Tag Archives: European Commission

The imperfections of science advice noted amidst rumblings in Europe

The current science advice rumblings in Europe seem to have been launched on Tuesday, July 22, 2014 with an open letter to Jean-Claude Juncker, President-elect of the European Commission, from representatives of nine nongovernmental agencies (NGOs).

From the July 22, 2014 letter on the Corporate Europe Observatory website,

We are writing to you to express our concerns regarding the position of Chief Scientific Advisor to the President of the European Commission. This post was created by Commission President Barroso at the suggestion of the United Kingdom, and was held by Ms Anne Glover since January 2012. The mandate of the Chief Scientific Adviser (CSA) is “to provide independent expert advice on any aspect of science, technology and innovation as requested by the President”.1

We are aware that business lobbies urge you to continue with the practice established by Mr Barroso and even to strengthen the chief adviser’s formal role in policy making.2 We, by contrast, appeal to you to scrap this position. The post of Chief Scientific Adviser is fundamentally problematic as it concentrates too much influence in one person, and undermines in-depth scientific research and assessments carried out by or for the Commission directorates in the course of policy elaboration.

Interestingly, they offer only one specific instance of Glover’s  advice with which they disagree: genetically modified organisms (GMOs). Note: Links have been removed,

To the media, the current CSA presented one-sided, partial opinions in the debate on the use of genetically modified organisms in agriculture, repeatedly claiming that there was a scientific consensus about their safety3 whereas this claim is contradicted by an international statement of scientists (currently 297 signatories) saying that it “misrepresents the currently available scientific evidence and the broad diversity of opinion among scientists on this issue.”4

Unfortunately, that argument renders the letter into an expression of political pique especially since  the signatories are described as anti-GMO both in Roger Pielke’s July 24, 2014 opinion piece for the Guardian newspaper and in Sile Lane’s July 25, 2014 opinion piece for the New Scientist journal. As Pielke notes, the reference to GMOs overshadows some reasonable concerns expressed in their letter (from Pielke’s opinion piece; Note: Links have been removed),

While it is easy to ridicule the recommendation to abolish the science adviser, there is some merit in the complaints levied by the disaffected NGOs. They express concern that the CSA has been “unaccountable, intransparent and controversial”, singling out public statements by Anne Glover on genetically modified organisms. [emphasis mine]

Perhaps surprisingly, these groups find an ally in these complaints in none other than Glover herself who recently complained about the politicization of science advice within the European Union: “What happens at the moment – whether it’s in commission, parliament or council – is that time and time again, if people don’t like what’s being proposed, what they say is that there is something wrong with the evidence.” [emphasis mine]

Pielke’s piece draws parallels between the US situation (in particular but not confined to Richard Nixon’s policies in the 1970s) and Europe’s current situation. It is well worth reading as is Lane’s piece (Sile Lane is Director of Campaigns for Sense about Science; scroll down about 25% of the way), which amongst other arguments, provides a counter-argument to the criticism of Glover’s advice on GMOs,

… No matter that Glover has faithfully and accurately represented the strong scientific consensus on the safety of GMOs – that, in the words of a commission report, are “no more risky than conventional plant breeding technologies”.

This is a position supported by every major scientific institution in the world, and all the scientific academies of countries and regions, but denied by the anti-GMO lobby, which promotes its own alternative “consensus” of a small ragtag group of academics out on the fringes of the mainstream.

There are a number of letters from various organizations countering the July 22, 2014 salvo/letter including this from Sense about Science,

Many other organisations are sending their own letters including nine European medical research organisations and the European Plant Science Organisation representing 227 public research institutions across Europe.

Dear Mr Juncker

We write to you with some urgency in response to a letter you will have just received from nine NGOs urging you to abolish the position of Chief Scientific Advisor to the President of the European Commission. The letter, which includes Greenpeace as a signatory as well as other prominent NGO voices, alleges that the “post of Chief Scientific Adviser is fundamentally problematic” and asks you to “scrap this position”1.

As organisations and individuals who share a commitment to improving the evidence available to policy makers, we cannot stress strongly enough our objection to any attempt to undermine the integrity and independence of scientific advice received at the highest level of the European Commission. …

You can add your name to the letter by going here.

There is a July 28, 2014 posting on the Science Advice to Governments; a global conference website which provides a listing of the various opinion pieces, letters, and other responses. (Note: This global science advice conference being held in Auckland, New Zealand, Aug. 28 – 29, 2014 was first mentioned here in an April 8, 2014 posting which lists the then confirmed speakers and notes a few other tidbits.)

In the end, it seems that everyone can agree as per the comments in the July 22, 2014 letter from the nine NGOs that science advice needs to be transparent and accountable. As for controversy, that will remain a problem as long as human beings live on the earth.

Science…For Her!—a book for those of us who like our science to be funny

The book, Science…For Her!, written by Megan Amram, a comedy writer whose credits include the Kroll Show and Parks and Recreation (US television programmes, won’t be available until Nov. 4, 2014 but it can be pre-ordered at Barnes & Noble or Powell’s (I figure Amazon gets enough advertising and I want to help bookstores that have a bricks & mortar presence, as well as, an online presence).

Thanks to David Bruggeman and the April 23, 2014 posting on his Pasco Phronesis blog where I first learned of this upcoming book (Note: Links have been removed),

There’s another science mashup coming your way later this year.  It’s a textbook written by comedy writer (Parks and Recreation) Megan Amram.  Science…For Her! comes out November 4, and stands a chance of provoking the same kind of reaction as the initial video for the European Commission’s campaign – ‘Science, it’s a girl thing‘.

