Tag Archives: Canadian Institute for Advanced Research (CIFAR)

Governments need to tell us when and how they’re using AI (artificial intelligence) algorithms to make decisions

I have two items and an exploration of the Canadian scene all three of which feature governments, artificial intelligence, and responsibility.

Special issue of Information Polity edited by Dutch academics,

A December 14, 2020 IOS Press press release (also on EurekAlert) announces a special issue of Information Polity focused on algorithmic transparency in government,

Amsterdam, NL – The use of algorithms in government is transforming the way bureaucrats work and make decisions in different areas, such as healthcare or criminal justice. Experts address the transparency challenges of using algorithms in decision-making procedures at the macro-, meso-, and micro-levels in this special issue of Information Polity.

Machine-learning algorithms hold huge potential to make government services fairer and more effective and have the potential of “freeing” decision-making from human subjectivity, according to recent research. Algorithms are used in many public service contexts. For example, within the legal system it has been demonstrated that algorithms can predict recidivism better than criminal court judges. At the same time, critics highlight several dangers of algorithmic decision-making, such as racial bias and lack of transparency.

Some scholars have argued that the introduction of algorithms in decision-making procedures may cause profound shifts in the way bureaucrats make decisions and that algorithms may affect broader organizational routines and structures. This special issue on algorithm transparency presents six contributions to sharpen our conceptual and empirical understanding of the use of algorithms in government.

“There has been a surge in criticism towards the ‘black box’ of algorithmic decision-making in government,” explain Guest Editors Sarah Giest (Leiden University) and Stephan Grimmelikhuijsen (Utrecht University). “In this special issue collection, we show that it is not enough to unpack the technical details of algorithms, but also look at institutional, organizational, and individual context within which these algorithms operate to truly understand how we can achieve transparent and responsible algorithms in government. For example, regulations may enable transparency mechanisms, yet organizations create new policies on how algorithms should be used, and individual public servants create new professional repertoires. All these levels interact and affect algorithmic transparency in public organizations.”

The transparency challenges for the use of algorithms transcend different levels of government – from European level to individual public bureaucrats. These challenges can also take different forms; transparency can be enabled or limited by technical tools as well as regulatory guidelines or organizational policies. Articles in this issue address transparency challenges of algorithm use at the macro-, meso-, and micro-level. The macro level describes phenomena from an institutional perspective – which national systems, regulations and cultures play a role in algorithmic decision-making. The meso-level primarily pays attention to the organizational and team level, while the micro-level focuses on individual attributes, such as beliefs, motivation, interactions, and behaviors.

“Calls to ‘keep humans in the loop’ may be moot points if we fail to understand how algorithms impact human decision-making and how algorithmic design impacts the practical possibilities for transparency and human discretion,” notes Rik Peeters, research professor of Public Administration at the Centre for Research and Teaching in Economics (CIDE) in Mexico City. In a review of recent academic literature on the micro-level dynamics of algorithmic systems, he discusses three design variables that determine the preconditions for human transparency and discretion and identifies four main sources of variation in “human-algorithm interaction.”

The article draws two major conclusions: First, human agents are rarely fully “out of the loop,” and levels of oversight and override designed into algorithms should be understood as a continuum. The second pertains to bounded rationality, satisficing behavior, automation bias, and frontline coping mechanisms that play a crucial role in the way humans use algorithms in decision-making processes.

For future research Dr. Peeters suggests taking a closer look at the behavioral mechanisms in combination with identifying relevant skills of bureaucrats in dealing with algorithms. “Without a basic understanding of the algorithms that screen- and street-level bureaucrats have to work with, it is difficult to imagine how they can properly use their discretion and critically assess algorithmic procedures and outcomes. Professionals should have sufficient training to supervise the algorithms with which they are working.”

At the macro-level, algorithms can be an important tool for enabling institutional transparency, writes Alex Ingrams, PhD, Governance and Global Affairs, Institute of Public Administration, Leiden University, Leiden, The Netherlands. This study evaluates a machine-learning approach to open public comments for policymaking to increase institutional transparency of public commenting in a law-making process in the United States. The article applies an unsupervised machine learning analysis of thousands of public comments submitted to the United States Transport Security Administration on a 2013 proposed regulation for the use of new full body imaging scanners in airports. The algorithm highlights salient topic clusters in the public comments that could help policymakers understand open public comments processes. “Algorithms should not only be subject to transparency but can also be used as tool for transparency in government decision-making,” comments Dr. Ingrams.

“Regulatory certainty in combination with organizational and managerial capacity will drive the way the technology is developed and used and what transparency mechanisms are in place for each step,” note the Guest Editors. “On its own these are larger issues to tackle in terms of developing and passing laws or providing training and guidance for public managers and bureaucrats. The fact that they are linked further complicates this process. Highlighting these linkages is a first step towards seeing the bigger picture of why transparency mechanisms are put in place in some scenarios and not in others and opens the door to comparative analyses for future research and new insights for policymakers. To advocate the responsible and transparent use of algorithms, future research should look into the interplay between micro-, meso-, and macro-level dynamics.”

“We are proud to present this special issue, the 100th issue of Information Polity. Its focus on the governance of AI demonstrates our continued desire to tackle contemporary issues in eGovernment and the importance of showcasing excellent research and the insights offered by information polity perspectives,” add Professor Albert Meijer (Utrecht University) and Professor William Webster (University of Stirling), Editors-in-Chief.

This image illustrates the interplay between the various level dynamics,

Caption: Studying algorithms and algorithmic transparency from multiple levels of analyses. Credit: Information Polity.

Here’s a link, to and a citation for the special issue,

Algorithmic Transparency in Government: Towards a Multi-Level Perspective
Guest Editors: Sarah Giest, PhD, and Stephan Grimmelikhuijsen, PhD
Information Polity, Volume 25, Issue 4 (December 2020), published by IOS Press

The issue is open access for three months, Dec. 14, 2020 – March 14, 2021.

Two articles from the special were featured in the press release,

“The agency of algorithms: Understanding human-algorithm interaction in administrative decision-making,” by Rik Peeters, PhD (https://doi.org/10.3233/IP-200253)

“A machine learning approach to open public comments for policymaking,” by Alex Ingrams, PhD (https://doi.org/10.3233/IP-200256)

An AI governance publication from the US’s Wilson Center

Within one week of the release of a special issue of Information Polity on AI and governments, a Wilson Center (Woodrow Wilson International Center for Scholars) December 21, 2020 news release (received via email) announces a new publication,

Governing AI: Understanding the Limits, Possibilities, and Risks of AI in an Era of Intelligent Tools and Systems by John Zysman & Mark Nitzberg

Abstract

In debates about artificial intelligence (AI), imaginations often run wild. Policy-makers, opinion leaders, and the public tend to believe that AI is already an immensely powerful universal technology, limitless in its possibilities. However, while machine learning (ML), the principal computer science tool underlying today’s AI breakthroughs, is indeed powerful, ML is fundamentally a form of context-dependent statistical inference and as such has its limits. Specifically, because ML relies on correlations between inputs and outputs or emergent clustering in training data, today’s AI systems can only be applied in well- specified problem domains, still lacking the context sensitivity of a typical toddler or house-pet. Consequently, instead of constructing policies to govern artificial general intelligence (AGI), decision- makers should focus on the distinctive and powerful problems posed by narrow AI, including misconceived benefits and the distribution of benefits, autonomous weapons, and bias in algorithms. AI governance, at least for now, is about managing those who create and deploy AI systems, and supporting the safe and beneficial application of AI to narrow, well-defined problem domains. Specific implications of our discussion are as follows:

  • AI applications are part of a suite of intelligent tools and systems and must ultimately be regulated as a set. Digital platforms, for example, generate the pools of big data on which AI tools operate and hence, the regulation of digital platforms and big data is part of the challenge of governing AI. Many of the platform offerings are, in fact, deployments of AI tools. Hence, focusing on AI alone distorts the governance problem.
  • Simply declaring objectives—be they assuring digital privacy and transparency, or avoiding bias—is not sufficient. We must decide what the goals actually will be in operational terms.
  • The issues and choices will differ by sector. For example, the consequences of bias and error will differ from a medical domain or a criminal justice domain to one of retail sales.
  • The application of AI tools in public policy decision making, in transportation design or waste disposal or policing among a whole variety of domains, requires great care. There is a substantial risk of focusing on efficiency when the public debate about what the goals should be in the first place is in fact required. Indeed, public values evolve as part of social and political conflict.
  • The economic implications of AI applications are easily exaggerated. Should public investment concentrate on advancing basic research or on diffusing the tools, user interfaces, and training needed to implement them?
  • As difficult as it will be to decide on goals and a strategy to implement the goals of one community, let alone regional or international communities, any agreement that goes beyond simple objective statements is very unlikely.

Unfortunately, I haven’t been able to successfully download the working paper/report from the Wilson Center’s Governing AI: Understanding the Limits, Possibilities, and Risks of AI in an Era of Intelligent Tools and Systems webpage.

However, I have found a draft version of the report (Working Paper) published August 26, 2020 on the Social Science Research Network. This paper originated at the University of California at Berkeley as part of a series from the Berkeley Roundtable on the International Economy (BRIE). ‘Governing AI: Understanding the Limits, Possibility, and Risks of AI in an Era of Intelligent Tools and Systems’ is also known as the BRIE Working Paper 2020-5.

Canadian government and AI

The special issue on AI and governance and the the paper published by the Wilson Center stimulated my interest in the Canadian government’s approach to governance, responsibility, transparency, and AI.

There is information out there but it’s scattered across various government initiatives and ministries. Above all, it is not easy to find, open communication. Whether that’s by design or the blindness and/or ineptitude to be found in all organizations I leave that to wiser judges. (I’ve worked in small companies and they too have the problem. In colloquial terms, ‘the right hand doesn’t know what the left hand is doing’.)

Responsible use? Maybe not after 2019

First there’s a government of Canada webpage, Responsible use of artificial intelligence (AI). Other than a note at the bottom of the page “Date modified: 2020-07-28,” all of the information dates from 2016 up to March 2019 (which you’ll find on ‘Our Timeline’). Is nothing new happening?

For anyone interested in responsible use, there are two sections “Our guiding principles” and “Directive on Automated Decision-Making” that answer some questions. I found the ‘Directive’ to be more informative with its definitions, objectives, and, even, consequences. Sadly, you need to keep clicking to find consequences and you’ll end up on The Framework for the Management of Compliance. Interestingly, deputy heads are assumed in charge of managing non-compliance. I wonder how employees deal with a non-compliant deputy head?

What about the government’s digital service?

You might think Canadian Digital Service (CDS) might also have some information about responsible use. CDS was launched in 2017, according to Luke Simon’s July 19, 2017 article on Medium,

In case you missed it, there was some exciting digital government news in Canada Tuesday. The Canadian Digital Service (CDS) launched, meaning Canada has joined other nations, including the US and the UK, that have a federal department dedicated to digital.

At the time, Simon was Director of Outreach at Code for Canada.

Presumably, CDS, from an organizational perspective, is somehow attached to the Minister of Digital Government (it’s a position with virtually no governmental infrastructure as opposed to the Minister of Innovation, Science and Economic Development who is responsible for many departments and agencies). The current minister is Joyce Murray whose government profile offers almost no information about her work on digital services. Perhaps there’s a more informative profile of the Minister of Digital Government somewhere on a government website.

