determining concerns, i.e. specific information needs for a given NM based on realistic exposure scenarios. Recognized concerns can be addressed in a set of tiers using standardized protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g. structure activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognize groups of NM based upon similar modes-of-action. Grouping of substances in return should form an integral part of the IATA themselves.
  • 17:30-18:00: Q&A and Conclusion

You can go here to register for this workshop. If you are attending the exhibition only, you can register for free until March 31, 2014 but if you want to attend the nano workshop and others, an Early Bird rate starting at €280 +VAT is available until Feb. 28, 2014.

For anyone who doesn’t fully grasp what the ‘in-cosmetics’ exhibition is all about, here’s a video,

‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US

A Feb, 8, 2 014 news item on Nanowerk features a US Government Accountability Office (GAO) publication announcement (Note:  A link has been removed),

In a new report on nanotechnology manufacturing (or nanomanufacturing) released yesterday (“Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health”; pdf), the U.S. Government Accountability Office finds flaws in America’s approach to many things nano.

At a July 2013 forum, participants from industry, government, and academia discussed the future of nanomanufacturing; investments in nanotechnology R&D and challenges to U.S. competitiveness; ways to enhance U.S. competitiveness; and EHS concerns.

A summary and a PDF version of the report, published Jan. 31, 2014, can be found here on the GAO’s GAO-14-181SP (report’s document number) webpage.  From the summary,

The forum’s participants described nanomanufacturing as a future megatrend that will potentially match or surpass the digital revolution’s effect on society and the economy. They anticipated further scientific breakthroughs that will fuel new engineering developments; continued movement into the manufacturing sector; and more intense international competition.

Although limited data on international investments made comparisons difficult, participants viewed the U.S. as likely leading in nanotechnology research and development (R&D) today. At the same time, they identified several challenges to U.S. competitiveness in nanomanufacturing, such as inadequate U.S. participation and leadership in international standard setting; the lack of a national vision for a U.S. nanomanufacturing capability; some competitor nations’ aggressive actions and potential investments; and funding or investment gaps in the United States (illustrated in the figure, below), which may hamper U.S. innovators’ attempts to transition nanotechnology from R&D to full-scale manufacturing.

[downloaded from http://www.gao.gov/products/GAO-14-181SP]

[downloaded from http://www.gao.gov/products/GAO-14-181SP]

I read through (skimmed) this 125pp (PDF version;  119 pp. print version) report and allthough it’s not obvious in the portion I’ve excerpted from the summary or in the following sections, the participants did seem to feel that the US national nanotechnology effort was in relatively good shape overall but with some shortcomings that may become significant in the near future.

First, government investment illustrates the importance the US has placed on its nanotechnology efforts (excerpted from p. 11 PDF; p. 5 print),

Focusing on U.S. public investment since 2001, the overall growth in the funding of nanotechnology has been substantial, as indicated by the funding of the federal interagency National Nanotechnology Initiative (NNI), with a cumulative investment of about $18 billion for fiscal years 2001 through 20133. Adding the request for fiscal year 2014 brings the total to almost $20 billion. However, the amounts budgeted in recent years have not shown an increasing trend.

Next, the participants in the July 2013 forum focused on four innovations in four different industry sectors as a means of describing the overall situation (excerpted from p. 16 PDF; p. 10 print):

Semiconductors (Electronics and semiconductors)

Battery-powered vehicles (Energy and power)

Nano-based concrete (Materials and chemical industries)

Nanotherapeutics (Pharmaceuticals, biomedical, and biotechnology)

There was some talk about nanotechnology as a potentially disruptive technology,

Nanomanufacturing could eventually bring disruptive innovation and the creation of new jobs—at least for the nations that are able to compete globally. According to the model suggested by Christensen (2012a; 2012b), which was cited by a forum participant, the widespread disruption of existing industries (and their supply chains) can occur together with the generation of broader markets, which can lead to net job creation, primarily for nations that bring the disruptive technology to market. The Ford automobile plant (with its dramatic changes in the efficient assembly of vehicles) again provides an historical example: mass – produced automobiles made cheaply enough—through economies of scale—were sold to vast numbers of consumers, replacing horse and buggy transportation and creating jobs to (1) manufacture large numbers of cars and develop the supply chain; (2) retail new cars; and (3) service them. The introduction of minicomputers and then personal computers in the 1980s and 1990s provides another historical example; the smaller computers disrupted the dominant mainframe computing industry (Christensen et al. 2000). Personal computers were provided to millions of homes, and an analyst in the Bureau of Labor Statistics (Freeman 1996) documented the creation of jobs in related areas such as selling home computers and software. According to Christensen (2012b), “[A]lmost all net growth in jobs in America has been created by companies that were empowering—companies that made complicated things affordable and accessible so that more people could own them and use them.”14 As a counterpoint, a recent report analyzing manufacturing today (Manyika et al. 2012, 4) claims that manufacturing “cannot be expected to create mass employment in advanced economies on the scale that it did decades ago.”