For anyone unfamiliar with the European Commission’s campaign, check out Olga Khazan’s June 22, 2012 Washington Post story (h/t David Bruggeman) which is a relatively kind comment in comparison to some of the other responses to the campaign some of which I chronicled in my July 6, 2012 posting about it.

Getting back to Science…For Her!, here’s a bit more about the book from an April 22, 2014 posting by Madeleine Davies for Jezebel,

Of the book, Amram writes:

Science…For Her! is a science textbook written by a lady (me) for other ladies (you, the Spice Girls, etc.) It has been demonstrated repeatedly throughout history: female brains aren’t biologically constructed to understand scientific concepts, and tiny female hands aren’t constructed to turn most textbooks’ large, extra-heavy covers.

Finally, a science textbook for us.

[downloaded from http://meganamram.tumblr.com/post/83522299626/science-for-her]

[downloaded from http://meganamram.tumblr.com/post/83522299626/science-for-her]

As David notes elsewhere in his April 23, 2014 posting, the cover has a very ‘Cosmo’ feel with titles such as ‘orgasms vs. organisms’ and ‘sexiest molecules’. The Barnes & Noble ‘Science…For Her Page!, offers more details,

Megan Amram, one of Forbes’ “30 Under 30 in Hollywood & Entertainment,” Rolling Stone’s “25 Funniest People on Twitter,” and a writer for NBC’s hit show Parks and Recreation, delivers a politically, scientifically, and anatomically incorrect “textbook” that will have women screaming with laughter, and men dying to know what the noise is about.

In the vein of faux expert books by John Hodgman and Amy Sedaris, Science…for Her! is ostensibly a book of science written by a denizen of women’s magazines. Comedy writer and Twitter sensation Megan Amram showcases her fiendish wit with a pitch-perfect attack on everything from those insanely perky tips for self-improvement to our bizarre shopaholic dating culture to the socially mandated pursuit of mind-blowing sex to the cringe-worthy secret codes of food and body issues.

Part hilarious farce, part biting gender commentary, Amram blends Cosmo and science to highlight absurdities with a machine-gun of laugh-inducing lines that leave nothing and no one unscathed. Subjects include: this Spring’s ten most glamorous ways to die; tips for hosting your own big bang; what religion is right for your body type; and the most pressing issue facing women today: kale!!!

I appreciate the humour and applaud Amram’s wit. I also feel it should be noted that there is some very good science writing to be found (occasionally) in women’s magazines (e.g. Tracy Picha’s article ‘The Future of Our Body’ in an August 2009 issue  of Flare magazine [mentioned in my July 24, 2009 posting featuring human enhancement technologies’). As well, Andrew Maynard, physicist and then chief science advisor for the Project on Emerging Nanotechnologies, now NSF (US National Science Foundation) International Chair of Environmental Health Sciences and Director, University of Michigan Risk Science Center, once commented that one of the best descriptions of nanotechnology that he’d ever read was in an issue of Elle magazine.

Aug. 5, 2014 deadline for European Union public consultation on measures to increase transparency on nanomaterials on the market

A May 14, 2014 news item on Nanowerk announces a new ‘nanomaterials’ consultation (Public Consultation  on Impact Assessment on Possible Measures to Increase Transparency on Nanomaterials on the Market) in Europe,

As part of the Communication on the Second Regulatory Review on Nanomaterials, the European Commission has announced to launch an impact assessment to identify and develop the most adequate means to increase transparency and ensure regulatory oversight on nanomaterials.

The text of the May 14, 2014 news item can be found on this announcement page, which explains the background leading up to this consultation and the role of the companies  engaged to hold the study and the consultation, on the Risk Policy Analysts website,

More information on the background, methodology and planned timing of this impact assessment can be found in the working document – CASG(Nano)/02/14 (an updated version including a final version of the problem definition, objectives and policy options will be published in the second half of May). This document also contains a draft problem definition, policy objectives and a more detailed description of the following policy options that are under consideration:

     0.  Baseline scenario

  1. Recommendation on how to implement a “best practice model” for Member States wishing to establish a national system (soft law approach)
  2. Structured approach to collect information (“Nanomaterials Observatory”)
  3. Regulation creating an EU nanomaterial registry with one annual registration per substance for each manufacturer/importer/downstream user/distributor
  4. Regulation creating an EU nanomaterial registry with one annual registration per use (including substances, mixtures and articles with intended release)

The European Commission (DG Enterprise and Industry) has commissioned Risk & Policy Analysts Ltd. (RPA) and BiPRO GmbH to undertake a study to support the Commission on the preparation of this impact assessment. The terms of reference and the resulting reports are available here.

The description of the terms for the public consultation follows,

This public consultation is an integral part of this study. The objective of the public consultation is to obtain stakeholder views on the currently available information on nanomaterials on the market (as defined here), the problem definition that forms the basis of the impact assessment, as well as the potential positive and/or negative impacts of the aforementioned policy options.

Please be aware that within the European Union, France has already established a mandatory reporting scheme for manufactured nanomaterials produced, imported or distributed in its territory.  The Interministerial decree No. 2012-232 entered into force in January 2013. Moreover, at European level, when cosmetic products containing nanomaterials are put on the EU market, Article 16 of Regulation (EC) No 1223/2009 requires the responsible persons to submit information on the nanomaterial(s) contained through the Cosmetic Products Notification Portal.   Further information on these and other proposed schemes is available here.

Complete the questionnaire for non-industry stakeholders

(preview in pdf or in Word)

Complete the questionnaire for industry stakeholders

(preview in pdf or in Word)

Please note that, if your company/organisation is registered in the Transparency Register, you will be requested to indicate your Register ID number.  Your contribution will then be considered as representing the views of your organisation.  If your organisation is not registered, you have the opportunity to learn more and/or register now.