Meanwhile, they are friendly folks at CDS but they don’t offer much substantive information. From the CDS homepage,

Our aim is to make services easier for government to deliver. We collaborate with people who work in government to address service delivery problems. We test with people who need government services to find design solutions that are easy to use.

Learn more

After clicking on Learn more, I found this,

At the Canadian Digital Service (CDS), we partner up with federal departments to design, test and build simple, easy to use services. Our goal is to improve the experience – for people who deliver government services and people who use those services.

How it works

We work with our partners in the open, regularly sharing progress via public platforms. This creates a culture of learning and fosters best practices. It means non-partner departments can apply our work and use our resources to develop their own services.

Together, we form a team that follows the ‘Agile software development methodology’. This means we begin with an intensive ‘Discovery’ research phase to explore user needs and possible solutions to meeting those needs. After that, we move into a prototyping ‘Alpha’ phase to find and test ways to meet user needs. Next comes the ‘Beta’ phase, where we release the solution to the public and intensively test it. Lastly, there is a ‘Live’ phase, where the service is fully released and continues to be monitored and improved upon.

Between the Beta and Live phases, our team members step back from the service, and the partner team in the department continues the maintenance and development. We can help partners recruit their service team from both internal and external sources.

Before each phase begins, CDS and the partner sign a partnership agreement which outlines the goal and outcomes for the coming phase, how we’ll get there, and a commitment to get them done.

As you can see, there’s not a lot of detail and they don’t seem to have included anything about artificial intelligence as part of their operation. (I’ll come back to the government’s implementation of artificial intelligence and information technology later.)

Does the Treasury Board of Canada have charge of responsible AI use?

I think so but there are government departments/ministries that also have some responsibilities for AI and I haven’t seen any links back to the Treasury Board documentation.

For anyone not familiar with the Treasury Board or even if you are, December 14, 2009 article (Treasury Board of Canada: History, Organization and Issues) on Maple Leaf Web is quite informative,

The Treasury Board of Canada represent a key entity within the federal government. As an important cabinet committee and central agency, they play an important role in financial and personnel administration. Even though the Treasury Board plays a significant role in government decision making, the general public tends to know little about its operation and activities. [emphasis mine] The following article provides an introduction to the Treasury Board, with a focus on its history, responsibilities, organization, and key issues.

It seems the Minister of Digital Government, Joyce Murray is part of the Treasury Board and the Treasury Board is the source for the Digital Operations Strategic Plan: 2018-2022,

I haven’t read the entire document but the table of contents doesn’t include a heading for artificial intelligence and there wasn’t any mention of it in the opening comments.

But isn’t there a Chief Information Officer for Canada?

Herein lies a tale (I doubt I’ll ever get the real story) but the answer is a qualified ‘no’. The Chief Information Officer for Canada, Alex Benay (there is an AI aspect) stepped down in September 2019 to join a startup company according to an August 6, 2019 article by Mia Hunt for Global Government Forum,

Alex Benay has announced he will step down as Canada’s chief information officer next month to “take on new challenge” at tech start-up MindBridge.

“It is with mixed emotions that I am announcing my departure from the Government of Canada,” he said on Wednesday in a statement posted on social media, describing his time as CIO as “one heck of a ride”.

He said he is proud of the work the public service has accomplished in moving the national digital agenda forward. Among these achievements, he listed the adoption of public Cloud across government; delivering the “world’s first” ethical AI management framework; [emphasis mine] renewing decades-old policies to bring them into the digital age; and “solidifying Canada’s position as a global leader in open government”.

He also led the introduction of new digital standards in the workplace, and provided “a clear path for moving off” Canada’s failed Phoenix pay system. [emphasis mine]

I cannot find a current Chief Information of Canada despite searches but I did find this List of chief information officers (CIO) by institution. Where there was one, there are now many.

Since September 2019, Mr. Benay has moved again according to a November 7, 2019 article by Meagan Simpson on the BetaKit,website (Note: Links have been removed),

Alex Benay, the former CIO [Chief Information Officer] of Canada, has left his role at Ottawa-based Mindbridge after a short few months stint.

The news came Thursday, when KPMG announced that Benay was joining the accounting and professional services organization as partner of digital and government solutions. Benay originally announced that he was joining Mindbridge in August, after spending almost two and a half years as the CIO for the Government of Canada.

Benay joined the AI startup as its chief client officer and, at the time, was set to officially take on the role on September 3rd. According to Benay’s LinkedIn, he joined Mindbridge in August, but if the September 3rd start date is correct, Benay would have only been at Mindbridge for around three months. The former CIO of Canada was meant to be responsible for Mindbridge’s global growth as the company looked to prepare for an IPO in 2021.

Benay told The Globe and Mail that his decision to leave Mindbridge was not a question of fit, or that he considered the move a mistake. He attributed his decision to leave to conversations with Mindbridge customer KPMG, over a period of three weeks. Benay told The Globe that he was drawn to the KPMG opportunity to lead its digital and government solutions practice, something that was more familiar to him given his previous role.

Mindbridge has not completely lost what was touted as a start hire, though, as Benay will be staying on as an advisor to the startup. “This isn’t a cutting the cord and moving on to something else completely,” Benay told The Globe. “It’s a win-win for everybody.”

Via Mr. Benay, I’ve re-introduced artificial intelligence and introduced the Phoenix Pay system and now I’m linking them to government implementation of information technology in a specific case and speculating about implementation of artificial intelligence algorithms in government.

Phoenix Pay System Debacle (things are looking up), a harbinger for responsible use of artificial intelligence?

I’m happy to hear that the situation where government employees had no certainty about their paycheques is becoming better. After the ‘new’ Phoenix Pay System was implemented in early 2016, government employees found they might get the correct amount on their paycheque or might find significantly less than they were entitled to or might find huge increases.

The instability alone would be distressing but adding to it with the inability to get the problem fixed must have been devastating. Almost five years later, the problems are being resolved and people are getting paid appropriately, more often.

The estimated cost for fixing the problems was, as I recall, over $1B; I think that was a little optimistic. James Bagnall’s July 28, 2020 article for the Ottawa Citizen provides more detail, although not about the current cost, and is the source of my measured optimism,

Something odd has happened to the Phoenix Pay file of late. After four years of spitting out errors at a furious rate, the federal government’s new pay system has gone quiet.

And no, it’s not because of the even larger drama written by the coronavirus. In fact, there’s been very real progress at Public Services and Procurement Canada [PSPC; emphasis mine], the department in charge of pay operations.

Since January 2018, the peak of the madness, the backlog of all pay transactions requiring action has dropped by about half to 230,000 as of late June. Many of these involve basic queries for information about promotions, overtime and rules. The part of the backlog involving money — too little or too much pay, incorrect deductions, pay not received — has shrunk by two-thirds to 125,000.

These are still very large numbers but the underlying story here is one of long-delayed hope. The government is processing the pay of more than 330,000 employees every two weeks while simultaneously fixing large batches of past mistakes.

While officials with two of the largest government unions — Public Service Alliance of Canada [PSAC] and the Professional Institute of the Public Service of Canada [PPSC] — disagree the pay system has worked out its kinks, they acknowledge it’s considerably better than it was. New pay transactions are being processed “with increased timeliness and accuracy,” the PSAC official noted.

Neither union is happy with the progress being made on historical mistakes. PIPSC president Debi Daviau told this newspaper that many of her nearly 60,000 members have been waiting for years to receive salary adjustments stemming from earlier promotions or transfers, to name two of the more prominent sources of pay errors.

Even so, the sharp improvement in Phoenix Pay’s performance will soon force the government to confront an interesting choice: Should it continue with plans to replace the system?

Treasury Board, the government’s employer, two years ago launched the process to do just that. Last March, SAP Canada — whose technology underpins the pay system still in use at Canada Revenue Agency — won a competition to run a pilot project. Government insiders believe SAP Canada is on track to build the full system starting sometime in 2023.

When Public Services set out the business case in 2009 for building Phoenix Pay, it noted the pay system would have to accommodate 150 collective agreements that contained thousands of business rules and applied to dozens of federal departments and agencies. The technical challenge has since intensified.

Under the original plan, Phoenix Pay was to save $70 million annually by eliminating 1,200 compensation advisors across government and centralizing a key part of the operation at the pay centre in Miramichi, N.B., where 550 would manage a more automated system.

Instead, the Phoenix Pay system currently employs about 2,300.  This includes 1,600 at Miramichi and five regional pay offices, along with 350 each at a client contact centre (which deals with relatively minor pay issues) and client service bureau (which handles the more complex, longstanding pay errors). This has naturally driven up the average cost of managing each pay account — 55 per cent higher than the government’s former pay system according to last fall’s estimate by the Parliamentary Budget Officer.

… As the backlog shrinks, the need for regional pay offices and emergency staffing will diminish. Public Services is also working with a number of high-tech firms to develop ways of accurately automating employee pay using artificial intelligence [emphasis mine].

Given the Phoenix Pay System debacle, it might be nice to see a little information about how the government is planning to integrate more sophisticated algorithms (artificial intelligence) in their operations.

I found this on a Treasury Board webpage, all 1 minute and 29 seconds of it,

The blonde model or actress mentions that companies applying to Public Services and Procurement Canada for placement on the list must use AI responsibly. Her script does not include a definition or guidelines, which, as previously noted, as on the Treasury Board website.

As for Public Services and Procurement Canada, they have an Artificial intelligence source list,

Public Services and Procurement Canada (PSPC) is putting into operation the Artificial intelligence source list to facilitate the procurement of Canada’s requirements for Artificial intelligence (AI).

After research and consultation with industry, academia, and civil society, Canada identified 3 AI categories and business outcomes to inform this method of supply:

Insights and predictive modelling

Machine interactions

Cognitive automation

PSPC is focused only on procuring AI. If there are guidelines on their website for its use, I did not find them.

I found one more government agency that might have some information about artificial intelligence and guidelines for its use, Shared Services Canada,

Shared Services Canada (SSC) delivers digital services to Government of Canada organizations. We provide modern, secure and reliable IT services so federal organizations can deliver digital programs and services that meet Canadians needs.

Since the Minister of Digital Government, Joyce Murray, is listed on the homepage, I was hopeful that I could find out more about AI and governance and whether or not the Canadian Digital Service was associated with this government ministry/agency. I was frustrated on both counts.

To sum up, there is no information that I could find after March 2019 about Canada, it’s government and plans for AI, especially responsible management/governance and AI on a Canadian government website although I have found guidelines, expectations, and consequences for non-compliance. (Should anyone know which government agency has up-to-date information on its responsible use of AI, please let me know in the Comments.

Canadian Institute for Advanced Research (CIFAR)

The first mention of the Pan-Canadian Artificial Intelligence Strategy is in my analysis of the Canadian federal budget in a March 24, 2017 posting. Briefly, CIFAR received a big chunk of that money. Here’s more about the strategy from the CIFAR Pan-Canadian AI Strategy homepage,

In 2017, the Government of Canada appointed CIFAR to develop and lead a $125 million Pan-Canadian Artificial Intelligence Strategy, the world’s first national AI strategy.

CIFAR works in close collaboration with Canada’s three national AI Institutes — Amii in Edmonton, Mila in Montreal, and the Vector Institute in Toronto, as well as universities, hospitals and organizations across the country.