Interestingly, there is no mention in any part of the report of the darker sides of a disruptive technology. After all, there were people who were very, very upset over the advent of computers. For example, a student (I was teaching a course on marketing communication) once informed me that she and her colleagues used to regularly clear bullets from the computerized equipment they were sending up to the camps (memory fails as to whether these were mining or logging camps) in northern British Columbia in the early days of the industry’s computerization.

Getting back to the report, I wasn’t expecting to see that one of the perceived problems is the US failure to participate in setting standards (excerpted from p. 23 PDF; p. 17 print),

Lack of sufficient U.S. participation in setting standards for nanotechnology or nanomanufacturing. Some participants discussed a possible need for a stronger role for the United States in setting commercial standards for nanomanufactured goods (including defining basic terminology in order to sell products in global markets).17

The participants discussed the ‘Valley of Death’ and the ‘Missing Middle’ (excerpted from pp. 31-2 PDF; pp. 25-6 print)

Forum participants said that middle-stage funding, investment, and support gaps occur for not only technology innovation but also manufacturing innovation. They described the Valley of Death (that is, the potential lack of funding or investment that may characterize the middle stages in the development of a technology or new product) and the Missing Middle (that is, a similar lack of adequate support for the middle stages of developing a manufacturing process or approach), as explained below.

The Valley of Death refers to a gap in funding or investment that can occur after research on a new technology and its initial development—for example, when the technology moves beyond tests in a controlled laboratory setting.22 In the medical area, participants said the problem of inadequate funding /investment may be exacerbated by requirements for clinical trials. To illustrate, one participant said that $10 million to $20 million is needed to bring a new medical treatment into clinical trials, but “support from [a major pharmaceutical company] typically is not forthcoming until Phase II clinical trials,” resulting in a  Valley of Death for  some U.S. medical innovations. Another participant mentioned an instance where a costly trial was required for an apparently low risk medical device—and this participant tied high costs of this type to potential difficulties that medical innovators might have obtaining venture capital. A funding /investment gap at this stage can prevent further development of a technology.

The term  Missing Middle has been used to refer to the lack of funding/investment that can occur with respect to manufacturing innovation—that is, maturing manufacturing capabilities and processes to produce technologies at scale, as illustrated in figure 8.23 Here, another important lack of support may be the absence of what one participant called an “industrial commons”  to sustain innovation within a  manufacturing sector.24 Logically, successful transitioning across the  middle stages of manufacturing development is a prerequisite to  achieving successful new approaches to manufacturing at scale.

There was discussion of the international scene with regard to the ‘Valley of Death’ and the ‘Missing Middle’ (excerpted from pp. 41-2 PDF; pp. 35-6 print)

Participants said that the Valley of Death and Missing Middle funding and investment gaps, which are of concern in the United States, do not apply to the same extent in some other countries—for example, China and Russia—or are being addressed. One participant said that other countries in which these gaps have occurred “have zeroed in [on them] with a laser beam.” Another participant summed up his view of the situation with the statement: “Government investments in establishing technology platforms, technology transfer, and commercialization are higher in other countries than in the United States.”  He further stated that those making higher investments include China, Russia, and the European Union.

Multiple participants referred to the European Commission’s upcoming Horizon 2020 program, which will have major funding extending over 7 years. In addition to providing major funding for fundamental research, the Horizon 2020 website states that the program will help to:

“…bridge the gap between research and the market by, for example, helping innovative enterprises to develop their technological breakthroughs into viable products with real commercial potential. This market-driven approach will include creating partnerships with the private sector and Member States to bring together the resources needed.”

A key program within Horizon 2020 consists of the European Institute of Innovation and Technology (EIT), which as illustrated in the “Knowledge Triangle” shown figure 11, below, emphasizes the nexus of business, research, and higher education. The 2014-2020 budget for this portion of Horizon 2020 is 2.7 billion euros (or close to $3.7 billion in U.S. dollars as of January 2014).

As is often the case with technology and science, participants mentioned intellectual property (IP) (excerpted from pp. 43-44 PDF; pp. 37-8 print),

Several participants discussed threats to IP associated with global competition.43 One participant described persistent attempts by other countries (or by certain elements in other countries) to breach information  systems at his nanomanufacturing company. Another described an IP challenge pertaining to research at U.S. universities, as follows:

•due to a culture of openness, especially among students, ideas and research are “leaking out” of universities prior to the initial researchers having patented or fully pursued them;

•there are many foreign students at U.S. universities; and

•there is a current lack of awareness about “leakage” and of university policies or training to counter it.

Additionally, one of our earlier interviewees said that one country targeted. Specific research projects at U.S. universities—and then required its own citizen-students to apply for admission to each targeted U.S. university and seek work on the targeted project.

Taken together with other factors, this situation can result in an overall failure to protect IP and undermine U.S. research competitiveness. (Although a culture of openness and the presence of foreign students are  generally considered strengths of the U.S. system, in this context such factors could represent a challenge to capturing the full value of U.S. investments.)

I would have liked to have seen a more critical response to the discussion about IP issues given the well-documented concerns regarding IP and its depressing affect on competitiveness as per my June 28, 2012 posting titled: Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP, my  Oct. 10, 2012 posting titled: UN’s International Telecommunications Union holds patent summit in Geneva on Oct. 10, 2012, and my Oct. 31, 2011 posting titled: Patents as weapons and obstacles, amongst many, many others here.