Please note that if your company has to notify to the French Notification System and/or to the Cosmetic Products Notification Portal but did not participate in the consultation undertaken by RPA/BiPRO for the European Commission in early 2014, please take the time to fill in the questionnaire on the administrative burden of the notification schemes which is available here.

I wonder what it means when the Cosmetic Products Notification Portal does not participate. This nonparticipation adds a level of intrigue I hadn’t anticipated when I caught sight of this announcement. Are the ‘cosmetics portal’ people boycotting the consultation for some reason?

* Upper case ‘M” changed to lower case ‘m’ in head on May 16, 2014 at 9:47 am PDT.

Monitoring air pollution at home, at work, and in the car—the nano way

Meagan Clark, in an April 18, 2014  article for International Business Times, writes about a project in the EU (European Union) where researchers are working to develop nanotechnology-enabled sensors for air quality at home, at work, and in the car,

Poor indoor and outdoor air quality is linked to one in eight deaths worldwide or 7 million, making it the world’s most dangerous environmental health risk, according to a March [2014?] report by the World Health Organization.

That is the reasoning behind the European Union’s decision to fund a new nanotechnology project [IAQSENSE] that would allow people to gauge air quality real-time at home, work and in cars with low cost, mini sensor systems, the EU’s community research and development information service announced Friday [April 18, 2014].

“The control of indoor air quality and the related comfort it provides should have a huge societal impact on health, presence at work and economic-related factors,” Claude Iroulart, coordinator of IAQSENSE, said in a statement. …

The IAQSENSE homepage provides more details about itself,

The indoor air quality (IAQ) influences the health and well-being of people. For the last 20 years, there has been a growing concern regarding pollutants in closed environments and the difficulty in identifying these pollutants and their critical levels, without heavy, expensive equipment.

IAQSense aims to develop new nanotechnology based sensor systems that will precisely monitor the composition of the air in terms of both chemical and bio contaminants. This system will be miniaturized, low cost and adapted to mass production.

A major challenge consists of a gaz [sic] sensor system which must be at the same time low cost and highly sensitive and selective.  IAQSense relies on three patented technologies, of which one is based on surface ion mobility dynamics separating each gas component. Working like a spectrometer it allows high sensitivity fast multi-gas detection in a way never seen before.

IAQSense Project will characterize, monitor and improve indoor air quality in an innovative way.

The consortium is composed of 4 SMEs [small to medium enterprises[, 3 industrial companies and 3 research institutes. The project will last 3 years (01.09.2013 – 31.08.2016) and will deliver a complete sensor system.

The IAQSense research project has received funding from the European Community´s 7th Framework Programme under grant agreement n° 6043125.

As someone who has suffered from breathing problems from time to time, I wish them the best with this project .

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

NanoCelluComp (nanocellulose composites, a European Union project) waves goodbye

As I noted in my Feb. 6, 2014 posting about NanoCelluComp and its appearance at the JEC 2014 Composites Show and Conferences in Paris (France), 11-13th March, 2014, the project is experiencing its sunset days.

The project’s (European Commission-funded project under the European Union’s 7th Framework Programme) final (6th) newsletter (which can be found here) has just been published and there are a few interesting items to be found.

They list each of their ‘work packages’ and then describe the progress,

Work Package 1
Extraction of nanocellulose from carrot.
Work Packages 2 & 3
Stabilization and modification of nanocellulose suspensions.
Work Package 4
Nanocellulose based materials.
Work Package 5
Integrated technology for making new materials.
Work Package 6
Assessment of new technology.

NanoCelluComp Work Programme Activities.
Work packages 1, 2 and 3 are complete; nonetheless, these methods have been further improved as we have learned more about the properties of the extracted nanocellulose and better ways of removing unwanted components of the vegetable waste.

Activities in work package 4 have provided larger-scale production (100’s of g) of fibres that have been incorporated into resins (work package 5). Production and processing aspects were further fine-tuned over the autumn and early winter to achieve the best performance characteristics in the final composites. Different methods have been used to produce composite materials and full mechanical testing of each has been performed. Finally, demonstrator products have been produced for the JEC Europe 2014 show in Paris (March 11-13).

In work package 6, full life-cycle assessment has been performed on the different production technologies and final demonstrator products.

I’m particularly intrigued by Work Package 1 and its reference to carrots, the first time I’ve heard of carrot-derived nanocellulose. I hope to hear more about these carrots some day. In the meantime, there is more information about vegetable waste and nanocellulose at the JEC conference where NanoCelluComp can be found at Exhibition Stand D83 or in my Feb. 6, 2014 posting.

The 6th newsletter also offers a list of recent papers and publications, their own and others related to nanocellulose. Included here is the list of publications from other agencies,

From cellulose to textile fibre and a ready product

Aalto University has developed a new process with global significance for working cellulose into a textile fibre.

The world’s first textile product made from Ioncell cellulose fibre as well as other results yielded by research programs were introduced at a seminar held by the Finnish Bioeconomy Cluster FIBIC Oy on November 20, 2013.

www.nanocellucomp.eu/from-cellulose-to-textile-fibre-and-a-ready-product

This Self-Cleaning Plate May Mean You’ll Never Have To Do The Dishes

Researchers at the KTH Royal Institute of Technology (Stockholm) in collaboration with Innventia, have designed a prototype dinner plate made from nanocellulose and coated with a super-hydrophobic material.

www.nanocellucomp.eu/latest-news/this-sel-cleaning-plate-may-mean-youll-never-have-to-do-the-dishes

New report – Biocomposites 350,000t production of wood and natural fibre composites in the European Union in 2012

This market report gives the first comprehensive and detailed picture of the use and amount of wood and natural fibre reinforced composites in the European bio-based economy.

www.nanocellucomp.eu/latest-news/new-report-biocomposites-350000t-production-of-wood-and-natural-fibre-composites-in-the-european-union-in-2012

It looks like some good work has been done and I applaud the group for reaching out to communicate. I wish the Canadian proponents would adopt the practice.