The objectives of the strategy are to:

Attract and retain world-class AI researchers by increasing the number of outstanding AI researchers and skilled graduates in Canada.

Foster a collaborative AI ecosystem by establishing interconnected nodes of scientific excellence in Canada’s three major centres for AI: Edmonton, Montreal, and Toronto.

Advance national AI initiatives by supporting a national research community on AI through training programs, workshops, and other collaborative opportunities.

Understand the societal implications of AI by developing global thought leadership on the economic, ethical, policy, and legal implications [emphasis mine] of advances in AI.

Responsible AI at CIFAR

You can find Responsible AI in a webspace devoted to what they have called, AI & Society. Here’s more from the homepage,

CIFAR is leading global conversations about AI’s impact on society.

The AI & Society program, one of the objectives of the CIFAR Pan-Canadian AI Strategy, develops global thought leadership on the economic, ethical, political, and legal implications of advances in AI. These dialogues deliver new ways of thinking about issues, and drive positive change in the development and deployment of responsible AI.

Solution Networks

AI Futures Policy Labs

AI & Society Workshops

Building an AI World

Under the category of building an AI World I found this (from CIFAR’s AI & Society homepage),

BUILDING AN AI WORLD

Explore the landscape of global AI strategies.

Canada was the first country in the world to announce a federally-funded national AI strategy, prompting many other nations to follow suit. CIFAR published two reports detailing the global landscape of AI strategies.

I skimmed through the second report and it seems more like a comparative study of various country’s AI strategies than a overview of responsible use of AI.

Final comments about Responsible AI in Canada and the new reports

I’m glad to see there’s interest in Responsible AI but based on my adventures searching the Canadian government websites and the Pan-Canadian AI Strategy webspace, I’m left feeling hungry for more.

I didn’t find any details about how AI is being integrated into government departments and for what uses. I’d like to know and I’d like to have some say about how it’s used and how the inevitable mistakes will be dealh with.

The great unwashed

What I’ve found is high minded, but, as far as I can tell, there’s absolutely no interest in talking to the ‘great unwashed’. Those of us who are not experts are being left out of these earlier stage conversations.

I’m sure we’ll be consulted at some point but it will be long past the time when are our opinions and insights could have impact and help us avoid the problems that experts tend not to see. What we’ll be left with is protest and anger on our part and, finally, grudging admissions and corrections of errors on the government’s part.

Let’s take this for an example. The Phoenix Pay System was implemented in its first phase on Feb. 24, 2016. As I recall, problems develop almost immediately. The second phase of implementation starts April 21, 2016. In May 2016 the government hires consultants to fix the problems. November 29, 2016 the government minister, Judy Foote, admits a mistake has been made. February 2017 the government hires consultants to establish what lessons they might learn. February 15, 2018 the pay problems backlog amounts to 633,000. Source: James Bagnall, Feb. 23, 2018 ‘timeline‘ for Ottawa Citizen

Do take a look at the timeline, there’s more to it than what I’ve written here and I’m sure there’s more to the Phoenix Pay System debacle than a failure to listen to warnings from those who would be directly affected. It’s fascinating though how often a failure to listen presages far deeper problems with a project.

The Canadian government, both a conservative and a liberal government, contributed to the Phoenix Debacle but it seems the gravest concern is with senior government bureaucrats. You might think things have changed since this recounting of the affair in a June 14, 2018 article by Michelle Zilio for the Globe and Mail,

The three public servants blamed by the Auditor-General for the Phoenix pay system problems were not fired for mismanagement of the massive technology project that botched the pay of tens of thousands of public servants for more than two years.

Marie Lemay, deputy minister for Public Services and Procurement Canada (PSPC), said two of the three Phoenix executives were shuffled out of their senior posts in pay administration and did not receive performance bonuses for their handling of the system. Those two employees still work for the department, she said. Ms. Lemay, who refused to identify the individuals, said the third Phoenix executive retired.

In a scathing report last month, Auditor-General Michael Ferguson blamed three “executives” – senior public servants at PSPC, which is responsible for Phoenix − for the pay system’s “incomprehensible failure.” [emphasis mine] He said the executives did not tell the then-deputy minister about the known problems with Phoenix, leading the department to launch the pay system despite clear warnings it was not ready.

Speaking to a parliamentary committee on Thursday, Ms. Lemay said the individuals did not act with “ill intent,” noting that the development and implementation of the Phoenix project were flawed. She encouraged critics to look at the “bigger picture” to learn from all of Phoenix’s failures.

Mr. Ferguson, whose office spoke with the three Phoenix executives as a part of its reporting, said the officials prioritized some aspects of the pay-system rollout, such as schedule and budget, over functionality. He said they also cancelled a pilot implementation project with one department that would have helped it detect problems indicating the system was not ready.

Mr. Ferguson’s report warned the Phoenix problems are indicative of “pervasive cultural problems” [emphasis mine] in the civil service, which he said is fearful of making mistakes, taking risks and conveying “hard truths.”

Speaking to the same parliamentary committee on Tuesday, Privy Council Clerk [emphasis mine] Michael Wernick challenged Mr. Ferguson’s assertions, saying his chapter on the federal government’s cultural issues is an “opinion piece” containing “sweeping generalizations.”

The Privy Council Clerk is the top level bureaucrat (and there is only one such clerk) in the civil/public service and I think his quotes are quite telling of “pervasive cultural problems.” There’s a new Privy Council Clerk but from what I can tell he was well trained by his predecessor.

Do* we really need senior government bureaucrats?

I now have an example of bureaucratic interference, specifically with the Global Public Health Information Network (GPHIN) where it would seem that not much has changed, from a December 26, 2020 article by Grant Robertson for the Globe & Mail,

When Canada unplugged support for its pandemic alert system [GPHIN] last year, it was a symptom of bigger problems inside the Public Health Agency. Experienced scientists were pushed aside, expertise was eroded, and internal warnings went unheeded, which hindered the department’s response to COVID-19

As a global pandemic began to take root in February, China held a series of backchannel conversations with Canada, lobbying the federal government to keep its borders open.

With the virus already taking a deadly toll in Asia, Heng Xiaojun, the Minister Counsellor for the Chinese embassy, requested a call with senior Transport Canada officials. Over the course of the conversation, the Chinese representatives communicated Beijing’s desire that flights between the two countries not be stopped because it was unnecessary.

“The Chinese position on the continuation of flights was reiterated,” say official notes taken from the call. “Mr. Heng conveyed that China is taking comprehensive measures to combat the coronavirus.”

Canadian officials seemed to agree, since no steps were taken to restrict or prohibit travel. To the federal government, China appeared to have the situation under control and the risk to Canada was low. Before ending the call, Mr. Heng thanked Ottawa for its “science and fact-based approach.”

It was a critical moment in the looming pandemic, but the Canadian government lacked the full picture, instead relying heavily on what Beijing was choosing to disclose to the World Health Organization (WHO). Ottawa’s ability to independently know what was going on in China – on the ground and inside hospitals – had been greatly diminished in recent years.

Canada once operated a robust pandemic early warning system and employed a public-health doctor based in China who could report back on emerging problems. But it had largely abandoned those international strategies over the past five years, and was no longer as plugged-in.

By late February [2020], Ottawa seemed to be taking the official reports from China at their word, stating often in its own internal risk assessments that the threat to Canada remained low. But inside the Public Health Agency of Canada (PHAC), rank-and-file doctors and epidemiologists were growing increasingly alarmed at how the department and the government were responding.

“The team was outraged,” one public-health scientist told a colleague in early April, in an internal e-mail obtained by The Globe and Mail, criticizing the lack of urgency shown by Canada’s response during January, February and early March. “We knew this was going to be around for a long time, and it’s serious.”

China had locked down cities and restricted travel within its borders. Staff inside the Public Health Agency believed Beijing wasn’t disclosing the whole truth about the danger of the virus and how easily it was transmitted. “The agency was just too slow to respond,” the scientist said. “A sane person would know China was lying.”

It would later be revealed that China’s infection and mortality rates were played down in official records, along with key details about how the virus was spreading.

But the Public Health Agency, which was created after the 2003 SARS crisis to bolster the country against emerging disease threats, had been stripped of much of its capacity to gather outbreak intelligence and provide advance warning by the time the pandemic hit.

The Global Public Health Intelligence Network, an early warning system known as GPHIN that was once considered a cornerstone of Canada’s preparedness strategy, had been scaled back over the past several years, with resources shifted into projects that didn’t involve outbreak surveillance.

However, a series of documents obtained by The Globe during the past four months, from inside the department and through numerous Access to Information requests, show the problems that weakened Canada’s pandemic readiness run deeper than originally thought. Pleas from the international health community for Canada to take outbreak detection and surveillance much more seriously were ignored by mid-level managers [emphasis mine] inside the department. A new federal pandemic preparedness plan – key to gauging the country’s readiness for an emergency – was never fully tested. And on the global stage, the agency stopped sending experts [emphasis mine] to international meetings on pandemic preparedness, instead choosing senior civil servants with little or no public-health background [emphasis mine] to represent Canada at high-level talks, The Globe found.

The curtailing of GPHIN and allegations that scientists had become marginalized within the Public Health Agency, detailed in a Globe investigation this past July [2020], are now the subject of two federal probes – an examination by the Auditor-General of Canada and an independent federal review, ordered by the Minister of Health.

Those processes will undoubtedly reshape GPHIN and may well lead to an overhaul of how the agency functions in some areas. The first steps will be identifying and fixing what went wrong. With the country now topping 535,000 cases of COVID-19 and more than 14,700 dead, there will be lessons learned from the pandemic.

Prime Minister Justin Trudeau has said he is unsure what role added intelligence [emphasis mine] could have played in the government’s pandemic response, though he regrets not bolstering Canada’s critical supplies of personal protective equipment sooner. But providing the intelligence to make those decisions early is exactly what GPHIN was created to do – and did in previous outbreaks.

Epidemiologists have described in detail to The Globe how vital it is to move quickly and decisively in a pandemic. Acting sooner, even by a few days or weeks in the early going, and throughout, can have an exponential impact on an outbreak, including deaths. Countries such as South Korea, Australia and New Zealand, which have fared much better than Canada, appear to have acted faster in key tactical areas, some using early warning information they gathered. As Canada prepares itself in the wake of COVID-19 for the next major health threat, building back a better system becomes paramount.

If you have time, do take a look at Robertson’s December 26, 2020 article and the July 2020 Globe investigation. As both articles make clear, senior bureaucrats whose chief attribute seems to have been longevity took over, reallocated resources, drove out experts, and crippled the few remaining experts in the system with a series of bureaucratic demands while taking trips to attend meetings (in desirable locations) for which they had no significant or useful input.

The Phoenix and GPHIN debacles bear a resemblance in that senior bureaucrats took over and in a state of blissful ignorance made a series of disastrous decisions bolstered by politicians who seem to neither understand nor care much about the outcomes.

If you think I’m being harsh watch Canadian Broadcasting Corporation (CBC) reporter Rosemary Barton interview Prime Minister Trudeau for a 2020 year-end interview, Note: There are some commercials. Then, pay special attention to the Trudeau’s answer to the first question,

Responsible AI, eh?