This is a very readable report and it answered a few questions for me about the state of nanomanufacturing.

ETA Feb. 10, 2014 at 2:45 pm PDT, The Economist magazine has a Feb. 7, 2014 online article about this new report from the US.

ETA April 2, 2014: There’s an April 1, 2014 posting about this report  on the Foresight Institute blog titled, US government report highlights flaws in US nanotechnology effort.

Data sonification: listening to your data instead of visualizing it

Representing data though music is how a Jan. 31, 2014 item on the BBC news magazine describes a Voyager 1 & 2 spacecraft duet, data sonification project discussed* in a BBC Radio 4 programme,

Musician and physicist Domenico Vicinanza has described to BBC Radio 4′s Today programme the process of representing information through music, known as “sonification”. [includes a sound clip and interview with Vicinanza]

A Jan. 22, 2014 GÉANT news release describes the project in more detail,

GÉANT, the pan-European data network serving 50 million research and education users at speeds of up to 500Gbps, recently demonstrated its power by sonifying 36 years’ worth of NASA Voyager spacecraft data and converting it into a musical duet.

The project is the work of Domenico Vicinanza, Network Services Product Manager at GÉANT. As a trained musician with a PhD in Physics, he also takes the role of Arts and Humanities Manager, exploring new ways for representing data and discovery through the use of high-speed networks.

“I wanted to compose a musical piece celebrating the Voyager 1 and 2 *together*, so used the same measurements (proton counts from the cosmic ray detector over the last 37 years) from both spacecrafts, at the exactly same point of time, but at several billions of Kms of distance one from the other.

I used different groups of instruments and different sound textures to represent the two spacecrafts, synchronising the measurements taken at the same time.”

The result is an up-tempo string and piano orchestral piece.

You can hear the duet, which has been made available by the folks at GÉANT,

The news release goes on to provide technical details about the composition,

To compose the spacecraft duet, 320,000 measurements were first selected from each spacecraft, at one hour intervals. Then that data was converted into two very long melodies, each comprising 320,000 notes using different sampling frequencies, from a few KHz to 44.1 kHz.

The result of the conversion into waveform, using such a big dataset, created a wide collection of audible sounds, lasting just a few seconds (slightly more than 7 seconds at 44.1kHz) to a few hours (more than 5hours using 1024Hz as a sampling frequency).   A certain number of data points, from a few thousand to 44,100 were each “converted” into 1 second of sound.

Using the grid computing facilities at EGI, GÉANT was able to create the duet live at the NASA booth at Super Computing 2013 using its superfast network to transfer data to/from NASA.

I think this detail from the news release gives one a different perspective on the accomplishment,

Launched in 1977, both Voyager 1 and Voyager 2 are now decommissioned but still recording and sending live data to Earth. They continue to traverse different parts of the universe, billions of kilometres apart. Voyager 1 left our solar system last year.

The research is more than an amusing way to pass the time (from the news release),

While this project was created as a fun, accessible way to demonstrate the benefit of research and education networks to society, data sonification – representing data by means of sound signals – is increasingly used to accelerate scientific discovery; from epilepsy research to deep space discovery.

I was curious to learn more about how data represented by sound signals is being used to accelerate scientific discovery and sent that question and another to Dr. Vicinanza via Tamsin Henderson of DANTE and received these answers,

(1) How does “representing data by means of sound signals “increasingly accelerate scientific discovery; from epilepsy research to deep space discovery”? In a practical sense how does one do this research? For example, do you sit down and listen to a file and intuit different relationships for the data?

Vision and visual representation is intrinsically limited to three dimensions. We all know how amazing is 3D cinema, but in terms of representation of complex information, this is as far as it gets. There is no 4D or 5D. We live in three dimensions.

Sound, on the other hand, does not have any limitation of this kind. We can continue overlapping sound layers virtually without limits and still retain the capability of recognising and understanding them. Think of an orchestra or a pop band, even if the musicians are playing all together we can actually follow the single instrument line (bass, drum, lead guitar, voice, ….) Sound is then particularly precious when dealing with multi-dimensional data since audification techniques.

In technical terms, auditory perception of complex, structured information could have several advantages in temporal, amplitude, and frequency resolution when compared to visual representations and often opens up possibilities as an alternative or complement to visualisation techniques. Those advantages include the capability of the human ear to detect patterns (detecting regularities), recognise timbres and follow different strands at the same time (i.e. the capability of following different instrument lines). This would offer, in a natural way, the opportunity of rendering different, interdependent variables onto sounds in such a way that a listener could gain relevant insight into the represented information or data.

In particular in the medical context, there have been several investigations using data sonification as a support tool for classification and diagnosis, from working on sonification of medical images to converting EEG to tones, including real-time screening and feedback on EEG signals for epilepsy.

The idea is to use sound to aggregate many “information layers”, many more than any graph or picture can represent and support the physician giving a more comprehensive representation of the situation.