All the best to the NanoCelluComp team and may the efforts be ‘fruitful’.

 

 

Nano workshop with the International Federation of Societies of Cosmetic Chemists and ‘in-cosmetics’ on March 1, 2014

The International Federation of Societies of Cosmetic Chemists (IFSCC) is presenting a March 31, 2014 nanotechnology workshop prior to the ‘in-cosmetics exhibition’ due to be held April 1-2, 2014 in Hamburg in partnership with the in-cosmetics organizers.  From a Feb. 17, 2014 IFSCC news release,

The IFSCC has organised a Recent Perspectives in Nanotechnology workshop in association with in-cosmetics which will be held immediately before the show (1-3 April) on 31 March 2014 in Hamburg.

Moderated by IFSCC Vice President and President of the French Society Claudie Willemin, the workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Topics and speakers include:

Nanotechnology in Cosmetics – Current status in EU and Other Countries

Dr Florian Schellauf, Technical Regulatory Affairs – Cosmetics Europe

Characterisation Methods for Nanomaterials for Regulatory Purposes

Dr Hubert Rauscher, European Commission – Joint Research Centre – Nanobiosciences Unit

Nanomaterials’ Safety:  A Summary of the Latest Studies

Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – Berlin

Nanomaterial’s Evaluation Tests

Dr Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASF

Click here for full programme details and to register.

The focus is primarily on the European Union’s efforts according to the workshop programme webpage,

This IFSCC Workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Organised by the IFSCC, a federation dedicated to international cooperation in cosmetic science and technology, this workshop demonstrates its aims.

Moderator: Claudie Willemin

  • 14:00-14:30: Welcome and Introduction
    IFSCC – What does this Acronym mean?
    > Claudie Willemin, Vice President of  the International Federation of the Societies of Cosmetic Chemists and President of La Société Française de Cosmétologie – SFC
  • 14:30-15:15: Nanotechnology in Cosmetics – Current status in EU and Other Countries
    > Dr. Florian Schellauf, Technical Regulatory Affairs- Cosmetics EuropeThe legislator introduced two requirements into the EU Regulation 1223/2009 related to nanomaterials in cosmetic products.The first requirement is the obligation to inform the consumer when nanomaterials are used in cosmetic products (“nano labelling”). The second requirement requires notification to the European Commission of cosmetic products containing certain nanomaterials. These requirements are based on the definition of a nanomaterial provided in the Regulation.

    The requirements come into application from 2013 and discussions have moved from legislation to practical implementation.

    This presentation will provide an overview over the use of nanomaterials in cosmetics, issues related to the implementation of the legal requirements and the interpretation of the cosmetic nanodefinition in relation to the Commission Recommendation of 18 October 2011.

    Also in the international arena, there have been harmonization attempts specifically for the cosmetic sector through the ICCR process (International Cooperation on Cosmetics Regulation). ICCR defined a set of criteria for determining whether or not a material should be considered as a nanomaterial for regulatory purposes. The presentation will also provide an insight into discussions occurring around nanomaterials in cosmetics in selected countries outside of the EU.

  • 15:15-15:50: Characterisation Methods for Nanomaterials for Regulatory Purposes
    > Dr. Hubert Rauscher, European Commission -Joint Research Centre – Nanobiosciences UnitNanomaterials are addressed in the European Regulation on Cosmetic Products (EC)1223/2009 as well as in several other sectors of national and international legislation and in various guidelines. This requires clear terminology, such as a definition of the term “nanomaterial” and implementation provisions. Such a definition for regulatory purposes and its individual elements needs to be legally clear and unambiguous, and enforceable through agreed measurement techniques and procedures. The presentation highlights the technical and scientific requirements for the characterisation of nanomaterials that need to be met for this purpose and reviews currently available techniques. The contribution also offers considerations on the way forward towards the development of new measurement techniques, the combination of experimental methods and the need for validation studies for the characterisation of nanomaterials for regulatory purposes.
  • 15:50-16:15: Coffee Break
  • 16:15-16:50: Nanomaterials’ Safety:  A Summary of the Latest Studies
    > Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – BerlinFor more than 20 years both academic institutions and industrial enterprises have been researching into the development of strategies for drug delivery through the human skin by means of nanoparticles. However, a commercial product based on that concept is still lacking as, obviously, nanoparticles of ≥30 nm do not penetrate the human skin barrier. Whether this applies also to smaller particles is currently a topic of intense research.First indications that nanoparticles might not penetrate the skin barrier resulted from investigations of sunscreens that contained TiO2 particles of approximately 100 nm in diameter. At the end of a 14 day test period, volunteers who had applied the sunscreen three times each day were measured for TiO2 penetration using the tape stripping method. In addition, biopsies were taken and histological sections were analyzed. The results clearly showed that the TiO2 nanoparticles were located upon the skin surface and in some of the hair follicles. The penetration profile also revealed low TiO2 concentrations near the boundary to the living epidermis.  However, in follow-up investigations these TiO2 concentrations turned out to be located in the hair follicles.