Based on the massive mishandling of the Phoenix Pay System implementation where top bureaucrats did not follow basic and well established information services procedures and the Global Public Health Information Network mismanagement by top level bureaucrats, I’m not sure I have a lot of confidence in any Canadian government claims about a responsible approach to using artificial intelligence.

Unfortunately, it doesn’t matter as implementation is most likely already taking place here in Canada.

Enough with the pessimism. I feel it’s necessary to end this on a mildly positive note. Hurray to the government employees who worked through the Phoenix Pay System debacle, the current and former GPHIN experts who continued to sound warnings, and all those people striving to make true the principles of ‘Peace, Order, and Good Government’, the bedrock principles of the Canadian Parliament.

A lot of mistakes have been made but we also do make a lot of good decisions.

*’Doe’ changed to ‘Do’ on May 14, 2021.

Summer (2019) Institute on AI (artificial intelligence) Societal Impacts, Governance, and Ethics. Summer Institute In Alberta, Canada

The deadline for applications is April 7, 2019. As for whether or not you might like to attend, here’s more from a joint March 11, 2019 Alberta Machine Intelligence Institute (Amii)/
Canadian Institute for Advanced Research (CIFAR)/University of California at Los Angeles (UCLA) Law School news release
(also on globalnewswire.com),

What will Artificial Intelligence (AI) mean for society? That’s the question scholars from a variety of disciplines will explore during the inaugural Summer Institute on AI Societal Impacts, Governance, and Ethics. Summer Institute, co-hosted by the Alberta Machine Intelligence Institute (Amii) and CIFAR, with support from UCLA School of Law, takes place July 22-24, 2019 in Edmonton, Canada.

“Recent advances in AI have brought a surge of attention to the field – both excitement and concern,” says co-organizer and UCLA professor, Edward Parson. “From algorithmic bias to autonomous vehicles, personal privacy to automation replacing jobs. Summer Institute will bring together exceptional people to talk about how humanity can receive the benefits and not get the worst harms from these rapid changes.”

Summer Institute brings together experts, grad students and researchers from multiple backgrounds to explore the societal, governmental, and ethical implications of AI. A combination of lectures, panels, and participatory problem-solving, this comprehensive interdisciplinary event aims to build understanding and action around these high-stakes issues.

“Machine intelligence is opening transformative opportunities across the world,” says John Shillington, CEO of Amii, “and Amii is excited to bring together our own world-leading researchers with experts from areas such as law, philosophy and ethics for this important discussion. Interdisciplinary perspectives will be essential to the ongoing development of machine intelligence and for ensuring these opportunities have the broadest reach possible.”

Over the three-day program, 30 graduate-level students and early-career researchers will engage with leading experts and researchers including event co-organizers: Western University’s Daniel Lizotte, Amii’s Alona Fyshe and UCLA’s Edward Parson. Participants will also have a chance to shape the curriculum throughout this uniquely interactive event.

Summer Institute takes place prior to Deep Learning and Reinforcement Learning Summer School, and includes a combined event on July 24th [2019] for both Summer Institute and Summer School participants.

Visit dlrlsummerschool.ca/the-summer-institute to apply; applications close April 7, 2019.

View our Summer Institute Biographies & Boilerplates for more information on confirmed faculty members and co-hosting organizations. Follow the conversation through social media channels using the hashtag #SI2019.

Media Contact: Spencer Murray, Director of Communications & Public Relations, Amii
t: 587.415.6100 | c: 780.991.7136 | e: spencer.murray@amii.ca

There’s a bit more information on The Summer Institute on AI and Society webpage (on the Deep Learning and Reinforcement Learning Summer School 2019 website) such as this more complete list of speakers,

Confirmed speakers at Summer Institute include:

Alona Fyshe, University of Alberta/Amii (SI co-organizer)
Edward Parson, UCLA (SI co-organizer)
Daniel Lizotte, Western University (SI co-organizer)
Geoffrey Rockwell, University of Alberta
Graham Taylor, University of Guelph/Vector Institute
Rob Lempert, Rand Corporation
Gary Marchant, Arizona State University
Richard Re, UCLA
Evan Selinger, Rochester Institute of Technology
Elana Zeide, UCLA

Two questions, why are all the summer school faculty either Canada- or US-based? What about South American, Asian, Middle Eastern, etc. thinkers?

One last thought, I wonder if this ‘AI & ethics summer institute’ has anything to do with the Pan-Canadian Artificial Intelligence Strategy, which CIFAR administers and where both the University of Alberta and Vector Institute are members.

AI fairytale and April 25, 2018 AI event at Canada Science and Technology Museum*** in Ottawa

These days it’s all about artificial intelligence (AI) or robots and often, it’s both. They’re everywhere and they will take everyone’s jobs, or not, depending on how you view them. Today, I’ve got two artificial intelligence items, the first of which may provoke writers’ anxieties.

Fairytales

The Princess and the Fox is a new fairytale by the Brothers Grimm or rather, their artificially intelligent surrogate according to an April 18, 2018 article on the British Broadcasting Corporation’s online news website,

It was recently reported that the meditation app Calm had published a “new” fairytale by the Brothers Grimm.

However, The Princess and the Fox was written not by the brothers, who died over 150 years ago, but by humans using an artificial intelligence (AI) tool.

It’s the first fairy tale written by an AI, claims Calm, and is the result of a collaboration with Botnik Studios – a community of writers, artists and developers. Calm says the technique could be referred to as “literary cloning”.

Botnik employees used a predictive-text program to generate words and phrases that might be found in the original Grimm fairytales. Human writers then pieced together sentences to form “the rough shape of a story”, according to Jamie Brew, chief executive of Botnik.

The full version is available to paying customers of Calm, but here’s a short extract:

“Once upon a time, there was a golden horse with a golden saddle and a beautiful purple flower in its hair. The horse would carry the flower to the village where the princess danced for joy at the thought of looking so beautiful and good.

Advertising for a meditation app?

Of course, it’s advertising and it’s ‘smart’ advertising (wordplay intended). Here’s a preview/trailer,

Blair Marnell’s April 18, 2018 article for SyFy Wire provides a bit more detail,

“You might call it a form of literary cloning,” said Calm co-founder Michael Acton Smith. Calm commissioned Botnik to use its predictive text program, Voicebox, to create a new Brothers Grimm story. But first, Voicebox was given the entire collected works of the Brothers Grimm to analyze, before it suggested phrases and sentences based upon those stories. Of course, human writers gave the program an assist when it came to laying out the plot. …

“The Brothers Grimm definitely have a reputation for darkness and many of their best-known tales are undoubtedly scary,” Peter Freedman told SYFY WIRE. Freedman is a spokesperson for Calm who was a part of the team behind the creation of this story. “In the process of machine-human collaboration that generated The Princess and The Fox, we did gently steer the story towards something with a more soothing, calm plot and vibe, that would make it work both as a new Grimm fairy tale and simultaneously as a Sleep Story on Calm.” [emphasis mine]

….

If Marnell’s article is to be believed, Peter Freedman doesn’t hold much hope for writers in the long-term future although we don’t need to start ‘battening down the hatches’ yet.

You can find Calm here.

You can find Botnik  here and Botnik Studios here.

 

AI at Ingenium [Canada Science and Technology Museum] on April 25, 2018

Formerly known (I believe) [*Read the comments for the clarification] as the Canada Science and Technology Museum, Ingenium is hosting a ‘sold out but there will be a livestream’ Google event. From Ingenium’s ‘Curiosity on Stage Evening Edition with Google – The AI Revolution‘ event page,

Join Google, Inc. and the Canada Science and Technology Museum for an evening of thought-provoking discussions about artificial intelligence.

[April 25, 2018
7:00 p.m. – 10:00 p.m. {ET}
Fees: Free]

Invited speakers from industry leaders Google, Facebook, Element AI and Deepmind will explore the intersection of artificial intelligence with robotics, arts, social impact and healthcare. The session will end with a panel discussion and question-and-answer period. Following the event, there will be a reception along with light refreshments and networking opportunities.

The event will be simultaneously translated into both official languages as well as available via livestream from the Museum’s YouTube channel.

Seating is limited

THIS EVENT IS NOW SOLD OUT. Please join us for the livestream from the Museum’s YouTube channel. https://www.youtube.com/cstmweb *** April 25, 2018: I received corrective information about the link for the livestream: https://youtu.be/jG84BIno5J4 from someone at Ingenium.***

Speakers

David Usher (Moderator)

David Usher is an artist, best-selling author, entrepreneur and keynote speaker. As a musician he has sold more than 1.4 million albums, won 4 Junos and has had #1 singles singing in English, French and Thai. When David is not making music, he is equally passionate about his other life, as a Geek. He is the founder of Reimagine AI, an artificial intelligence creative studio working at the intersection of art and artificial intelligence. David is also the founder and creative director of the non-profit, the Human Impact Lab at Concordia University [located in Montréal, Québec]. The Lab uses interactive storytelling to revisualize the story of climate change. David is the co-creator, with Dr. Damon Matthews, of the Climate Clock. Climate Clock has been presented all over the world including the United Nations COP 23 Climate Conference and is presently on a three-year tour with the Canada Museum of Science and Innovation’s Climate Change Exhibit.

Joelle Pineau (Facebook)

The AI Revolution:  From Ideas and Models to Building Smart Robots
Joelle Pineau is head of the Facebook AI Research Lab Montreal, and an Associate Professor and William Dawson Scholar at McGill University. Dr. Pineau’s research focuses on developing new models and algorithms for automatic planning and learning in partially-observable domains. She also applies these algorithms to complex problems in robotics, health-care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a AAAI Fellow, a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.

Pablo Samuel Castro (Google)

Building an Intelligent Assistant for Music Creators
Pablo was born and raised in Quito, Ecuador, and moved to Montreal after high school to study at McGill. He stayed in Montreal for the next 10 years, finished his bachelors, worked at a flight simulator company, and then eventually obtained his masters and PhD at McGill, focusing on Reinforcement Learning. After his PhD Pablo did a 10-month postdoc in Paris before moving to Pittsburgh to join Google. He has worked at Google for almost 6 years, and is currently a research Software Engineer in Google Brain in Montreal, focusing on fundamental Reinforcement Learning research, as well as Machine Learning and Music. Aside from his interest in coding/AI/math, Pablo is an active musician (https://www.psctrio.com), loves running (5 marathons so far, including Boston!), and discussing politics and activism.

Philippe Beaudoin (Element AI)

Concrete AI-for-Good initiatives at Element AI
Philippe cofounded Element AI in 2016 and currently leads its applied lab and AI-for-Good initiatives. His team has helped tackle some of the biggest and most interesting business challenges using machine learning. Philippe holds a Ph.D in Computer Science and taught virtual bipeds to walk by themselves during his postdoc at UBC. He spent five years at Google as a Senior Developer and Technical Lead Manager, partly with the Chrome Machine Learning team. Philippe also founded ArcBees, specializing in cloud-based development. Prior to that he worked in the videogame and graphics hardware industries. When he has some free time, Philippe likes to invent new boardgames — the kind of games where he can still beat the AI!