(2) I understand that as you age certain sounds disappear from your hearing, e.g., people over 25 years of age are not be able to hear above 15kHz. (Note: There seems to be some debate as to when these sounds disappear, after 30, after 20, etc.) Wouldn’t this pose an age restriction on the people who could access the research or have I misunderstood what you’re doing?

No, there is actually no sensible reduction in the advantages of sonification with ageing. The only precaution is not to use too high frequencies (above 15 KHz) in the sonification and this is something that can be avoided without limiting the benefits of audification.

It is always good practice not to use excessively high frequencies since they are not always very well and uniformly perceived by everyone.

Our hearing works at its best in the region of KHz (1200Hz-3800Hz)

Thank you Dr. Vicinanza and Tamsin Henderson for this insight into representing data in multiple dimensions using sound and its application in research. And, thank you, too, for sharing a beautiful piece of music.

For the curious, I found some additional information about Dr. Vicinanza and his ‘sound’ work on his Nature Network profile page,

I am a composer, network engineer and researcher. I received my MSc and PhD degrees in Physics and studied piano, percussion and composition.

I worked as a professor of Sound Synthesis, Acoustics and Computer Music (Algorithmic Composition) at Conservatory of Music of Salerno (Italy).

I currently work as a network engineer in DANTE (www.dante.net) and chair the ASTRA project (www.astraproject.org) for the reconstruction of musical instruments by means of computer models on GÉANT and EUMEDCONNECT.

I am also the co-founder and the technical coordinator of the Lost Sound Orchestra project (www.lostsoundsorchestra.org).

Interests

As a composer and researcher I was always fascinated by the richness of the information coming from the Nature. I worked on the introduction of the sonification of seismic signals (in particular coming from active volcanoes) as a scientific tool, co-working with geophysicists and volcanologists.

I also study applications of grid technologies for music and visual arts and as a composer I took part to several concerts, digital arts performances, festivals and webcast.

My other interests include (aside with music) Argentine Tango and watercolors.

Projects

ASTRA (Ancient instruments Sound/Timbre Reconstruction Application)
www.astraproject.org

The ASTRA project is a multi disciplinary project aiming at reconstructing the sound or timbre of ancient instruments (not existing anymore) using archaeological data as fragments from excavations, written descriptions, pictures.

The technique used is the physical modeling synthesis, a complex digital audio rendering technique which allows modeling the time-domain physics of the instrument.

In other words the basic idea is to recreate a model of the musical instrument and produce the sound by simulating its behavior as a mechanical system. The application would produce one or more sounds corresponding to different configurations of the instrument (i.e. the different notes).

Lost Sounds Orchestra
www.lostsoundsorchestra.org

The Lost Sound Orchestra is the ASTRA project orchestra. It is a unique orchestra made by reconstructed ancient instrument coming from the ASTRA research activities. It is the first ensemble in the world composed of only reconstructed instruments of the past. Listening to it is like jumping into the past, in a sound world completely new to our ears.

Since I haven’t had occasion to mention either GÉANT or DANTE previously, here’s more about those organizations and some acknowledgements from the news release,

About GÉANT

GÉANT is the pan-European research and education network that interconnects Europe’s National Research and Education Networks (NRENs). Together we connect over 50 million users at 10,000 institutions across Europe, supporting research in areas such as energy, the environment, space and medicine.

Operating at speeds of up to 500Gbps and reaching over 100 national networks worldwide, GÉANT remains the largest and most advanced research and education network in the world.

Co-funded by the European Commission under the EU’s 7th Research and Development Framework Programme, GÉANT is a flagship e-Infrastructure key to achieving the European Research Area – a seamless and open European space for online research – and assuring world-leading connectivity between Europe and the rest of the world in support of global research collaborations.

The network and associated services comprise the GÉANT (GN3plus) project, a collaborative effort comprising 41 project partners: 38 European NRENs, DANTE, TERENA and NORDUnet (representing the 5 Nordic countries). GÉANT is operated by DANTE on behalf of Europe’s NRENs.

About DANTE

DANTE (Delivery of Advanced Network Technology to Europe) is a non-profit organisation established in 1993 that plans, builds and operates large scale, advanced networks for research and education. On behalf of Europe’s National Research and Education Networks (NRENs), DANTE has built and operates GÉANT, a flagship e-Infrastructure key to achieving the European Research Area.

Working in cooperation with the European Commission and in close partnership with Europe’s NRENs and international networking partners, DANTE remains fundamental to the success of global research collaboration.

DANTE manages research and education (R&E) networking projects serving Europe (GÉANT), the Mediterranean (EUMEDCONNECT), Sub-Saharan Africa (AfricaConnect), Central Asia (CAREN) regions and coordinates Europe-China collaboration (ORIENTplus). DANTE also supports R&E networking organisations in Latin America (RedCLARA), Caribbean (CKLN) and Asia-Pacific (TEIN*CC). For more information, visit www.dante.net

Acknowledgements
NASA National Space Science Data Center and the John Hopkins University Voyager LEPC experiment.
Sonification credits
Mariapaola Sorrentino and Giuseppe La Rocca.

I hope one of these days I’ll have a chance to ask a data visualization expert  whether they think it’s possible to represent multiple dimensions visually and whether or not some types of data are better represented by sound.