    Interestingly, only some of the hair follicles contained TiO2 particles. In a subsequent study it could be shown that the nanoparticles penetrated into the hair follicles only if the latter display sebum production or hair growth. This means that hair follicles are usually closed by a cover that must be opened from inside out by mass flow to permit the topically applied nanoparticles penetrating into the hair follicles.  Particles of 500-800 nm in diameter were found to penetrate into the hair follicles most efficiently; either in vivo or – in the case of porcine ear model skin – if the hairs are moved by a massage. Investigating the hair surface structure, it was found that the thickness of the cuticula on the hair amounts to 600-800 nm. Due to resonance effects and if the hairs are moving, nanoparticles within this diameter range obviously penetrate into the hair follicles where they can be stored for a period exceeding 10 days. Thereafter, they escape with the sebum onto the skin surface again. A penetration of particles through the intact skin barrier could not be detected.

    The problem of particulate structures, particularly of those exceeding 100 nm, is that they do not penetrate the intact skin barrier on the intercellular pathway. They remain on the skin surface and are removed by washing, textile contact and desquamation, so that scarcely any nanoparticles are detectable after 24 h. However, once the particles have been transported into the hair follicles part of them are stored there for more than 10 days and are then re-transferred to the skin surface with the sebum. In various papers nanoparticles were reported to pass the skin barrier. This is always correct if the skin barrier is disturbed. Such disturbance could have been caused by disease or mechanical manipulation, e.g., taking of biopsies, tape stripping or cyanoacrylate stripping. In such cases, nanoparticles could also be detected in the living skin. So far, no evidence has been provided to suggest that nanoparticles are capable of penetrating the intact skin. Therefore, a collaborative project was recently launched by the German Research Association (DFG) in which the excellent penetration properties of particles >100 mm shall be used to transport drugs, which would normally not penetrate into the hair follicles, efficiently to the target structures in the hair follicles where they can be released by an external trigger system.

  • 16:50-17:30: Nanomaterial’s Evaluation Tests
    > Dr. Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASFWarranting the safety of nanotechnological products is seen as a crucial element in ensuring that the benefits of the new technology can be fully exploited. One prominent trait of NM is the fact that, during the life-time of a given NM, humans can be exposed to different forms of the material, e.g. due to agglomeration or aggregation, corona formation or interaction with surrounding organic material, or dissolution. In order to remove the need to test each form of nanomaterial in all its uses with a pre-defined, fixed list of methods, a concern-driven approach is proposed. Such approaches should start out by determining concerns, i.e. specific information needs for a given NM based on realistic exposure scenarios. Recognized concerns can be addressed in a set of tiers using standardized protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g. structure activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognize groups of NM based upon similar modes-of-action. Grouping of substances in return should form an integral part of the IATA themselves.
  • 17:30-18:00: Q&A and Conclusion

You can go here to register for this workshop. If you are attending the exhibition only, you can register for free until March 31, 2014 but if you want to attend the nano workshop and others, an Early Bird rate starting at €280 +VAT is available until Feb. 28, 2014.

For anyone who doesn’t fully grasp what the ‘in-cosmetics’ exhibition is all about, here’s a video,

‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US

A Feb, 8, 2 014 news item on Nanowerk features a US Government Accountability Office (GAO) publication announcement (Note:  A link has been removed),

In a new report on nanotechnology manufacturing (or nanomanufacturing) released yesterday (“Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health”; pdf), the U.S. Government Accountability Office finds flaws in America’s approach to many things nano.

At a July 2013 forum, participants from industry, government, and academia discussed the future of nanomanufacturing; investments in nanotechnology R&D and challenges to U.S. competitiveness; ways to enhance U.S. competitiveness; and EHS concerns.

A summary and a PDF version of the report, published Jan. 31, 2014, can be found here on the GAO’s GAO-14-181SP (report’s document number) webpage.  From the summary,

The forum’s participants described nanomanufacturing as a future megatrend that will potentially match or surpass the digital revolution’s effect on society and the economy. They anticipated further scientific breakthroughs that will fuel new engineering developments; continued movement into the manufacturing sector; and more intense international competition.

Although limited data on international investments made comparisons difficult, participants viewed the U.S. as likely leading in nanotechnology research and development (R&D) today. At the same time, they identified several challenges to U.S. competitiveness in nanomanufacturing, such as inadequate U.S. participation and leadership in international standard setting; the lack of a national vision for a U.S. nanomanufacturing capability; some competitor nations’ aggressive actions and potential investments; and funding or investment gaps in the United States (illustrated in the figure, below), which may hamper U.S. innovators’ attempts to transition nanotechnology from R&D to full-scale manufacturing.

[downloaded from http://www.gao.gov/products/GAO-14-181SP]

[downloaded from http://www.gao.gov/products/GAO-14-181SP]

I read through (skimmed) this 125pp (PDF version;  119 pp. print version) report and allthough it’s not obvious in the portion I’ve excerpted from the summary or in the following sections, the participants did seem to feel that the US national nanotechnology effort was in relatively good shape overall but with some shortcomings that may become significant in the near future.

First, government investment illustrates the importance the US has placed on its nanotechnology efforts (excerpted from p. 11 PDF; p. 5 print),

Focusing on U.S. public investment since 2001, the overall growth in the funding of nanotechnology has been substantial, as indicated by the funding of the federal interagency National Nanotechnology Initiative (NNI), with a cumulative investment of about $18 billion for fiscal years 2001 through 20133. Adding the request for fiscal year 2014 brings the total to almost $20 billion. However, the amounts budgeted in recent years have not shown an increasing trend.