Doina Precup (Deepmind)

Challenges and opportunities for the AI revolution in health care
Doina Precup splits her time between McGill University, where she co-directs the Reasoning and Learning Lab in the School of Computer Science, and DeepMind Montreal, where she leads the newly formed research team since October 2017.  She got her BSc degree in computer science form the Technical University Cluj-Napoca, Romania, and her MSc and PhD degrees from the University of Massachusetts-Amherst, where she was a Fulbright fellow. Her research interests are in the areas of reinforcement learning, deep learning, time series analysis, and diverse applications of machine learning in health care, automated control and other fields. She became a senior member of AAAI in 2015, a Canada Research Chair in Machine Learning in 2016 and a Senior Fellow of CIFAR in 2017.

Interesting, oui? Not a single expert from Ottawa or Toronto. Well, Element AI has an office in Toronto. Still, I wonder why this singular focus on AI in Montréal. After all, one of the current darlings of AI, machine learning, was developed at the University of Toronto which houses the Canadian Institute for Advanced Research (CIFAR),  the institution in charge of the Pan-Canadian Artificial Intelligence Strategy and the Vector Institutes (more about that in my March 31,2017 posting).

Enough with my musing: For those of us on the West Coast, there’s an opportunity to attend via livestream from 4 pm to 7 pm on April 25, 2018 on xxxxxxxxx. *** April 25, 2018: I received corrective information about the link for the livestream: https://youtu.be/jG84BIno5J4 and clarification as the relationship between Ingenium and the Canada Science and Technology Museum from someone at Ingenium.***

For more about Element AI, go here; for more about DeepMind, go here for information about parent company in the UK and the most I dug up about their Montréal office was this job posting; and, finally , Reimagine.AI is here.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

2017 proceedings for the Canadian Science Policy Conference

I received (via email) a December 11, 2017 notice from the Canadian Science Policy Centre that the 2017 Proceedings for the ninth annual conference (Nov. 1 – 3, 2017 in Ottawa, Canada) can now be accessed,

The Canadian Science Policy Centre is pleased to present you the Proceedings of CSPC 2017. Check out the reports and takeaways for each panel session, which have been carefully drafted by a group of professional writers. You can also listen to the audio recordings and watch the available videos. The proceedings page will provide you with the opportunity to immerse yourself in all of the discussions at the conference. Feel free to share the ones you like! Also, check out the CSPC 2017 reports, analyses, and stats in the proceedings.

Click here for the CSPC 2017 Proceedings

CSPC 2017 Interviews

Take a look at the 70+ one-on-one interviews with prominent figures of science policy. The interviews were conducted by the great team of CSPC 2017 volunteers. The interviews feature in-depth perspectives about the conference, panels, and new up and coming projects.

Click here for the CSPC 2017 interviews

Amongst many others, you can find a video of Governor General Julie Payette’s notorious remarks made at the opening ceremonies and which I highlighted in my November 3, 2017 posting about this year’s conference.

The proceedings are organized by day with links to individual pages for each session held that day. Here’s a sample of what is offered on Day 1: Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths,

Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths

Conference Day:
Day 1 – November 1st 2017

Organized by: Friends of the Canadian Institutes of Health Research

Keynote: Alan Bernstein, President and CEO, CIFAR, 2017 Henry G. Friesen International Prizewinner

Speakers: Brenda Andrews, Director, Andrew’s Lab, University of Toronto; Doina Precup, Associate Professor, McGill University; Dr Rémi Quirion, Chief Scientist of Quebec; Linda Rabeneck, Vice President, Prevention and Cancer Control, Cancer Care Ontario; Peter Zandstra, Director, School of Biomedical Engineering, University of British Columbia

Discussants: Henry Friesen, Professor Emeritus, University of Manitoba; Roderick McInnes, Acting President, Canadian Institutes of Health Research and Director, Lady Davis Institute, Jewish General Hospital, McGill University; Duncan J. Stewart, CEO and Scientific Director, Ottawa Hospital Research Institute; Vivek Goel, Vice President, Research and Innovation, University of Toronto

Moderators: Eric Meslin, President & CEO, Council of Canadian Academies; André Picard, Health Reporter and Columnist, The Globe and Mail

Takeaways and recommendations:

The opportunity for Canada

  • The potential impact of artificial intelligence (AI) could be as significant as the industrial revolution of the 19th century.
  • Canada’s global advantage in deep learning (a subset of machine learning) stems from the pioneering work of Geoffrey Hinton and early support from CIFAR and NSERC.
  • AI could mark a turning point in Canada’s innovation performance, fueled by the highest levels of venture capital financing in nearly a decade, and underpinned by publicly funded research at the federal, provincial and institutional levels.
  • The Canadian AI advantage can only be fully realized by developing and importing skilled talent, accessible markets, capital and companies willing to adopt new technologies into existing industries.
  • Canada leads in the combination of functional genomics and machine learning which is proving effective for predicting the functional variation in genomes.
  • AI promises advances in biomedical engineering by connecting chronic diseases – the largest health burden in Canada – to gene regulatory networks by understanding how stem cells make decisions.
  • AI can be effectively deployed to evaluate health and health systems in the general population.

The challenges

  • AI brings potential ethical and economic perils and requires a watchdog to oversee standards, engage in fact-based debate and prepare for the potential backlash over job losses to robots.
  • The ethical, environmental, economic, legal and social (GEL3S) aspects of genomics have been largely marginalized and it’s important not to make the same mistake with AI.
  • AI’s rapid scientific development makes it difficult to keep pace with safeguards and standards.
  • The fields of AI’s and pattern recognition are strongly connected but here is room for improvement.
  • Self-learning algorithms such as Alphaville could lead to the invention of new things that humans currently don’t know how to do. The field is developing rapidly, leading to some concern over the deployment of such systems.

Training future AI professionals

  • Young researchers must be given the oxygen to excel at AI if its potential is to be realized.
  • Students appreciate the breadth of training and additional resources they receive from researchers with ties to both academia and industry.
  • The importance of continuing fundamental research in AI is being challenged by companies such as Facebook, Google and Amazon which are hiring away key talent.
  • The explosion of AI is a powerful illustration of how the importance of fundamental research may only be recognized and exploited after 20 or 30 years. As a result, support for fundamental research, and the students working in areas related to AI, must continue.

A couple comments

To my knowledge, this is the first year the proceedings have been made so easily accessible. In fact, I can’t remember another year where they have been open access. Thank you!

Of course, I have to make a comment about the Day 2 session titled: Does Canada have a Science Culture? The answer is yes and it’s in the province of Ontario. Just take a look at the panel,

Organized by: Kirsten Vanstone, Royal Canadian Institute for Science and Reinhart Reithmeier, Professor, University of Toronto [in Ontario]

Speakers: Chantal Barriault, Director, Science Communication Graduate Program, Laurentian University [in Ontario] and Science North [in Ontario]; Maurice Bitran, CEO, Ontario Science Centre [take a wild guess as to where this institution is located?]; Kelly Bronson, Assistant Professor, Faculty of Social Sciences, University of Ottawa [in Ontario]; Marc LePage, President and CEO, Genome Canada [in Ontario]

Moderator: Ivan Semeniuk, Science Reporter, The Globe and Mail [in Ontario]

In fact, all of the institutions are in southern Ontario, even, the oddly named Science North.

I know from bitter experience it’s hard to put together panels but couldn’t someone from another province have participated?

Ah well, here’s hoping for 2018 and for a new location. After Ottawa as the CSPC site for three years in a row, please don’t make it a fourth year in a row.

Canadian science policy news and doings (also: some US science envoy news)

I have a couple of notices from the Canadian Science Policy Centre (CSPC), a twitter feed, and an article in online magazine to thank for this bumper crop of news.

 Canadian Science Policy Centre: the conference

The 2017 Canadian Science Policy Conference to be held Nov. 1 – 3, 2017 in Ottawa, Ontario for the third year in a row has a super saver rate available until Sept. 3, 2017 according to an August 14, 2017 announcement (received via email).

Time is running out, you have until September 3rd until prices go up from the SuperSaver rate.

Savings off the regular price with the SuperSaver rate:
Up to 26% for General admission
Up to 29% for Academic/Non-Profit Organizations
Up to 40% for Students and Post-Docs

Before giving you the link to the registration page and assuming that you might want to check out what is on offer at the conference, here’s a link to the programme. They don’t seem to have any events celebrating Canada’s 150th anniversary although they do have a session titled, ‘The Next 150 years of Science in Canada: Embedding Equity, Delivering Diversity/Les 150 prochaine années de sciences au Canada:  Intégrer l’équité, promouvoir la diversité‘,

Enhancing equity, diversity, and inclusivity (EDI) in science, technology, engineering and math (STEM) has been described as being a human rights issue and an economic development issue by various individuals and organizations (e.g. OECD). Recent federal policy initiatives in Canada have focused on increasing participation of women (a designated under-represented group) in science through increased reporting, program changes, and institutional accountability. However, the Employment Equity Act requires employers to act to ensure the full representation of the three other designated groups: Aboriginal peoples, persons with disabilities and members of visible minorities. Significant structural and systemic barriers to full participation and employment in STEM for members of these groups still exist in Canadian institutions. Since data support the positive role of diversity in promoting innovation and economic development, failure to capture the full intellectual capacity of a diverse population limits provincial and national potential and progress in many areas. A diverse international panel of experts from designated groups will speak to the issue of accessibility and inclusion in STEM. In addition, the discussion will focus on evidence-based recommendations for policy initiatives that will promote full EDI in science in Canada to ensure local and national prosperity and progress for Canada over the next 150 years.

There’s also this list of speakers . Curiously, I don’t see Kirsty Duncan, Canada’s Minister of Science on the list, nor do I see any other politicians in the banner for their conference website  This divergence from the CSPC’s usual approach to promoting the conference is interesting.

Moving onto the conference, the organizers have added two panels to the programme (from the announcement received via email),

Friday, November 3, 2017
10:30AM-12:00PM
Open Science and Innovation
Organizer: Tiberius Brastaviceanu
Organization: ACES-CAKE

10:30AM- 12:00PM
The Scientific and Economic Benefits of Open Science
Organizer: Arij Al Chawaf
Organization: Structural Genomics

I think this is the first time there’s been a ‘Tiberius’ on this blog and teamed with the organization’s name, well, I just had to include it.

Finally, here’s the link to the registration page and a page that details travel deals.

Canadian Science Policy Conference: a compendium of documents and articles on Canada’s Chief Science Advisor and Ontario’s Chief Scientist and the pre-2018 budget submissions

The deadline for applications for the Chief Science Advisor position was extended to Feb. 2017 and so far, there’s no word as to whom it might be. Perhaps Minister of Science Kirsty Duncan wants to make a splash with a surprise announcement at the CSPC’s 2017 conference? As for Ontario’s Chief Scientist, this move will make province the third (?) to have a chief scientist, after Québec and Alberta. There is apparently one in Alberta but there doesn’t seem to be a government webpage and his LinkedIn profile doesn’t include this title. In any event, Dr. Fred Wrona is mentioned as the Alberta’s Chief Scientist in a May 31, 2017 Alberta government announcement. *ETA Aug. 25, 2017: I missed the Yukon, which has a Senior Science Advisor. The position is currently held by Dr. Aynslie Ogden.*

Getting back to the compendium, here’s the CSPC’s A Comprehensive Collection of Publications Regarding Canada’s Federal Chief Science Advisor and Ontario’s Chief Scientist webpage. Here’s a little background provided on the page,

On June 2nd, 2017, the House of Commons Standing Committee on Finance commenced the pre-budget consultation process for the 2018 Canadian Budget. These consultations provide Canadians the opportunity to communicate their priorities with a focus on Canadian productivity in the workplace and community in addition to entrepreneurial competitiveness. Organizations from across the country submitted their priorities on August 4th, 2017 to be selected as witness for the pre-budget hearings before the Committee in September 2017. The process will result in a report to be presented to the House of Commons in December 2017 and considered by the Minister of Finance in the 2018 Federal Budget.