* ‘described’ replaced by ‘discussed’ to avoid repetition, Feb. 10, 2014. (Sometimes I’m miffed by my own writing.)

NanoCelluComp (nanocellulose composites) goes to JEC Composites Show and Conference in Paris (France)

NanoCelluComp (nanocellulose composites), a European Commission-funded project under the European Union’s 7th Framework Programme, which is entering its final stage (2011 – 2014) will make an appearance (Exhibition Stand D83) at the JEC 2014 Composites Show and Conferences in Paris (France), 11-13th March, 2014.

I  profileded NanoCelluComp in a March 7, 2013 posting where I included excerpts from the project’s 4th newsletter. The 5th (August 2013) newsletter is available here. There is also a project flyer (PDF), which provides some additional insight into why the project was developed and what NanoCellulComp was attempting to accomplish,

Food processing of vegetables produces billions of tonnes of fibrous waste. The cellulose fibres contained within this waste have superior structural properties that with ‘green’ chemistry can be put to much better use. Composites containing cellulose extracted from carrot waste have already been incorporated in lightweight products such as fishing rods and steering wheels.

This material – Curran – while exhibiting good structural properties, does not have the strength of glass or carbon fibre reinforced plastics (GFRP and CFRP) and is further disadvantaged due to limited processability.

The NanoCelluComp Process Improving on Curran through:

Liberating microfibrillated cellulose (nanocellulose) from vegetable waste streams utilising an aqueous based process (thus decreasing energy consumption, and avoiding volatile chemicals).
 Improving mechanical properties by the controlled alignment and cross linking of nanocellulose fibrils.
 Combining the resultant fibres with bio-based resins to produce a 100% bio-composite (thus decreasing use of petroleum-based products).
 Ensuring compatibility of the bio-composite with current manufacturing processes (e.g. injection moulding, hand lay-up).
 Investigating the sustainability of the above processes and materials, compared to existing materials, through a full life-cycle assessment (LCA) and identifying promising application fields.

Most of the ‘nanocellulose’ material that I’ve covered has been focused on derivations from forest products however there is one other team (that I know of) led by researcher Alcides Leão of Brazil examining the possible uses of nanocellulose derived from pineapples and bananas. On that note, my June 13, 2011 posting titled: Transcript of nanocellulose fibre podcast interview with Alcides Leão, Ph.D., from São Paulo State University and/or my March 28, 2011 posting titled: Nanocellulose fibres, pineapples, bananas, and cars may be of interest.

Canada-European Union research and Horizon 2020 funding opportunities

Thanks to the Society of Italian Researchers and Professionals of Western Canada (ARPICO), I received a Jan. 15, 2014 notice about ERA-Can‘s (European Research Area and Canada) upcoming Horizon 2020 information sessions, i.e., funidng opportunities for Canadian researchers,

The Canadian partners* to ERA-Can+ invite you to learn about Horizon 2020, a European funding opportunity that is accessible to Canadians working in science, technology, and innovation.

Horizon 2020 is a multi-year (2014-2020) program for science and technology funded by the European Commission. With a budget of almost Euro 80 billion (CAD $118 billion) Horizon 2020 forms a central part of the EU’s economic policy agenda. The program’s main goals are to encourage scientific excellence, increase the competitiveness of industries, and develop solutions to societal challenges in Europe and abroad.

ERA-Can+ has been established to help Canadians access Horizon 2020 funding. Building on several years of successful collaboration, ERA-Can+ will encourage bilateral exchange across the science, technology, and innovation chain. The project will also enrich the EU-Canada policy dialogue, enhance coordination between European and Canadian sector leaders, and stimulate transatlantic collaboration by increasing awareness of the funding opportunities available.

The European Commission released its first call for proposals under Horizon 2020 in December 2013. Canadian and European researchers and innovators can submit proposals for projects in a variety of fields including personalized health and care; food security; the sustainable growth of marine and maritime sectors; digital security; smart cities and communities; competitive low-carbon energy; efficient transportation; waste management; and disaster resilience. Further calls for proposals will be released later this year.

You are invited to attend one of four upcoming information sessions on Horizon 2020 opportunities for Canadians. These sessions will explain the structure of research funding in Europe and provide information on upcoming funding opportunities and the mechanisms by which Canadians can participate. Martina De Sole, Coordinator of ERA-Can+, and numerous Canadian partners will be on hand to share their expertise on these topics. Participants also will have the opportunity to learn about current and developing collaborations between Canadian and European researchers and innovators.

ERA-CAN+ Information Session Dates – Precise times to be confirmed.

Toronto: Morning of January 28th
MaRS Discovery District, 101 College Street

Kitchener-Waterloo: Morning of January 29th
Canadian Digital Media Network, 151 Charles Street West, Suite 100, Kitchener

Ottawa: Morning of January 30th
University of Ottawa; precise location on campus to be confirmed.

Montreal: Morning of January 31st
Intercontinental Hotel, 360 Rue Saint Antoine Ouest

This session is organised in partnership with the Ministère de l’Enseignement supérieur, de la Recherche, de la Science, de la Technologie du Québec.