Next, the participants in the July 2013 forum focused on four innovations in four different industry sectors as a means of describing the overall situation (excerpted from p. 16 PDF; p. 10 print):

Semiconductors (Electronics and semiconductors)

Battery-powered vehicles (Energy and power)

Nano-based concrete (Materials and chemical industries)

Nanotherapeutics (Pharmaceuticals, biomedical, and biotechnology)

There was some talk about nanotechnology as a potentially disruptive technology,

Nanomanufacturing could eventually bring disruptive innovation and the creation of new jobs—at least for the nations that are able to compete globally. According to the model suggested by Christensen (2012a; 2012b), which was cited by a forum participant, the widespread disruption of existing industries (and their supply chains) can occur together with the generation of broader markets, which can lead to net job creation, primarily for nations that bring the disruptive technology to market. The Ford automobile plant (with its dramatic changes in the efficient assembly of vehicles) again provides an historical example: mass – produced automobiles made cheaply enough—through economies of scale—were sold to vast numbers of consumers, replacing horse and buggy transportation and creating jobs to (1) manufacture large numbers of cars and develop the supply chain; (2) retail new cars; and (3) service them. The introduction of minicomputers and then personal computers in the 1980s and 1990s provides another historical example; the smaller computers disrupted the dominant mainframe computing industry (Christensen et al. 2000). Personal computers were provided to millions of homes, and an analyst in the Bureau of Labor Statistics (Freeman 1996) documented the creation of jobs in related areas such as selling home computers and software. According to Christensen (2012b), “[A]lmost all net growth in jobs in America has been created by companies that were empowering—companies that made complicated things affordable and accessible so that more people could own them and use them.”14 As a counterpoint, a recent report analyzing manufacturing today (Manyika et al. 2012, 4) claims that manufacturing “cannot be expected to create mass employment in advanced economies on the scale that it did decades ago.”

Interestingly, there is no mention in any part of the report of the darker sides of a disruptive technology. After all, there were people who were very, very upset over the advent of computers. For example, a student (I was teaching a course on marketing communication) once informed me that she and her colleagues used to regularly clear bullets from the computerized equipment they were sending up to the camps (memory fails as to whether these were mining or logging camps) in northern British Columbia in the early days of the industry’s computerization.

Getting back to the report, I wasn’t expecting to see that one of the perceived problems is the US failure to participate in setting standards (excerpted from p. 23 PDF; p. 17 print),

Lack of sufficient U.S. participation in setting standards for nanotechnology or nanomanufacturing. Some participants discussed a possible need for a stronger role for the United States in setting commercial standards for nanomanufactured goods (including defining basic terminology in order to sell products in global markets).17

The participants discussed the ‘Valley of Death’ and the ‘Missing Middle’ (excerpted from pp. 31-2 PDF; pp. 25-6 print)

Forum participants said that middle-stage funding, investment, and support gaps occur for not only technology innovation but also manufacturing innovation. They described the Valley of Death (that is, the potential lack of funding or investment that may characterize the middle stages in the development of a technology or new product) and the Missing Middle (that is, a similar lack of adequate support for the middle stages of developing a manufacturing process or approach), as explained below.

The Valley of Death refers to a gap in funding or investment that can occur after research on a new technology and its initial development—for example, when the technology moves beyond tests in a controlled laboratory setting.22 In the medical area, participants said the problem of inadequate funding /investment may be exacerbated by requirements for clinical trials. To illustrate, one participant said that $10 million to $20 million is needed to bring a new medical treatment into clinical trials, but “support from [a major pharmaceutical company] typically is not forthcoming until Phase II clinical trials,” resulting in a  Valley of Death for  some U.S. medical innovations. Another participant mentioned an instance where a costly trial was required for an apparently low risk medical device—and this participant tied high costs of this type to potential difficulties that medical innovators might have obtaining venture capital. A funding /investment gap at this stage can prevent further development of a technology.

The term  Missing Middle has been used to refer to the lack of funding/investment that can occur with respect to manufacturing innovation—that is, maturing manufacturing capabilities and processes to produce technologies at scale, as illustrated in figure 8.23 Here, another important lack of support may be the absence of what one participant called an “industrial commons”  to sustain innovation within a  manufacturing sector.24 Logically, successful transitioning across the  middle stages of manufacturing development is a prerequisite to  achieving successful new approaches to manufacturing at scale.

There was discussion of the international scene with regard to the ‘Valley of Death’ and the ‘Missing Middle’ (excerpted from pp. 41-2 PDF; pp. 35-6 print)

Participants said that the Valley of Death and Missing Middle funding and investment gaps, which are of concern in the United States, do not apply to the same extent in some other countries—for example, China and Russia—or are being addressed. One participant said that other countries in which these gaps have occurred “have zeroed in [on them] with a laser beam.” Another participant summed up his view of the situation with the statement: “Government investments in establishing technology platforms, technology transfer, and commercialization are higher in other countries than in the United States.”  He further stated that those making higher investments include China, Russia, and the European Union.

Multiple participants referred to the European Commission’s upcoming Horizon 2020 program, which will have major funding extending over 7 years. In addition to providing major funding for fundamental research, the Horizon 2020 website states that the program will help to:

“…bridge the gap between research and the market by, for example, helping innovative enterprises to develop their technological breakthroughs into viable products with real commercial potential. This market-driven approach will include creating partnerships with the private sector and Member States to bring together the resources needed.”

A key program within Horizon 2020 consists of the European Institute of Innovation and Technology (EIT), which as illustrated in the “Knowledge Triangle” shown figure 11, below, emphasizes the nexus of business, research, and higher education. The 2014-2020 budget for this portion of Horizon 2020 is 2.7 billion euros (or close to $3.7 billion in U.S. dollars as of January 2014).

As is often the case with technology and science, participants mentioned intellectual property (IP) (excerpted from pp. 43-44 PDF; pp. 37-8 print),

Several participants discussed threats to IP associated with global competition.43 One participant described persistent attempts by other countries (or by certain elements in other countries) to breach information  systems at his nanomanufacturing company. Another described an IP challenge pertaining to research at U.S. universities, as follows:

•due to a culture of openness, especially among students, ideas and research are “leaking out” of universities prior to the initial researchers having patented or fully pursued them;

•there are many foreign students at U.S. universities; and

•there is a current lack of awareness about “leakage” and of university policies or training to counter it.