NEWS & ANNOUNCEMENT

House of Commons- PRE-BUDGET CONSULTATIONS IN ADVANCE OF THE 2018 BUDGET

https://www.ourcommons.ca/Committees/en/FINA/StudyActivity?studyActivityId=9571255

CANADIANS ARE INVITED TO SHARE THEIR PRIORITIES FOR THE 2018 FEDERAL BUDGET

https://www.ourcommons.ca/DocumentViewer/en/42-1/FINA/news-release/9002784

The deadline for pre-2018 budget submissions was Aug. 4, 2017 and they haven’t yet scheduled any meetings although they are to be held in September. (People can meet with the Standing Committee on Finance in various locations across Canada to discuss their submissions.) I’m not sure where the CSPC got their list of ‘science’ submissions but it’s definitely worth checking as there are some odd omissions such as TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)), Genome Canada, the Pan-Canadian Artificial Intelligence Strategy, CIFAR (Canadian Institute for Advanced Research), the Perimeter Institute, Canadian Light Source, etc.

Twitter and the Naylor Report under a microscope

This news came from University of British Columbia President Santa Ono’s twitter feed,

 I will join Jon [sic] Borrows and Janet Rossant on Sept 19 in Ottawa at a Mindshare event to discuss the importance of the Naylor Report

The Mindshare event Ono is referring to is being organized by Universities Canada (formerly the Association of Universities and Colleges of Canada) and the Institute for Research on Public Policy. It is titled, ‘The Naylor report under the microscope’. Here’s more from the event webpage,

Join Universities Canada and Policy Options for a lively discussion moderated by editor-in-chief Jennifer Ditchburn on the report from the Fundamental Science Review Panel and why research matters to Canadians.

Moderator

Jennifer Ditchburn, editor, Policy Options.

Jennifer Ditchburn

Editor-in-chief, Policy Options

Jennifer Ditchburn is the editor-in-chief of Policy Options, the online policy forum of the Institute for Research on Public Policy.  An award-winning parliamentary correspondent, Jennifer began her journalism career at the Canadian Press in Montreal as a reporter-editor during the lead-up to the 1995 referendum.  From 2001 and 2006 she was a national reporter with CBC TV on Parliament Hill, and in 2006 she returned to the Canadian Press.  She is a three-time winner of a National Newspaper Award:  twice in the politics category, and once in the breaking news category. In 2015 she was awarded the prestigious Charles Lynch Award for outstanding coverage of national issues. Jennifer has been a frequent contributor to television and radio public affairs programs, including CBC’s Power and Politics, the “At Issue” panel, and The Current. She holds a bachelor of arts from Concordia University, and a master of journalism from Carleton University.

@jenditchburn

Tuesday, September 19, 2017

 12-2 pm

Fairmont Château Laurier,  Laurier  Room
 1 Rideau Street, Ottawa

 rsvp@univcan.ca

I can’t tell if they’re offering lunch or if there is a cost associated with this event so you may want to contact the organizers.

As for the Naylor report, I posted a three-part series on June 8, 2017, which features my comments and the other comments I was able to find on the report:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

One piece not mentioned in my three-part series is Paul Wells’ provocatively titled June 29, 2017 article for MacLean’s magazine, Why Canadian scientists aren’t happy (Note: Links have been removed),

Much hubbub this morning over two interviews Kirsty Duncan, the science minister, has given the papers. The subject is Canada’s Fundamental Science Review, commonly called the Naylor Report after David Naylor, the former University of Toronto president who was its main author.

Other authors include BlackBerry founder Mike Lazaridis, who has bankrolled much of the Waterloo renaissance, and Canadian Nobel physicist Arthur McDonald. It’s as blue-chip as a blue-chip panel could be.

Duncan appointed the panel a year ago. It’s her panel, delivered by her experts. Why does it not seem to be… getting anywhere? Why does it seem to have no champion in government? Therein lies a tale.

Note, first, that Duncan’s interviews—her first substantive comment on the report’s recommendations!—come nearly three months after its April release, which in turn came four months after Duncan asked Naylor to deliver his report, last December. (By March I had started to make fun of the Trudeau government in print for dragging its heels on the report’s release. That column was not widely appreciated in the government, I’m told.)

Anyway, the report was released, at an event attended by no representative of the Canadian government. Here’s the gist of what I wrote at the time:

 

Naylor’s “single most important recommendation” is a “rapid increase” in federal spending on “independent investigator-led research” instead of the “priority-driven targeted research” that two successive federal governments, Trudeau’s and Stephen Harper’s, have preferred in the last 8 or 10 federal budgets.

In English: Trudeau has imitated Harper in favouring high-profile, highly targeted research projects, on areas of study selected by political staffers in Ottawa, that are designed to attract star researchers from outside Canada so they can bolster the image of Canada as a research destination.

That’d be great if it wasn’t achieved by pruning budgets for the less spectacular research that most scientists do.

Naylor has numbers. “Between 2007-08 and 2015-16, the inflation-adjusted budgetary envelope for investigator-led research fell by 3 per cent while that for priority-driven research rose by 35 per cent,” he and his colleagues write. “As the number of researchers grew during this period, the real resources available per active researcher to do investigator-led research declined by about 35 per cent.”

And that’s not even taking into account the way two new programs—the $10-million-per-recipient Canada Excellence Research Chairs and the $1.5 billion Canada First Research Excellence Fund—are “further concentrating resources in the hands of smaller numbers of individuals and institutions.”

That’s the context for Duncan’s remarks. In the Globe, she says she agrees with Naylor on “the need for a research system that promotes equity and diversity, provides a better entry for early career researchers and is nimble in response to new scientific opportunities.” But she also “disagreed” with the call for a national advisory council that would give expert advice on the government’s entire science, research and innovation policy.

This is an asinine statement. When taking three months to read a report, it’s a good idea to read it. There is not a single line in Naylor’s overlong report that calls for the new body to make funding decisions. Its proposed name is NACRI, for National Advisory Council on Research and Innovation. A for Advisory. Its responsibilities, listed on Page 19 if you’re reading along at home, are restricted to “advice… evaluation… public reporting… advice… advice.”

Duncan also didn’t promise to meet Naylor’s requested funding levels: $386 million for research in the first year, growing to $1.3 billion in new money in the fourth year. That’s a big concern for researchers, who have been warning for a decade that two successive government’s—Harper’s and Trudeau’s—have been more interested in building new labs than in ensuring there’s money to do research in them.

The minister has talking points. She gave the same answer to both reporters about whether Naylor’s recommendations will be implemented in time for the next federal budget. “It takes time to turn the Queen Mary around,” she said. Twice. I’ll say it does: She’s reacting three days before Canada Day to a report that was written before Christmas. Which makes me worry when she says elected officials should be in charge of being nimble.

Here’s what’s going on.

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

A government that consistently buys into the market for intellectual capital at the very top of the price curve is a factory for producing white elephants. But don’t take my word for it. Ask Geoffrey Hinton [University of Toronto’s Geoffrey Hinton, a Canadian leader in machine learning].

“There is a lot of pressure to make things more applied; I think it’s a big mistake,” he said in 2015. “In the long run, curiosity-driven research just works better… Real breakthroughs come from people focusing on what they’re excited about.”

I keep saying this, like a broken record. If you want the science that changes the world, ask the scientists who’ve changed it how it gets made. This government claims to be interested in what scientists think. We’ll see.

Incisive and acerbic,  you may want to make time to read this article in its entirety.

Getting back to the ‘The Naylor report under the microscope’ event, I wonder if anyone will be as tough and direct as Wells. Going back even further, I wonder if this is why there’s no mention of Duncan as a speaker at the conference. It could go either way: surprise announcement of a Chief Science Advisor, as I first suggested, or avoidance of a potentially angry audience.

For anyone curious about Geoffrey Hinton, there’s more here in my March 31, 2017 post (scroll down about 20% of the way) and for more about the 2017 budget and allocations for targeted science projects there’s my March 24, 2017 post.

US science envoy quits

An Aug. 23, 2017article by Matthew Rosza for salon.com notes the resignation of one of the US science envoys,

President Donald Trump’s infamous response to the Charlottesville riots — namely, saying that both sides were to blame and that there were “very fine people” marching as white supremacists — has prompted yet another high profile resignation from his administration.

Daniel M. Kammen, who served as a science envoy for the State Department and focused on renewable energy development in the Middle East and Northern Africa, submitted a letter of resignation on Wednesday. Notably, he began the first letter of each paragraph with letters that spelled out I-M-P-E-A-C-H. That followed a letter earlier this month by writer Jhumpa Lahiri and actor Kal Penn to similarly spell R-E-S-I-S-T in their joint letter of resignation from the President’s Committee on Arts and Humanities.

Jeremy Berke’s Aug. 23, 2017 article for BusinessInsider.com provides a little more detail (Note: Links have been removed),

A State Department climate science envoy resigned Wednesday in a public letter posted on Twitter over what he says is President Donald Trump’s “attacks on the core values” of the United States with his response to violence in Charlottesville, Virginia.

“My decision to resign is in response to your attacks on the core values of the United States,” wrote Daniel Kammen, a professor of energy at the University of California, Berkeley, who was appointed as one five science envoys in 2016. “Your failure to condemn white supremacists and neo-Nazis has domestic and international ramifications.”

“Your actions to date have, sadly, harmed the quality of life in the United States, our standing abroad, and the sustainability of the planet,” Kammen writes.

Science envoys work with the State Department to establish and develop energy programs in countries around the world. Kammen specifically focused on renewable energy development in the Middle East and North Africa.

That’s it.

Artificial intelligence (AI) company (in Montréal, Canada) attracts $135M in funding from Microsoft, Intel, Nvidia and others

It seems there’s a push on to establish Canada as a centre for artificial intelligence research and, if the federal and provincial governments have their way, for commercialization of said research. As always, there seems to be a bit of competition between Toronto (Ontario) and Montréal (Québec) as to which will be the dominant hub for the Canadian effort if one is to take Braga’s word for the situation.

In any event, Toronto seemed to have a mild advantage over Montréal initially with the 2017 Canadian federal government  budget announcement that the Canadian Institute for Advanced Research (CIFAR), based in Toronto, would launch a Pan-Canadian Artificial Intelligence Strategy and with an announcement from the University of Toronto shortly after (from my March 31, 2017 posting),

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

However, Montréal and the province of Québec are no slouches when it comes to supporting to technology. From a June 14, 2017 article by Matthew Braga for CBC (Canadian Broadcasting Corporation) news online (Note: Links have been removed),

One of the most promising new hubs for artificial intelligence research in Canada is going international, thanks to a $135 million investment with contributions from some of the biggest names in tech.

The company, Montreal-based Element AI, was founded last October [2016] to help companies that might not have much experience in artificial intelligence start using the technology to change the way they do business.

It’s equal parts general research lab and startup incubator, with employees working to develop new and improved techniques in artificial intelligence that might not be fully realized for years, while also commercializing products and services that can be sold to clients today.