For further information please contact [email protected]

* ERA-Can+ Project Partners
APRE – Agenzia per la Promozione della Ricerca Europea (Italy)
AUCC – Association of Universities and Colleges of Canada (Canada)
CNRS – Centre National de la Recherche Scientifique (France)
DFATD – Department of Foreign Affairs, Trade and Development Canada (Canada)
DLR – Deutsches Zentrum fur Luft- und Raumfahrt e.V. (Germany)
PPF – The Public Policy Forum (Canada)
ZSI – Zentrum fur Soziale Innovation (Austria)

You can go to ERA-Can’s Information Sessions webpage to register for a specific event.

There are plans to hold sessions elsewhere in Canada,

Plans to have Info Sessions in other parts of Canada are underway.

For further information please contact [email protected]

RoboEarth (robot internet) gets examined in hospital

RoboEarth sometimes referred to as a robot internet or a robot world wide web is being tested this week by a team of researchers at Eindhoven University of Technology (Technische Universiteit Eindhoven, Netherlands) and their colleagues at Philips, ETH Zürich, TU München and the universities of Zaragoza and Stuttgart according to a Jan. 14, 2014 news item on BBC (British Broadcasting Corporation) news online,

A world wide web for robots to learn from each other and share information is being shown off for the first time.

Scientists behind RoboEarth will put it through its paces at Eindhoven University in a mocked-up hospital room.

Four robots will use the system to complete a series of tasks, including serving drinks to patients.

It is the culmination of a four-year project, funded by the European Union.

The eventual aim is that both robots and humans will be able to upload information to the cloud-based database, which would act as a kind of common brain for machines.

There’s a bit more detail in Victoria Turk’s Jan. 13 (?), 2014 article for motherboard.vice.com (Note: A link has been removed),

A hospital-like setting is an ideal test for the project, because where RoboEarth could come in handy is in helping out humans with household tasks. A big problem for robots at the moment is that human environments tend to change a lot, whereas robots are limited to the very specific movements and tasks they’ve been programmed to do.

“To enable robots to successfully lend a mechanical helping hand, they need to be able to deal flexibly with new situations and conditions,” explains a post by the University of Eindhoven. “For example you can teach a robot to bring you a cup of coffee in the living room, but if some of the chairs have been moved the robot won’t be able to find you any longer. Or it may get confused if you’ve just bought a different set of coffee cups.”

And of course, it wouldn’t just be limited to robots working explicitly together. The Wikipedia-like knowledge base is more like an internet for machines, connecting lonely robots across the globe.

A Jan. 10, 2014 Eindhoven University of Technology news release provides some insight into what the researchers want to accomplish,

“The problem right now is that robots are often developed specifically for one task”, says René van de Molengraft, TU/e  [Eindhoven University of Technology] researcher and RoboEarth project leader. “Everyday changes that happen all the time in our environment make all the programmed actions unusable. But RoboEarth simply lets robots learn new tasks and situations from each other. All their knowledge and experience are shared worldwide on a central, online database. As well as that, computing and ‘thinking’ tasks can be carried out by the system’s ‘cloud engine’, so the robot doesn’t need to have as much computing or battery power on‑board.”

It means, for example, that a robot can image a hospital room and upload the resulting map to RoboEarth. Another robot, which doesn’t know the room, can use that map on RoboEarth to locate a glass of water immediately, without having to search for it endlessly. In the same way a task like opening a box of pills can be shared on RoboEarth, so other robots can also do it without having to be programmed for that specific type of box.

There’s no word as to exactly when this test being demonstrated to a delegation from the European Commission, which financed the project, using four robots and two simulated hospital rooms is being held.

I first wrote abut RoboEarth in a Feb. 14, 2011 posting (scroll down about 1/4 of the way) and again in a March 12 2013 posting about the project’s cloud engine, Rapyuta.

NanoDefine: a project for implementing the European Union’s definition for nanomaterials

Here”s an excerpt from the Dec. 13, 2013 news item on Azonano about a new consortium focused on measuring nanomaterials and, if I understand the news item rightly, refining the definition so that it can be implemented,

A 29-partner consortium of top European RTD [?] performers, metrology institutes, and nanomaterials and instrument manufacturers, gathered at a launch meeting in Wageningen, NL, [Netherlands] last month to begin the mobilisation of the critical mass of expertise required to establish the measurement tools and scientific data that help to implement the EU recommendation on the definition of a nanomaterial.

We have come a long way in exploring the full potential of nano as a key enabling technology, yet, there are still uncertainties surrounding environment, health and safety (EHS) issues and the questions that need to be addressed: what is or isn’t a nanomaterial. One challenge consists in the development of methods that reliably identify, characterize and measure nanomaterials (NM) both as substance and in various products and matrices. In responses, the European Commission has recently recommended a definition of NM as a reference to determine this (2011/696/EU).

The NanoDefine project will explicitly address this question over the next four years.