Additionally, one of our earlier interviewees said that one country targeted. Specific research projects at U.S. universities—and then required its own citizen-students to apply for admission to each targeted U.S. university and seek work on the targeted project.

Taken together with other factors, this situation can result in an overall failure to protect IP and undermine U.S. research competitiveness. (Although a culture of openness and the presence of foreign students are  generally considered strengths of the U.S. system, in this context such factors could represent a challenge to capturing the full value of U.S. investments.)

I would have liked to have seen a more critical response to the discussion about IP issues given the well-documented concerns regarding IP and its depressing affect on competitiveness as per my June 28, 2012 posting titled: Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP, my  Oct. 10, 2012 posting titled: UN’s International Telecommunications Union holds patent summit in Geneva on Oct. 10, 2012, and my Oct. 31, 2011 posting titled: Patents as weapons and obstacles, amongst many, many others here.

This is a very readable report and it answered a few questions for me about the state of nanomanufacturing.

ETA Feb. 10, 2014 at 2:45 pm PDT, The Economist magazine has a Feb. 7, 2014 online article about this new report from the US.

ETA April 2, 2014: There’s an April 1, 2014 posting about this report  on the Foresight Institute blog titled, US government report highlights flaws in US nanotechnology effort.

Data sonification: listening to your data instead of visualizing it

Representing data though music is how a Jan. 31, 2014 item on the BBC news magazine describes a Voyager 1 & 2 spacecraft duet, data sonification project discussed* in a BBC Radio 4 programme,

Musician and physicist Domenico Vicinanza has described to BBC Radio 4′s Today programme the process of representing information through music, known as “sonification”. [includes a sound clip and interview with Vicinanza]

A Jan. 22, 2014 GÉANT news release describes the project in more detail,

GÉANT, the pan-European data network serving 50 million research and education users at speeds of up to 500Gbps, recently demonstrated its power by sonifying 36 years’ worth of NASA Voyager spacecraft data and converting it into a musical duet.

The project is the work of Domenico Vicinanza, Network Services Product Manager at GÉANT. As a trained musician with a PhD in Physics, he also takes the role of Arts and Humanities Manager, exploring new ways for representing data and discovery through the use of high-speed networks.

“I wanted to compose a musical piece celebrating the Voyager 1 and 2 *together*, so used the same measurements (proton counts from the cosmic ray detector over the last 37 years) from both spacecrafts, at the exactly same point of time, but at several billions of Kms of distance one from the other.

I used different groups of instruments and different sound textures to represent the two spacecrafts, synchronising the measurements taken at the same time.”

The result is an up-tempo string and piano orchestral piece.

You can hear the duet, which has been made available by the folks at GÉANT,

The news release goes on to provide technical details about the composition,

To compose the spacecraft duet, 320,000 measurements were first selected from each spacecraft, at one hour intervals. Then that data was converted into two very long melodies, each comprising 320,000 notes using different sampling frequencies, from a few KHz to 44.1 kHz.

The result of the conversion into waveform, using such a big dataset, created a wide collection of audible sounds, lasting just a few seconds (slightly more than 7 seconds at 44.1kHz) to a few hours (more than 5hours using 1024Hz as a sampling frequency).   A certain number of data points, from a few thousand to 44,100 were each “converted” into 1 second of sound.

Using the grid computing facilities at EGI, GÉANT was able to create the duet live at the NASA booth at Super Computing 2013 using its superfast network to transfer data to/from NASA.

I think this detail from the news release gives one a different perspective on the accomplishment,

Launched in 1977, both Voyager 1 and Voyager 2 are now decommissioned but still recording and sending live data to Earth. They continue to traverse different parts of the universe, billions of kilometres apart. Voyager 1 left our solar system last year.

The research is more than an amusing way to pass the time (from the news release),

While this project was created as a fun, accessible way to demonstrate the benefit of research and education networks to society, data sonification – representing data by means of sound signals – is increasingly used to accelerate scientific discovery; from epilepsy research to deep space discovery.

I was curious to learn more about how data represented by sound signals is being used to accelerate scientific discovery and sent that question and another to Dr. Vicinanza via Tamsin Henderson of DANTE and received these answers,

(1) How does “representing data by means of sound signals “increasingly accelerate scientific discovery; from epilepsy research to deep space discovery”? In a practical sense how does one do this research? For example, do you sit down and listen to a file and intuit different relationships for the data?

Vision and visual representation is intrinsically limited to three dimensions. We all know how amazing is 3D cinema, but in terms of representation of complex information, this is as far as it gets. There is no 4D or 5D. We live in three dimensions.

Sound, on the other hand, does not have any limitation of this kind. We can continue overlapping sound layers virtually without limits and still retain the capability of recognising and understanding them. Think of an orchestra or a pop band, even if the musicians are playing all together we can actually follow the single instrument line (bass, drum, lead guitar, voice, ….) Sound is then particularly precious when dealing with multi-dimensional data since audification techniques.

In technical terms, auditory perception of complex, structured information could have several advantages in temporal, amplitude, and frequency resolution when compared to visual representations and often opens up possibilities as an alternative or complement to visualisation techniques. Those advantages include the capability of the human ear to detect patterns (detecting regularities), recognise timbres and follow different strands at the same time (i.e. the capability of following different instrument lines). This would offer, in a natural way, the opportunity of rendering different, interdependent variables onto sounds in such a way that a listener could gain relevant insight into the represented information or data.