It was co-founded by Yoshua Bengio — one of the pioneers of a type of AI research called machine learning — along with entrepreneurs Jean-François Gagné and Nicolas Chapados, and the Canadian venture capital fund Real Ventures.

In an interview, Bengio and Gagné said the money from the company’s funding round will be used to hire 250 new employees by next January. A hundred will be based in Montreal, but an additional 100 employees will be hired for a new office in Toronto, and the remaining 50 for an Element AI office in Asia — its first international outpost.

They will join more than 100 employees who work for Element AI today, having left jobs at Amazon, Uber and Google, among others, to work at the company’s headquarters in Montreal.

The expansion is a big vote of confidence in Element AI’s strategy from some of the world’s biggest technology companies. Microsoft, Intel and Nvidia all contributed to the round, and each is a key player in AI research and development.

The company has some not unexpected plans and partners (from the Braga, article, Note: A link has been removed),

The Series A round was led by Data Collective, a Silicon Valley-based venture capital firm, and included participation by Fidelity Investments Canada, National Bank of Canada, and Real Ventures.

What will it help the company do? Scale, its founders say.

“We’re looking at domain experts, artificial intelligence experts,” Gagné said. “We already have quite a few, but we’re looking at people that are at the top of their game in their domains.

“And at this point, it’s no longer just pure artificial intelligence, but people who understand, extremely well, robotics, industrial manufacturing, cybersecurity, and financial services in general, which are all the areas we’re going after.”

Gagné says that Element AI has already delivered 10 projects to clients in those areas, and have many more in development. In one case, Element AI has been helping a Japanese semiconductor company better analyze the data collected by the assembly robots on its factory floor, in a bid to reduce manufacturing errors and improve the quality of the company’s products.

There’s more to investment in Québec’s AI sector than Element AI (from the Braga article; Note: Links have been removed),

Element AI isn’t the only organization in Canada that investors are interested in.

In September, the Canadian government announced $213 million in funding for a handful of Montreal universities, while both Google and Microsoft announced expansions of their Montreal AI research groups in recent months alongside investments in local initiatives. The province of Quebec has pledged $100 million for AI initiatives by 2022.

Braga goes on to note some other initiatives but at that point the article’s focus is exclusively Toronto.

For more insight into the AI situation in Québec, there’s Dan Delmar’s May 23, 2017 article for the Montreal Express (Note: Links have been removed),

Advocating for massive government spending with little restraint admittedly deviates from the tenor of these columns, but the AI business is unlike any other before it. [emphasis misn] Having leaders acting as fervent advocates for the industry is crucial; resisting the coming technological tide is, as the Borg would say, futile.

The roughly 250 AI researchers who call Montreal home are not simply part of a niche industry. Quebec’s francophone character and Montreal’s multilingual citizenry are certainly factors favouring the development of language technology, but there’s ample opportunity for more ambitious endeavours with broader applications.

AI isn’t simply a technological breakthrough; it is the technological revolution. [emphasis mine] In the coming decades, modern computing will transform all industries, eliminating human inefficiencies and maximizing opportunities for innovation and growth — regardless of the ethical dilemmas that will inevitably arise.

“By 2020, we’ll have computers that are powerful enough to simulate the human brain,” said (in 2009) futurist Ray Kurzweil, author of The Singularity Is Near, a seminal 2006 book that has inspired a generation of AI technologists. Kurzweil’s projections are not science fiction but perhaps conservative, as some forms of AI already effectively replace many human cognitive functions. “By 2045, we’ll have expanded the intelligence of our human-machine civilization a billion-fold. That will be the singularity.”

The singularity concept, borrowed from physicists describing event horizons bordering matter-swallowing black holes in the cosmos, is the point of no return where human and machine intelligence will have completed their convergence. That’s when the machines “take over,” so to speak, and accelerate the development of civilization beyond traditional human understanding and capability.

The claims I’ve highlighted in Delmar’s article have been made before for other technologies, “xxx is like no other business before’ and “it is a technological revolution.”  Also if you keep scrolling down to the bottom of the article, you’ll find Delmar is a ‘public relations consultant’ which, if you look at his LinkedIn profile, you’ll find means he’s a managing partner in a PR firm known as Provocateur.

Bertrand Marotte’s May 20, 2017 article for the Montreal Gazette offers less hyperbole along with additional detail about the Montréal scene (Note: Links have been removed),

It might seem like an ambitious goal, but key players in Montreal’s rapidly growing artificial-intelligence sector are intent on transforming the city into a Silicon Valley of AI.

Certainly, the flurry of activity these days indicates that AI in the city is on a roll. Impressive amounts of cash have been flowing into academia, public-private partnerships, research labs and startups active in AI in the Montreal area.

…, researchers at Microsoft Corp. have successfully developed a computing system able to decipher conversational speech as accurately as humans do. The technology makes the same, or fewer, errors than professional transcribers and could be a huge boon to major users of transcription services like law firms and the courts.

Setting the goal of attaining the critical mass of a Silicon Valley is “a nice point of reference,” said tech entrepreneur Jean-François Gagné, co-founder and chief executive officer of Element AI, an artificial intelligence startup factory launched last year.

The idea is to create a “fluid, dynamic ecosystem” in Montreal where AI research, startup, investment and commercialization activities all mesh productively together, said Gagné, who founded Element with researcher Nicolas Chapados and Université de Montréal deep learning pioneer Yoshua Bengio.

“Artificial intelligence is seen now as a strategic asset to governments and to corporations. The fight for resources is global,” he said.

The rise of Montreal — and rival Toronto — as AI hubs owes a lot to provincial and federal government funding.

Ottawa promised $213 million last September to fund AI and big data research at four Montreal post-secondary institutions. Quebec has earmarked $100 million over the next five years for the development of an AI “super-cluster” in the Montreal region.

The provincial government also created a 12-member blue-chip committee to develop a strategic plan to make Quebec an AI hub, co-chaired by Claridge Investments Ltd. CEO Pierre Boivin and Université de Montréal rector Guy Breton.

But private-sector money has also been flowing in, particularly from some of the established tech giants competing in an intense AI race for innovative breakthroughs and the best brains in the business.

Montreal’s rich talent pool is a major reason Waterloo, Ont.-based language-recognition startup Maluuba decided to open a research lab in the city, said the company’s vice-president of product development, Mohamed Musbah.

“It’s been incredible so far. The work being done in this space is putting Montreal on a pedestal around the world,” he said.

Microsoft struck a deal this year to acquire Maluuba, which is working to crack one of the holy grails of deep learning: teaching machines to read like the human brain does. Among the company’s software developments are voice assistants for smartphones.

Maluuba has also partnered with an undisclosed auto manufacturer to develop speech recognition applications for vehicles. Voice recognition applied to cars can include such things as asking for a weather report or making remote requests for the vehicle to unlock itself.

Marotte’s Twitter profile describes him as a freelance writer, editor, and translator.

A question of consciousness: Facebotlish (a new language); a July 5, 2017 rap guide performance in Vancouver, Canada; Tom Stoppard’s play; and a little more

This would usually be a simple event announcement but with the advent of a new, related (in my mind if no one else’s) development on Facebook, this has become a roundup of sorts.

Facebotlish (Facebook’s chatbots create their own language)

The language created by Facebook’s chatbots, Facebotlish, was an unintended consequence—that’s right Facebook’s developers did not design a language for the chatbots or anticipate its independent development, apparently.  Adrienne LaFrance’s June 20, 2017 article for theatlantic.com explores the development and the question further,

Something unexpected happened recently at the Facebook Artificial Intelligence Research lab. Researchers who had been training bots to negotiate with one another realized that the bots, left to their own devices, started communicating in a non-human language.

In order to actually follow what the bots were saying, the researchers had to tweak their model, limiting the machines to a conversation humans could understand. (They want bots to stick to human languages because eventually they want those bots to be able to converse with human Facebook users.) …

Here’s what the language looks like (from LaFrance article),

Here’s an example of one of the bot negotiations that Facebook observed:Bob: i can i i everything else . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to
Bob: you i everything else . . . . . . . . . . . . . .
Alice: balls have a ball to me to me to me to me to me to me to me
Bob: i i can i i i everything else . . . . . . . . . . . . . .
Alice: balls have a ball to me to me to me to me to me to me to me
Bob: i . . . . . . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to
Bob: you i i i i i everything else . . . . . . . . . . . . . .
Alice: balls have 0 to me to me to me to me to me to me to me to me to
Bob: you i i i everything else . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to

It is incomprehensible to humans even after being tweaked, even so, some successful negotiations can ensue.

Facebook’s researchers aren’t the only one to come across the phenomenon (from LaFrance’s article; Note: Links have been removed),

Other AI researchers, too, say they’ve observed machines that can develop their own languages, including languages with a coherent structure, and defined vocabulary and syntax—though not always actual meaningful, by human standards.

In one preprint paper added earlier this year [2017] to the research repository arXiv, a pair of computer scientists from the non-profit AI research firm OpenAI wrote about how bots learned to communicate in an abstract language—and how those bots turned to non-verbal communication, the equivalent of human gesturing or pointing, when language communication was unavailable. (Bots don’t need to have corporeal form to engage in non-verbal communication; they just engage with what’s called a visual sensory modality.) Another recent preprint paper, from researchers at the Georgia Institute of Technology, Carnegie Mellon, and Virginia Tech, describes an experiment in which two bots invent their own communication protocol by discussing and assigning values to colors and shapes—in other words, the researchers write, they witnessed the “automatic emergence of grounded language and communication … no human supervision!”

The implications of this kind of work are dizzying. Not only are researchers beginning to see how bots could communicate with one another, they may be scratching the surface of how syntax and compositional structure emerged among humans in the first place.

LaFrance’s article is well worth reading in its entirety especially since the speculation is focused on whether or not the chatbots’ creation is in fact language. There is no mention of consciousness and perhaps this is just a crazy idea but is it possible that these chatbots have consciousness? The question is particularly intriguing in light of some of philosopher David Chalmers’ work (see his 2014 TED talk in Vancouver, Canada: https://www.ted.com/talks/david_chalmers_how_do_you_explain_consciousness/transcript?language=en runs roughly 18 mins.); a text transcript is also featured. There’s a condensed version of Chalmers’ TED talk offered in a roughly 9 minute NPR (US National Public Radio) interview by Gus Raz. Here are some highlights from the text transcript,

So we’ve been hearing from brain scientists who are asking how a bunch of neurons and synaptic connections in the brain add up to us, to who we are. But it’s consciousness, the subjective experience of the mind, that allows us to ask the question in the first place. And where consciousness comes from – that is an entirely separate question.

DAVID CHALMERS: Well, I like to distinguish between the easy problems of consciousness and the hard problem.

RAZ: This is David Chalmers. He’s a philosopher who coined this term, the hard problem of consciousness.

CHALMERS: Well, the easy problems are ultimately a matter of explaining behavior – things we do. And I think brain science is great at problems like that. It can isolate a neural circuit and show how it enables you to see a red object, to respondent and say, that’s red. But the hard problem of consciousness is subjective experience. Why, when all that happens in this circuit, does it feel like something? How does a bunch of – 86 billion neurons interacting inside the brain, coming together – how does that produce the subjective experience of a mind and of the world?

RAZ: Here’s how David Chalmers begins his TED Talk.