I have written about the European Union’s definition of nanomaterials in an Oct, 18, 2011 posting,

After all the ‘sturm und drang’ in the last few months (my Sept. 8, 2011 posting summarizing some of the lively discussion), a nanomaterials definition for Europe has been adopted. It is the first ‘cross-cutting’ nanomaterials definition to date according to the Oct. 18, 2011 news item on Nanowerk,

“Nanomaterials” are materials whose main constituents have a dimension of between 1 and 100 billionth of a metre, according to a Recommendation on the definition of nanomaterial (pdf) adopted by the European Commission today. The announcement marks an important step towards greater protection for citizens, clearly defining which materials need special treatment in specific legislation.

I also featured some specific critiques of the then newly proclaimed definition in an Oct. 19, 2011 posting and again in an Oct. 20, 2011 posting.

The Institute of Nanotechnology Dec. 12, 2013 news release, which originated the news item, provides more details about the NanoDefine project,

Based on a comprehensive evaluation of existing methodologies and a rigorous intra-lab and inter-lab comparison, validated measurement methods and instruments will be developed that are robust, readily implementable, cost-effective and capable to reliably measure the size of particles in the range of 1 – 100 nm, with different shapes, coatings and for the widest possible range of materials, in various complex media and products. Practical case studies will assess their applicability for various sectors, including food/feed, cosmetics etc.

One major outcome of the project will be the establishment of an integrated tiered approach including validated rapid screening methods (tier 1) and validated in depth methods (tier 2), with a user manual to guide end-users, such as manufacturers, regulatory bodies and contract laboratories, to implement the developed methodology.

NanoDefine will closely collaborate with its sister projects in the NanoSafety Cluster (www.nanosafetycluster.eu) as well as engage with international EHS, RTD and metrology initiatives. NanoDefine will also be strongly linked to main standardization bodies, such as CEN, ISO and OECD, by actively participating in Technical Commissions and Working Groups, and by proposing specific ISO/CEN work items, to integrate the developed and validated methodology into the current standardization work.

For more information:
NanoDefine: ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’ receives funding from the European Community’s Seventh Framework Programme under grant agreement n°604347 and runs from 1/11/2013 – 31/10/2017

Visit the project website: www.nanodefine.eu (currently under construction) [as of Dec. 13, 2013 there is no landing page]
Contact the Project Coordinators:
[email protected]
[email protected]
[email protected]
[email protected]

Visit the NanoSafety Cluster website: www.nanosafetycluster.eu

I have searched on this blog to see if I’ve stumbled across the Institute of Nanotechnology, located in the UK, previously but cannot find any other mentions (which may be due to the search function and my impatience for paging through apparently irrelevant search results). At any rate, here’s more about the institute from its About Us webpage (Note: Links have been removed),

Background

The Institute of Nanotechnology (IoN) was founded by Ottilia Saxl in January 1997. It is a registered Charity, whose core activities are focused on education and training in nanotechnology. It grew out of the Centre for Nanotechnology, part funded by the DTI through the UK’s National Initiative on Nanotechnology (NION). The Institute was one of the world’s first nanotechnology information providers and is now a global leader.

The Institute works closely with governments, universities, researchers, companies and the general public to educate and inform on all aspects of nanotechnology. It also organises various international scientific events, conferences and educational courses that examine the implications of nanotechnology across a wide variety of themes and sectors.

As most people know (except maybe policymakers), implementation is the tricky part of any rule, policy, and/or law and  the definitions are crucial.

Journal of Responsible Innovation is launched and there’s a nanotechnology connection

According to an Oct. 30, 2013 news release from the Taylor & Francis Group, there’s a new journal being launched, which is good news for anyone looking to get their research or creative work (which retains scholarly integrity) published in a journal focused on emerging technologies and innovation,

Journal of Responsible Innovation will focus on intersections of ethics, societal outcomes, and new technologies: New to Routledge for 2014 [Note: Routledge is a Taylor & Francis Group brand]

Scholars and practitioners in the emerging interdisciplinary field known as “responsible innovation” now have a new place to publish their work. The Journal of Responsible Innovation (JRI) will offer an opportunity to articulate, strengthen, and critique perspectives about the role of responsibility in the research and development process. JRI will also provide a forum for discussions of ethical, social and governance issues that arise in a society that places a great emphasis on innovation.

Professor David Guston, director of the Center for Nanotechnology in Society at Arizona State University and co-director of the Consortium for Science, Policy and Outcomes, is the journal’s founding editor-in-chief. [emphasis mine] The Journal will publish three issues each year, beginning in early 2014.

“Responsible innovation isn’t necessarily a new concept, but a research community is forming and we’re starting to get real traction in the policy world,” says Guston. “It is our hope that the journal will help solidify what responsible innovation can mean in both academic and industrial laboratories as well as in governments.”

“Taylor & Francis have been working with the scholarly community for over two centuries and over the past 20 years, we have launched more new journals than any other publisher, all offering peer-reviewed, cutting-edge research,” adds Editorial Director Richard Steele. “We are proud to be working with David Guston and colleagues to create a lively forum in which to publish and debate research on responsible technological innovation.”