In particular in the medical context, there have been several investigations using data sonification as a support tool for classification and diagnosis, from working on sonification of medical images to converting EEG to tones, including real-time screening and feedback on EEG signals for epilepsy.

The idea is to use sound to aggregate many “information layers”, many more than any graph or picture can represent and support the physician giving a more comprehensive representation of the situation.

(2) I understand that as you age certain sounds disappear from your hearing, e.g., people over 25 years of age are not be able to hear above 15kHz. (Note: There seems to be some debate as to when these sounds disappear, after 30, after 20, etc.) Wouldn’t this pose an age restriction on the people who could access the research or have I misunderstood what you’re doing?

No, there is actually no sensible reduction in the advantages of sonification with ageing. The only precaution is not to use too high frequencies (above 15 KHz) in the sonification and this is something that can be avoided without limiting the benefits of audification.

It is always good practice not to use excessively high frequencies since they are not always very well and uniformly perceived by everyone.

Our hearing works at its best in the region of KHz (1200Hz-3800Hz)

Thank you Dr. Vicinanza and Tamsin Henderson for this insight into representing data in multiple dimensions using sound and its application in research. And, thank you, too, for sharing a beautiful piece of music.

For the curious, I found some additional information about Dr. Vicinanza and his ‘sound’ work on his Nature Network profile page,

I am a composer, network engineer and researcher. I received my MSc and PhD degrees in Physics and studied piano, percussion and composition.

I worked as a professor of Sound Synthesis, Acoustics and Computer Music (Algorithmic Composition) at Conservatory of Music of Salerno (Italy).

I currently work as a network engineer in DANTE (www.dante.net) and chair the ASTRA project (www.astraproject.org) for the reconstruction of musical instruments by means of computer models on GÉANT and EUMEDCONNECT.

I am also the co-founder and the technical coordinator of the Lost Sound Orchestra project (www.lostsoundsorchestra.org).

Interests

As a composer and researcher I was always fascinated by the richness of the information coming from the Nature. I worked on the introduction of the sonification of seismic signals (in particular coming from active volcanoes) as a scientific tool, co-working with geophysicists and volcanologists.

I also study applications of grid technologies for music and visual arts and as a composer I took part to several concerts, digital arts performances, festivals and webcast.

My other interests include (aside with music) Argentine Tango and watercolors.

Projects

ASTRA (Ancient instruments Sound/Timbre Reconstruction Application)
www.astraproject.org

The ASTRA project is a multi disciplinary project aiming at reconstructing the sound or timbre of ancient instruments (not existing anymore) using archaeological data as fragments from excavations, written descriptions, pictures.

The technique used is the physical modeling synthesis, a complex digital audio rendering technique which allows modeling the time-domain physics of the instrument.

In other words the basic idea is to recreate a model of the musical instrument and produce the sound by simulating its behavior as a mechanical system. The application would produce one or more sounds corresponding to different configurations of the instrument (i.e. the different notes).

Lost Sounds Orchestra
www.lostsoundsorchestra.org

The Lost Sound Orchestra is the ASTRA project orchestra. It is a unique orchestra made by reconstructed ancient instrument coming from the ASTRA research activities. It is the first ensemble in the world composed of only reconstructed instruments of the past. Listening to it is like jumping into the past, in a sound world completely new to our ears.

Since I haven’t had occasion to mention either GÉANT or DANTE previously, here’s more about those organizations and some acknowledgements from the news release,

About GÉANT

GÉANT is the pan-European research and education network that interconnects Europe’s National Research and Education Networks (NRENs). Together we connect over 50 million users at 10,000 institutions across Europe, supporting research in areas such as energy, the environment, space and medicine.

Operating at speeds of up to 500Gbps and reaching over 100 national networks worldwide, GÉANT remains the largest and most advanced research and education network in the world.

Co-funded by the European Commission under the EU’s 7th Research and Development Framework Programme, GÉANT is a flagship e-Infrastructure key to achieving the European Research Area – a seamless and open European space for online research – and assuring world-leading connectivity between Europe and the rest of the world in support of global research collaborations.

The network and associated services comprise the GÉANT (GN3plus) project, a collaborative effort comprising 41 project partners: 38 European NRENs, DANTE, TERENA and NORDUnet (representing the 5 Nordic countries). GÉANT is operated by DANTE on behalf of Europe’s NRENs.

About DANTE

DANTE (Delivery of Advanced Network Technology to Europe) is a non-profit organisation established in 1993 that plans, builds and operates large scale, advanced networks for research and education. On behalf of Europe’s National Research and Education Networks (NRENs), DANTE has built and operates GÉANT, a flagship e-Infrastructure key to achieving the European Research Area.

Working in cooperation with the European Commission and in close partnership with Europe’s NRENs and international networking partners, DANTE remains fundamental to the success of global research collaboration.

DANTE manages research and education (R&E) networking projects serving Europe (GÉANT), the Mediterranean (EUMEDCONNECT), Sub-Saharan Africa (AfricaConnect), Central Asia (CAREN) regions and coordinates Europe-China collaboration (ORIENTplus). DANTE also supports R&E networking organisations in Latin America (RedCLARA), Caribbean (CKLN) and Asia-Pacific (TEIN*CC). For more information, visit www.dante.net

Acknowledgements
NASA National Space Science Data Center and the John Hopkins University Voyager LEPC experiment.
Sonification credits
Mariapaola Sorrentino and Giuseppe La Rocca.

I hope one of these days I’ll have a chance to ask a data visualization expert  whether they think it’s possible to represent multiple dimensions visually and whether or not some types of data are better represented by sound.

* ‘described’ replaced by ‘discussed’ to avoid repetition, Feb. 10, 2014. (Sometimes I’m miffed by my own writing.)