(SOUNDBITE OF TED TALK)

CHALMERS: Right now, you have a movie playing inside your head. It has 3-D vision and surround sound for what you’re seeing and hearing right now. Your movie has smell and taste and touch. It has a sense of your body, pain, hunger, orgasms. It has emotions, anger and happiness. It has memories, like scenes from your childhood, playing before you. This movie is your stream of consciousness. If we weren’t conscious, nothing in our lives would have meaning or value. But at the same time, it’s the most mysterious phenomenon in the universe. Why are we conscious?

RAZ: Why is consciousness more than just the sum of the brain’s parts?

CHALMERS: Well, the question is, you know, what is the brain? It’s this giant complex computer, a bunch of interacting parts with great complexity. What does all that explain? That explains objective mechanism. Consciousness is subjective by its nature. It’s a matter of subjective experience. And it seems that we can imagine all of that stuff going on in the brain without consciousness. And the question is, where is the consciousness from there? It’s like, if someone could do that, they’d get a Nobel Prize, you know?

RAZ: Right.

CHALMERS: So here’s the mapping from this circuit to this state of consciousness. But underneath that is always going be the question, why and how does the brain give you consciousness in the first place?

(SOUNDBITE OF TED TALK)

CHALMERS: Right now, nobody knows the answers to those questions. So we may need one or two ideas that initially seem crazy before we can come to grips with consciousness, scientifically. The first crazy idea is that consciousness is fundamental. Physicists sometimes take some aspects of the universe as fundamental building blocks – space and time and mass – and you build up the world from there. Well, I think that’s the situation we’re in. If you can’t explain consciousness in terms of the existing fundamentals – space, time – the natural thing to do is to postulate consciousness itself as something fundamental – a fundamental building block of nature. The second crazy idea is that consciousness might be universal. This view is sometimes called panpsychism – pan, for all – psych, for mind. Every system is conscious. Not just humans, dogs, mice, flies, but even microbes. Even a photon has some degree of consciousness. The idea is not that photons are intelligent or thinking. You know, it’s not that a photon is wracked with angst because it’s thinking, oh, I’m always buzzing around near the speed of light. I never get to slow down and smell the roses. No, not like that. But the thought is, maybe photons might have some element of raw subjective feeling, some primitive precursor to consciousness.

RAZ: So this is a pretty big idea – right? – like, that not just flies, but microbes or photons all have consciousness. And I mean we, like, as humans, we want to believe that our consciousness is what makes us special, right – like, different from anything else.

CHALMERS: Well, I would say yes and no. I’d say the fact of consciousness does not make us special. But maybe we’ve a special type of consciousness ’cause you know, consciousness is not on and off. It comes in all these rich and amazing varieties. There’s vision. There’s hearing. There’s thinking. There’s emotion and so on. So our consciousness is far richer, I think, than the consciousness, say, of a mouse or a fly. But if you want to look for what makes us distinct, don’t look for just our being conscious, look for the kind of consciousness we have. …

Intriguing, non?

Vancouver premiere of Baba Brinkman’s Rap Guide to Consciousness

Baba Brinkman, former Vancouverite and current denizen of New York City, is back in town offering a new performance at the Rio Theatre (1680 E. Broadway, near Commercial Drive). From a July 5, 2017 Rio Theatre event page and ticket portal,

Baba Brinkman’s Rap Guide to Consciousness

Wednesday, July 5 [2017] at 6:30pm PDT

Baba Brinkman’s new hip-hop theatre show “Rap Guide to Consciousness” is all about the neuroscience of consciousness. See it in Vancouver at the Rio Theatre before it goes to the Edinburgh Fringe Festival in August [2017].

This event also features a performance of “Off the Top” with Dr. Heather Berlin (cognitive neuroscientist, TV host, and Baba’s wife), which is also going to Edinburgh.

Wednesday, July 5
Doors 6:00 pm | Show 6:30 pm

Advance tickets $12 | $15 at the door

*All ages welcome!
*Sorry, Groupons and passes not accepted for this event.

“Utterly unique… both brilliantly entertaining and hugely informative” ★ ★ ★ ★ ★ – Broadway Baby

“An education, inspiring, and wonderfully entertaining show from beginning to end” ★ ★ ★ ★ ★ – Mumble Comedy

There’s quite the poster for this rap guide performance,

In addition to  the Vancouver and Edinburgh performance (the show was premiered at the Brighton Fringe Festival in May 2017; see Simon Topping’s very brief review in this May 10, 2017 posting on the reviewshub.com), Brinkman is raising money (goal is $12,000US; he has raised a little over $3,000 with approximately one month before the deadline) to produce a CD. Here’s more from the Rap Guide to Consciousness campaign page on Indiegogo,

Brinkman has been working with neuroscientists, Dr. Anil Seth (professor and co-director of Sackler Centre for Consciousness Science) and Dr. Heather Berlin (Brinkman’s wife as noted earlier; see her Wikipedia entry or her website).

There’s a bit more information about the rap project and Anil Seth in a May 3, 2017 news item by James Hakner for the University of Sussex,

The research frontiers of consciousness science find an unusual outlet in an exciting new Rap Guide to Consciousness, premiering at this year’s Brighton Fringe Festival.

Professor Anil Seth, Co-Director of the Sackler Centre for Consciousness Science at the University of Sussex, has teamed up with New York-based ‘peer-reviewed rapper’ Baba Brinkman, to explore the latest findings from the neuroscience and cognitive psychology of subjective experience.

What is it like to be a baby? We might have to take LSD to find out. What is it like to be an octopus? Imagine most of your brain was actually built into your fingertips. What is it like to be a rapper kicking some of the world’s most complex lyrics for amused fringe audiences? Surreal.

In this new production, Baba brings his signature mix of rap comedy storytelling to the how and why behind your thoughts and perceptions. Mixing cutting-edge research with lyrical performance and projected visuals, Baba takes you through the twists and turns of the only organ it’s better to donate than receive: the human brain. Discover how the various subsystems of your brain come together to create your own rich experience of the world, including the sights and sounds of a scientifically peer-reviewed rapper dropping knowledge.

The result is a truly mind-blowing multimedia hip-hop theatre performance – the perfect meta-medium through which to communicate the dazzling science of consciousness.

Baba comments: “This topic is endlessly fascinating because it underlies everything we do pretty much all the time, which is probably why it remains one of the toughest ideas to get your head around. The first challenge with this show is just to get people to accept the (scientifically uncontroversial) idea that their brains and minds are actually the same thing viewed from different angles. But that’s just the starting point, after that the details get truly amazing.”

Baba Brinkman is a Canadian rap artist and award-winning playwright, best known for his “Rap Guide” series of plays and albums. Baba has toured the world and enjoyed successful runs at the Edinburgh Fringe Festival and off-Broadway in New York. The Rap Guide to Religion was nominated for a 2015 Drama Desk Award for “Unique Theatrical Experience” and The Rap Guide to Evolution (“Astonishing and brilliant” NY Times), won a Scotsman Fringe First Award and a Drama Desk Award nomination for “Outstanding Solo Performance”. The Rap Guide to Climate Chaos premiered in Edinburgh in 2015, followed by a six-month off-Broadway run in 2016.

Baba is also a pioneer in the genre of “lit-hop” or literary hip-hop, known for his adaptations of The Canterbury Tales, Beowulf, and Gilgamesh. He is a recent recipient of the National Center for Science Education’s “Friend of Darwin Award” for his efforts to improve the public understanding of evolutionary biology.

Anil Seth is an internationally renowned researcher into the biological basis of consciousness, with more than 100 (peer-reviewed!) academic journal papers on the subject. Alongside science he is equally committed to innovative public communication. A Wellcome Trust Engagement Fellow (from 2016) and the 2017 British Science Association President (Psychology), Professor Seth has co-conceived and consulted on many science-art projects including drama (Donmar Warehouse), dance (Siobhan Davies dance company), and the visual arts (with artist Lindsay Seers). He has also given popular public talks on consciousness at the Royal Institution (Friday Discourse) and at the main TED conference in Vancouver. He is a regular presence in print and on the radio and is the recipient of awards including the BBC Audio Award for Best Single Drama (for ‘The Sky is Wider’) and the Royal Society Young People’s Book Prize (for EyeBenders). This is his first venture into rap.

Professor Seth said: “There is nothing more familiar, and at the same time more mysterious than consciousness, but research is finally starting to shed light on this most central aspect of human existence. Modern neuroscience can be incredibly arcane and complex, posing challenges to us as public communicators.

“It’s been a real pleasure and privilege to work with Baba on this project over the last year. I never thought I’d get involved with a rap artist – but hearing Baba perform his ‘peer reviewed’ breakdowns of other scientific topics I realized here was an opportunity not to be missed.”

Interestingly, Seth has another Canadian connection; he’s a Senior Fellow of the Azrieli Program in Brain, Mind & Consciousness at the Canadian Institute for Advanced Research (CIFAR; Wikipedia entry). By the way, the institute  was promised $93.7M in the 2017 Canadian federal government budget for the establishment of a Pan-Canadian Artificial Intelligence Strategy (see my March 24, 2017 posting; scroll down about 25% of the way and look for the highlighted dollar amount). You can find out more about the Azrieli programme here and about CIFAR on its website.

The Hard Problem (a Tom Stoppard play)

Brinkman isn’t the only performance-based artist to be querying the concept of consciousness, Tom Stoppard has written a play about consciousness titled ‘The Hard Problem’, which debuted at the National Theatre (UK) in January 2015 (see BBC [British Broadcasting Corporation] news online’s Jan. 29, 2015 roundup of reviews). A May 25, 2017 commentary by Andrew Brown for the Guardian offers some insight into the play and the issues (Note: Links have been removed),

There is a lovely exchange in Tom Stoppard’s play about consciousness, The Hard Problem, when an atheist has been sneering at his girlfriend for praying. It is, he says, an utterly meaningless activity. Right, she says, then do one thing for me: pray! I can’t do that, he replies. It would betray all I believe in.

So prayer can have meanings, and enormously important ones, even for people who are certain that it doesn’t have the meaning it is meant to have. In that sense, your really convinced atheist is much more religious than someone who goes along with all the prayers just because that’s what everyone does, without for a moment supposing the action means anything more than asking about the weather.

The Hard Problem of the play’s title is a phrase coined by the Australian philosopher David Chalmers to describe the way in which consciousness arises from a physical world. What makes it hard is that we don’t understand it. What makes it a problem is slightly different. It isn’t the fact of consciousness, but our representations of consciousness, that give rise to most of the difficulties. We don’t know how to fit the first-person perspective into the third-person world that science describes and explores. But this isn’t because they don’t fit: it’s because we don’t understand how they fit. For some people, this becomes a question of consuming interest.

There are also a couple of video of Tom Stoppard, the playwright, discussing his play with various interested parties, the first being the director at the National Theatre who tackled the debut run, Nicolas Hytner: https://www.youtube.com/watch?v=s7J8rWu6HJg (it runs approximately 40 mins.). Then, there’s the chat Stoppard has with previously mentioned philosopher, David Chalmers: https://www.youtube.com/watch?v=4BPY2c_CiwA (this runs approximately 1 hr. 32 mins.).

I gather ‘consciousness’ is a hot topic these days and, in the venacular of the 1960s, I guess you could describe all of this as ‘expanding our consciousness’. Have a nice weekend!

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.