An emerging and interdisciplinary field

The term “responsible innovation” is often associated with emerging technologies—for example, nanotechnology, synthetic biology, geoengineering, and artificial intelligence—due to their uncertain but potentially revolutionary influence on society. [emphasis mine] Responsible innovation represents an attempt to think through the ethical and social complexities of these technologies before they become mainstream. And due to the broad impacts these technologies may have, responsible innovation often involves people working in a variety of roles in the innovation process.

Bearing this interdisciplinarity in mind, the Journal of Responsible Innovation (JRI) will publish not only traditional journal articles and research reports, but also reviews and perspectives on current political, technical, and cultural events. JRI will publish authors from the social sciences and the natural sciences, from ethics and engineering, and from law, design, business, and other fields. It especially hopes to see collaborations across these fields, as well.

“We want JRI to help organize a research network focused around complex societal questions,” Guston says. “Work in this area has tended to be scattered across many journals and disciplines. We’d like to bring those perspectives together and start sharing our research more effectively.”

Now accepting manuscripts

JRI is now soliciting submissions from scholars and practitioners interested in research questions and public issues related to responsible innovation. [emphasis mine] The journal seeks traditional research articles; perspectives or reviews containing opinion or critique of timely issues; and pedagogical approaches to teaching and learning responsible innovation. More information about the journal and the submission process can be found at www.tandfonline.com/tjri.

About The Center for Nanotechnology in Society at ASU

The Center for Nanotechnology in Society at ASU (CNS-ASU) is the world’s largest center on the societal aspects of nanotechnology. CNS-ASU develops programs that integrate academic and societal concerns in order to better understand how to govern new technologies, from their birth in the laboratory to their entrance into the mainstream.

—————————————–
About Taylor & Francis Group

—————————————–

Taylor & Francis Group partners with researchers, scholarly societies, universities and libraries worldwide to bring knowledge to life.  As one of the world’s leading publishers of scholarly journals, books, ebooks and reference works our content spans all areas of Humanities, Social Sciences, Behavioural Sciences, Science, and Technology and Medicine.

From our network of offices in Oxford, New York, Philadelphia, Boca Raton, Boston, Melbourne, Singapore, Beijing, Tokyo, Stockholm, New Delhi and Johannesburg, Taylor & Francis staff provide local expertise and support to our editors, societies and authors and tailored, efficient customer service to our library colleagues.

You can find out more about the Journal of Responsible Innovation here, including information for would-be contributors,

JRI invites three kinds of written contributions: research articles of 6,000 to 10,000 words in length, inclusive of notes and references, that communicate original theoretical or empirical investigations; perspectives of approximately 2,000 words in length that communicate opinions, summaries, or reviews of timely issues, publications, cultural or social events, or other activities; and pedagogy, communicating in appropriate length experience in or studies of teaching, training, and learning related to responsible innovation in formal (e.g., classroom) and informal (e.g., museum) environments.

JRI is open to alternative styles or genres of writing beyond the traditional research paper or report, including creative or narrative nonfiction, dialogue, and first-person accounts, provided that scholarly completeness and integrity are retained.[emphases mine] As the journal’s online environment evolves, JRI intends to invite other kinds of contributions that could include photo-essays, videos, etc. [emphasis mine]

I like to check out the editorial board for these things (from the JRI’s Editorial board webpage; Note: Links have been removed),,

Editor-in-Chief

David. H. Guston , Arizona State University, USA

Associate Editors

Erik Fisher , Arizona State University, USA
Armin Grunwald , ITAS , Karlsruhe Institute of Technology, Germany
Richard Owen , University of Exeter, UK
Tsjalling Swierstra , Maastricht University, the Netherlands
Simone van der Burg, University of Twente, the Netherlands

Editorial Board

Wiebe Bijker , University of Maastricht, the Netherlands
Francesca Cavallaro, Fundacion Tecnalia Research & Innovation, Spain
Heather Douglas , University of Waterloo, Canada
Weiwen Duan , Chinese Academy of Social Sciences, China
Ulrike Felt, University of Vienna, Austria
Philippe Goujon , University of Namur, Belgium
Jonathan Hankins , Bassetti Foundation, Italy
Aharon Hauptman , University of Tel Aviv, Israel
Rachelle Hollander , National Academy of Engineering, USA
Maja Horst , University of Copenhagen, Denmark
Noela Invernizzi , Federal University of Parana, Brazil
Julian Kinderlerer , University of Cape Town, South Africa
Ralf Lindner , Frauenhofer Institut, Germany
Philip Macnaghten , Durham University, UK
Andrew Maynard , University of Michigan, USA
Carl Mitcham , Colorado School of Mines, USA
Sachin Chaturvedi , Research and Information System for Developing Countries, India
René von Schomberg, European Commission, Belgium
Doris Schroeder , University of Central Lancashire, UK
Kevin Urama , African Technology Policy Studies Network, Kenya
Frank Vanclay , University of Groningen, the Netherlands
Jeroen van den Hoven, Technical University, Delft, the Netherlands
Fern Wickson , Genok Center for Biosafety, Norway
Go Yoshizawa , Osaka University, Japan

Good luck to the publishers and to those of you who will be making submissions. As for anyone who may be as curious as I was about the connection between Routledge and Francis & Taylor, go here and scroll down about 75% of the page (briefly, Routledge is a brand).